JP2007092645A - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP2007092645A
JP2007092645A JP2005283345A JP2005283345A JP2007092645A JP 2007092645 A JP2007092645 A JP 2007092645A JP 2005283345 A JP2005283345 A JP 2005283345A JP 2005283345 A JP2005283345 A JP 2005283345A JP 2007092645 A JP2007092645 A JP 2007092645A
Authority
JP
Japan
Prior art keywords
intake air
cooling effect
cylinder
intake
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005283345A
Other languages
Japanese (ja)
Inventor
Akinori Koda
晃典 香田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2005283345A priority Critical patent/JP2007092645A/en
Publication of JP2007092645A publication Critical patent/JP2007092645A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately calculate cylinder filling air quantity while considering intake air cooling effect by evaporation latent heat of injected fuel, in a cylinder injection engine. <P>SOLUTION: This control device calculates base intake air quantity according to engine rotation speed and intake air pressure or the like, and temperature correction coefficient according to intake air temperature and cooling water temperature. Moreover, intake air cooling effect correction coefficient is calculated according to fuel injection start timing in intake stroke. Since a cylinder injection engine has characteristics that cooling effect of intake air by evaporation latent heat of injected fuel gets larger and cylinder filling air quantity increases as fuel injection timing in intake stroke is retarded, establishment is done to make intake air cooling effect collection coefficient gets larger as fuel injection start timing in intake stroke is retarded. Cylinder filling air quantity corrected according to intake air cooling effect by evaporation latent heat of injected fuel by multiplying the base intake air quantity by the temperature correction coefficient and the intake air cooling effect correction coefficient. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、燃料噴射弁から噴射した噴射燃料を吸入空気と混合して燃焼させる内燃機関の制御装置に関するものである。   The present invention relates to a control device for an internal combustion engine in which injected fuel injected from a fuel injection valve is mixed with intake air and burned.

一般に、内燃機関の制御システムでは、内燃機関の運転状態に基づいて筒内充填空気量(筒内に充填される空気量)を算出し、この筒内充填空気量に基づいて燃料噴射量や点火時期等の制御パラメータを演算するようにしている。例えば、特許文献1(特開平9−303242号公報)に記載されているように、所定周期でエアフローメータの出力と内燃機関の回転速度とに基づいて1回転当りの吸入空気量を算出し、各気筒の吸気行程毎に吸気バルブ開弁時期と吸気バルブ閉弁時期における吸入空気量の平均値(又は吸気バルブ開弁期間の中間点における吸入空気量)を各気筒の吸入空気量代表値(筒内充填空気量の情報)として求め、この吸入空気量代表値に基づいて各気筒の点火時期を演算するようにしたものがある。
特開平9−303242号公報(第5頁〜第6頁等)
In general, in a control system for an internal combustion engine, an in-cylinder charged air amount (the amount of air charged in the cylinder) is calculated based on the operating state of the internal combustion engine, and a fuel injection amount or an ignition is calculated based on the in-cylinder charged air amount. Control parameters such as timing are calculated. For example, as described in Patent Document 1 (Japanese Patent Laid-Open No. 9-303242), the intake air amount per rotation is calculated based on the output of the air flow meter and the rotation speed of the internal combustion engine at a predetermined cycle, For each intake stroke of each cylinder, the average value of the intake air amount at the intake valve opening timing and the intake valve closing timing (or the intake air amount at the midpoint of the intake valve opening period) is the representative value of the intake air amount of each cylinder ( In some cases, the ignition timing of each cylinder is calculated based on the representative value of the intake air amount.
JP-A-9-303242 (pages 5 to 6 etc.)

一般に、内燃機関では、燃料噴射弁から噴射した燃料を吸入空気と混合させて燃焼させるが、噴射燃料が吸入空気中で蒸発(気化)する際に、噴射燃料の蒸発潜熱によって吸入空気が冷却されて、吸入空気の密度が増加する現象が発生する。本発明者らの研究結果によれば、噴射燃料の蒸発潜熱で生じる吸入空気の冷却効果によって筒内充填空気量が増加して空燃比を変化させることが確認されており、特に、筒内に燃料を直接噴射する筒内噴射式内燃機関では、吸気ポート噴射式内燃機関と比べて、噴射燃料の蒸発潜熱による吸気冷却効果が内燃機関の制御パラメータに与える影響が大きくなる傾向がある。   In general, in an internal combustion engine, fuel injected from a fuel injection valve is mixed with intake air and burned. When the injected fuel evaporates (vaporizes) in the intake air, the intake air is cooled by the latent heat of vaporization of the injected fuel. As a result, the density of the intake air increases. According to the research results of the present inventors, it has been confirmed that the amount of air charged in the cylinder is increased due to the cooling effect of the intake air generated by the latent heat of vaporization of the injected fuel, and the air-fuel ratio is changed. In a direct injection internal combustion engine that directly injects fuel, the influence of the intake air cooling effect due to the latent heat of vaporization of the injected fuel on the control parameters of the internal combustion engine tends to be greater than that of the intake port injection internal combustion engine.

しかし、上記特許文献1の技術では、噴射燃料の蒸発潜熱による吸気冷却効果が全く考慮されていないため、筒内充填空気量が実際よりも少なめに算出されてしまう傾向がある。このため、筒内充填空気量の算出値に基づいて演算される燃料噴射量や点火時期等の制御パラメータが適正値からずれてしまい、内燃機関を精度良く制御することができないという欠点がある。   However, in the technique of Patent Document 1 described above, the intake air cooling effect due to the latent heat of vaporization of the injected fuel is not taken into consideration at all, and therefore, the in-cylinder charged air amount tends to be calculated smaller than the actual amount. For this reason, the control parameters such as the fuel injection amount and the ignition timing calculated based on the calculated value of the in-cylinder charged air amount are deviated from appropriate values, and the internal combustion engine cannot be accurately controlled.

本発明は、このような事情を考慮してなされたものであり、従って本発明の目的は、噴射燃料の蒸発潜熱による吸気冷却効果を内燃機関の制御パラメータに反映させることができ、制御パラメータの算出精度ひいては内燃機関の制御精度を向上させることができる内燃機関の制御装置を提供することにある。   The present invention has been made in consideration of such circumstances. Therefore, the object of the present invention is to reflect the intake air cooling effect due to the latent heat of vaporization of the injected fuel in the control parameters of the internal combustion engine. It is an object of the present invention to provide a control device for an internal combustion engine that can improve the calculation accuracy and consequently the control accuracy of the internal combustion engine.

上記目的を達成するために、請求項1に係る発明は、燃料噴射弁から噴射した噴射燃料を吸入空気と混合して燃焼させる内燃機関の制御装置において、吸気冷却効果補正手段によって噴射燃料の蒸発潜熱による吸気冷却効果に応じて内燃機関の制御パラメータを補正するようにしたものである。   In order to achieve the above object, according to a first aspect of the present invention, there is provided a control apparatus for an internal combustion engine in which the injected fuel injected from the fuel injection valve is mixed with the intake air and burned. The control parameters of the internal combustion engine are corrected according to the intake air cooling effect due to latent heat.

このようにすれば、噴射燃料の蒸発潜熱による吸気冷却効果に応じて筒内充填空気量が実質的に変化するのに対応して、該筒内充填空気量に基づいて演算される燃料噴射量や点火時期等の制御パラメータを補正することができて、制御パラメータの算出精度ひいては内燃機関の制御精度を向上させることができる。   In this way, the fuel injection amount calculated based on the in-cylinder charged air amount corresponding to the substantial change in the in-cylinder charged air amount according to the intake air cooling effect due to the latent heat of vaporization of the injected fuel. Control parameters such as ignition timing and the like can be corrected, so that the calculation accuracy of the control parameters and thus the control accuracy of the internal combustion engine can be improved.

この場合、請求項2のように、内燃機関の筒内に充填される筒内充填空気量を算出するシステムでは、噴射燃料の蒸発潜熱による吸気冷却効果に応じて筒内充填空気量を補正するようにしても良い。このようにすれば、噴射燃料の蒸発潜熱による吸気冷却効果に応じて筒内充填空気量が実質的に変化するのに対応して、筒内充填吸気量の算出値を補正することができ、筒内充填吸気量を精度良く算出することができる。しかも、筒内充填空気量を補正すれば、該筒内充填空気量に基づいて演算される燃料噴射量や点火時期等の制御パラメータを個別に補正する必要がなく、演算処理を簡略化することができる利点もある。   In this case, in the system for calculating the in-cylinder charged air amount filled in the cylinder of the internal combustion engine as in claim 2, the in-cylinder charged air amount is corrected according to the intake air cooling effect due to the latent heat of vaporization of the injected fuel. You may do it. In this way, the calculated value of the in-cylinder charged intake air amount can be corrected in response to the substantial change in the in-cylinder charged air amount according to the intake air cooling effect due to the latent heat of vaporization of the injected fuel, The in-cylinder charged intake air amount can be calculated with high accuracy. In addition, if the in-cylinder charged air amount is corrected, it is not necessary to individually correct the control parameters such as the fuel injection amount and ignition timing calculated based on the in-cylinder charged air amount, thereby simplifying the calculation process. There is also an advantage that can be.

また、請求項3のように、噴射燃料の蒸発潜熱による吸気冷却効果の他に、燃料噴射時期も考慮して制御パラメータを補正するようにしても良い。燃料噴射時期が変化すると、いわゆるウエット量(壁面付着燃料量)が変化して吸入空気中で蒸発する噴射燃料量が変化し、噴射燃料の蒸発潜熱による吸気冷却効果が変化するため、燃料噴射時期に応じて制御パラメータ(例えば筒内充填空気量や該筒内充填空気量に基づいて演算される制御パラメータ)を補正すれば、噴射燃料の蒸発潜熱による吸気冷却効果に応じて制御パラメータをより適正に補正することができる。   Further, as in claim 3, the control parameter may be corrected in consideration of the fuel injection timing in addition to the intake air cooling effect due to the latent heat of vaporization of the injected fuel. When the fuel injection timing changes, the so-called wet amount (the amount of fuel adhering to the wall surface) changes and the amount of injected fuel that evaporates in the intake air changes, and the intake cooling effect due to the latent heat of vaporization of the injected fuel changes. If the control parameter (for example, the control parameter calculated based on the in-cylinder charged air amount or the in-cylinder charged air amount) is corrected in accordance with Can be corrected.

本発明者らの研究結果によると、図2に示すように、筒内噴射式内燃機関では、吸気行程における燃料噴射時期が早いと、ピストンがシリンダの上部に位置する時期に燃料を噴射するため、ピストンに付着する燃料量が多くなり、その分、吸入空気中で蒸発する噴射燃料量が少なくなるため、噴射燃料の蒸発潜熱による吸気冷却効果が小さくなって筒内充填空気量が実質的に減少する。一方、吸気行程における燃料噴射時期が遅くなると、ピストンがシリンダの下部に位置する時期に燃料を噴射するため、ピストンに付着する燃料量が少なくなって、その分、吸入空気中で蒸発する噴射燃料量が多くなるため、噴射燃料の蒸発潜熱による吸気冷却効果が大きくなって筒内充填空気量が実質的に増加する。つまり、筒内噴射式内燃機関では、吸気行程における燃料噴射時期が遅くなるほど噴射燃料の蒸発潜熱による吸気冷却効果が大きくなって筒内充填空気量が多くなる傾向があることが判明した。   According to the research results of the present inventors, as shown in FIG. 2, in the cylinder injection internal combustion engine, when the fuel injection timing in the intake stroke is early, the fuel is injected at the timing when the piston is positioned above the cylinder. Since the amount of fuel adhering to the piston increases and the amount of injected fuel that evaporates in the intake air decreases accordingly, the intake air cooling effect due to the latent heat of vaporization of the injected fuel is reduced, and the amount of air charged in the cylinder is substantially reduced. Decrease. On the other hand, if the fuel injection timing in the intake stroke is delayed, the fuel is injected when the piston is positioned below the cylinder, so the amount of fuel adhering to the piston decreases, and the injected fuel that evaporates in the intake air accordingly. Since the amount increases, the intake air cooling effect due to the latent heat of vaporization of the injected fuel increases, and the in-cylinder charged air amount substantially increases. That is, it has been found that in a cylinder injection internal combustion engine, as the fuel injection timing in the intake stroke is delayed, the intake air cooling effect due to the latent heat of vaporization of the injected fuel tends to increase, and the amount of cylinder charge air tends to increase.

このような事情を考慮して、請求項4のように、本発明を筒内噴射式内燃機関に適用する場合には、筒内噴射式内燃機関の吸気行程における燃料噴射時期が遅くなるほど制御パラメータの補正量が大きくなるように補正すると良い。このようにすれば、筒内噴射式内燃機関の吸気行程における燃料噴射時期が遅くなるほど噴射燃料の蒸発潜熱による吸気冷却効果が大きくなって筒内充填空気量の増加量が大きくなるのに対応して、制御パラメータの補正量を大きくすることができる。   In consideration of such circumstances, when the present invention is applied to a direct injection internal combustion engine as in claim 4, the control parameter becomes longer as the fuel injection timing in the intake stroke of the direct injection internal combustion engine is delayed. It is good to correct so that the amount of correction becomes larger. In this way, as the fuel injection timing in the intake stroke of the in-cylinder internal combustion engine is delayed, the intake air cooling effect due to the latent heat of vaporization of the injected fuel increases, and the increase in the in-cylinder charged air amount increases. Thus, the correction amount of the control parameter can be increased.

以下、本発明の一実施例を図面に基づいて説明する。
まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。筒内噴射式の内燃機関である筒内噴射式エンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、モータ14によって開度調節されるスロットルバルブ15が設けられている。更に、スロットルバルブ15の下流側には、サージタンク16が設けられ、このサージタンク16には、吸気管圧力を検出する吸気管圧力センサ17が設けられている。また、サージタンク16には、エンジン11の各気筒に空気を導入する吸気マニホールド18が設けられている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
First, a schematic configuration of the entire engine control system will be described with reference to FIG. An air cleaner 13 is provided at the most upstream portion of the intake pipe 12 of the cylinder injection engine 11 which is a cylinder injection internal combustion engine, and a throttle valve whose opening degree is adjusted by a motor 14 on the downstream side of the air cleaner 13. 15 is provided. Further, a surge tank 16 is provided on the downstream side of the throttle valve 15, and an intake pipe pressure sensor 17 for detecting the intake pipe pressure is provided in the surge tank 16. The surge tank 16 is provided with an intake manifold 18 that introduces air into each cylinder of the engine 11.

エンジン11の各気筒の上部には、それぞれ燃料を筒内に直接噴射する燃料噴射弁19が取り付けられている。高圧燃料ポンプ21から吐出された燃料は、高圧燃料配管22を通してデリバリパイプ23に送られ、このデリバリパイプ23から各気筒の燃料噴射弁19に高圧の燃料が分配される。デリバリパイプ23には、燃料噴射弁19に供給される燃料の圧力を検出する燃圧センサ24が設けられている。   A fuel injection valve 19 for directly injecting fuel into the cylinder is attached to the upper part of each cylinder of the engine 11. The fuel discharged from the high-pressure fuel pump 21 is sent to the delivery pipe 23 through the high-pressure fuel pipe 22, and the high-pressure fuel is distributed from the delivery pipe 23 to the fuel injection valve 19 of each cylinder. The delivery pipe 23 is provided with a fuel pressure sensor 24 that detects the pressure of the fuel supplied to the fuel injection valve 19.

また、エンジン11のシリンダヘッドには、各気筒毎に点火プラグ20が取り付けられ、各点火プラグ20の火花放電によって筒内の混合気に着火される。更に、エンジン11の吸気バルブと排気バルブには、それぞれ開閉タイミングを可変する可変バルブタイミング装置(図示せず)が設けられている。   Further, a spark plug 20 is attached to each cylinder of the cylinder head of the engine 11, and the air-fuel mixture in the cylinder is ignited by spark discharge of each spark plug 20. Furthermore, the intake valve and the exhaust valve of the engine 11 are each provided with a variable valve timing device (not shown) that varies the opening / closing timing.

一方、エンジン11の排気管25には、排出ガスの空燃比又はリッチ/リーン等を検出する排出ガスセンサ26(空燃比センサ、酸素センサ等)が設けられている。排気管25のうちの排出ガスセンサ26の上流側と吸気管12のうちのスロットルバルブ15の下流側のサージタンク16との間に、排出ガスの一部を吸気側に還流させるためのEGR配管27が接続され、このEGR配管27の途中に排出ガス還流量(EGR量)を制御するEGR弁28が設けられている。   On the other hand, the exhaust pipe 25 of the engine 11 is provided with an exhaust gas sensor 26 (an air-fuel ratio sensor, an oxygen sensor, etc.) that detects the air-fuel ratio or rich / lean of the exhaust gas. Between the upstream side of the exhaust gas sensor 26 in the exhaust pipe 25 and the surge tank 16 on the downstream side of the throttle valve 15 in the intake pipe 12, an EGR pipe 27 for returning a part of the exhaust gas to the intake side. And an EGR valve 28 for controlling the exhaust gas recirculation amount (EGR amount) is provided in the middle of the EGR pipe 27.

また、エンジン11のシリンダブロックには、冷却水温を検出する冷却水温センサ29や、エンジン11のクランク軸が所定クランク角回転する毎にクランク角信号(パルス信号)を出力するクランク角センサ30が取り付けられている。このクランク角センサ30のクランク角信号に基づいてクランク角やエンジン回転速度が検出される。また、アクセルペダルの踏込量(アクセル開度)がアクセルセンサ31によって検出される。   A cooling water temperature sensor 29 that detects the cooling water temperature and a crank angle sensor 30 that outputs a crank angle signal (pulse signal) each time the crankshaft of the engine 11 rotates a predetermined crank angle are attached to the cylinder block of the engine 11. It has been. Based on the crank angle signal of the crank angle sensor 30, the crank angle and the engine speed are detected. Further, the accelerator sensor 31 detects the amount of depression of the accelerator pedal (accelerator opening).

これら各種センサの出力は、エンジン制御回路(以下「ECU」と表記する)32に入力される。このECU32は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御プログラムを実行することで、エンジン運転状態に応じて燃料噴射弁19の燃料噴射量や点火プラグ20の点火時期を制御する。   Outputs of these various sensors are input to an engine control circuit (hereinafter referred to as “ECU”) 32. The ECU 32 is mainly composed of a microcomputer, and executes various engine control programs stored in a built-in ROM (storage medium) to thereby determine the fuel injection amount of the fuel injection valve 19 according to the engine operating state. The ignition timing of the spark plug 20 is controlled.

その際、ECU32は、後述する図4の筒内充填空気量演算プログラムを実行することで、次のようにして筒内充填空気量(筒内に充填される空気量)を算出する。
図3に示すように、まず、エンジン回転速度と吸気管圧力と吸気バルブの閉弁時期と排気バルブの閉弁時期等に応じてマップ又は数式等により基本吸入空気量を算出する。
At that time, the ECU 32 calculates the in-cylinder charged air amount (the amount of air charged in the cylinder) as follows by executing a later-described in-cylinder charged air amount calculation program in FIG.
As shown in FIG. 3, first, the basic intake air amount is calculated by a map or a mathematical formula according to the engine speed, the intake pipe pressure, the intake valve closing timing, the exhaust valve closing timing, and the like.

また、吸気温と冷却水温とに応じてマップ又は数式等により温度補正係数を算出する。一般に、吸気温や冷却水温が低くなるほど、吸入空気の密度が大きくなって筒内充填空気量が多くなる。そこで、温度補正係数は、吸気温や冷却水温が低くなるほど大きくなるように設定される。   Further, a temperature correction coefficient is calculated by a map or a mathematical expression according to the intake air temperature and the cooling water temperature. Generally, the lower the intake air temperature and the cooling water temperature, the higher the density of intake air and the greater the amount of in-cylinder charged air. Therefore, the temperature correction coefficient is set so as to increase as the intake air temperature or the cooling water temperature decreases.

更に、吸気行程における燃料噴射開始時期に応じてマップ又は数式等により吸気冷却効果補正係数を算出する。図2に示すように、筒内噴射エンジン11では、吸気行程における燃料噴射開始時期が早いと、ピストンがシリンダの上部に位置する時期に燃料を噴射するため、ピストンに付着する燃料量が多くなり、その分、吸入空気中で蒸発する噴射燃料量が少なくなるため、噴射燃料の蒸発潜熱による吸気冷却効果が小さくなって筒内充填空気量が実質的に減少する。一方、吸気行程における燃料噴射時期が遅くなると、ピストンがシリンダの下部に位置する時期に燃料を噴射するため、ピストンに付着する燃料量が少なくなって、その分、吸入空気中で蒸発する噴射燃料量が多くなるため、噴射燃料の蒸発潜熱による吸気冷却効果が大きくなって筒内充填空気量が実質的に増加する。つまり、筒内噴射式エンジン11では、吸気行程における燃料噴射開始時期が遅くなるほど噴射燃料の蒸発潜熱による吸気冷却効果が大きくなって筒内充填空気量が多くなる傾向がある。このような事情を考慮して、噴射燃料の蒸発潜熱による吸気冷却効果に応じて筒内充填空気量を補正するための吸気冷却効果補正係数は、吸気行程の燃料噴射開始時期が遅くなるほど大きくなるように設定される。   Further, an intake cooling effect correction coefficient is calculated by a map or a mathematical expression according to the fuel injection start timing in the intake stroke. As shown in FIG. 2, in the in-cylinder injection engine 11, when the fuel injection start timing in the intake stroke is early, the fuel is injected at a timing when the piston is located at the upper part of the cylinder, so that the amount of fuel adhering to the piston increases. Accordingly, the amount of injected fuel that evaporates in the intake air is reduced, so that the intake air cooling effect due to the latent heat of vaporization of the injected fuel is reduced, and the in-cylinder charged air amount is substantially reduced. On the other hand, when the fuel injection timing in the intake stroke is delayed, the fuel is injected when the piston is located at the lower part of the cylinder, so the amount of fuel adhering to the piston decreases, and the injected fuel that evaporates in the intake air accordingly. Since the amount increases, the intake air cooling effect due to the latent heat of vaporization of the injected fuel increases, and the in-cylinder charged air amount substantially increases. In other words, in the in-cylinder injection engine 11, as the fuel injection start timing in the intake stroke is delayed, the intake air cooling effect due to the latent heat of vaporization of the injected fuel tends to increase and the amount of in-cylinder charged air tends to increase. In consideration of such circumstances, the intake air cooling effect correction coefficient for correcting the in-cylinder charged air amount according to the intake air cooling effect due to the latent heat of vaporization of the injected fuel becomes larger as the fuel injection start timing in the intake stroke is delayed. It is set as follows.

このようにして、温度補正係数と吸気冷却効果補正係数を算出した後、図3に示すように、基本吸入空気量に温度補正係数と吸気冷却効果補正係数を乗算することで、温度補正係数と吸気冷却効果補正係数を用いて補正された筒内充填空気量を求める。
筒内充填空気量=基本吸入空気量×温度補正係数×吸気冷却効果補正係数
After calculating the temperature correction coefficient and the intake air cooling effect correction coefficient in this way, as shown in FIG. 3, the basic air intake air amount is multiplied by the temperature correction coefficient and the intake air cooling effect correction coefficient to obtain the temperature correction coefficient and An in-cylinder charged air amount corrected using the intake air cooling effect correction coefficient is obtained.
In-cylinder charged air amount = basic intake air amount x temperature correction coefficient x intake air cooling effect correction coefficient

ECU32は、以上のようにして算出した筒内充填空気量とエンジン回転速度等に基づいてマップ又は数式等により燃料噴射量、点火時期、EGR量等の制御パラメータを演算する。   The ECU 32 calculates control parameters such as the fuel injection amount, the ignition timing, and the EGR amount based on the in-cylinder charged air amount calculated as described above, the engine rotation speed, and the like by using a map or a mathematical expression.

以下、ECU32が実行する図4の筒内充填空気量演算プログラムの処理内容を説明する。図4に示す筒内充填空気量演算プログラムは、ECU32の電源オン中に所定周期で実行され、特許請求の範囲でいう筒内充填空気量算出手段としての役割を果たす。本プログラムが起動されると、まず、ステップ101で、クランク角センサ30で検出したエンジン回転速度を読み込む。この後、ステップ102に進み、吸気管圧力センサ17で検出した吸気管圧力を読み込んだ後、ステップ103に進み、吸気バルブの閉弁時期及び排気バルブの閉弁時期を読み込む。   Hereinafter, processing contents of the cylinder charge air amount calculation program of FIG. 4 executed by the ECU 32 will be described. The in-cylinder charged air amount calculation program shown in FIG. 4 is executed at a predetermined cycle while the ECU 32 is turned on, and serves as the in-cylinder charged air amount calculation means in the claims. When this program is started, first, at step 101, the engine speed detected by the crank angle sensor 30 is read. Thereafter, the process proceeds to step 102, and the intake pipe pressure detected by the intake pipe pressure sensor 17 is read. Then, the process proceeds to step 103, and the closing timing of the intake valve and the closing timing of the exhaust valve are read.

この後、ステップ104に進み、基本吸入空気量のマップを参照して、エンジン回転速度と吸気管圧力と吸気バルブの閉弁時期と排気バルブの閉弁時期とに応じた基本吸入空気量を算出する。この基本吸入空気量のマップは、予め試験データや設計データ等に基づいて設定され、ECU32のROMに記憶されている。   Thereafter, the routine proceeds to step 104, where the basic intake air amount is calculated according to the engine speed, intake pipe pressure, intake valve closing timing, and exhaust valve closing timing with reference to the basic intake air amount map. To do. The basic intake air amount map is set in advance based on test data, design data, and the like, and is stored in the ROM of the ECU 32.

この後、ステップ105に進み、吸気温センサ(図示せず)で検出した吸気温を読み込んだ後、ステップ106に進み、冷却水温センサ29で検出した冷却水温を読み込む。   Thereafter, the process proceeds to step 105, the intake air temperature detected by an intake air temperature sensor (not shown) is read, and then the process proceeds to step 106, where the cooling water temperature detected by the cooling water temperature sensor 29 is read.

この後、ステップ107に進み、温度補正係数のマップを参照して、吸気温と冷却水温とに応じた温度補正係数を算出する。一般に、吸気温や冷却水温が低くなるほど、吸入空気の密度が大きくなって筒内充填空気量が多くなるため、温度補正係数のマップは、吸気温や冷却水温が低くなるほど温度補正係数が大きくなるように設定されている。この温度補正係数のマップは、予め試験データや設計データ等に基づいて設定され、ECU32のROMに記憶されている。   Thereafter, the process proceeds to step 107, and a temperature correction coefficient corresponding to the intake air temperature and the cooling water temperature is calculated with reference to the temperature correction coefficient map. In general, the lower the intake air temperature or the cooling water temperature, the higher the intake air density and the larger the amount of air charged in the cylinder. Therefore, the temperature correction coefficient map increases as the intake air temperature or the cooling water temperature decreases. Is set to The temperature correction coefficient map is set in advance based on test data, design data, and the like, and is stored in the ROM of the ECU 32.

この後、ステップ108に進み、吸気行程の燃料噴射開始時期を読み込んだ後、ステップ109に進み、吸気冷却効果補正係数のマップを参照して、燃料噴射開始時期に応じた吸気冷却効果補正係数を算出する。   Thereafter, the routine proceeds to step 108, and after reading the fuel injection start timing of the intake stroke, the routine proceeds to step 109, where the intake cooling effect correction coefficient corresponding to the fuel injection start timing is determined with reference to the map of the intake cooling effect correction coefficient. calculate.

前述したように、筒内噴射式エンジン11では、吸気行程における燃料噴射開始時期が遅くなるほど噴射燃料の蒸発潜熱による吸気冷却効果が大きくなって筒内充填空気量が多くなる傾向があるため、吸気冷却効果補正係数のマップは、燃料噴射開始時期が遅くなるほど吸気冷却効果補正係数が大きくなるように設定されている。この冷却効果補正係数のマップは、予め試験データや設計データ等に基づいて設定され、ECU32のROMに記憶されている。   As described above, in the in-cylinder injection engine 11, as the fuel injection start timing in the intake stroke is delayed, the intake air cooling effect due to the latent heat of vaporization of the injected fuel tends to increase and the amount of in-cylinder charged air tends to increase. The map of the cooling effect correction coefficient is set so that the intake air cooling effect correction coefficient increases as the fuel injection start timing is delayed. The cooling effect correction coefficient map is set in advance based on test data, design data, and the like, and is stored in the ROM of the ECU 32.

この後、ステップ110に進み、基本吸入空気量に温度補正係数と吸気冷却効果補正係数とを乗算することで、温度補正係数と吸気冷却効果補正係数を用いて補正された筒内充填空気量を求める。これらのステップ109、110の処理が特許請求の範囲でいう吸気冷却効果補正手段としての役割を果たす。   Thereafter, the routine proceeds to step 110, where the basic intake air amount is multiplied by the temperature correction coefficient and the intake air cooling effect correction coefficient to obtain the in-cylinder charged air amount corrected using the temperature correction coefficient and the intake air cooling effect correction coefficient. Ask. The processing of these steps 109 and 110 serves as an intake air cooling effect correction means in the claims.

以上説明した本実施例では、筒内噴射式エンジン11の吸気行程における燃料噴射時期が遅くなるほど噴射燃料の蒸発潜熱による吸気冷却効果が大きくなって筒内充填空気量が多くなるという特性に着目して、筒内噴射式エンジン11の吸気行程における燃料噴射開始時期に応じて吸気冷却効果補正係数を求め、この吸気冷却効果補正係数を用いて基本吸入空気量を補正して筒内充填空気量を算出するようにしたので、噴射燃料の蒸発潜熱による吸気冷却効果に応じて筒内充填空気量が変化するのに対応して、筒内充填吸気量の算出値を補正することができ、筒内充填吸気量を精度良く算出することができる。これにより、噴射燃料の蒸発潜熱による吸気冷却効果が変化しても、筒内充填空気量に基づいて演算される燃料噴射量、点火時期、EGR量等の制御パラメータを精度良く算出することができ、エンジン11の制御精度を向上させることができる。しかも、筒内充填空気量を補正するため、該筒内充填空気量に基づいて演算される燃料噴射量、点火時期、EGR量等の制御パラメータを個別に補正する必要がなく、演算処理を簡略化することができる利点もある。   In the present embodiment described above, attention is paid to the characteristic that as the fuel injection timing in the intake stroke of the in-cylinder injection engine 11 is delayed, the intake air cooling effect due to the latent heat of vaporization of the injected fuel increases and the in-cylinder charged air amount increases. Thus, an intake air cooling effect correction coefficient is obtained according to the fuel injection start timing in the intake stroke of the in-cylinder injection engine 11, and the basic intake air amount is corrected using the intake air cooling effect correction coefficient to obtain the in-cylinder charged air amount. Since it is calculated, the calculated value of the in-cylinder charged intake air amount can be corrected in response to the change in the in-cylinder charged air amount in accordance with the intake air cooling effect due to the latent heat of vaporization of the injected fuel. The charged intake air amount can be accurately calculated. As a result, even if the intake air cooling effect due to the latent heat of vaporization of the injected fuel changes, it is possible to accurately calculate control parameters such as the fuel injection amount, ignition timing, and EGR amount that are calculated based on the in-cylinder charged air amount. The control accuracy of the engine 11 can be improved. Moreover, in order to correct the in-cylinder charged air amount, it is not necessary to individually correct control parameters such as the fuel injection amount, ignition timing, and EGR amount calculated based on the in-cylinder charged air amount, thereby simplifying the calculation process. There is also an advantage that can be realized.

尚、上記実施例では、燃料噴射開始時期に応じて吸気冷却効果補正係数を求めるようにしたが、燃料噴射終了時期に応じて吸気冷却効果補正係数を求めるようにしても良い。
また、上記実施例では、筒内充填空気量を吸気冷却効果補正係数を用いて補正するようにしたが、筒内充填空気量に基づいて演算される燃料噴射量、点火時期、EGR量等の制御パラメータをそれぞれ吸気冷却効果補正係数を用いて補正するようにしても良い。このようにすれば、噴射燃料の蒸発潜熱による吸気冷却効果に応じて筒内充填空気量が変化するのに対応して、該筒内充填空気量に基づいて演算される燃料噴射量、点火時期、EGR量等の制御パラメータを補正することができ、噴射燃料の蒸発潜熱による吸気冷却効果が変化しても、燃料噴射量、点火時期、EGR量等の制御パラメータを精度良く算出することができ、エンジン11の制御精度を向上させることができる。
In the above embodiment, the intake air cooling effect correction coefficient is obtained according to the fuel injection start timing. However, the intake air cooling effect correction coefficient may be obtained according to the fuel injection end time.
In the above embodiment, the in-cylinder charged air amount is corrected using the intake cooling effect correction coefficient. However, the fuel injection amount, ignition timing, EGR amount, etc. calculated based on the in-cylinder charged air amount The control parameter may be corrected using an intake air cooling effect correction coefficient. In this way, the fuel injection amount calculated based on the in-cylinder charged air amount and the ignition timing corresponding to the change in the in-cylinder charged air amount according to the intake air cooling effect due to the latent heat of vaporization of the injected fuel. The control parameters such as the EGR amount can be corrected, and the control parameters such as the fuel injection amount, the ignition timing, and the EGR amount can be accurately calculated even if the intake air cooling effect due to the latent heat of vaporization of the injected fuel changes. The control accuracy of the engine 11 can be improved.

また、上記実施例では、本発明を筒内噴射式エンジンに適用したが、吸気ポート噴射式エンジンに適用しても良い。吸気ポート噴射式エンジンでは、例えば燃料噴射時期又はウエット量等に応じて吸気冷却効果補正係数を求め、この吸気冷却効果補正係数を用いて制御パラメータ(筒内充填空気量や該筒内充填空気量に基づいて演算される燃料噴射量、点火時期、EGR量等の制御パラメータ)を補正すれば、噴射燃料の蒸発潜熱による吸気冷却効果に応じて制御パラメータを補正することができる。   In the above embodiment, the present invention is applied to a direct injection engine, but may be applied to an intake port injection engine. In an intake port injection type engine, for example, an intake cooling effect correction coefficient is obtained in accordance with the fuel injection timing or the wet amount, and control parameters (in-cylinder charged air amount and in-cylinder charged air amount are calculated using the intake cooling effect correction coefficient). If the control parameters such as the fuel injection amount, ignition timing, and EGR amount calculated based on the above are corrected, the control parameters can be corrected according to the intake air cooling effect due to the latent heat of vaporization of the injected fuel.

また、上記実施例では、燃料噴射時期に応じて吸気冷却効果補正係数を算出するようにしたが、噴射燃料の蒸発潜熱による吸気冷却効果に関係する他の情報(例えば、燃料圧力、燃料噴射量、燃料噴射時間、燃料噴射回数、筒内圧力等)に基づいて吸気冷却効果補正係数を算出するようにしても良い。   In the above embodiment, the intake air cooling effect correction coefficient is calculated according to the fuel injection timing. However, other information related to the intake air cooling effect due to the latent heat of vaporization of the injected fuel (for example, fuel pressure, fuel injection amount, etc.) The intake cooling effect correction coefficient may be calculated based on the fuel injection time, the number of fuel injections, the in-cylinder pressure, and the like.

また、噴射燃料の蒸発潜熱による吸気冷却効果に応じて補正する制御パラメータは、筒内充填空気量、燃料噴射量、点火時期、EGR量に限定されず、噴射燃料の蒸発潜熱による吸気冷却効果の影響を受ける他の制御パラメータ(例えば、バルブタイミング、バルブリフト量、パージ量等)を噴射燃料の蒸発潜熱による吸気冷却効果に応じて補正するようにしても良い。   The control parameters to be corrected according to the intake air cooling effect due to the evaporation latent heat of the injected fuel are not limited to the in-cylinder charged air amount, the fuel injection amount, the ignition timing, and the EGR amount. Other control parameters that are affected (for example, valve timing, valve lift amount, purge amount, etc.) may be corrected according to the intake air cooling effect due to the latent heat of vaporization of the injected fuel.

本発明の一実施例におけるエンジン制御システム全体の概略構成図である。It is a schematic block diagram of the whole engine control system in one Example of this invention. 燃料噴射開始時期と筒内充填空気量との関係を説明する特性図である。It is a characteristic view explaining the relationship between the fuel injection start timing and the cylinder air charge amount. 筒内充填空気量の演算機能を概略的に示すブロック図である。It is a block diagram which shows roughly the calculation function of the cylinder air charge amount. 筒内充填空気量演算プログラムの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the cylinder air charge amount calculation program.

符号の説明Explanation of symbols

11…筒内噴射式エンジン(筒内噴射式内燃機関)、12…吸気管、15…スロットルバルブ、17…吸気管圧力センサ、19…燃料噴射弁、20…点火プラグ、25…排気管、29…冷却水温センサ、30…クランク角センサ、32…ECU(筒内充填空気量算出手段,吸気冷却効果補正手段)   DESCRIPTION OF SYMBOLS 11 ... Cylinder-injection engine (cylinder-injection internal combustion engine), 12 ... Intake pipe, 15 ... Throttle valve, 17 ... Intake pipe pressure sensor, 19 ... Fuel injection valve, 20 ... Spark plug, 25 ... Exhaust pipe, 29 ... Cooling water temperature sensor, 30 ... Crank angle sensor, 32 ... ECU (in-cylinder charged air amount calculating means, intake air cooling effect correcting means)

Claims (4)

燃料噴射弁から噴射した噴射燃料を吸入空気と混合して燃焼させる内燃機関の制御装置において、
前記噴射燃料の蒸発潜熱による吸気冷却効果に応じて前記内燃機関の制御パラメータを補正する吸気冷却効果補正手段を備えていることを特徴とする内燃機関の制御装置。
In a control device for an internal combustion engine that burns fuel injected from a fuel injection valve by mixing with intake air,
A control apparatus for an internal combustion engine, comprising: an intake air cooling effect correcting means for correcting a control parameter of the internal combustion engine in accordance with an intake air cooling effect due to latent heat of vaporization of the injected fuel.
前記内燃機関の筒内に充填される筒内充填空気量を算出する筒内充填空気量算出手段を備え、
前記吸気冷却効果補正手段は、前記噴射燃料の蒸発潜熱による吸気冷却効果に応じて前記筒内充填空気量を補正することを特徴とする請求項1に記載の内燃機関の制御装置。
In-cylinder charged air amount calculating means for calculating an in-cylinder charged air amount to be filled in the cylinder of the internal combustion engine,
2. The control device for an internal combustion engine according to claim 1, wherein the intake air cooling effect correction unit corrects the in-cylinder charged air amount in accordance with an intake air cooling effect caused by latent heat of vaporization of the injected fuel.
前記吸気冷却効果補正手段は、前記噴射燃料の蒸発潜熱による吸気冷却効果の他に、燃料噴射時期も考慮して前記制御パラメータを補正することを特徴とする請求項1又は2に記載の内燃機関の制御装置。   3. The internal combustion engine according to claim 1, wherein the intake air cooling effect correcting unit corrects the control parameter in consideration of a fuel injection timing in addition to an intake air cooling effect due to latent heat of vaporization of the injected fuel. Control device. 前記内燃機関は、筒内に燃料を直接噴射する筒内噴射式内燃機関であり、
前記吸気冷却効果補正手段は、吸気行程における燃料噴射時期が遅くなるほど前記制御パラメータの補正量が大きくなるように補正することを特徴とする請求項3に記載の内燃機関の制御装置。
The internal combustion engine is a cylinder injection internal combustion engine that directly injects fuel into a cylinder.
4. The control device for an internal combustion engine according to claim 3, wherein the intake air cooling effect correcting means corrects the control parameter so that the correction amount of the control parameter increases as the fuel injection timing in the intake stroke is delayed.
JP2005283345A 2005-09-29 2005-09-29 Control device for internal combustion engine Pending JP2007092645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005283345A JP2007092645A (en) 2005-09-29 2005-09-29 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005283345A JP2007092645A (en) 2005-09-29 2005-09-29 Control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2007092645A true JP2007092645A (en) 2007-04-12

Family

ID=37978649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005283345A Pending JP2007092645A (en) 2005-09-29 2005-09-29 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2007092645A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012145000A (en) * 2011-01-07 2012-08-02 Hitachi Automotive Systems Ltd Control device of on-vehicle engine
JP2017110505A (en) * 2015-12-14 2017-06-22 トヨタ自動車株式会社 Brake negative pressure control device of vehicle
JP2018193881A (en) * 2017-05-12 2018-12-06 いすゞ自動車株式会社 Piston temperature estimation device and piston temperature estimation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012145000A (en) * 2011-01-07 2012-08-02 Hitachi Automotive Systems Ltd Control device of on-vehicle engine
JP2017110505A (en) * 2015-12-14 2017-06-22 トヨタ自動車株式会社 Brake negative pressure control device of vehicle
CN106948962A (en) * 2015-12-14 2017-07-14 丰田自动车株式会社 Braking negative pressure control apparatus for vehicle
JP2018193881A (en) * 2017-05-12 2018-12-06 いすゞ自動車株式会社 Piston temperature estimation device and piston temperature estimation method

Similar Documents

Publication Publication Date Title
JP5348242B2 (en) Internal combustion engine control system
US6314944B1 (en) Fuel property determination from accumulated intake air amount and accumulated fuel supply amount
JP2009115010A (en) Control device of direct injection internal combustion engine
JP4314585B2 (en) Control device for internal combustion engine
JP2007120392A (en) Air fuel ratio control device for internal combustion engine
JP2011052670A (en) Fuel injector of internal combustion engine
US7178494B2 (en) Variable valve timing controller for internal combustion engine
JP4605060B2 (en) Control device for internal combustion engine
JP3991809B2 (en) Fuel injection device for start of internal combustion engine
JP2007231883A (en) Air fuel ratio control device for internal combustion engine
JP4475207B2 (en) Control device for internal combustion engine
JP2007092645A (en) Control device for internal combustion engine
JP4348705B2 (en) Fuel injection control device for internal combustion engine
JP5187537B2 (en) Fuel injection control device for internal combustion engine
JP3775942B2 (en) Fuel injection control device for internal combustion engine
JP4033718B2 (en) Stroke discrimination method and stroke discrimination device for internal combustion engine
JP6740588B2 (en) Fuel injection control device
JP4462032B2 (en) Fuel injection control device for internal combustion engine
JP2007077842A (en) Control device for internal combustion engine
JP2009097453A (en) Control device of internal combustion engine
JP3846195B2 (en) Fuel injection control device for internal combustion engine
JP4415506B2 (en) Atmospheric pressure learning device for internal combustion engine
JP4415803B2 (en) Control device for internal combustion engine
JP2011179344A (en) Fuel injection controller for internal combustion engine
JP2007321616A (en) Fuel injection control device and fuel injection control method of cylinder injection type internal combustion engine