JP4827022B2 - Misfire detection device for internal combustion engine - Google Patents

Misfire detection device for internal combustion engine Download PDF

Info

Publication number
JP4827022B2
JP4827022B2 JP2007317062A JP2007317062A JP4827022B2 JP 4827022 B2 JP4827022 B2 JP 4827022B2 JP 2007317062 A JP2007317062 A JP 2007317062A JP 2007317062 A JP2007317062 A JP 2007317062A JP 4827022 B2 JP4827022 B2 JP 4827022B2
Authority
JP
Japan
Prior art keywords
fluctuation amount
speed fluctuation
rotational speed
misfire
rotation speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007317062A
Other languages
Japanese (ja)
Other versions
JP2009138663A (en
Inventor
尾関  淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007317062A priority Critical patent/JP4827022B2/en
Publication of JP2009138663A publication Critical patent/JP2009138663A/en
Application granted granted Critical
Publication of JP4827022B2 publication Critical patent/JP4827022B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、内燃機関の各気筒の失火の有無を内燃機関の回転速度変動量に基づいて判定する内燃機関の失火検出装置に関する発明である。   The present invention relates to a misfire detection device for an internal combustion engine that determines the presence or absence of misfire in each cylinder of the internal combustion engine based on the rotational speed fluctuation amount of the internal combustion engine.

この種の内燃機関の失火検出装置は、例えば特許文献1(特許第2982381号公報)に記載されているように、燃焼行程が連続する2つの気筒間の回転速度変動量(以下「第1の回転速度変動量」という)を回転速度検出手段の検出値に基づいて演算すると共に、前記第1の回転速度変動量を演算した2つの気筒の燃焼行程よりもそれぞれ360℃A前の燃焼行程が連続する2つの気筒間の回転速度変動量(以下「第2の回転速度変動量」という)を回転速度検出手段の検出値に基づいて演算し、前記第1の回転速度変動量と前記第2の回転速度変動量との差分値を失火判定しきい値と比較して失火の有無を判定するようにしたものがある。   This type of misfire detection device for an internal combustion engine, for example, as described in Patent Document 1 (Japanese Patent No. 2982381), is a rotational speed fluctuation amount (hereinafter referred to as “first engine”) between two cylinders in which a combustion stroke continues. (Referred to as “rotational speed fluctuation amount”) based on the detection value of the rotational speed detection means, and combustion strokes 360 ° C. ahead of the combustion strokes of the two cylinders for which the first rotational speed fluctuation amount is calculated. A rotational speed fluctuation amount between two consecutive cylinders (hereinafter referred to as “second rotational speed fluctuation amount”) is calculated based on a detection value of the rotational speed detection means, and the first rotational speed fluctuation amount and the second rotational speed are calculated. In some cases, the difference between the rotational speed fluctuation amount and the misfire determination threshold value is compared to determine the presence or absence of misfire.

一般に、内燃機関の運転中に、クランク軸の機械的ながたや撓み変形、回転速度検出手段(クランク角センサ)の製造ばらつき等により、360℃A周期で回転変動が検出される傾向があるため、第1の回転速度変動量を演算した2つの気筒の燃焼行程よりもそれぞれ360℃A前の燃焼行程が連続する2つの気筒間の回転速度変動量である第2の回転速度変動量は、第1の回転速度変動量に含まれる、360℃A周期の回転変動による誤差を排除するためのパラメータとして用いられ、第1の回転速度変動量から第2の回転速度変動量を差し引いた差分値を用いることで、第1の回転速度変動量から360℃A周期の回転変動による誤差を排除しようとするものである。
特許第2982381号公報
In general, during operation of an internal combustion engine, rotational fluctuation tends to be detected at a cycle of 360 ° C. due to mechanical backlash and deformation of the crankshaft, manufacturing variation of the rotational speed detection means (crank angle sensor), and the like. Therefore, the second rotational speed fluctuation amount, which is the rotational speed fluctuation amount between the two cylinders, each of which has a combustion stroke of 360 ° C. before the combustion stroke of the two cylinders for which the first rotational speed fluctuation amount is calculated, is The difference obtained by subtracting the second rotation speed fluctuation amount from the first rotation speed fluctuation amount is used as a parameter for eliminating an error caused by the rotation fluctuation of the 360 ° C. period included in the first rotation speed fluctuation amount. By using the value, an error due to the rotational fluctuation of the 360 ° C. cycle is removed from the first rotational speed fluctuation amount.
Japanese Patent No. 2982381

ところで、4気筒内燃機関の場合は、第1の回転速度変動量はωn-1 −ωn 、第2の回転速度変動量はωn-3 −ωn-2 となり、6気筒内燃機関の場合は、第1の回転速度変動量はωn-1 −ωn 、第2の回転速度変動量はωn-4 −ωn-3 となる。ここで、ωn は今回の回転速度、ωn-1 は1燃焼行程前の回転速度、ωn-2 は2燃焼行程前の回転速度、ωn-3 は3燃焼行程前の回転速度、ωn-4 は4燃焼行程前の回転速度である。   By the way, in the case of a four-cylinder internal combustion engine, the first rotational speed fluctuation amount is ωn−1−ωn, and the second rotational speed fluctuation amount is ωn−3−ωn-2. The rotational speed fluctuation amount of 1 is ωn−1−ωn, and the second rotational speed fluctuation amount is ωn−4−ωn−3. Where ωn is the current rotational speed, ωn-1 is the rotational speed before the first combustion stroke, ωn-2 is the rotational speed before the second combustion stroke, ωn-3 is the rotational speed before the third combustion stroke, and ωn-4 is 4 Rotational speed before the combustion stroke.

例えば、6気筒内燃機関の場合は、第1の回転速度変動量と第2の回転速度変動量との差分値Δωn は次式で算出される。
Δωn =(ωn-1 −ωn )−(ωn-4 −ωn-3 )
For example, in the case of a 6-cylinder internal combustion engine, the difference value Δωn between the first rotation speed fluctuation amount and the second rotation speed fluctuation amount is calculated by the following equation.
Δωn = (ωn-1 −ωn) − (ωn-4 −ωn-3)

上式では、4燃焼行程前(480℃A前)の気筒が失火している場合は、4燃焼行程前の回転速度ωn-4 が小さくなるために、今回の差分値Δωn が大きくなり、その結果、今回の燃焼行程の気筒が正常に着火しているにも拘らず失火していると誤判定してしまう可能性がある。   In the above equation, if the cylinder before the 4th combustion stroke (before 480 ° C A) has misfired, the rotational speed ωn-4 before the 4th combustion stroke decreases, so the current difference value Δωn increases. As a result, there is a possibility that it is erroneously determined that the cylinder in the current combustion stroke has misfired despite being normally ignited.

この対策として、上記特許文献1に記載された他の実施例では、6気筒内燃機関の場合は、4燃焼行程後(480℃A後)の差分値Δωn+4 を算出し、今回の差分値Δωn と4燃焼行程後の差分値Δωn+4 が共に失火判定しきい値よりも大きい場合に失火と判定するようにしている(Δωn >失火判定しきい値、且つΔωn+4 >失火判定しきい値の場合に失火と判定する)。
Δωn+4 =(ωn+3 −ωn+4 )−(ωn −ωn+1 )
As a countermeasure, in another embodiment described in Patent Document 1, in the case of a 6-cylinder internal combustion engine, a difference value Δωn + 4 after 4 combustion strokes (after 480 ° C. A) is calculated, and the current difference value is calculated. When both Δωn and the difference value Δωn + 4 after the four combustion strokes are larger than the misfire determination threshold, a misfire is determined (Δωn> misfire determination threshold and Δωn + 4> misfire determination threshold). If it is a value, it is determined as misfire).
Δωn + 4 = (ωn + 3 −ωn + 4) − (ωn −ωn + 1)

尚、4気筒内燃機関の場合は、今回の差分値Δωn と3燃焼行程後(540℃A後)の差分値Δωn+3 が共に失火判定しきい値よりも大きい場合に失火と判定すれば良い。
Δωn+3 =(ωn+2 −ωn+3 )−(ωn −ωn+1 )
In the case of a four-cylinder internal combustion engine, misfire may be determined when the current difference value Δωn and the difference value Δωn + 3 after three combustion strokes (after 540 ° C. A) are both greater than the misfire determination threshold value. .
Δωn + 3 = (ωn + 2 −ωn + 3) − (ωn −ωn + 1)

しかし、最近の本発明者の研究結果によれば、上記失火検出方法でも、失火時の回転変動挙動、変速装置の種類・構造、回転速度検出手段(クランク角センサ)の取付位置等によっては、失火を正確に検出できない場合があることが判明した。この理由を図4、図5を用いて説明する。   However, according to the recent inventor's research results, even in the misfire detection method, depending on the rotational fluctuation behavior at the time of misfire, the type and structure of the transmission, the mounting position of the rotation speed detection means (crank angle sensor), etc., It has been found that misfires may not be detected accurately. The reason for this will be described with reference to FIGS.

図4、図5は4気筒内燃機関で1つの気筒が間欠的に失火している例であり、図4は、従来技術で失火を検出可能な例で、図5は、従来技術では失火を検出できない例である。   4 and 5 are examples in which one cylinder intermittently misfires in a four-cylinder internal combustion engine. FIG. 4 is an example in which misfire can be detected by the prior art, and FIG. This is an example that cannot be detected.

失火を検出可能な場合は、図4に示すように、今回の気筒の失火により落ち込んだ回転速度ωが次の燃焼行程の気筒の着火によって直ちに上昇するため、今回の差分値Δωn と3燃焼行程後(540℃A後)の差分値Δωn+3 が共に失火判定しきい値よりも大きくなり、失火を検出することができる。   When misfire can be detected, as shown in FIG. 4, since the rotational speed ω that has fallen due to the misfire of the current cylinder immediately increases due to the ignition of the cylinder in the next combustion stroke, the current difference value Δωn and the three combustion strokes Both later (after 540 ° C. A) difference values Δωn + 3 become larger than the misfire determination threshold, and misfire can be detected.

一方、図5に示すように、今回の気筒の失火により落ち込んだ回転速度ωが、次の燃焼行程の気筒が正常に着火してもあまり上昇せず、失火後の回転速度ωの上昇が緩慢になることがある。このような場合は、今回の差分値Δωn のみが大きくなり、3燃焼行程後(540℃A後)の差分値Δωn+3 が大きくならないため、3燃焼行程後(540℃A後)の差分値Δωn+3 が失火判定しきい値を下回ってしまい、失火を検出できない。   On the other hand, as shown in FIG. 5, the rotational speed ω that has fallen due to the misfire of the cylinder this time does not increase so much even if the cylinder in the next combustion stroke normally ignites, and the increase in the rotational speed ω after the misfire is slow. May be. In such a case, only the current difference value Δωn increases, and the difference value Δωn + 3 after the third combustion stroke (after 540 ° C. A) does not increase, so the difference value after the third combustion stroke (after 540 ° C. A) Δωn + 3 falls below the misfire judgment threshold, and misfire cannot be detected.

本発明はこのような事情を考慮してなされたものであり、従ってその目的は、各気筒の燃焼行程毎に失火を従来より精度良く検出できる内燃機関の失火検出装置を提供することにある。   The present invention has been made in view of such circumstances. Accordingly, an object of the present invention is to provide a misfire detection apparatus for an internal combustion engine that can detect misfire more accurately than in the past for each combustion stroke of each cylinder.

上記目的を達成するために、請求項1に係る発明は、内燃機関の回転速度を検出する回転速度検出手段と、失火検出対象となる気筒と燃焼行程が連続する気筒との間の回転速度変動量(以下「第1の回転速度変動量」という)を前記回転速度検出手段の検出値に基づいて演算する第1の回転速度変動量演算手段と、前記第1の回転速度変動量を演算した2つの気筒の燃焼行程よりもそれぞれ360℃A前の燃焼行程が連続する2つの気筒間の回転速度変動量(以下「第2の回転速度変動量」という)を前記回転速度検出手段の検出値に基づいて演算する第2の回転速度変動量演算手段と、前記第1の回転速度変動量と前記第2の回転速度変動量とに基づいて前記失火検出対象となる気筒の失火の有無を判定する失火判定手段とを備えた内燃機関の失火検出装置において、前記失火判定手段は、前記第2の回転速度変動量(360℃A周期の回転変動による誤差を排除する項)が失火の誤検出の要因とならない条件として、前記第2の回転速度変動量が前記第1の回転速度変動量よりも小さいという条件を設定し、前記条件を満たす場合に前記第1の回転速度変動量と前記第2の回転速度変動量とに基づいて前記失火検出対象となる気筒の失火の有無を判定するようにしたものである。 In order to achieve the above object, the invention according to claim 1 is the rotational speed fluctuation means between the rotational speed detecting means for detecting the rotational speed of the internal combustion engine, and the cylinder subject to misfire detection and the cylinder in which the combustion stroke continues. A first rotation speed fluctuation amount calculating means for calculating an amount (hereinafter referred to as “first rotation speed fluctuation amount”) based on a detection value of the rotation speed detection means, and calculating the first rotation speed fluctuation amount. The rotational speed fluctuation amount between the two cylinders in which the combustion stroke before 360 ° C. before the combustion stroke of the two cylinders continues (hereinafter referred to as “second rotational speed fluctuation amount”) is detected by the rotational speed detecting means. And determining whether or not a misfire detection target cylinder is misfired based on the first rotation speed fluctuation amount calculating means and the first rotation speed fluctuation amount and the second rotation speed fluctuation amount. Internal combustion engine having misfire determination means In the misfire detecting device, the misfire determining means, as a condition of the second engine speed variation (claim to eliminate errors due to rotation fluctuation of 360 ° C. A period) is not a factor in false detection of misfire, the second If the condition that the rotational speed fluctuation amount is smaller than the first rotational speed fluctuation amount and the condition is satisfied, then based on the first rotational speed fluctuation amount and the second rotational speed fluctuation amount is set. The presence or absence of misfire in the cylinder that is the misfire detection target is determined.

この構成によれば、第2の回転速度変動量(360℃A周期の回転変動による誤差を排除する項)が失火の誤検出の要因とならない範囲で、第1の回転速度変動量に含まれる、360℃A周期の回転変動による誤差を第2の回転速度変動量によって排除して失火の有無を判定できるため、540℃A前の燃焼行程の気筒が失火している場合に今回の気筒が失火していると誤判定してしまうことを未然に防止できると共に、図5に示すように、今回の気筒の失火により落ち込んだ回転速度の上昇が緩慢になる場合でも、今回の気筒の失火を検出することが可能となり、各気筒の燃焼行程毎に失火を従来より精度良く検出することができる。   According to this configuration, the second rotation speed fluctuation amount (a term that eliminates an error due to rotation fluctuation at a period of 360 ° C.) is included in the first rotation speed fluctuation amount in a range that does not cause misdetection of misfire. Since it is possible to determine whether or not misfiring has occurred by eliminating the error due to the rotational fluctuation of the 360 ° C. cycle by the second rotational speed fluctuation amount, when the cylinder in the combustion stroke before 540 ° C. is misfiring, In addition to preventing misjudgment of misfiring, as shown in FIG. 5, even if the increase in rotational speed that has fallen due to the misfiring of this cylinder becomes slow, the misfiring of this cylinder can be prevented. Thus, it is possible to detect misfire for each combustion stroke of each cylinder with higher accuracy than before.

一般に、360℃A周期の回転変動による誤差は、失火による回転速度変動量よりも小さくなることを考慮して、請求項1に係る発明では、第2の回転速度変動量が失火の誤検出の要因とならない条件は、第2の回転速度変動量が第1の回転速度変動量よりも小さいことを条件としている。これにより、第2の回転速度変動量の影響で失火を誤検出することを未然に防止できる。 In general, in consideration of the fact that the error due to the rotational fluctuation of the 360 ° C. cycle is smaller than the rotational speed fluctuation amount due to misfire, in the invention according to claim 1 , the second rotational speed fluctuation amount is an erroneous detection of misfire. conditions that do not factor, are the second rotational speed fluctuation amount is smaller than the first engine speed variation as a condition. As a result, misdetection of misfire due to the influence of the second rotational speed fluctuation amount can be prevented in advance.

或は、請求項のように、第2の回転速度変動量が失火の誤検出の要因とならない条件は、第2の回転速度変動量と第1の回転速度変動量との比が所定値以下であることを条件としても良い。このようにしても、第2の回転速度変動量の影響で失火を誤検出することを未然に防止できる。 Alternatively, as in claim 2 , the condition that the second rotational speed fluctuation amount does not cause a misdetection of misfire is that the ratio between the second rotational speed fluctuation amount and the first rotational speed fluctuation amount is a predetermined value. The following conditions may be used. Even in this case, it is possible to prevent erroneous detection of misfire due to the influence of the second rotational speed fluctuation amount.

また、請求項のように、第2の回転速度変動量が失火の誤検出の要因とならない条件は、第1の回転速度変動量と第2の回転速度変動量との差分値と、第1の回転速度変動量との比が所定値以下であることを条件としても良い。このようにしても、第2の回転速度変動量の影響で失火を誤検出することを未然に防止できる。
Further, as in claim 3 , the conditions under which the second rotational speed fluctuation amount does not cause misdetection of misfire are the difference value between the first rotational speed fluctuation amount and the second rotational speed fluctuation amount, It is good also as a condition that ratio with 1 rotation speed fluctuation amount is below a predetermined value. Even in this case, it is possible to prevent erroneous detection of misfire due to the influence of the second rotational speed fluctuation amount.

以下、本発明を実施するための最良の形態を吸気ポート噴射式の内燃機関に適用して具体化した一実施例を説明する。   Hereinafter, an embodiment in which the best mode for carrying out the present invention is applied to an intake port injection type internal combustion engine will be described.

まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。
4気筒以上の内燃機関であるエンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、吸入空気量を検出するエアフローメータ14が設けられている。このエアフローメータ14の下流側には、DCモータ等によって開度調節されるスロットルバルブ15と、スロットル開度を検出するスロットル開度センサ16とが設けられている。
First, a schematic configuration of the entire engine control system will be described with reference to FIG.
An air cleaner 13 is provided at the most upstream portion of the intake pipe 12 of the engine 11 that is an internal combustion engine having four or more cylinders, and an air flow meter 14 for detecting the intake air amount is provided downstream of the air cleaner 13. On the downstream side of the air flow meter 14, a throttle valve 15 whose opening is adjusted by a DC motor or the like and a throttle opening sensor 16 for detecting the throttle opening are provided.

また、スロットルバルブ15の下流側には、サージタンク17が設けられ、このサージタンク17に、吸気管圧力を検出する吸気管圧力センサ18が設けられている。また、サージタンク17には、エンジン11の各気筒に空気を導入する吸気マニホールド19が設けられ、各気筒の吸気マニホールド19の吸気ポート近傍に、それぞれ燃料を噴射する燃料噴射弁20が取り付けられている。   A surge tank 17 is provided downstream of the throttle valve 15, and an intake pipe pressure sensor 18 that detects the intake pipe pressure is provided in the surge tank 17. The surge tank 17 is provided with an intake manifold 19 for introducing air into each cylinder of the engine 11, and a fuel injection valve 20 for injecting fuel is attached in the vicinity of the intake port of the intake manifold 19 of each cylinder. Yes.

エンジン11のシリンダヘッドには、各気筒毎に点火プラグ21が取り付けられ、各気筒の点火プラグ21には、点火時期に同期して点火コイル(図示せず)で発生した高電圧が印加され、筒内の混合気に着火される。   A spark plug 21 is attached to the cylinder head of the engine 11 for each cylinder, and a high voltage generated by an ignition coil (not shown) is applied to the spark plug 21 of each cylinder in synchronization with the ignition timing. The mixture in the cylinder is ignited.

一方、エンジン11の排気管22には、排出ガス中のCO,HC,NOx等を浄化する三元触媒等の触媒23が設けられ、この触媒23の上流側に、排出ガスの空燃比又はリーン/リッチ等を検出する排出ガスセンサ24(空燃比センサ、酸素センサ等)が設けられている。また、エンジン11のシリンダブロックには、冷却水温を検出する水温センサ25や、エンジン11のクランク軸が所定クランク角回転する毎にパルス信号を出力するクランク角センサ26(回転速度検出手段)が取り付けられ、このクランク角センサ26のパルス信号の出力周期(出力間隔)からエンジン回転速度が検出される。   On the other hand, the exhaust pipe 22 of the engine 11 is provided with a catalyst 23 such as a three-way catalyst for purifying CO, HC, NOx and the like in the exhaust gas, and the exhaust gas air-fuel ratio or lean is provided upstream of the catalyst 23. / An exhaust gas sensor 24 (air-fuel ratio sensor, oxygen sensor, etc.) for detecting rich or the like is provided. Further, a water temperature sensor 25 for detecting the coolant temperature and a crank angle sensor 26 (rotation speed detecting means) for outputting a pulse signal each time the crankshaft of the engine 11 rotates by a predetermined crank angle are attached to the cylinder block of the engine 11. The engine rotation speed is detected from the output period (output interval) of the pulse signal of the crank angle sensor 26.

また、エンジン11のシリンダヘッドには、カム軸の回転に同期して基準位置で基準位置信号(気筒判別信号)を出力するカム角センサ27が取り付けられ、このカム角センサ27からの基準位置信号とクランク角センサ26のパルス信号のカウント値に基づいてクランク角が検出されて気筒判別が行われる。   A cam angle sensor 27 that outputs a reference position signal (cylinder discrimination signal) at a reference position in synchronization with rotation of the camshaft is attached to the cylinder head of the engine 11, and a reference position signal from the cam angle sensor 27 is attached. The crank angle is detected based on the count value of the pulse signal of the crank angle sensor 26, and cylinder discrimination is performed.

これら各種のセンサ出力は、エンジン制御回路(以下「ECU」と表記する)28に入力される。このECU28は、マイクロコンピュータを主体として構成され、内蔵されたROMに記憶された各種のエンジン制御ルーチンを実行することで、エンジン運転状態に応じて燃料噴射弁20の燃料噴射量や点火プラグ21の点火時期を制御する。   These various sensor outputs are input to an engine control circuit (hereinafter referred to as “ECU”) 28. The ECU 28 is mainly composed of a microcomputer, and executes various engine control routines stored in a built-in ROM so that the fuel injection amount of the fuel injection valve 20 and the spark plug 21 are controlled according to the engine operating state. Control ignition timing.

更に、ECU28は、エンジン運転中に後述する図2又は図3の失火判定ルーチンを実行することで、各気筒の燃焼行程毎に検出したエンジン回転速度(所定のクランク角度を回転するのに要した時間)から、失火検出の対象となる今回の燃焼行程の気筒とその1燃焼行程前の気筒との間の回転速度変動量(以下「第1の回転速度変動量」という)を演算すると共に、この第1の回転速度変動量を演算した2つの気筒の燃焼行程よりもそれぞれ360℃A前の燃焼行程が連続する2つの気筒間の回転速度変動量(以下「第2の回転速度変動量」という)を演算し、この第2の回転速度変動量が失火の誤検出の要因とならない条件を考慮して第1の回転速度変動量と第2の回転速度変動量との差分値に基づいて失火検出対象となる今回の燃焼行程の気筒の失火の有無を判定し、失火検出時には警告ランプ29を点灯したり、或は、インストルメントパネルの警告表示部(図示せず)に失火の警告を表示する。   Further, the ECU 28 executes the misfire determination routine of FIG. 2 or FIG. 3 described later during engine operation, thereby detecting the engine rotation speed detected for each combustion stroke of each cylinder (required to rotate a predetermined crank angle). Time) and calculating a rotational speed fluctuation amount (hereinafter referred to as “first rotational speed fluctuation amount”) between the cylinder in the current combustion stroke to be detected for misfire and the cylinder before the one combustion stroke, The rotational speed fluctuation amount between two cylinders (hereinafter referred to as “second rotational speed fluctuation amount”) in which the combustion stroke before 360 ° C. is continued from the combustion stroke of the two cylinders for which the first rotational speed fluctuation amount is calculated. Based on the difference value between the first rotational speed fluctuation amount and the second rotational speed fluctuation amount in consideration of the condition that the second rotational speed fluctuation amount does not cause misdetection of misfire. The current combustion line subject to misfire detection It determines the presence or absence of a misfire of the cylinder, at the time of misfire detection or lighting a warning lamp 29, or a warning of misfire warning display unit of the instrument panel (not shown).

一般に、エンジン運転中に、クランク軸の機械的ながたや撓み変形、クランク角センサ26の製造ばらつき等により、360℃A周期で回転変動が検出される傾向があるため、第1の回転速度変動量を演算した2つの気筒の燃焼行程よりもそれぞれ360℃A前の燃焼行程が連続する2つの気筒間の回転速度変動量である第2の回転速度変動量は、第1の回転速度変動量に含まれる、360℃A周期の回転変動による誤差を反映したパラメータとなる。   In general, during engine operation, the rotational speed tends to be detected at a cycle of 360 ° C. due to mechanical backlash and deformation of the crankshaft, manufacturing variation of the crank angle sensor 26, and the like. The second rotational speed fluctuation amount, which is the rotational speed fluctuation amount between the two cylinders in which the combustion stroke before 360 ° C. continues before the combustion stroke of the two cylinders for which the fluctuation amount is calculated, is the first rotational speed fluctuation. It is a parameter that reflects an error due to rotational fluctuation of a 360 ° C. period included in the quantity.

この特性から、前述した従来技術(特許文献1)では、第1の回転速度変動量から第2の回転速度変動量を差し引いた差分値を用いることで、第1の回転速度変動量から360℃A周期の回転変動による誤差を排除しようとしているが、今回の差分値のみを失火判定しきい値と比較して失火の有無を判定すると、540℃A前(4気筒の場合)の燃焼行程の気筒が失火している場合は、540℃A前の回転速度が小さくなるために、今回の差分値が大きくなり、その結果、今回の燃焼行程の気筒が正常に着火しているにも拘らず失火していると誤判定してしまう可能性がある。   From this characteristic, in the above-described prior art (Patent Document 1), by using a difference value obtained by subtracting the second rotational speed fluctuation amount from the first rotational speed fluctuation quantity, 360 ° C. from the first rotational speed fluctuation amount. The error due to the rotational fluctuation of the A cycle is to be eliminated, but if the presence or absence of misfire is judged by comparing only the current difference value with the misfire judgment threshold value, the combustion stroke before 540 ° C. A (in the case of four cylinders) When the cylinder is misfired, the rotational speed before 540 ° C. is reduced, and thus the current difference value is increased. As a result, the cylinder in the current combustion stroke is ignited normally. There is a possibility of misjudging that it has misfired.

この対策として、前述した特許文献1に記載された他の実施例では、図4に示すように、今回の差分値と540℃A後(4気筒の場合)の差分値が共に失火判定しきい値よりも大きい場合に失火と判定するようにしたいるが、この失火検出方法では、失火時の回転変動挙動、変速装置の種類・構造、クランク角センサ26の取付位置等によっては、失火を正確に検出できない場合がある。例えば、図5に示すように、今回の気筒の失火により落ち込んだ回転速度が、次の燃焼行程の気筒が着火してもあまり上昇せず、失火後の回転速度の上昇が緩慢になる場合は、今回の差分値のみが大きくなり、540℃A後の差分値が大きくならないため、540℃A後の差分値が失火判定しきい値を下回ってしまい、失火を検出できない。   As a countermeasure against this, in another embodiment described in Patent Document 1 described above, as shown in FIG. 4, the current difference value and the difference value after 540 ° C. A (in the case of four cylinders) are both determined as misfires. In this misfire detection method, misfire is detected accurately depending on the rotational fluctuation behavior at the time of misfire, the type and structure of the transmission, the mounting position of the crank angle sensor 26, and the like. May not be detected. For example, as shown in FIG. 5, when the rotational speed that has fallen due to the misfire of the cylinder this time does not increase much even if the cylinder in the next combustion stroke ignites, and the increase in the rotational speed after the misfire becomes slow Only the difference value this time becomes large, and the difference value after 540 ° C. A does not become large, so the difference value after 540 ° C. A falls below the misfire determination threshold value, and misfire cannot be detected.

そこで、本実施例では、図2又は図3の失火判定ルーチンを実行することで、第2の回転速度変動量(360℃A周期の回転変動による誤差を排除する項)が失火の誤検出の要因とならない条件を考慮して第1の回転速度変動量と第2の回転速度変動量との差分値に基づいて失火検出対象となる今回の燃焼行程の気筒の失火の有無を判定する。   Therefore, in the present embodiment, by executing the misfire determination routine of FIG. 2 or FIG. 3, the second rotational speed fluctuation amount (a term that eliminates an error due to a rotational fluctuation of a 360 ° C. A cycle) is detected as misfire detection. The presence or absence of misfiring of the cylinder in the current combustion stroke, which is a misfire detection target, is determined based on the difference value between the first rotational speed fluctuation amount and the second rotational speed fluctuation amount in consideration of a condition that does not become a factor.

この場合、360℃A周期の回転変動による誤差は、失火による回転速度変動量よりも小さくなることを考慮して、第2の回転速度変動量が失火の誤検出の要因とならない条件は、(1)第2の回転速度変動量が第1の回転速度変動量よりも小さいことを条件としたり、或は、(2)第2の回転速度変動量と第1の回転速度変動量との比が所定値以下であることを条件としたり、或は、(3)第1の回転速度変動量と第2の回転速度変動量との差分値と、第1の回転速度変動量との比が所定値以下であることを条件としても良い。要は、第1の回転速度変動量と第2の回転速度変動量との差分値に対する第2の回転速度変動量の影響が小さいこと(換言すれば第1の回転速度変動量の影響が大きいこと)を判定できる条件を用いれば良い。   In this case, considering that the error due to the rotational fluctuation of the 360 ° C. period is smaller than the rotational speed fluctuation amount due to misfire, the condition under which the second rotational speed fluctuation amount does not cause misdetection of misfire is ( 1) On condition that the second rotational speed fluctuation amount is smaller than the first rotational speed fluctuation amount, or (2) the ratio between the second rotational speed fluctuation amount and the first rotational speed fluctuation amount. Is equal to or less than a predetermined value, or (3) the ratio between the difference between the first rotational speed fluctuation amount and the second rotational speed fluctuation amount and the first rotational speed fluctuation amount is It is good also as conditions that it is below a predetermined value. In short, the influence of the second rotation speed fluctuation amount on the difference value between the first rotation speed fluctuation amount and the second rotation speed fluctuation amount is small (in other words, the influence of the first rotation speed fluctuation amount is large). It is sufficient to use a condition that can be determined.

以上説明した本実施例の失火判定は、ECU28によって図2又は図3の失火判定ルーチンに従って実行される。尚、図2の失火判定ルーチンは4気筒エンジンの失火判定に使用され、図3の失火判定ルーチンは6気筒エンジンの失火判定に使用される。   The misfire determination of the present embodiment described above is executed by the ECU 28 according to the misfire determination routine of FIG. 2 or FIG. The misfire determination routine of FIG. 2 is used for the misfire determination of the 4-cylinder engine, and the misfire determination routine of FIG. 3 is used for the misfire determination of the 6-cylinder engine.

図2、図3の失火判定ルーチンは、クランク角センサ26のパルス信号に基づいて例えば30℃A毎に割り込み処理により起動され、特許請求の範囲でいう失火判定手段としての役割を果たす。図2、図3の失火判定ルーチンが起動されると、まずステップ101で、本ルーチンの前回の割り込み時刻と今回の割り込み時刻との差分から、クランク軸が30℃A回転するのに要した時間T30iを算出する。   The misfire determination routines of FIGS. 2 and 3 are started by interruption processing, for example, every 30 ° C. based on the pulse signal of the crank angle sensor 26, and serve as misfire determination means in the claims. When the misfire determination routine of FIG. 2 and FIG. 3 is started, first, in step 101, the time required for the crankshaft to rotate 30 ° C. from the difference between the previous interrupt time and the current interrupt time of this routine. T30i is calculated.

この後、ステップ102に進み、カム角センサ27の基準位置信号とクランク角センサ26のパルス信号のカウント値に基づいて今回の割り込みタイミングが燃焼行程の開始タイミングであるTDC(上死点)であるか否かを判定し、今回の割り込みタイミングがTDCでなければ、以降の処理を行うことなく本ルーチンを終了する。   Thereafter, the routine proceeds to step 102, where the current interrupt timing is the TDC (top dead center), which is the start timing of the combustion stroke, based on the reference position signal of the cam angle sensor 27 and the count value of the pulse signal of the crank angle sensor 26. If the current interrupt timing is not TDC, this routine is terminated without performing the subsequent processing.

一方、上記ステップ102で、今回の割り込みタイミングがTDCであると判定されれば、ステップ103以降の失火判定処理を次のようにして実行する。   On the other hand, if it is determined in step 102 that the current interrupt timing is TDC, the misfire determination process in step 103 and subsequent steps is executed as follows.

まず、ステップ103で、4気筒エンジンの場合は、その燃焼行程のクランク角区間に相当する180℃Aを回転するのに要した時間T180iを算出する(6気筒エンジンの場合は、その燃焼行程のクランク角区間に相当する120℃Aを回転するのに要した時間T120iを算出する)。   First, in step 103, in the case of a four-cylinder engine, a time T180i required to rotate 180 ° C. corresponding to the crank angle section of the combustion stroke is calculated (in the case of a six-cylinder engine, the combustion stroke Time T120i required to rotate 120 ° C. corresponding to the crank angle section is calculated).

尚、燃焼行程のクランク角区間内における一部のクランク角区間(30℃Aの任意の整数倍のクランク角区間)を回転するのに要した時間を算出しても良く、また、このクランク角区間をエンジン回転速度等のエンジン運転状態に応じて変化させるようにしても良い。また、この時間の計測開始タイミングもTDCに限定されず、例えばATDC30℃Aから時間の計測を開始するようにしても良い。   Note that the time required to rotate a part of the crank angle section of the combustion stroke (a crank angle section of an arbitrary integer multiple of 30 ° C.) may be calculated. The section may be changed according to the engine operating state such as the engine speed. Also, the time measurement start timing is not limited to TDC, and time measurement may be started from ATDC 30 ° C., for example.

この後、ステップ104に進み、上記180℃A(又は120℃A)を回転するのに要した時間T180i(又はT120i)からクランク角速度ωn (特許請求の範囲でいう回転速度に相当)を算出する。
4気筒エンジンの場合:ωn =180/T180i
6気筒エンジンの場合:ωn =120/T120i
上記ステップ103、104の処理が特許請求の範囲でいう回転速度検出手段としての役割を果たす。
Thereafter, the routine proceeds to step 104, where the crank angular speed ωn (corresponding to the rotational speed in the claims) is calculated from the time T180i (or T120i) required to rotate the 180 ° C. A (or 120 ° C. A). .
For a 4-cylinder engine: ωn = 180 / T180i
For a 6-cylinder engine: ωn = 120 / T120i
The processing in steps 103 and 104 serves as a rotational speed detection means in the claims.

この後、ステップ105に進み、失火検出の対象となる今回の燃焼行程の気筒とその1燃焼行程前の気筒との間の回転速度変動量である第1の回転速度変動量(ωn-1 −ωn )を演算すると共に、この第1の回転速度変動量を演算した2つの気筒の燃焼行程よりもそれぞれ360℃A前の燃焼行程が連続する2つの気筒間の回転速度変動量である第2の回転速度変動量(4気筒エンジンの場合:ωn-3 −ωn-2 ,6気筒エンジンの場合:ωn-4 −ωn-3 )を演算し、両者の差分値Δωn を算出する。   After that, the routine proceeds to step 105, where the first rotational speed fluctuation amount (ωn-1 −), which is the rotational speed fluctuation amount between the cylinder in the current combustion stroke that is the target of misfire detection and the cylinder before the one combustion stroke. ωn) and the second rotational speed fluctuation amount between the two cylinders in which the combustion stroke before the combustion stroke of the two cylinders for which the first rotational speed fluctuation amount has been calculated is 360 ° C. A before. (4 for a 4-cylinder engine: ωn-3-ωn-2, for a 6-cylinder engine: ωn-4-ωn-3), and a difference value Δωn between them is calculated.

4気筒エンジンの場合:Δωn =(ωn-1 −ωn )−(ωn-3 −ωn-2 )
6気筒エンジンの場合:Δωn =(ωn-1 −ωn )−(ωn-4 −ωn-3 )
このステップ105の処理が特許請求の範囲でいう第1の回転速度変動量演算手段及び第2の回転速度変動量演算手段としての役割を果たす。
For a 4-cylinder engine: Δωn = (ωn-1 -ωn)-(ωn-3 -ωn-2)
In the case of a 6-cylinder engine: Δωn = (ωn-1−ωn) − (ωn-4−ωn-3)
The processing in step 105 serves as first rotation speed fluctuation amount calculation means and second rotation speed fluctuation amount calculation means in the claims.

この後、ステップ106に進み、第2の回転速度変動量が失火の誤検出の要因とならないための下記の条件式を満たすか否かを判定する。
4気筒エンジンの場合:(ωn-1 −ωn )>−(ωn-3 −ωn-2 )
6気筒エンジンの場合:(ωn-1 −ωn )>−(ωn-4 −ωn-3 )
つまり、第2の回転速度変動量が失火の誤検出の要因とならない条件は、第2の回転速度変動量が第1の回転速度変動量よりも小さいことを条件とするものである。
Thereafter, the process proceeds to step 106, in which it is determined whether or not the second conditional expression for preventing the second rotational speed fluctuation amount from causing erroneous detection of misfire is satisfied.
For a 4-cylinder engine: (ωn-1 −ωn)> − (ωn-3 −ωn-2)
For 6-cylinder engine: (ωn-1 −ωn)> − (ωn-4 −ωn-3)
That is, the condition that the second rotational speed fluctuation amount does not cause misdetection of misfire is that the second rotational speed fluctuation amount is smaller than the first rotational speed fluctuation amount.

或は、上記条件式に代えて、下記の条件式を満たすか否かで第2の回転速度変動量が失火の誤検出の要因とならないか否かを判定しても良い。
4気筒エンジンの場合:(ωn-1 −ωn )>−(ωn-3 −ωn-2 )×α
6気筒エンジンの場合:(ωn-1 −ωn )>−(ωn-4 −ωn-3 )×α
[α:所定値(例えば1以上の値)]
つまり、第2の回転速度変動量が失火の誤検出の要因とならない条件は、第2の回転速度変動量と第1の回転速度変動量との比が所定値(1/α)以下であることを条件としても良い。
Alternatively, instead of the above conditional expression, it may be determined whether or not the second rotational speed fluctuation amount causes a misdetection of misfire depending on whether or not the following conditional expression is satisfied.
For a 4-cylinder engine: (ωn-1 −ωn)> − (ωn-3 −ωn-2) × α
For 6-cylinder engine: (ωn-1 −ωn)> − (ωn-4 −ωn-3) × α
[Α: Predetermined value (for example, a value of 1 or more)]
That is, the condition that the second rotational speed fluctuation amount does not cause a misdetection of misfire is that the ratio of the second rotational speed fluctuation amount and the first rotational speed fluctuation amount is a predetermined value (1 / α) or less. This may be a condition.

或は、下記の条件式を満たすか否かで第2の回転速度変動量が失火の誤検出の要因とならないか否かを判定しても良い。
(ωn-1 −ωn )>Δωn ×β
ここで、βは所定値(例えば0.5以上の値)である。上式の条件は気筒数と関係なく共通である。
Alternatively, it may be determined whether or not the second rotational speed fluctuation amount causes misdetection of misfire depending on whether or not the following conditional expression is satisfied.
(Ωn-1 −ωn)> Δωn × β
Here, β is a predetermined value (for example, a value of 0.5 or more). The above conditions are common regardless of the number of cylinders.

つまり、第2の回転速度変動量が失火の誤検出の要因とならない条件は、第1の回転速度変動量と第2の回転速度変動量との差分値Δωn と、第1の回転速度変動量(ωn-1 −ωn )との比が所定値(1/β)以下であることを条件としても良い。   That is, the conditions under which the second rotational speed fluctuation amount does not cause misdetection of misfire are the difference value Δωn between the first rotational speed fluctuation amount and the second rotational speed fluctuation amount, and the first rotational speed fluctuation amount. The ratio of (ωn−1−ωn) may be a condition that the ratio is equal to or less than a predetermined value (1 / β).

要するに、第1の回転速度変動量と第2の回転速度変動量との差分値Δωn に対する第2の回転速度変動量の影響が小さいこと(換言すれば第1の回転速度変動量の影響が大きいこと)を判定できる条件式を用いれば良い。   In short, the influence of the second rotational speed fluctuation amount on the difference value Δωn between the first rotational speed fluctuation quantity and the second rotational speed fluctuation quantity is small (in other words, the influence of the first rotational speed fluctuation amount is large). It is sufficient to use a conditional expression that can be determined.

上記ステップ106で、条件式を満たさないと判定されれば、第2の回転速度変動量が失火の誤検出の要因となると判断して、ステップ109に進み、失火フラグXMFを失火無し(着火)を意味する「0」に維持又はリセットする。   If it is determined in step 106 that the conditional expression is not satisfied, it is determined that the second rotational speed fluctuation amount causes a misdetection of misfire, and the process proceeds to step 109, where the misfire flag XMF is not misfired (ignition). Is maintained or reset to “0” which means

これに対して、上記ステップ106で、条件式を満たすと判定された場合には、第2の回転速度変動量が失火の誤検出の要因とならないと判断して、ステップ107に進み、差分値Δωn を失火判定しきい値CKと比較して、差分値Δωn が失火判定しきい値CKよりも大きければ、ステップ108に進み、失火と判定して、失火フラグXMFを失火を意味する「1」にセットし、差分値Δωn が失火判定しきい値CK以下であれば、着火(失火無し)と判定して、ステップ109に進み、失火フラグXMFを着火を意味する「0」に維持又はリセットする。   On the other hand, if it is determined in step 106 that the conditional expression is satisfied, it is determined that the second rotational speed fluctuation amount does not cause misdetection of misfire, and the process proceeds to step 107, where the difference value If Δωn is compared with the misfire determination threshold value CK and the difference value Δωn is larger than the misfire determination threshold value CK, the routine proceeds to step 108, where it is determined that misfire has occurred, and the misfire flag XMF is set to “1” which means misfire. If the difference value Δωn is equal to or smaller than the misfire determination threshold value CK, it is determined that ignition (no misfire) occurs, and the process proceeds to step 109 to maintain or reset the misfire flag XMF to “0” meaning ignition. .

この場合、失火フラグXMFに「1」がセットされると、エミッション悪化や触媒23の損傷等の不具合が発生する可能性があると判断して、警告ランプ29の点灯等が実施される。   In this case, when “1” is set in the misfire flag XMF, it is determined that there is a possibility that a malfunction such as deterioration of the emission or damage to the catalyst 23 may occur, and the warning lamp 29 is turned on.

失火フラグXMFをセット/リセットした後、ステップ110に進み、ECU28のメモリに記憶されているクランク角速度ωn の過去のデータ(4気筒エンジンの場合:ωn 〜ωn-2 、6気筒エンジンの場合:ωn 〜ωn-3 )をそれぞれ1回前のデータに更新して本ルーチンを終了する。   After setting / resetting the misfire flag XMF, the routine proceeds to step 110, where the past data of the crank angular speed ωn stored in the memory of the ECU 28 (for a four-cylinder engine: ωn to ωn-2, for a six-cylinder engine: ωn) .About..omega.n-3) are updated to the previous data, and this routine is terminated.

ωn-1 ←ωn
ωn-2 ←ωn-1
ωn-3 ←ωn-2
ωn-4 ←ωn-3
ωn-1 ← ωn
ωn-2 ← ωn-1
ωn-3 ← ωn-2
ωn-4 ← ωn-3

以上説明した本実施例によれば、第2の回転速度変動量(360℃A周期の回転変動による誤差を排除する項)が失火の誤検出の要因とならない条件を考慮して第1の回転速度変動量と第2の回転速度変動量との差分値に基づいて失火検出対象となる今回の燃焼行程の気筒の失火の有無を判定するようにしたので、540℃A前(4気筒の場合)の燃焼行程の気筒が失火している場合に今回の気筒が失火していると誤判定してしまうことを未然に防止できると共に、図5に示すように、今回の気筒の失火により落ち込んだ回転速度の上昇が緩慢になる場合でも、今回の気筒の失火を検出することが可能となり、各気筒の燃焼行程毎に失火を従来より精度良く検出することができる。   According to the present embodiment described above, the first rotation speed is considered in consideration of the condition that the second rotation speed fluctuation amount (a term that eliminates the error due to the rotation fluctuation of the 360 ° C. A cycle) does not cause misdetection of misfire. Since the presence or absence of misfiring of the cylinder in the current combustion stroke, which is a misfire detection target, is determined based on the difference value between the speed fluctuation amount and the second rotational speed fluctuation amount, 540 ° C. A before (in the case of four cylinders) ) When the cylinder in the combustion stroke is misfired, it is possible to prevent a misjudgment that the current cylinder is misfired, and as shown in FIG. Even when the increase in the rotational speed becomes slow, it is possible to detect the misfire of the current cylinder, and it is possible to detect misfire more accurately than in the past for each combustion stroke of each cylinder.

尚、本発明は、4気筒、6気筒エンジンに限定されず、例えば、8気筒、12気筒等の多気筒エンジンに適用して実施できる。   The present invention is not limited to 4-cylinder and 6-cylinder engines, and can be applied to multi-cylinder engines such as 8-cylinders and 12-cylinders.

その他、本発明は、図1に示すような吸気ポート噴射式の内燃機関に限定されず、筒内噴射式の内燃機関や、吸気ポート噴射用の燃料噴射弁と筒内噴射用の燃料噴射弁の両方を備えたデュアル噴射式の内燃機関にも適用して実施できる等、要旨を逸脱しない範囲内で種々変更して実施できることは言うまでもない。   In addition, the present invention is not limited to the intake port injection type internal combustion engine as shown in FIG. 1, but is an in-cylinder injection type internal combustion engine, a fuel injection valve for intake port injection, and a fuel injection valve for in-cylinder injection. Needless to say, the present invention can be applied to a dual-injection internal combustion engine having both of the above and various modifications can be made without departing from the scope of the invention.

本発明の一実施例におけるエンジン制御システム全体の概略構成図である。It is a schematic block diagram of the whole engine control system in one Example of this invention. 4気筒エンジン用の失火判定ルーチンの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the misfire determination routine for 4 cylinder engines. 6気筒エンジン用の失火判定ルーチンの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the misfire determination routine for 6 cylinder engines. 従来技術で失火を検出可能な例(4気筒エンジンの場合)を説明するための回転速度ωと差分値Δωの挙動を示すタイムチャートである。It is a time chart which shows the behavior of rotational speed (omega) and difference value (DELTA) omega for demonstrating the example (in the case of a 4-cylinder engine) which can detect misfire by a prior art. 従来技術で失火を検出できない例(4気筒エンジンの場合)を説明するための回転速度ωと差分値Δωの挙動を示すタイムチャートである。It is a time chart which shows the behavior of rotational speed (omega) and difference value (DELTA) omega for demonstrating the example (in the case of a 4-cylinder engine) which cannot detect misfire by a prior art.

符号の説明Explanation of symbols

11…エンジン(内燃機関)、12…吸気管、14…エアフローメータ、15…スロットルバルブ、18…吸気管圧力センサ、20…燃料噴射弁、21…点火プラグ、22…排気管、26…クランク角センサ(回転速度検出手段)、28…ECU(失火判定手段,回転速度検出手段,第1の回転速度変動量演算手段,第2の回転速度変動量演算手段)   DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Intake pipe, 14 ... Air flow meter, 15 ... Throttle valve, 18 ... Intake pipe pressure sensor, 20 ... Fuel injection valve, 21 ... Spark plug, 22 ... Exhaust pipe, 26 ... Crank angle Sensor (rotation speed detection means), 28... ECU (misfire determination means, rotation speed detection means, first rotation speed fluctuation amount calculation means, second rotation speed fluctuation amount calculation means)

Claims (3)

内燃機関の回転速度を検出する回転速度検出手段と、
失火検出対象となる気筒と燃焼行程が連続する気筒との間の回転速度変動量(以下「第1の回転速度変動量」という)を前記回転速度検出手段の検出値に基づいて演算する第1の回転速度変動量演算手段と、
前記第1の回転速度変動量を演算した2つの気筒の燃焼行程よりもそれぞれ360℃A前の燃焼行程が連続する2つの気筒間の回転速度変動量(以下「第2の回転速度変動量」という)を前記回転速度検出手段の検出値に基づいて演算する第2の回転速度変動量演算手段と、
前記第1の回転速度変動量と前記第2の回転速度変動量とに基づいて前記失火検出対象となる気筒の失火の有無を判定する失火判定手段と
を備えた内燃機関の失火検出装置において、
前記失火判定手段は、前記第2の回転速度変動量が失火の誤検出の要因とならない条件として、前記第2の回転速度変動量が前記第1の回転速度変動量よりも小さいという条件を設定し、前記条件を満たす場合に前記第1の回転速度変動量と前記第2の回転速度変動量とに基づいて前記失火検出対象となる気筒の失火の有無を判定することを特徴とする内燃機関の失火検出装置。
Rotation speed detection means for detecting the rotation speed of the internal combustion engine;
A first calculation that calculates a rotational speed fluctuation amount (hereinafter referred to as “first rotational speed fluctuation amount”) between a cylinder that is a misfire detection target and a cylinder that has a continuous combustion stroke based on a detection value of the rotational speed detection means. Rotational speed fluctuation amount calculation means,
Rotational speed fluctuation amount between two cylinders (hereinafter referred to as “second rotational speed fluctuation amount”) in which the combustion stroke is 360 ° C. before the combustion stroke of the two cylinders for which the first rotational speed fluctuation amount is calculated. 2) a second rotation speed fluctuation amount calculation means for calculating the rotation speed based on the detection value of the rotation speed detection means;
A misfire detection device for an internal combustion engine, comprising: misfire determination means for determining whether or not a misfire is detected in a cylinder to be misfired based on the first rotation speed fluctuation amount and the second rotation speed fluctuation amount;
The misfire determination means sets a condition that the second rotation speed fluctuation amount is smaller than the first rotation speed fluctuation amount as a condition that the second rotation speed fluctuation amount does not cause erroneous detection of misfire. And determining whether or not the misfire detection target cylinder is misfired based on the first rotation speed fluctuation amount and the second rotation speed fluctuation amount when the condition is satisfied. Misfire detection device.
内燃機関の回転速度を検出する回転速度検出手段と、
失火検出対象となる気筒と燃焼行程が連続する気筒との間の回転速度変動量(以下「第1の回転速度変動量」という)を前記回転速度検出手段の検出値に基づいて演算する第1の回転速度変動量演算手段と、
前記第1の回転速度変動量を演算した2つの気筒の燃焼行程よりもそれぞれ360℃A前の燃焼行程が連続する2つの気筒間の回転速度変動量(以下「第2の回転速度変動量」という)を前記回転速度検出手段の検出値に基づいて演算する第2の回転速度変動量演算手段と、
前記第1の回転速度変動量と前記第2の回転速度変動量とに基づいて前記失火検出対象となる気筒の失火の有無を判定する失火判定手段と
を備えた内燃機関の失火検出装置において、
前記失火判定手段は、前記第2の回転速度変動量が失火の誤検出の要因とならない条件として、前記第2の回転速度変動量と前記第1の回転速度変動量との比が所定値以下であるという条件を設定し、前記条件を満たす場合に前記第1の回転速度変動量と前記第2の回転速度変動量とに基づいて前記失火検出対象となる気筒の失火の有無を判定することを特徴とする内燃機関の失火検出装置。
Rotation speed detection means for detecting the rotation speed of the internal combustion engine;
A first calculation that calculates a rotational speed fluctuation amount (hereinafter referred to as “first rotational speed fluctuation amount”) between a cylinder that is a misfire detection target and a cylinder that has a continuous combustion stroke based on a detection value of the rotational speed detection means. Rotational speed fluctuation amount calculation means,
Rotational speed fluctuation amount between two cylinders (hereinafter referred to as “second rotational speed fluctuation amount”) in which the combustion stroke is 360 ° C. before the combustion stroke of the two cylinders for which the first rotational speed fluctuation amount is calculated. 2) a second rotation speed fluctuation amount calculation means for calculating the rotation speed based on the detection value of the rotation speed detection means;
Misfire determination means for determining whether or not the misfire detection target cylinder is misfired based on the first rotation speed fluctuation amount and the second rotation speed fluctuation amount;
In a misfire detection device for an internal combustion engine comprising:
In the misfire determination means, as a condition that the second rotational speed fluctuation amount does not cause misdetection of misfire, a ratio between the second rotational speed fluctuation amount and the first rotational speed fluctuation amount is a predetermined value or less. Is set, and when the condition is satisfied, the presence or absence of misfiring of the cylinder subject to misfire detection is determined based on the first rotational speed fluctuation amount and the second rotational speed fluctuation amount. misfire detecting device of the internal combustion engine you characterized.
内燃機関の回転速度を検出する回転速度検出手段と、
失火検出対象となる気筒と燃焼行程が連続する気筒との間の回転速度変動量(以下「第1の回転速度変動量」という)を前記回転速度検出手段の検出値に基づいて演算する第1の回転速度変動量演算手段と、
前記第1の回転速度変動量を演算した2つの気筒の燃焼行程よりもそれぞれ360℃A前の燃焼行程が連続する2つの気筒間の回転速度変動量(以下「第2の回転速度変動量」という)を前記回転速度検出手段の検出値に基づいて演算する第2の回転速度変動量演算手段と、
前記第1の回転速度変動量と前記第2の回転速度変動量とに基づいて前記失火検出対象となる気筒の失火の有無を判定する失火判定手段と
を備えた内燃機関の失火検出装置において、
前記失火判定手段は、前記第2の回転速度変動量が失火の誤検出の要因とならない条件として、前記第1の回転速度変動量と前記第2の回転速度変動量との差分値と、前記第1の回転速度変動量との比が所定値以下であるという条件を設定し、前記条件を満たす場合に前記第1の回転速度変動量と前記第2の回転速度変動量とに基づいて前記失火検出対象となる気筒の失火の有無を判定することを特徴とする内燃機関の失火検出装置。
Rotation speed detection means for detecting the rotation speed of the internal combustion engine;
A first calculation that calculates a rotational speed fluctuation amount (hereinafter referred to as “first rotational speed fluctuation amount”) between a cylinder that is a misfire detection target and a cylinder that has a continuous combustion stroke based on a detection value of the rotational speed detection means. Rotational speed fluctuation amount calculation means,
Rotational speed fluctuation amount between two cylinders (hereinafter referred to as “second rotational speed fluctuation amount”) in which the combustion stroke is 360 ° C. before the combustion stroke of the two cylinders for which the first rotational speed fluctuation amount is calculated. 2) a second rotation speed fluctuation amount calculation means for calculating the rotation speed based on the detection value of the rotation speed detection means;
Misfire determination means for determining whether or not the misfire detection target cylinder is misfired based on the first rotation speed fluctuation amount and the second rotation speed fluctuation amount;
In a misfire detection device for an internal combustion engine comprising:
The misfire determination means includes a difference value between the first rotation speed fluctuation amount and the second rotation speed fluctuation amount as a condition that the second rotation speed fluctuation amount does not cause a misdetection of misfire, A condition is set such that a ratio with the first rotational speed fluctuation amount is a predetermined value or less, and the first rotational speed fluctuation amount and the second rotational speed fluctuation amount are satisfied based on the first rotational speed fluctuation amount when the condition is satisfied. misfire detecting device of the internal combustion engine you characterized by determining the presence or absence of misfire in the cylinder giving the misfire detected.
JP2007317062A 2007-12-07 2007-12-07 Misfire detection device for internal combustion engine Expired - Fee Related JP4827022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007317062A JP4827022B2 (en) 2007-12-07 2007-12-07 Misfire detection device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007317062A JP4827022B2 (en) 2007-12-07 2007-12-07 Misfire detection device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2009138663A JP2009138663A (en) 2009-06-25
JP4827022B2 true JP4827022B2 (en) 2011-11-30

Family

ID=40869518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007317062A Expired - Fee Related JP4827022B2 (en) 2007-12-07 2007-12-07 Misfire detection device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4827022B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6164432B2 (en) 2015-05-14 2017-07-19 トヨタ自動車株式会社 Misfire detection device for internal combustion engine
JP7268663B2 (en) 2020-09-25 2023-05-08 トヨタ自動車株式会社 Misfire detection device for internal combustion engine
JP7314895B2 (en) 2020-09-25 2023-07-26 トヨタ自動車株式会社 Misfire determination device for internal combustion engine
JP7420053B2 (en) 2020-11-09 2024-01-23 トヨタ自動車株式会社 Internal combustion engine misfire detection device
JP7392672B2 (en) 2021-01-29 2023-12-06 トヨタ自動車株式会社 Internal combustion engine misfire detection device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001248492A (en) * 1999-12-27 2001-09-14 Toyota Motor Corp Misfire detecting device for internal combustion engine
JP4461586B2 (en) * 2000-08-03 2010-05-12 株式会社デンソー Misfire detection device for internal combustion engine

Also Published As

Publication number Publication date
JP2009138663A (en) 2009-06-25

Similar Documents

Publication Publication Date Title
US20090120174A1 (en) Misfire detecting apparatus for an internal combustion engine
JP4946889B2 (en) Misfire detection device for internal combustion engine
US7774110B2 (en) Failure diagnosis apparatus for vehicle
JP4461586B2 (en) Misfire detection device for internal combustion engine
US20100211296A1 (en) Method and apparatus for misfire detection
JPH04365958A (en) Misfire detecting device for internal combustion engine
JPH0586956A (en) Missfire detecting device for internal combustion engine
JP4827022B2 (en) Misfire detection device for internal combustion engine
JP2009293501A (en) Misfire detecting device for multicylinder internal combustion engine
JP4120276B2 (en) Misfire detection device for internal combustion engine
JP4475207B2 (en) Control device for internal combustion engine
JP2011226363A (en) Abnormality diagnosis apparatus of internal combustion engine
JP2636565B2 (en) Anomaly detection device
JP3961745B2 (en) Misfire detection device for internal combustion engine
JP4260830B2 (en) Internal combustion engine control device
JP2006138280A (en) Control device for internal combustion engine
JP4417000B2 (en) Abnormality diagnosis device for internal combustion engine
JP4491739B2 (en) Control device for internal combustion engine
JP2009115011A (en) Knock determining device for internal combustion engine
JPH062609A (en) Misfire detection device of internal combustion engine
JP4304669B2 (en) Crank angle discrimination device for internal combustion engine
JP5983553B2 (en) Control device for internal combustion engine
JP5488286B2 (en) Combustion state detection system for internal combustion engine
JP2009174361A (en) Misfire detection device for internal combustion engine
JP2015094272A (en) Device and method for discriminating stroke of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110822

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees