JP4475207B2 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP4475207B2
JP4475207B2 JP2005267746A JP2005267746A JP4475207B2 JP 4475207 B2 JP4475207 B2 JP 4475207B2 JP 2005267746 A JP2005267746 A JP 2005267746A JP 2005267746 A JP2005267746 A JP 2005267746A JP 4475207 B2 JP4475207 B2 JP 4475207B2
Authority
JP
Japan
Prior art keywords
speed increase
rotational speed
amount
torque
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005267746A
Other languages
Japanese (ja)
Other versions
JP2007077892A (en
Inventor
正之 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2005267746A priority Critical patent/JP4475207B2/en
Priority to DE102006000450A priority patent/DE102006000450A1/en
Priority to US11/516,645 priority patent/US7448360B2/en
Publication of JP2007077892A publication Critical patent/JP2007077892A/en
Application granted granted Critical
Publication of JP4475207B2 publication Critical patent/JP4475207B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、内燃機関の始動性を改善した内燃機関の制御装置に関するものである。   The present invention relates to a control device for an internal combustion engine with improved startability of the internal combustion engine.

内燃機関の始動時や始動後の暖機完了前には、使用する燃料の性状(揮発性)の相違によって吸気ポート壁面に付着する燃料量(ウエット量)が相違して、筒内の混合気の空燃比(以下「燃焼空燃比」という)が目標空燃比からずれてしまうことがあり、これが原因で始動性や排気エミッションが悪化する可能性がある。   At the start of the internal combustion engine and before the completion of warm-up after the start, the amount of fuel (wet amount) adhering to the wall surface of the intake port differs due to the difference in the properties (volatility) of the fuel used. The air-fuel ratio (hereinafter referred to as “combustion air-fuel ratio”) may deviate from the target air-fuel ratio, which may cause deterioration in startability and exhaust emission.

この対策として、特許文献1(特開平8−284708号公報)に記載されているように、内燃機関の始動直後に燃焼行程毎に回転変動を検出し、その回転変動を規定回数だけ加算した加算データに基づいて燃料性状を学習し、その燃料性状の学習値に基づいて燃料噴射量を補正するようにしたものがある。   As a countermeasure, as described in Patent Document 1 (Japanese Patent Application Laid-Open No. 8-284708), an addition is performed in which a rotational fluctuation is detected for each combustion stroke immediately after the start of the internal combustion engine, and the rotational fluctuation is added a specified number of times. Some have learned the fuel property based on the data, and corrected the fuel injection amount based on the learned value of the fuel property.

また、特許文献2(特許第3498392号公報)に記載されているように、始動から所定回転速度以上となる時間や、始動直後の最初の最大回転速度や、所定回転速度以上となってから始動直後の最大回転速度に達するまでの回転速度変化率や、最大回転速度後の最低回転速度等に基づいて内燃機関の最適でない始動を検出したときに、燃料噴射量を増量補正するようにしたものがある。
特開平8−284708号公報(第2頁等) 特許第3498392号公報(第1頁等)
Further, as described in Patent Document 2 (Japanese Patent No. 3498392), the time when the rotation speed is equal to or higher than the predetermined rotation speed from the start, the initial maximum rotation speed immediately after the start, or the start after the rotation speed exceeds the predetermined rotation speed. The fuel injection amount is corrected to increase when a non-optimal start of the internal combustion engine is detected based on the rate of change in the rotational speed until the maximum rotational speed is reached immediately after, the minimum rotational speed after the maximum rotational speed, etc. There is.
JP-A-8-284708 (second page etc.) Japanese Patent No. 3498392 (first page, etc.)

しかし、上記特許文献1の技術では、内燃機関の始動後に燃料性状の学習が十分に進行するまでの期間は、燃料性状に応じた適正な燃料補正を行えないため、燃料性状による空燃比のずれが発生して、回転速度変動が発生することがある。   However, in the technique of the above-mentioned Patent Document 1, since the proper fuel correction according to the fuel property cannot be performed during the period until the learning of the fuel property sufficiently proceeds after the internal combustion engine is started, the deviation of the air-fuel ratio due to the fuel property is not achieved. May occur, causing fluctuations in rotational speed.

また、上記特許文献2の技術では、内燃機関の最適でない始動を検出してから燃料噴射量を増量補正するため、最適でない始動を検出するまでは回転速度変動が発生することがある。   Further, in the technique disclosed in Patent Document 2, since the fuel injection amount is increased and corrected after detecting the non-optimal start of the internal combustion engine, the rotational speed fluctuation may occur until the non-optimal start is detected.

更に、図2に示すように、内燃機関の始動時に使用燃料の燃料性状や内燃機関の経年変化等によって燃焼空燃比が目標空燃比よりもリーン方向にずれると、その分、発生トルクが目標空燃比で得られるはずのトルクよりも低下する。しかし、上記従来技術では、このような始動時のトルク変動が全く考慮されていないため、始動時に発生トルクが目標空燃比に応じた適正なトルクからずれていても、そのトルクのずれ分を全く補正することができず、内燃機関を適正な回転速度挙動で滑らかに始動できないという問題がある。   Further, as shown in FIG. 2, when the combustion air-fuel ratio deviates in the lean direction from the target air-fuel ratio due to the fuel properties of the fuel used or the aging of the internal-combustion engine at the time of starting the internal combustion engine, the generated torque is reduced accordingly. It is lower than the torque that should be obtained at the fuel ratio. However, in the above prior art, such torque fluctuations at the time of starting are not taken into consideration at all, so even if the generated torque at the time of starting deviates from an appropriate torque corresponding to the target air-fuel ratio, the amount of torque deviation is completely eliminated. There is a problem that the correction cannot be made and the internal combustion engine cannot be started smoothly with an appropriate rotational speed behavior.

本発明は、これらの事情を考慮してなされたものであり、従って本発明の目的は、内燃機関の始動時に早期に発生トルクを目標空燃比に応じた適正なトルクに精度良く制御することができて、内燃機関を適正な回転速度挙動で滑らかに始動することができる内燃機関の制御装置を提供することにある。   The present invention has been made in consideration of these circumstances. Therefore, the object of the present invention is to control the generated torque to an appropriate torque according to the target air-fuel ratio at an early stage when the internal combustion engine is started. An object of the present invention is to provide a control device for an internal combustion engine that can smoothly start the internal combustion engine with an appropriate rotational speed behavior.

上記目的を達成するために、請求項1に係る発明は、回転速度上昇量算出手段によって内燃機関の始動開始直後の回転速度上昇期間に内燃機関の燃焼毎に回転速度上昇量又はそれに相関する情報(以下「回転速度上昇量情報」という)を算出して、算出した回転速度上昇量情報を回転速度上昇量積算手段により積算し、積算した回転速度上昇量情報積算値を目標空燃比に対応した目標回転速度上昇量情報積算値と比較して目標空燃比に応じた適正なトルクからのずれ量(以下「トルク変動量」という)をトルク変動量算出手段により算出し、算出したトルク変動量に応じて内燃機関の発生トルクを補正するようにしたものである。 In order to achieve the above object, according to the first aspect of the present invention, the rotational speed increase amount is calculated by the rotational speed increase amount calculation means for each combustion of the internal combustion engine during the rotational speed increase period immediately after the start of the internal combustion engine or information correlated therewith. (Hereinafter referred to as “rotational speed increase information”), the calculated rotational speed increase information is integrated by the rotational speed increase amount integration means, and the integrated rotational speed increase information integrated value corresponds to the target air-fuel ratio. Compared with the target rotational speed increase information integrated value , the deviation amount from the appropriate torque according to the target air-fuel ratio (hereinafter referred to as “torque fluctuation amount”) is calculated by the torque fluctuation amount calculation means, and the calculated torque fluctuation amount is calculated. Accordingly, the generated torque of the internal combustion engine is corrected .

内燃機関の始動開始直後の回転速度上昇期間に、発生トルクが目標空燃比に応じた適正トルクよりも増加又は減少すると、その分、燃焼毎の回転速度上昇量が目標空燃比に対応した目標回転速度上昇量(始動当初から燃焼空燃比を目標空燃比に一致させて始動した場合の回転速度上昇量)よりも増加又は減少するため、回転速度上昇量情報と目標回転速度上昇量情報とを比較すれば、目標空燃比に応じた適正トルクに対する実際のトルクのずれ量であるトルク変動量を算出することができる。
更に、請求項1のように、内燃機関の始動開始直後の回転速度上昇期間に内燃機関の燃焼毎に算出した回転速度上昇量情報を積算し、その回転速度上昇量情報積算値を目標空燃比に対応した目標回転速度上昇量情報積算値と比較してトルク変動量を算出するようにすれば、燃焼毎に算出した回転速度上昇量情報に気筒間の燃焼ばらつき等の影響が含まれていても、回転速度上昇量情報積算値を用いることで気筒間の燃焼ばらつき等の影響を少なくすることができ、トルク変動量の算出精度を更に向上させることができる。
これにより、始動開始直後の回転速度上昇期間にトルク変動量を算出した時点から該トルク変動量に基づいて発生トルクを目標空燃比に応じた適正トルクに一致させるように補正する制御を開始することが可能となり、その結果、始動時に早期に発生トルクを適正トルクに精度良く制御することができて、内燃機関を適正な回転速度挙動で滑らかに始動することができ、始動性を向上させることができる。
When the generated torque increases or decreases during the rotation speed increase period immediately after the start of the internal combustion engine from the appropriate torque corresponding to the target air-fuel ratio, the amount of increase in the rotation speed for each combustion corresponds to the target rotation corresponding to the target air-fuel ratio. Compared with the speed increase information and the target speed increase information because it increases or decreases more than the speed increase (rotation speed increase when the combustion air-fuel ratio is matched with the target air-fuel ratio from the start) if it is possible to leave calculate the amount of torque fluctuation is the amount of deviation of the actual torque with respect to the proper torque corresponding to the target air-fuel ratio.
Further, as in claim 1, the rotational speed increase information calculated for each combustion of the internal combustion engine is integrated during the rotational speed increase period immediately after the start of the internal combustion engine, and the rotational speed increase information integrated value is obtained as the target air-fuel ratio. If the torque fluctuation amount is calculated by comparing with the target rotational speed increase information integrated value corresponding to the above, the rotational speed increase information calculated for each combustion includes the influence of combustion variation among cylinders, etc. However, the use of the rotational speed increase information integrated value can reduce the influence of combustion variation between cylinders and the like, and can further improve the calculation accuracy of the torque fluctuation amount.
As a result, the control for correcting the generated torque so as to coincide with the appropriate torque corresponding to the target air-fuel ratio is started based on the torque fluctuation amount from the time when the torque fluctuation amount is calculated in the rotation speed increase period immediately after the start of starting. As a result, the generated torque can be accurately controlled to an appropriate torque early at the time of starting, the internal combustion engine can be started smoothly with an appropriate rotational speed behavior, and startability can be improved. it can.

更に、請求項のように、回転速度上昇量情報を目標空燃比に対応した目標回転速度上昇量情報と比較すると共に回転速度上昇量情報積算値を目標空燃比に対応した目標回転速度上昇量情報積算値と比較し、それらの比較結果に基づいて内燃機関のトルク変動量を算出するようにしても良い。このようにすれば、回転速度上昇量情報と目標回転速度上昇量情報との比較結果及び回転速度上昇量情報積算値と目標回転速度上昇量情報積算値との比較結果の両方を用いてトルク変動量を更に精度良く算出することができる。 Further, as in claim 2 , the rotational speed increase information is compared with the target rotational speed increase information corresponding to the target air-fuel ratio, and the rotational speed increase information integrated value is compared with the target rotational speed increase amount corresponding to the target air-fuel ratio. The torque fluctuation amount of the internal combustion engine may be calculated based on the comparison result with the information integrated value. In this way, the torque fluctuation is obtained using both the comparison result between the rotation speed increase information and the target rotation speed increase information and the comparison result between the rotation speed increase information integrated value and the target rotation speed increase information integrated value. The amount can be calculated with higher accuracy.

また、トルク補正する際には、請求項のように、トルク変動量に基づいて燃料噴射量を補正するようにすると良い。このようにすれば、トルク変動量に基づいて発生トルクが適正トルクとなるように燃料噴射量を補正して、発生トルクを適正トルクに精度良く制御することができる。
Further, when the torque is corrected, the fuel injection amount is preferably corrected based on the torque fluctuation amount as in the third aspect . In this way, the fuel injection amount is corrected so that the generated torque becomes an appropriate torque based on the torque fluctuation amount, and the generated torque can be accurately controlled to the appropriate torque.

以下、本発明の一実施例を図面に基づいて説明する。
まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。内燃機関であるエンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、吸入空気量を検出するエアフローメータ14が設けられている。このエアフローメータ14の下流側には、モータ15によって開度調節されるスロットルバルブ16と、このスロットルバルブ16の開度(スロットル開度)を検出するスロットル開度センサ17とが設けられている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
First, a schematic configuration of the entire engine control system will be described with reference to FIG. An air cleaner 13 is provided at the most upstream portion of the intake pipe 12 of the engine 11 that is an internal combustion engine, and an air flow meter 14 that detects the intake air amount is provided downstream of the air cleaner 13. A throttle valve 16 whose opening is adjusted by a motor 15 and a throttle opening sensor 17 for detecting the opening (throttle opening) of the throttle valve 16 are provided on the downstream side of the air flow meter 14.

更に、スロットルバルブ16の下流側には、サージタンク18が設けられ、このサージタンク18には、吸気管圧力を検出する吸気管圧力センサ19が設けられている。また、サージタンク18には、エンジン11の各気筒に空気を導入する吸気マニホールド20が設けられ、各気筒の吸気マニホールド20の吸気ポート近傍に、それぞれ燃料を噴射する燃料噴射弁21が取り付けられている。また、エンジン11のシリンダヘッドには、各気筒毎に点火プラグ22が取り付けられ、各点火プラグ22の火花放電によって筒内の混合気に着火される。   Further, a surge tank 18 is provided on the downstream side of the throttle valve 16, and an intake pipe pressure sensor 19 for detecting the intake pipe pressure is provided in the surge tank 18. The surge tank 18 is provided with an intake manifold 20 for introducing air into each cylinder of the engine 11, and a fuel injection valve 21 for injecting fuel is attached in the vicinity of the intake port of the intake manifold 20 of each cylinder. Yes. Further, a spark plug 22 is attached to each cylinder of the cylinder head of the engine 11, and the air-fuel mixture in the cylinder is ignited by the spark discharge of each spark plug 22.

一方、エンジン11の排気管23には、排出ガスの空燃比又はリッチ/リーン等を検出する排出ガスセンサ24(空燃比センサ、酸素センサ等)が設けられ、この排出ガスセンサ24の下流側に、排出ガスを浄化する三元触媒等の触媒25が設けられている。   On the other hand, the exhaust pipe 23 of the engine 11 is provided with an exhaust gas sensor 24 (air-fuel ratio sensor, oxygen sensor, etc.) for detecting the air-fuel ratio or rich / lean of the exhaust gas. A catalyst 25 such as a three-way catalyst for purifying gas is provided.

また、エンジン11のシリンダブロックには、冷却水温を検出する冷却水温センサ26や、エンジン11のクランク軸27が所定クランク角回転する毎にクランク角信号(パルス信号)を出力するクランク角センサ28が取り付けられている。このクランク角センサ28のクランク角信号に基づいてクランク角やエンジン回転速度が検出される。   The cylinder block of the engine 11 includes a coolant temperature sensor 26 that detects the coolant temperature, and a crank angle sensor 28 that outputs a crank angle signal (pulse signal) every time the crankshaft 27 of the engine 11 rotates a predetermined crank angle. It is attached. Based on the crank angle signal of the crank angle sensor 28, the crank angle and the engine speed are detected.

これら各種センサの出力は、エンジン制御回路(以下「ECU」と表記する)29に入力される。このECU29は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御プログラムを実行することで、エンジン運転状態に応じて燃料噴射弁21の燃料噴射量や点火プラグ22の点火時期を制御する。   Outputs of these various sensors are input to an engine control circuit (hereinafter referred to as “ECU”) 29. The ECU 29 is mainly composed of a microcomputer, and executes various engine control programs stored in a built-in ROM (storage medium) to thereby determine the fuel injection amount of the fuel injection valve 21 according to the engine operating state. The ignition timing of the spark plug 22 is controlled.

ところで、図2に示すように、エンジン11の始動時に使用燃料の燃料性状やエンジン11の経年変化等によって燃焼空燃比が目標空燃比よりもリーン方向にずれると、その分、発生トルクが目標空燃比に対応した適正トルク(始動当初から燃焼空燃比を目標空燃比に一致させて始動した場合の発生トルク)よりも低下する。この場合、図3に破線で示すように、始動時にエンジン回転速度を十分に上昇させることができず、エンジン11を適正な回転速度挙動で始動できなくなる可能性がある。   Incidentally, as shown in FIG. 2, when the combustion air-fuel ratio deviates in the lean direction from the target air-fuel ratio due to the fuel properties of the fuel used at the start of the engine 11 or aging of the engine 11, the generated torque is reduced to the target air. It is lower than the appropriate torque corresponding to the fuel ratio (generated torque when starting with the combustion air-fuel ratio matched with the target air-fuel ratio from the start). In this case, as indicated by a broken line in FIG. 3, the engine speed cannot be sufficiently increased at the time of starting, and the engine 11 may not be started with an appropriate rotational speed behavior.

そこで、ECU29は、後述する図4乃至図6の始動時トルク補正制御用の各プログラムを実行することで、エンジン11の始動開始直後の回転速度上昇期間にエンジン11の燃焼毎にエンジン回転速度上昇量を算出して該エンジン回転速度上昇量を積算し、そのエンジン回転速度上昇量積算値と目標空燃比に対応した目標エンジン回転速度上昇量積算値(始動当初から燃焼空燃比を目標空燃比に一致させて始動した場合のエンジン回転速度上昇量の積算値)との偏差に基づいてエンジン11のトルク変動量(適正トルクに対する発生トルクの過不足量)を算出した後、このトルク変動量に基づいて発生トルクが目標空燃比に対応した適正トルクとなるように燃料噴射補正量を算出する。   Therefore, the ECU 29 executes each program for starting torque correction control shown in FIGS. 4 to 6 described later, thereby increasing the engine rotational speed for each combustion of the engine 11 during the rotational speed increasing period immediately after the engine 11 starts. The engine speed increase amount is integrated and the engine speed increase amount integrated value and the target engine speed increase amount integrated value corresponding to the target air fuel ratio (the combustion air fuel ratio is made the target air fuel ratio from the beginning of the start). After calculating the torque fluctuation amount of the engine 11 (the amount of excess or deficiency of the generated torque with respect to the appropriate torque) based on the deviation from the integrated value of the engine rotation speed increase when starting with matching, based on this torque fluctuation amount Thus, the fuel injection correction amount is calculated so that the generated torque becomes an appropriate torque corresponding to the target air-fuel ratio.

エンジン11の始動開始直後の回転速度上昇期間に、発生トルクが目標空燃比に対応した適正トルクよりも増加又は減少すると、その分、エンジン回転速度上昇量が目標空燃比に対応した目標エンジン回転速度上昇量(始動当初から燃焼空燃比を目標空燃比に一致させて始動した場合のエンジン回転速度上昇量)よりも増加又は減少するため、エンジン回転速度上昇量積算値と目標エンジン回転速度上昇量積算値とを比較すれば、トルク変動量(適正トルクに対する発生トルクの過不足量)を精度良く算出することができる。   If the generated torque is increased or decreased from the appropriate torque corresponding to the target air-fuel ratio during the rotation speed increase period immediately after the start of the engine 11, the target engine rotation speed corresponding to the target air-fuel ratio is correspondingly increased. The engine speed increase integrated value and the target engine speed increase integrated value are increased or decreased from the increase amount (the engine speed increase amount when starting with the combustion air-fuel ratio matched with the target air-fuel ratio from the start). If the value is compared, the amount of torque fluctuation (the amount of torque generated that is excessive or insufficient relative to the appropriate torque) can be calculated with high accuracy.

これにより、図3に実線で示すように、エンジン11の始動開始直後の回転速度上昇期間にトルク変動量を算出した時点から該からトルク変動量に基づいて発生トルクが適正トルクとなるようにトルク補正制御を開始することが可能となり、始動時に早期に発生トルクを適正トルクに精度良く制御することができて、エンジン11を適正な回転速度挙動で滑らかに始動することができる。
以下、ECU29が実行する図4乃至図6に示す始動時トルク補正制御用の各プログラムの処理内容を説明する。
Thus, as shown by a solid line in FIG. 3, from the time when the torque fluctuation amount is calculated during the rotation speed increase period immediately after the start of the engine 11, the torque is generated so that the generated torque becomes an appropriate torque based on the torque fluctuation amount. The correction control can be started, and the generated torque can be accurately controlled to an appropriate torque at an early stage when starting, and the engine 11 can be started smoothly with an appropriate rotational speed behavior.
Hereinafter, processing contents of each program for starting torque correction control shown in FIGS. 4 to 6 executed by the ECU 29 will be described.

[始動時トルク補正制御]
図4に示す始動時トルク補正制御プログラムは、エンジン11の始動時に所定周期で実行される。本ルーチンが起動されると、まず、ステップ101で、冷却水温センサ26で検出した冷却水温等のエンジン状態を読み込む。この後、ステップ102に進み、エンジン状態(冷却水温等)に基づいて目標空燃比を算出した後、ステップ103に進み、目標空燃比等に基づいて基本燃料噴射量を算出する。
[Startup torque correction control]
The start time torque correction control program shown in FIG. 4 is executed at a predetermined cycle when the engine 11 is started. When this routine is started, first, in step 101, the engine state such as the coolant temperature detected by the coolant temperature sensor 26 is read. Thereafter, the process proceeds to step 102, the target air-fuel ratio is calculated based on the engine state (cooling water temperature, etc.), and then the process proceeds to step 103, where the basic fuel injection amount is calculated based on the target air-fuel ratio.

この後、ステップ104に進み、後述する図5のトルク変動量算出プログラムを実行して、エンジン11の始動開始直後の回転速度上昇期間にエンジン11の燃焼毎に回転速度上昇量を算出して該回転速度上昇量を積算し、その回転速度上昇量積算値と目標空燃比に対応した目標回転速度上昇量積算値との偏差に基づいてトルク変動量(適正トルクに対する発生トルクの過不足量)を算出する。   Thereafter, the routine proceeds to step 104, where a torque fluctuation amount calculation program shown in FIG. 5 to be described later is executed to calculate the rotation speed increase amount for each combustion of the engine 11 during the rotation speed increase period immediately after the start of the engine 11. Based on the deviation between the accumulated value of the rotational speed increase and the integrated value of the target rotational speed increase corresponding to the target air-fuel ratio, the torque fluctuation amount (the excess or deficiency of the generated torque with respect to the appropriate torque) is calculated. calculate.

この後、ステップ105に進み、後述する図6の燃料噴射補正量算出プログラムを実行して、トルク変動量に基づいて発生トルクが目標空燃比に対応した適正トルクとなるように燃料噴射補正量を算出する。   Thereafter, the routine proceeds to step 105, where a fuel injection correction amount calculation program shown in FIG. 6 to be described later is executed to set the fuel injection correction amount so that the generated torque becomes an appropriate torque corresponding to the target air-fuel ratio based on the torque fluctuation amount. calculate.

[トルク変動量算出]
図5に示すトルク変動量算出プログラムは、前記図4の始動時トルク補正制御プログラムのステップ104で実行されるサブルーチンである。本プログラムが起動されると、まず、ステップ201で、図示しないエンジン回転速度算出プログラムを実行して、エンジン11の始動開始直後の回転速度上昇期間にエンジン11の燃焼毎に各気筒の燃焼TDC(燃焼行程の上死点)付近に設定された所定の回転速度算出区間(燃焼TDCの前後に跨って設定された回転速度算出区間又は燃焼TDCの直後に設定された回転速度算出区間)におけるクランク軸27の角速度情報(例えば、クランク軸27が回転速度算出区間を回転するのに要した時間)を算出し、その角速度情報に基づいてエンジン回転速度を算出する。これにより、エンジン11の燃焼状態や発生トルクとの相関性が高いエンジン回転速度を算出する。
[Calculation of torque fluctuation]
The torque fluctuation amount calculation program shown in FIG. 5 is a subroutine executed in step 104 of the starting torque correction control program shown in FIG. When this program is started, first, in step 201, an engine rotation speed calculation program (not shown) is executed, and each time the engine 11 burns, the combustion TDC ( Crankshaft in a predetermined rotation speed calculation section (rotation speed calculation section set across the combustion TDC or rotation speed calculation section set immediately after the combustion TDC) set near the top dead center of the combustion stroke) 27 angular speed information (for example, the time required for the crankshaft 27 to rotate in the rotational speed calculation section) is calculated, and the engine rotational speed is calculated based on the angular speed information. As a result, an engine rotation speed having high correlation with the combustion state of the engine 11 and the generated torque is calculated.

この後、ステップ202に進み、エンジン11の始動開始直後の回転速度上昇期間にエンジン11の燃焼毎にエンジン回転速度の今回値から前回値を差し引いてエンジン回転速度上昇量を算出する。このステップ202の処理が特許請求の範囲でいう回転速度上昇量算出手段としての役割を果たす。   Thereafter, the process proceeds to step 202, and the amount of increase in the engine rotation speed is calculated by subtracting the previous value from the current value of the engine rotation speed for each combustion of the engine 11 during the rotation speed increase period immediately after the start of the engine 11. The process in step 202 serves as a rotational speed increase calculation means in the claims.

この後、ステップ203に進み、エンジン11の燃焼開始から所定期間(例えば8燃焼分)のエンジン回転速度上昇量を積算してエンジン回転速度上昇量積算値を求める。このステップ203の処理が特許請求の範囲でいう回転速度上昇量積算手段としての役割を果たす。   Thereafter, the process proceeds to step 203, where the engine rotational speed increase amount for a predetermined period (for example, 8 combustion minutes) from the start of combustion of the engine 11 is integrated to obtain an engine rotational speed increase integrated value. The process of step 203 serves as a rotational speed increase amount integration means in the claims.

この後、ステップ204に進み、目標エンジン回転速度上昇量積算値のマップを検索して、目標空燃比に応じた目標エンジン回転速度上昇量積算値(始動当初から燃焼空燃比を目標空燃比に一致させて始動した場合のエンジン回転速度上昇量の積算値)を算出する。使用する目標エンジン回転速度上昇量積算値のマップは、予め試験データ、設計データ等に基づいてエンジン状態(始動時冷却水温、燃焼回数、冷却水温、吸気管圧力、吸気バルブタイミング、エンジン負荷、吸気温等のいずれか1つ又は2つ以上)の領域毎に設定され、ECU29のROMに記憶されている。   Thereafter, the routine proceeds to step 204, where a map of the target engine speed increase amount integrated value is searched, and the target engine speed increase amount integrated value corresponding to the target air fuel ratio (the combustion air fuel ratio matches the target air fuel ratio from the start). The integrated value of the amount of increase in engine speed when the engine is started is calculated. The map of the target engine rotation speed increase integrated value to be used is based on the engine status (starting cooling water temperature, number of combustions, cooling water temperature, intake pipe pressure, intake valve timing, engine load, Any one or two or more areas such as temperature are set and stored in the ROM of the ECU 29.

尚、目標空燃比に応じた基本目標エンジン回転速度上昇量積算値を算出した後、この基本目標エンジン回転速度上昇量積算値をエンジン状態(始動時冷却水温、燃焼回数、冷却水温、吸気管圧力、吸気バルブタイミング、エンジン負荷、吸気温等のいずれか1つ又は2つ以上)に応じて補正して最終的な目標エンジン回転速度上昇量積算値を求めるようにしても良い。   After calculating the basic target engine rotational speed increase integrated value corresponding to the target air-fuel ratio, this basic target engine rotational speed increase integrated value is calculated as the engine state (starting cooling water temperature, number of combustions, cooling water temperature, intake pipe pressure). The final target engine rotation speed increase integrated value may be obtained by correcting according to intake valve timing, engine load, intake air temperature or the like.

この後、ステップ205に進み、図7に示すトルク変動量のマップを検索して、エンジン回転速度上昇量積算値と目標エンジン回転速度上昇量積算値との偏差に応じたトルク変動量(適正トルクに対する発生トルクの過不足量)を算出する。このステップ205の処理が特許請求の範囲でいうトルク変動量算出手段としての役割を果たす。図7に示すトルク変動量のマップは、予め試験データ、設計データ等に基づいてエンジン状態(始動時冷却水温、燃焼回数、冷却水温、吸気管圧力、吸気バルブタイミング、エンジン負荷、吸気温等のいずれか1つ又は2つ以上)の領域毎に設定され、ECU29のROMに記憶されている。   Thereafter, the process proceeds to step 205, where the torque fluctuation amount map shown in FIG. 7 is searched, and the torque fluctuation amount (appropriate torque) corresponding to the deviation between the engine rotational speed increase integrated value and the target engine rotational speed increase integrated value is searched. (Excess or deficiency of generated torque with respect to). The processing in step 205 serves as a torque fluctuation amount calculation means in the claims. The torque fluctuation map shown in FIG. 7 is based on test data, design data, and the like in advance such as engine conditions (starting cooling water temperature, number of combustions, cooling water temperature, intake pipe pressure, intake valve timing, engine load, intake air temperature, etc.). Any one or two or more areas) are set and stored in the ROM of the ECU 29.

尚、エンジン回転速度上昇量積算値と目標エンジン回転速度上昇量積算値との偏差に応じた基本トルク変動量を算出した後、この基本トルク変動量をエンジン状態(始動時冷却水温、燃焼回数、冷却水温、吸気管圧力、吸気バルブタイミング、エンジン負荷、吸気温等のいずれか1つ又は2つ以上)に応じて補正して最終的なトルク変動量を求めるようにしても良い。   After calculating the basic torque fluctuation amount according to the deviation between the engine rotational speed increase integrated value and the target engine rotational speed increase integrated value, the basic torque fluctuation amount is calculated based on the engine state (starting coolant temperature, number of combustions, The final torque fluctuation amount may be obtained by correcting according to the coolant temperature, the intake pipe pressure, the intake valve timing, the engine load, the intake air temperature, or the like.

[燃料噴射補正量算出]
図6に示す燃料噴射補正量算出プログラムは、前記図4の始動時トルク補正制御プログラムのステップ105で実行されるサブルーチンであり、特許請求の範囲でいう燃料噴射量補正手段としての役割を果たす。本プログラムが起動されると、まず、ステップ301で、図8に示す燃焼空燃比のマップを検索して、トルク変動量に応じた燃焼空燃比(筒内混合気の実空燃比)を算出する。図8に示す燃焼空燃比のマップは、予め試験データ、設計データ等に基づいてエンジン状態(始動時冷却水温、燃焼回数、冷却水温、吸気温、前回の燃焼空燃比、前回の燃焼空燃比と目標空燃比との偏差等のいずれか1つ又は2つ以上)の領域毎に設定され、ECU29のROMに記憶されている。
[Fuel injection correction amount calculation]
The fuel injection correction amount calculation program shown in FIG. 6 is a subroutine executed in step 105 of the start time torque correction control program shown in FIG. 4, and serves as fuel injection amount correction means in the claims. When this program is started, first, in step 301, the combustion air-fuel ratio map shown in FIG. 8 is searched to calculate the combustion air-fuel ratio (actual air-fuel ratio of the in-cylinder mixture) according to the torque fluctuation amount. . The combustion air-fuel ratio map shown in FIG. 8 is based on engine conditions (starting cooling water temperature, number of combustions, cooling water temperature, intake air temperature, previous combustion air-fuel ratio, previous combustion air-fuel ratio based on test data, design data, and the like. Any one or two or more areas such as deviations from the target air-fuel ratio) are set and stored in the ROM of the ECU 29.

尚、トルク変動量に応じた基本燃焼空燃比を算出した後、この基本燃焼空燃比をエンジン状態(始動時冷却水温、燃焼回数、冷却水温、吸気温、前回の算出空燃比、前回の算出空燃比と目標空燃比との偏差等のいずれか1つ又は2つ以上)に応じて補正して最終的な燃焼空燃比を求めるようにしても良い。   After calculating the basic combustion air-fuel ratio according to the amount of torque fluctuation, this basic combustion air-fuel ratio is determined based on the engine condition (starting coolant temperature, number of combustions, coolant temperature, intake air temperature, previous calculated air-fuel ratio, previous calculated air-fuel ratio). The final combustion air-fuel ratio may be obtained by correcting according to any one or two or more of deviations between the fuel ratio and the target air-fuel ratio.

この後、ステップ302に進み、目標空燃比と燃焼空燃比との偏差を算出した後、ステップ303に進み、目標空燃比と燃焼空燃比との偏差に基づいて燃焼空燃比が目標空燃比となるように燃料噴射補正量を算出することで、発生トルクが適正トルクとなるように燃料噴射量を補正する。   Thereafter, the process proceeds to step 302, and after calculating the deviation between the target air-fuel ratio and the combustion air-fuel ratio, the process proceeds to step 303, where the combustion air-fuel ratio becomes the target air-fuel ratio based on the deviation between the target air-fuel ratio and the combustion air-fuel ratio. By calculating the fuel injection correction amount as described above, the fuel injection amount is corrected so that the generated torque becomes an appropriate torque.

以上説明した本実施例では、エンジン11の始動開始直後の回転速度上昇期間にエンジン11の燃焼毎にエンジン回転速度上昇量を算出して該エンジン回転速度上昇量を積算し、そのエンジン回転速度上昇量積算値と目標エンジン回転速度上昇量積算値との偏差に基づいてエンジン11のトルク変動量(適正トルクに対する発生トルクの過不足量)を算出した後、このトルク変動量に基づいて発生トルクが目標空燃比に対応した適正トルクとなるように燃料噴射補正量を算出する。   In the present embodiment described above, the engine rotation speed increase amount is calculated for each combustion of the engine 11 during the rotation speed increase period immediately after the start of the engine 11, and the engine rotation speed increase amount is integrated. After calculating the torque fluctuation amount of the engine 11 based on the deviation between the amount integrated value and the target engine rotational speed increase integrated value (the amount of torque generated that is excessive or insufficient with respect to the appropriate torque), the generated torque is calculated based on the torque fluctuation amount. A fuel injection correction amount is calculated so as to obtain an appropriate torque corresponding to the target air-fuel ratio.

これにより、図9に示すように、使用燃料の燃料性状やエンジン11の経年変化等によって始動当初の燃焼空燃比が目標空燃比からずれた場合でも、エンジン11の始動開始直後の回転速度上昇期間にトルク変動量を算出した時点から該トルク変動量に基づいて発生トルクが適正トルクとなるようにトルク補正制御を開始することが可能となり、始動時に早期に発生トルクを適正トルクに精度良く制御することができて、エンジン11を適正な回転速度挙動で滑らかに始動することができ、始動性を向上させることができる。   As a result, as shown in FIG. 9, even when the combustion air-fuel ratio at the start of the engine deviates from the target air-fuel ratio due to the fuel properties of the fuel used, aging of the engine 11, etc., the rotation speed increase period immediately after the start of the engine 11 starts. From the time when the torque fluctuation amount is calculated, torque correction control can be started based on the torque fluctuation amount so that the generated torque becomes an appropriate torque, and the generated torque is accurately controlled to the appropriate torque early at the start. Thus, the engine 11 can be smoothly started with an appropriate rotational speed behavior, and the startability can be improved.

しかも、本実施例では、エンジン回転速度上昇量積算値と目標エンジン回転速度上昇量積算値との偏差に基づいてトルク変動量を算出するようにしたので、燃焼毎に算出したエンジン回転速度上昇量に気筒間の燃焼ばらつき等の影響が含まれていても、エンジン回転速度上昇量積算値を用いることで気筒間の燃焼ばらつき等の影響を小さくすることができ、トルク変動量の算出精度を向上させることができる。   In addition, in this embodiment, the torque fluctuation amount is calculated based on the deviation between the engine rotation speed increase integrated value and the target engine rotation speed increase integrated value, so the engine rotation speed increase calculated for each combustion is calculated. Even if the effect of combustion variation among cylinders is included in the engine, the influence of combustion variation between cylinders can be reduced by using the integrated value of the engine speed increase, improving the accuracy of torque fluctuation calculation. Can be made.

本発明は、エンジン回転速度上昇量と目標エンジン回転速度上昇量との偏差に基づいてトルク変動量を算出するようにして、トルク変動量の演算処理を簡略化するようにしても良い。   In the present invention, the torque fluctuation amount may be calculated based on the deviation between the engine rotation speed increase amount and the target engine rotation speed increase amount, thereby simplifying the calculation process of the torque fluctuation amount.

或は、エンジン回転速度上昇量と目標エンジン回転速度上昇量との偏差及びエンジン回転速度上昇量積算値と目標エンジン回転速度上昇量積算値との偏差の両方に基づいてトルク変動量を算出するようにして、トルク変動量を更に精度良く算出できるようにしても良い。   Alternatively, the torque fluctuation amount is calculated based on both the deviation between the engine rotational speed increase amount and the target engine rotational speed increase amount, and the deviation between the engine rotational speed increase integrated value and the target engine rotational speed increase integrated value. Thus, the torque fluctuation amount may be calculated with higher accuracy.

また、上記実施例では、燃焼毎のエンジン回転速度上昇量を用いてトルク変動量を算出するようにしたが、燃焼毎のエンジン回転速度上昇量の情報として燃焼毎のクランク軸の角速度変化量や角加速度を用いてトルク変動量を算出するようにしても良い。   In the above-described embodiment, the torque fluctuation amount is calculated using the engine rotation speed increase amount for each combustion. However, as information on the engine rotation speed increase amount for each combustion, The torque fluctuation amount may be calculated using angular acceleration.

本発明の一実施例におけるエンジン制御システム全体の概略構成図である。It is a schematic block diagram of the whole engine control system in one Example of this invention. 燃焼空燃比と発生トルクとの関係を示す図である。It is a figure which shows the relationship between a combustion air fuel ratio and generated torque. 始動時トルク補正制御を説明するためのタイムチャートである。It is a time chart for demonstrating starting torque correction control. 始動時トルク補正制御プログラムの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the torque correction control program at the time of starting. トルク変動量算出プログラムの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of a torque variation calculation program. 燃料噴射補正量算出プログラムの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of a fuel injection correction amount calculation program. トルク変動量のマップの一例を概念的に示す図である。It is a figure which shows notionally an example of the map of torque fluctuation amount. 燃焼空燃比のマップの一例を概念的に示す図である。It is a figure which shows notionally an example of the map of a combustion air fuel ratio. 始動時トルク補正制御の実行例を示すタイムチャートである。It is a time chart which shows the execution example of torque correction control at the time of starting.

符号の説明Explanation of symbols

11…エンジン(内燃機関)、12…吸気管、16…スロットルバルブ、21…燃料噴射弁、22…点火プラグ、23…排気管、26…冷却水温センサ、28…クランク角センサ、29…ECU(回転速度上昇量算出手段,回転速度上昇量積算手段,トルク変動量算出手段,燃料噴射量補正手段)   DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Intake pipe, 16 ... Throttle valve, 21 ... Fuel injection valve, 22 ... Spark plug, 23 ... Exhaust pipe, 26 ... Cooling water temperature sensor, 28 ... Crank angle sensor, 29 ... ECU ( (Rotational speed increase amount calculating means, rotational speed increase amount integrating means, torque fluctuation amount calculating means, fuel injection amount correcting means)

Claims (3)

内燃機関の始動開始直後の回転速度上昇期間に内燃機関の燃焼毎に回転速度上昇量又はそれに相関する情報(以下「回転速度上昇量情報」という)を算出する回転速度上昇量算出手段と、
前記回転速度上昇量算出手段で算出した回転速度上昇量情報を積算する回転速度上昇量積算手段と、
前記回転速度上昇量積算手段で積算した回転速度上昇量情報積算値を目標空燃比に対応した目標回転速度上昇量情報積算値と比較して目標空燃比に応じた適正なトルクからのずれ量(以下「トルク変動量」という)を算出するトルク変動量算出手段とを備え、
前記トルク変動量算出手段で算出したトルク変動量に応じて内燃機関の発生トルクを補正することを特徴とする内燃機関の制御装置。
A rotational speed increase amount calculating means for calculating a rotational speed increase amount or information correlated therewith (hereinafter referred to as “rotational speed increase amount information”) for each combustion of the internal combustion engine in a rotational speed increase period immediately after the start of the internal combustion engine;
A rotational speed increase amount integrating means for integrating the rotational speed increase amount information calculated by the rotational speed increase amount calculating means;
The rotational speed increase information integrated value integrated by the rotational speed increase amount integration means is compared with the target rotational speed increase information integrated value corresponding to the target air-fuel ratio, and the deviation from the appropriate torque according to the target air-fuel ratio ( (Hereinafter referred to as “torque fluctuation amount”) for calculating torque fluctuation amount ,
A control apparatus for an internal combustion engine, wherein the generated torque of the internal combustion engine is corrected according to the torque fluctuation amount calculated by the torque fluctuation amount calculation means .
内燃機関の始動開始直後の回転速度上昇期間に内燃機関の燃焼毎に回転速度上昇量又はそれに相関する情報(以下「回転速度上昇量情報」という)を算出する回転速度上昇量算出手段と、
前記回転速度上昇量算出手段で算出した回転速度上昇量情報を積算する回転速度上昇量積算手段と、
前記回転速度上昇量算出手段で算出した回転速度上昇量情報を目標空燃比に対応した目標回転速度上昇量情報と比較すると共に前記回転速度上昇量積算手段で積算した回転速度上昇量情報積算値を目標空燃比に対応した目標回転速度上昇量情報積算値と比較して目標空燃比に応じた適正なトルクからのずれ量(以下「トルク変動量」という)を算出するトルク変動量算出手段とを備え、
前記トルク変動量算出手段で算出したトルク変動量に応じて内燃機関の発生トルクを補正することを特徴とする内燃機関の制御装置。
A rotational speed increase amount calculating means for calculating a rotational speed increase amount or information correlated therewith (hereinafter referred to as “rotational speed increase amount information”) for each combustion of the internal combustion engine in a rotational speed increase period immediately after the start of the internal combustion engine;
A rotational speed increase amount integrating means for integrating the rotational speed increase amount information calculated by the rotational speed increase amount calculating means;
The rotation speed increase information calculated by the rotation speed increase calculation means is compared with the target rotation speed increase information corresponding to the target air-fuel ratio, and the rotation speed increase information integrated value integrated by the rotation speed increase integration means is calculated. Torque fluctuation amount calculating means for calculating a deviation amount from an appropriate torque corresponding to the target air-fuel ratio (hereinafter referred to as “torque fluctuation amount”) in comparison with a target rotational speed increase information integrated value corresponding to the target air-fuel ratio ; Prepared,
A control apparatus for an internal combustion engine, wherein the generated torque of the internal combustion engine is corrected according to the torque fluctuation amount calculated by the torque fluctuation amount calculation means .
前記トルク変動量算出手段で算出したトルク変動量に基づいて燃料噴射量を補正する燃料噴射量補正手段を備えていることを特徴とする請求項1又は2に記載の内燃機関の制御装置。 3. The control apparatus for an internal combustion engine according to claim 1, further comprising fuel injection amount correction means for correcting the fuel injection amount based on the torque fluctuation amount calculated by the torque fluctuation amount calculation means.
JP2005267746A 2005-09-07 2005-09-15 Control device for internal combustion engine Expired - Fee Related JP4475207B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005267746A JP4475207B2 (en) 2005-09-15 2005-09-15 Control device for internal combustion engine
DE102006000450A DE102006000450A1 (en) 2005-09-07 2006-09-06 Control of an internal combustion engine
US11/516,645 US7448360B2 (en) 2005-09-07 2006-09-07 Controller of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005267746A JP4475207B2 (en) 2005-09-15 2005-09-15 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2007077892A JP2007077892A (en) 2007-03-29
JP4475207B2 true JP4475207B2 (en) 2010-06-09

Family

ID=37938470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005267746A Expired - Fee Related JP4475207B2 (en) 2005-09-07 2005-09-15 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4475207B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006000450A1 (en) * 2005-09-07 2007-03-08 Denso Corp., Kariya Control of an internal combustion engine
JP4803121B2 (en) * 2007-06-19 2011-10-26 トヨタ自動車株式会社 Control device for internal combustion engine
JP2009068456A (en) * 2007-09-14 2009-04-02 Toyota Motor Corp Start controller of internal combustion engine
JP4927697B2 (en) * 2007-12-20 2012-05-09 株式会社豊田中央研究所 Fuel property estimation device for internal combustion engine
JP6156182B2 (en) * 2014-02-19 2017-07-05 マツダ株式会社 Multi-cylinder engine controller

Also Published As

Publication number Publication date
JP2007077892A (en) 2007-03-29

Similar Documents

Publication Publication Date Title
US7387011B2 (en) Deterioration diagnosis system for exhaust gas sensor
JP2009024677A (en) Control device for internal combustion engine
US7448360B2 (en) Controller of internal combustion engine
JP2009115010A (en) Control device of direct injection internal combustion engine
JP5331613B2 (en) In-cylinder gas amount estimation device for internal combustion engine
JP4475207B2 (en) Control device for internal combustion engine
US7606650B2 (en) In-cylinder pressure detection device and method for internal combustion engine, and engine control unit
US20040118385A1 (en) Engine fuel injection control device
JP4356079B2 (en) Fuel property determination device for internal combustion engine
US6935312B2 (en) Internal combustion engine and ignition control method
JP4507975B2 (en) Engine control device
JP4168273B2 (en) Control device for internal combustion engine
JP2008138579A (en) Variable valve timing control device for internal combustion engine
US7171949B2 (en) Ignition timing controller for internal combustion engine
JP5187537B2 (en) Fuel injection control device for internal combustion engine
JP4462032B2 (en) Fuel injection control device for internal combustion engine
JP2008038732A (en) Fuel control device for internal combustion engine
JP4667275B2 (en) Control device for internal combustion engine
JP2005337186A (en) Controller for internal combustion engine
JP2006002610A (en) Engine starting performance improving device
JP2009097453A (en) Control device of internal combustion engine
JP4491739B2 (en) Control device for internal combustion engine
JPH11270386A (en) Fuel injection control device of internal combustion engine
JP4457411B2 (en) Control device for internal combustion engine
JP2007092645A (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100301

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees