JP4415803B2 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP4415803B2
JP4415803B2 JP2004266357A JP2004266357A JP4415803B2 JP 4415803 B2 JP4415803 B2 JP 4415803B2 JP 2004266357 A JP2004266357 A JP 2004266357A JP 2004266357 A JP2004266357 A JP 2004266357A JP 4415803 B2 JP4415803 B2 JP 4415803B2
Authority
JP
Japan
Prior art keywords
temperature
warm
cylinder
increase
estimated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004266357A
Other languages
Japanese (ja)
Other versions
JP2006083710A (en
Inventor
真浩 横井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004266357A priority Critical patent/JP4415803B2/en
Publication of JP2006083710A publication Critical patent/JP2006083710A/en
Application granted granted Critical
Publication of JP4415803B2 publication Critical patent/JP4415803B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、吸気バルブと排気バルブとのバルブオーバーラップ量を調整可能な可変動弁機構を備えた内燃機関の制御装置に関するものである。   The present invention relates to a control device for an internal combustion engine provided with a variable valve mechanism capable of adjusting a valve overlap amount between an intake valve and an exhaust valve.

ポート噴射を行うエンジンにおいて、エンジン未暖機状態では吸気ポートが冷えているため、吸気ポートの内壁面には噴射した燃料が十分に気化されずその一部が付着する、所謂燃料ウェットが生じる。また、筒内(燃焼室内)においてもシリンダライナの内壁面やピストン上面に燃料ウェットが付着したり、更には未燃焼のまま排気管に排出される状況が発生する。このような燃料ウェットはその大部分が燃焼に寄与しないものであるため、燃料ウェットの発生により筒内における燃焼可能な燃料が減少する。そのため、この減少分を考慮しないと実空燃比が目標空燃比よりもリーン側になるため、燃料噴射量の増量補正が行われている。   In an engine that performs port injection, since the intake port is cold when the engine is not warmed up, so-called fuel wet occurs in which the injected fuel is not sufficiently vaporized and part of it adheres to the inner wall surface of the intake port. Further, even in the cylinder (combustion chamber), fuel wet adheres to the inner wall surface of the cylinder liner and the upper surface of the piston, and further, a situation occurs in which the fuel is discharged to the exhaust pipe without being burned. Since most of such fuel wet does not contribute to combustion, the amount of combustible fuel in the cylinder is reduced by the generation of fuel wet. For this reason, if this decrease is not taken into account, the actual air-fuel ratio becomes leaner than the target air-fuel ratio, so that the fuel injection amount increase correction is performed.

またエンジンの暖機が進んでくると、それに伴って筒内雰囲気温度が上昇するため、燃料ウェット分の気化量が増加する。そのため、この気化量増加分を考慮しないで燃料噴射量の増量補正を行うと、筒内における燃焼可能な燃料が増加して実空燃比が目標空燃比よりもリッチ側になるため、燃料噴射量の増量補正からは気化量増加分を除くようにしている。このようなエンジン暖機時における燃料噴射量の暖機増量補正は、例えば特許文献1や特許文献2にて開示されている。   Further, as the engine warms up, the in-cylinder ambient temperature rises accordingly, and the amount of fuel wet vaporization increases. Therefore, if the fuel injection amount increase correction is performed without taking this increase in vaporization amount into consideration, the combustible fuel in the cylinder increases and the actual air-fuel ratio becomes richer than the target air-fuel ratio. The increase in vaporization is excluded from the increase in vaporization. Such a warm-up increase correction of the fuel injection amount during engine warm-up is disclosed in, for example, Patent Document 1 and Patent Document 2.

ところで、近年のエンジンは、排気エミッションの低減や燃費向上等の目的で、例えば特許文献3に示されるように、吸気バルブと排気バルブとのバルブオーバーラップ量を調整可能な可変バルブタイミング機構等の可変動弁機構を備えたものが主流となっている。   By the way, for the purpose of reducing exhaust emissions and improving fuel efficiency, recent engines have a variable valve timing mechanism or the like that can adjust the valve overlap amount between the intake valve and the exhaust valve, as shown in Patent Document 3, for example. Those equipped with a variable valve mechanism have become mainstream.

しかしながら、このようなエンジンの暖機時においては、可変バルブタイミング機構等の動作状態により筒内雰囲気温度の上昇度が異なるため、これを考慮していない燃料噴射量の暖機増量補正を行っている特許文献3や特許文献1,2では、空燃比の制御精度が悪化し、排気エミッションの悪化を招く。
特開2002−213281号公報 特開平6−264791号公報 特開2002−276431号公報
However, during such warming up of the engine, the degree of increase in the in-cylinder ambient temperature differs depending on the operating state of the variable valve timing mechanism, etc. In Patent Document 3 and Patent Documents 1 and 2, the air-fuel ratio control accuracy deteriorates and exhaust emission deteriorates.
JP 2002-213281 A JP-A-6-264791 JP 2002-276431 A

本発明は、可変動弁機構を備えた内燃機関において、燃料噴射量の暖機増量補正を好適に行うことで空燃比の制御精度を向上し、排気エミッションを良好とすることができる内燃機関の制御装置を提供することを主たる目的とするものである。   The present invention relates to an internal combustion engine having a variable valve mechanism that can improve the accuracy of air-fuel ratio control and improve exhaust emission by suitably performing warm-up increase correction of the fuel injection amount. The main purpose is to provide a control device.

以下、上記課題を解決するのに有効な手段等につき、効果等を示しつつ説明する。   Hereinafter, effective means for solving the above-described problems will be described while showing effects.

手段1.内燃機関は、吸気バルブと排気バルブとのバルブオーバーラップ量を調整可能な可変動弁機構と、内燃機関の吸気ポート近傍に燃料を噴射供給する燃料噴射弁とを備えている。内燃機関の制御装置は、その暖機期間中において、その時々の暖機増量値を算出し、算出した暖機増量値に基づいて燃料噴射量の暖機増量補正を実施する。このような内燃機関の制御装置には、暖機増量値を算出するための暖機増量ベース値を算出するベース値算出手段と、バルブオーバーラップ量を検出するオーバーラップ量検出手段と、検出したバルブオーバーラップ量を用いバルブオーバーラップ量が大きくなるほど推定筒内雰囲気温度が上昇するように算出する筒内温度推定手段と、算出した推定筒内雰囲気温度に基づいて暖機増量値の温度補正項を算出する温度補正項算出手段と、暖機増量ベース値に温度補正項を反映させて暖機増量値を算出する暖機増量値算出手段とが備えられる。 Means 1. The internal combustion engine includes a variable valve mechanism that can adjust a valve overlap amount between an intake valve and an exhaust valve, and a fuel injection valve that injects fuel near the intake port of the internal combustion engine. The control device for the internal combustion engine calculates a warm-up increase value at each time during the warm-up period, and performs a warm-up increase correction of the fuel injection amount based on the calculated warm-up increase value. In such a control device for an internal combustion engine, a base value calculation means for calculating a warm-up increase base value for calculating a warm-up increase value, an overlap amount detection means for detecting a valve overlap amount, and temperature correction term warming increase value based on the calculated in-cylinder temperature estimation means for, calculated estimated cylinder ambient temperature so that the valve overlap amount larger the estimated in-cylinder ambient temperature the valve overlap amount with increases And a warm-up increase value calculating means for calculating the warm-up increase value by reflecting the temperature correction term in the warm-up increase base value.

ところで、内燃機関の暖機期間中(未暖機状態)においては、筒内(燃焼室内)や燃料噴射が行われる吸気ポートに、燃焼に寄与できない燃料ウェットが発生するため、これを考慮し、燃料噴射の暖機増量補正が実施されている。しかしながら、可変動弁機構を備えた内燃機関では、バルブオーバーラップが生じることにより内部EGRが生じ、筒内に高温の既燃ガス(EGRガス)が残留する。またバルブオーバーラップ量の増加は、筒内の内部EGR率(燃焼室内で内部EGRの占める割合)又は内部EGR量の増加を促進させ、この内部EGR率又は量の増加は、筒内雰囲気温度の上昇を促進させる。これにより、燃料ウェットの気化が促進され、燃焼に寄与できる燃料が増加する。そのため、バルブオーバーラップによる筒内雰囲気温度の上昇に基づいた燃料ウェットの気化増加分を予め暖機増量値から除いて互いが相殺するようにすれば、筒内の燃焼可能な燃料が余剰となってリッチ状態となることが防止される。その結果、空燃比の制御精度を向上でき、排気エミッションを良好とすることができる。   By the way, during the warm-up period of the internal combustion engine (non-warm-up state), fuel wet that cannot contribute to combustion occurs in the cylinder (combustion chamber) and the intake port where fuel injection is performed. The fuel injection warm-up increase correction is implemented. However, in an internal combustion engine having a variable valve mechanism, internal EGR occurs due to valve overlap, and high-temperature burned gas (EGR gas) remains in the cylinder. Further, the increase in the valve overlap amount promotes the increase in the internal EGR rate in the cylinder (the ratio occupied by the internal EGR in the combustion chamber) or the internal EGR amount, and this increase in the internal EGR rate or amount increases the in-cylinder ambient temperature. Promote the rise. Thereby, vaporization of fuel wet is promoted, and the fuel that can contribute to combustion increases. Therefore, if the increase in fuel wet vaporization based on the increase in the in-cylinder ambient temperature due to the valve overlap is removed in advance from the warm-up increase value, the combustible fuel in the cylinder becomes surplus. Thus, the rich state is prevented. As a result, the control accuracy of the air-fuel ratio can be improved, and the exhaust emission can be improved.

手段2.上記手段1において、筒内温度推定手段は、バルブオーバーラップ量及び吸入空気量を用い内部EGR率又は内部EGR量を算出し、その内部EGR率又は内部EGR量を用い推定筒内雰囲気温度を算出する。   Mean 2. In the above means 1, the in-cylinder temperature estimating means calculates the internal EGR rate or the internal EGR amount using the valve overlap amount and the intake air amount, and calculates the estimated in-cylinder atmosphere temperature using the internal EGR rate or the internal EGR amount. To do.

すなわち、推定筒内雰囲気温度は、バルブオーバーラップ量及び吸入空気量を用い算出される内部EGR率又は量に基づいて算出される。上記のようにバルブオーバーラップ量の増加は、筒内の内部EGR率又は量の増加を促進させ筒内雰囲気温度の上昇を促進させるため、このバルブオーバーラップ量と、内部EGR率又は量を算出するのに重要な要素である吸入空気量とを用いることで、精度の高い推定筒内雰囲気温度を検出することができる。そのため、空燃比の制御精度をより確実に向上することができる。   That is, the estimated in-cylinder atmosphere temperature is calculated based on the internal EGR rate or amount calculated using the valve overlap amount and the intake air amount. As described above, increasing the valve overlap amount promotes an increase in the internal EGR rate or amount in the cylinder and promotes an increase in the in-cylinder atmosphere temperature. Therefore, the valve overlap amount and the internal EGR rate or amount are calculated. By using the intake air amount, which is an important factor for this, it is possible to detect the estimated in-cylinder ambient temperature with high accuracy. Therefore, the control accuracy of the air-fuel ratio can be improved more reliably.

手段3.上記手段2において、筒内温度推定手段は、内部EGR率又は内部EGR量と、点火時期及び空燃比を用い算出される内部EGR推定温度と、吸気温度と、を用い推定筒内雰囲気温度を算出する。   Means 3. In the above means 2, the in-cylinder temperature estimating means calculates the estimated in-cylinder atmosphere temperature using the internal EGR rate or the internal EGR amount, the estimated internal EGR temperature calculated using the ignition timing and the air-fuel ratio, and the intake air temperature. To do.

すなわち、推定筒内雰囲気温度を算出するのに重要な要素である内部EGR率又は量と内部EGR推定温度と吸気温度とに基づいて該筒内雰囲気温度が算出されるので、これによって更に精度の高い推定筒内雰囲気温度を検出することができ、空燃比の制御精度をより確実に向上することができる。   That is, the in-cylinder atmosphere temperature is calculated based on the internal EGR rate or amount, the estimated internal EGR temperature, and the intake air temperature, which are important factors for calculating the estimated in-cylinder atmosphere temperature. A high estimated in-cylinder atmosphere temperature can be detected, and the control accuracy of the air-fuel ratio can be improved more reliably.

手段4.上記手段1〜3のいずれかにおいて、温度補正項算出手段は、推定筒内雰囲気温度が所定温度となるまでは、推定筒内雰囲気温度の上昇に応じて暖機増量値が減少するような温度補正項を算出する。   Means 4. In any one of the above means 1 to 3, the temperature correction term calculation means is a temperature at which the warm-up increase value decreases as the estimated in-cylinder atmosphere temperature increases until the estimated in-cylinder atmosphere temperature reaches a predetermined temperature. A correction term is calculated.

すなわち、筒内雰囲気温度が所定温度となるまでの正常範囲では、推定筒内雰囲気温度の上昇に応じて暖機増量値が減少するような温度補正項が算出される。この筒内雰囲気温度の正常範囲では、内燃機関の暖機が進んでくるに従って筒内雰囲気温度が上昇し、筒内や吸気ポートに付着している燃料ウェットの気化量が増加し、この気化分で筒内の燃焼可能な燃料が補填されるため、暖機増量値を減少させることで、空燃比の制御精度をより確実に向上することができる。   That is, in the normal range until the in-cylinder atmosphere temperature reaches the predetermined temperature, a temperature correction term is calculated such that the warm-up increase value decreases as the estimated in-cylinder atmosphere temperature increases. In the normal range of the in-cylinder ambient temperature, the in-cylinder ambient temperature rises as the internal combustion engine warms up, and the amount of vaporized fuel wet adhering to the in-cylinder and the intake port increases. Since the combustible fuel in the cylinder is supplemented, the control accuracy of the air-fuel ratio can be more reliably improved by decreasing the warm-up increase value.

手段5.上記手段4において、温度補正項算出手段は、推定筒内雰囲気温度が所定温度を超えると、推定筒内雰囲気温度の上昇に応じて所定温度の暖機増量値から該暖機増量値が増加するような温度補正項を算出する。   Means 5. In the above means 4, when the estimated in-cylinder atmosphere temperature exceeds the predetermined temperature, the temperature correction term calculating means increases the warm-up increase value from the warm-up increase value at the predetermined temperature in accordance with the increase in the estimated in-cylinder atmosphere temperature. Such a temperature correction term is calculated.

すなわち、筒内雰囲気温度が所定温度を超える異常範囲では、推定筒内雰囲気温度の上昇に応じて所定温度の暖機増量値から該暖機増量値が増加するような温度補正項が算出される。この筒内雰囲気温度の異常範囲では、筒内雰囲気温度が上昇するほど燃焼が不安定になるため、暖機増量値を増加させることで、燃焼を安定化させることができる。   That is, in an abnormal range where the in-cylinder ambient temperature exceeds the predetermined temperature, a temperature correction term is calculated such that the warm-up increase value is increased from the warm-up increase value at the predetermined temperature as the estimated in-cylinder atmosphere temperature increases. . In this abnormal range of the in-cylinder atmosphere temperature, the combustion becomes unstable as the in-cylinder atmosphere temperature increases. Therefore, the combustion can be stabilized by increasing the warm-up increase value.

以下、本発明を具体化した一実施の形態を図面に従って説明する。本実施の形態は、内燃機関である車載多気筒ガソリンエンジンを対象にエンジン制御システムを構築するものであり、当該制御システムのエンジンには過給機として電動機付きターボチャージャが設けられている。先ずは、図1を用いてエンジン制御システムの全体概略構成図を説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an embodiment of the invention will be described with reference to the drawings. In this embodiment, an engine control system is constructed for an in-vehicle multi-cylinder gasoline engine that is an internal combustion engine, and the engine of the control system is provided with a turbocharger with an electric motor as a supercharger. First, an overall schematic configuration diagram of the engine control system will be described with reference to FIG.

図1に示すエンジン10において、吸気管11の最上流部にはエアクリーナ12が設けられ、このエアクリーナ12の下流側には吸入空気量を検出するためのエアフローメータ13が設けられている。エアフローメータ13の下流側には、DCモータ等のアクチュエータによって開度調節されるスロットルバルブ14と、スロットル開度を検出するためのスロットル開度センサ15とが設けられている。スロットルバルブ14の下流側にはサージタンク16が設けられ、このサージタンク16には吸気管圧力を検出するための吸気管圧力センサ17が設けられている。また、サージタンク16には、エンジン10の各気筒に空気を導入する吸気マニホールド18が接続されており、吸気マニホールド18において各気筒の吸気ポート近傍には燃料を噴射供給する電磁駆動式の燃料噴射弁19が取り付けられている。つまり、燃料噴射弁19によりポート噴射が行われる。   In the engine 10 shown in FIG. 1, an air cleaner 12 is provided at the most upstream portion of the intake pipe 11, and an air flow meter 13 for detecting the intake air amount is provided downstream of the air cleaner 12. A throttle valve 14 whose opening is adjusted by an actuator such as a DC motor and a throttle opening sensor 15 for detecting the throttle opening are provided on the downstream side of the air flow meter 13. A surge tank 16 is provided downstream of the throttle valve 14, and an intake pipe pressure sensor 17 for detecting the intake pipe pressure is provided in the surge tank 16. The surge tank 16 is connected to an intake manifold 18 that introduces air into each cylinder of the engine 10. In the intake manifold 18, an electromagnetically driven fuel injection that injects fuel near the intake port of each cylinder. A valve 19 is attached. That is, port injection is performed by the fuel injection valve 19.

エンジン10の吸気ポート及び排気ポートにはそれぞれ吸気バルブ21及び排気バルブ22が設けられており、吸気バルブ21の開動作により空気と燃料との混合気が燃焼室23内に導入され、排気バルブ22の開動作により燃焼後の排気ガスが排気管24に排出される。吸気バルブ21及び排気バルブ22にはそれぞれ可変動弁機構25,26が設けられている。これら可変動弁機構25,26は、各バルブ21,22の開閉時期やバルブオーバーラップ量等のバルブ開閉動作条件を連続的に可変とすることができる構造を有し、その時々のエンジン運転状態や運転者の要求等に応じてバルブ開閉動作条件が適宜調整されるようになっている。   An intake valve 21 and an exhaust valve 22 are respectively provided in the intake port and the exhaust port of the engine 10, and an air / fuel mixture is introduced into the combustion chamber 23 by the opening operation of the intake valve 21, and the exhaust valve 22. The exhaust gas after combustion is discharged into the exhaust pipe 24 by the opening operation. The intake valve 21 and the exhaust valve 22 are provided with variable valve mechanisms 25 and 26, respectively. These variable valve mechanisms 25 and 26 have a structure in which valve opening / closing operation conditions such as opening / closing timings and valve overlap amounts of the valves 21 and 22 can be continuously changed, and the engine operating state at each time The valve opening / closing operation conditions are appropriately adjusted according to the driver's request or the like.

エンジン10のシリンダヘッドには、吸気側カム角センサ27と排気側カム角センサ28とが取り付けられている。吸気側カム角センサ27は、吸気バルブ21の開閉時期等を算出するために可変動弁機構25に備えられる吸気側カム角を検出する。排気側カム角センサ28は、排気バルブ22の開閉時期等を算出するために可変動弁機構26に備えられる排気側カム角を検出するものである。検出されたこれら吸気側及び排気側カム角から、両バルブ21,22のバルブオーバーラップ量も算出される。   An intake side cam angle sensor 27 and an exhaust side cam angle sensor 28 are attached to the cylinder head of the engine 10. The intake side cam angle sensor 27 detects the intake side cam angle provided in the variable valve mechanism 25 in order to calculate the opening / closing timing of the intake valve 21 and the like. The exhaust side cam angle sensor 28 detects an exhaust side cam angle provided in the variable valve mechanism 26 in order to calculate the opening / closing timing of the exhaust valve 22 and the like. The valve overlap amounts of both valves 21 and 22 are also calculated from the detected intake side and exhaust side cam angles.

また、エンジン10のシリンダヘッドには気筒毎に点火プラグ29が取り付けられており、点火プラグ29には、点火コイル等よりなる点火装置30及びECU40により、所望とする点火時期において高電圧が印加される。この高電圧の印加により、各点火プラグ29の対向電極間に火花放電が発生し、燃焼室23内に導入した混合気が着火され燃焼に供される。排気ガスが排出される排気管24には、排気ガス中のCO,HC,NOx等を浄化するための三元触媒等の触媒31が設けられ、この触媒31の上流側には排気ガスを検出対象として混合気の空燃比を検出するための空燃比センサ32が設けられている。   An ignition plug 29 is attached to the cylinder head of the engine 10 for each cylinder, and a high voltage is applied to the ignition plug 29 at a desired ignition timing by an ignition device 30 including an ignition coil and the ECU 40. The By applying this high voltage, a spark discharge is generated between the opposing electrodes of each spark plug 29, and the air-fuel mixture introduced into the combustion chamber 23 is ignited and used for combustion. The exhaust pipe 24 from which the exhaust gas is discharged is provided with a catalyst 31 such as a three-way catalyst for purifying CO, HC, NOx, etc. in the exhaust gas, and the exhaust gas is detected upstream of the catalyst 31. An air-fuel ratio sensor 32 for detecting the air-fuel ratio of the air-fuel mixture is provided as a target.

エンジン10のシリンダブロックには、エンジン10内を主に循環する冷却水の温度(冷却水温)を検出する冷却水温センサ33や、クランク位置(回転角)及びエンジン回転数等を検出するために所定クランク角毎に(例えば30°CA周期で)矩形状となるクランク角信号を出力するクランク角度センサ34が取り付けられている。   The cylinder block of the engine 10 has a cooling water temperature sensor 33 that detects the temperature (cooling water temperature) of the cooling water that circulates mainly in the engine 10, a predetermined position for detecting the crank position (rotation angle), the engine speed, and the like. A crank angle sensor 34 that outputs a rectangular crank angle signal for each crank angle (for example, at a cycle of 30 ° CA) is attached.

ECU40は、周知の通りCPU、ROM、RAM等よりなるマイクロコンピュータを主体として構成されている。ECU40には、上記した各種センサの他、吸入空気の温度(吸気温)を検出するための吸気温センサ35や大気圧力を検出するための大気圧センサ36からも検出信号が入力される。ECU40は、随時入力される各種の検出信号に基づいてその時々のエンジン運転状態や運転者の要求を把握し、それに応じた各種制御を制御プログラムに従って実行している。   As is well known, the ECU 40 is mainly composed of a microcomputer including a CPU, a ROM, a RAM, and the like. In addition to the various sensors described above, detection signals are also input to the ECU 40 from an intake air temperature sensor 35 for detecting intake air temperature (intake air temperature) and an atmospheric pressure sensor 36 for detecting atmospheric pressure. The ECU 40 grasps the engine operating state and the driver's request at that time based on various detection signals that are input as needed, and executes various controls according to the engine operating state according to the control program.

すなわち、ECU40は、吸気バルブ21及び排気バルブ22の開弁時期やバルブオーバーラップ量等のバルブ開閉動作条件が、その時々のエンジン運転状態や運転者の要求に対応するように可変動弁機構25,26を制御している。因みに、エンジン始動直後においては、ECU40は可変動弁機構25,26を非作動状態としており、このとき両バルブ21,22のバルブオーバーラップが生じていない状態となっている。エンジン始動時から所定時間経過すると、ECU40は可変動弁機構25,26の作動を開始する。これにより、排気バルブ22の開弁期間が遅角側に、吸気バルブ21の開弁期間が進角側にそれぞれシフトし、バルブオーバーラップが生じるようになっている。   That is, the ECU 40 controls the variable valve mechanism 25 so that the valve opening / closing operation conditions such as the valve opening timing and valve overlap amount of the intake valve 21 and the exhaust valve 22 correspond to the engine operating state and the driver's request at that time. , 26 are controlled. Incidentally, immediately after the engine is started, the ECU 40 is in the non-operating state of the variable valve mechanisms 25 and 26, and at this time, the valve overlap between the valves 21 and 22 is not generated. When a predetermined time has elapsed since the engine was started, the ECU 40 starts the operation of the variable valve mechanisms 25 and 26. As a result, the valve opening period of the exhaust valve 22 is shifted to the retard side, and the valve opening period of the intake valve 21 is shifted to the advance side, thereby causing valve overlap.

また、ECU40は、エンジン暖機時(エンジン始動時から暖機完了時までの期間)において、燃料噴射量の暖機増量補正を行っている。すなわち、ECU40は、各種検出信号から得られるエンジンパラメータから暖機増量ベース値Kwbaseを算出している。また、バルブオーバーラップ量を含み内部EGR率に影響を与えるパラメータと、内部EGR推定温度に影響を与えるパラメータとから推定筒内雰囲気温度(燃焼室23内の推定雰囲気温度)を算出し、この推定筒内雰囲気温度から温度補正係数ktempを算出している。そして、算出した暖機増量ベース値Kwbaseに温度補正係数ktempを掛けることにより暖機増量値Kwを算出し、この暖機増量値Kw分、燃料噴射量を増量補正している。   Further, the ECU 40 performs the warm-up increase correction of the fuel injection amount when the engine is warmed up (period from when the engine is started to when warm-up is completed). That is, the ECU 40 calculates the warm-up increase base value Kwbase from engine parameters obtained from various detection signals. Further, an estimated in-cylinder atmosphere temperature (estimated atmosphere temperature in the combustion chamber 23) is calculated from a parameter that includes the valve overlap amount and affects the internal EGR rate and a parameter that affects the estimated internal EGR temperature. The temperature correction coefficient ktemp is calculated from the in-cylinder ambient temperature. Then, the warm-up increase value Kw is calculated by multiplying the calculated warm-up increase base value Kwbase by the temperature correction coefficient ktemp, and the fuel injection amount is increased and corrected by this warm-up increase value Kw.

より詳しくは、ECU40は、上記の暖機増量値Kwを図3に示す演算ロジックにて算出しており、またその算出処理を図2に示す算出フローに沿って実施している。なお、ECU40は、この算出処理を所定時間毎に実施する。   More specifically, the ECU 40 calculates the warm-up increase value Kw by the arithmetic logic shown in FIG. 3, and performs the calculation process along the calculation flow shown in FIG. The ECU 40 performs this calculation process every predetermined time.

ステップS101では、エンジン10が暖機中、すなわちエンジン10の始動時からエンジン10の暖機完了条件を満たす期間中にあり、燃料噴射量の暖機増量補正を実施しているか否かを判定する。エンジン10の暖機が完了し、暖機増量補正を実施していないと判定すると、処理を終了する。これに対し、暖機増量補正の実施中(暖機増量補正を実施する期間中)であると判定すると、ステップS102に進む。   In step S101, it is determined whether or not the engine 10 is warming up, that is, during the period during which the engine 10 is warmed up from the start of the engine 10 and the warm-up increase correction of the fuel injection amount is being performed. . If it is determined that the warm-up of the engine 10 has been completed and the warm-up increase correction has not been performed, the process ends. In contrast, if it is determined that the warm-up increase correction is being performed (during the period during which the warm-up increase correction is being performed), the process proceeds to step S102.

ステップS102では、暖機増量ベース値Kwbaseを算出する。暖機増量ベース値Kwbaseを算出するにあたり、エンジン始動時の冷却水温及び現在の冷却水温を用い2次元マップを参照して得られた演算結果と、エンジン回転数及びエンジン負荷を用い2次元マップを参照して得られた演算結果とを乗算し、ベース値算出用演算値K1を算出する。また、気化燃料補正係数と、大気圧力を用い1次元マップを参照して得られた大気圧力補正係数と、吸気管圧力を用い1次元マップを参照して得られた吸気管圧力補正係数と、始動後燃焼回数及びエンジン始動時の冷却水温を用い2次元マップを参照して得られたシリンダ推定壁温とを乗算し、ベース値算出用演算値K2を算出する。そして、このベース値算出用演算値K2と前記ベース値算出用演算値K1とを加算し、暖機増量ベース値Kwbaseを算出する。   In step S102, a warm-up increase base value Kwbase is calculated. In calculating the warm-up increase base value Kwbase, the calculation result obtained by referring to the two-dimensional map using the cooling water temperature at the start of the engine and the current cooling water temperature, the engine speed and the engine load, and the two-dimensional map By multiplying the calculation result obtained by reference, a base value calculation calculation value K1 is calculated. A vaporized fuel correction coefficient; an atmospheric pressure correction coefficient obtained by referring to the one-dimensional map using the atmospheric pressure; an intake pipe pressure correction coefficient obtained by referring to the one-dimensional map using the intake pipe pressure; A base value calculation calculation value K2 is calculated by multiplying the estimated cylinder temperature obtained by referring to the two-dimensional map using the number of times of combustion after the start and the coolant temperature at the start of the engine. Then, the base value calculation calculation value K2 and the base value calculation calculation value K1 are added to calculate the warm-up increase base value Kwbase.

ステップS103では、バルブオーバーラップ量に基づいてバルブオーバーラップが発生しているか否かを判定する。バルブオーバーラップが生じていないと判定すれば、ステップS104に進み、暖機増量ベース値Kwbaseをそのまま暖機増量値Kwとして処理を終了する。   In step S103, it is determined whether valve overlap has occurred based on the valve overlap amount. If it is determined that the valve overlap has not occurred, the process proceeds to step S104, where the warm-up increase base value Kwbase is used as it is as the warm-up increase value Kw, and the process ends.

一方、前記ステップS103においてバルブオーバーラップが生じていると判定すれば、ステップS105に進み、温度補正係数ktempを算出する。温度補正係数ktempを算出するにあたり、先ず、バルブオーバーラップ量と吸入空気量とを用い2次元マップを参照して得られた内部EGR率と、点火時期と空燃比(A/F)とを用い2次元マップを参照して得られた内部EGR推定温度と、吸気温度とを用いて推定筒内雰囲気温度を計算する。なおこの場合、内部EGR率に代えて内部EGR量を算出し、この内部EGR量を用い推定筒内雰囲気温度を計算しても良い。   On the other hand, if it is determined in step S103 that a valve overlap has occurred, the process proceeds to step S105, where a temperature correction coefficient ktemp is calculated. In calculating the temperature correction coefficient ktemp, first, the internal EGR rate obtained by referring to the two-dimensional map using the valve overlap amount and the intake air amount, the ignition timing, and the air-fuel ratio (A / F) are used. The estimated in-cylinder atmosphere temperature is calculated using the estimated internal EGR temperature obtained by referring to the two-dimensional map and the intake air temperature. In this case, the internal EGR amount may be calculated instead of the internal EGR rate, and the estimated in-cylinder atmosphere temperature may be calculated using the internal EGR amount.

ここで、バルブオーバーラップが生じると内部EGRが生じ、筒内(燃焼室23内)に高温の既燃ガス(EGRガス)が残留する。またバルブオーバーラップ量の増加は、筒内の内部EGR率(燃焼室23内でEGRガスの占める割合)の増加を促進させ、この内部EGR率の増加は、筒内雰囲気温度の上昇を促進させる。従って、推定筒内雰囲気温度の算出にはバルブオーバーラップ量が重要な要素の一つとなっているため、このバルブオーバーラップ量を、推定筒内雰囲気温度を算出するパラメータの一つとしている。
そして、こうして算出した推定筒内雰囲気温度を用い、図4から温度補正係数ktempを求めている。
Here, when valve overlap occurs, internal EGR occurs, and high-temperature burned gas (EGR gas) remains in the cylinder (inside the combustion chamber 23). Further, the increase in the valve overlap amount promotes an increase in the internal EGR rate in the cylinder (the ratio of the EGR gas in the combustion chamber 23), and this increase in the internal EGR rate promotes an increase in the in-cylinder ambient temperature. . Accordingly, since the valve overlap amount is one of the important factors for calculating the estimated in-cylinder atmosphere temperature, this valve overlap amount is set as one of the parameters for calculating the estimated in-cylinder atmosphere temperature.
And the temperature correction coefficient ktemp is calculated | required from FIG. 4 using the estimated in-cylinder atmosphere temperature calculated in this way.

図4には、推定筒内雰囲気温度と温度補正係数ktempとの関係が示されている。推定筒内雰囲気温度が正常範囲の最大値の所定温度Tlimit となるまでは、推定筒内雰囲気温度の上昇に応じて温度補正係数ktempが「1」から次第に小とされる。これは、エンジン10の暖機が進んでくるに従って筒内雰囲気温度が上昇し、筒内や吸気ポートに付着している燃料ウェットの気化量が増加して、この気化分で筒内の燃焼可能な燃料が補填されることを考慮しているためである。なお、筒内のEGRガスの過度の増加や点火時期が過遅角化されることにより筒内雰囲気温度が所定温度Tlimit を超える異常範囲においては、筒内雰囲気温度が上昇するほど燃焼が不安定になる。従って、算出した推定筒内雰囲気温度が所定温度Tlimit を超える場合には、推定筒内雰囲気温度の上昇に応じて温度補正係数ktempが次第に大とされ、やがて「1」よりも大とされる。   FIG. 4 shows the relationship between the estimated in-cylinder atmosphere temperature and the temperature correction coefficient ktemp. Until the estimated in-cylinder atmosphere temperature reaches a predetermined temperature Tlimit which is the maximum value in the normal range, the temperature correction coefficient ktemp is gradually decreased from “1” as the estimated in-cylinder atmosphere temperature increases. This is because the in-cylinder ambient temperature rises as the warm-up of the engine 10 progresses, and the amount of vaporization of fuel wet adhering to the inside of the cylinder and the intake port increases. This is because it is considered that additional fuel is supplied. In an abnormal range where the in-cylinder ambient temperature exceeds the predetermined temperature Tlimit due to excessive increase in the EGR gas in the cylinder and the ignition timing being over-retarded, combustion becomes unstable as the in-cylinder atmosphere temperature increases. become. Therefore, when the calculated estimated in-cylinder atmosphere temperature exceeds the predetermined temperature Tlimit, the temperature correction coefficient ktemp is gradually increased as the estimated in-cylinder atmosphere temperature rises, and eventually becomes greater than “1”.

そして、温度補正係数ktempの算出に基づいてステップS106に進み、該ステップS106では、暖機増量ベース値Kwbaseに対してこの温度補正係数ktempを乗じて暖機増量値Kwを算出し、処理を終了する。   Then, the process proceeds to step S106 based on the calculation of the temperature correction coefficient ktemp. In step S106, the warm-up increase value Kw is calculated by multiplying the warm-up increase base value Kwbase by the temperature correction coefficient ktemp, and the process ends. To do.

このようにECU40は、図5に示すように、エンジン暖機時においてバルブオーバーラップが生じていない期間では暖機増量ベース値Kwbaseをそのままの暖機増量値Kwとし、バルブオーバーラップが生じている期間では暖機増量ベース値Kwbaseに温度補正係数ktempを乗じた暖機増量値Kwとし、この暖機増量値Kwに基づいて燃料噴射量の暖機増量補正を行っている。   In this way, as shown in FIG. 5, the ECU 40 sets the warm-up increase base value Kwbase to the warm-up increase value Kw as it is during the period when the valve overlap does not occur during engine warm-up, and the valve overlap occurs. During the period, the warm-up increase value Kw is obtained by multiplying the warm-up increase base value Kwbase by the temperature correction coefficient ktemp, and the warm-up increase correction of the fuel injection amount is performed based on the warm-up increase value Kw.

これにより、エンジン暖機時においてバルブオーバーラップが生じ始め、そのバルブオーバーラップ量が増加すると、筒内の内部EGR率の増加が促進され、この内部EGR率の増加が筒内雰囲気温度の上昇を促進させる。そのため、筒内雰囲気温度の上昇度が大きくなると、筒内や吸気ポートに付着している燃料ウェットの気化量が増加する。これに対応するように、筒内雰囲気温度の上昇(内部EGR量の増加)を促進させるバルブオーバーラップが生じると、その筒内雰囲気温度の上昇に応じて「1」より小さくされる温度補正係数ktempが暖機増量ベース値Kwbaseに乗じられるので、これによる暖機増量値Kwの減少分と燃料ウェットの気化増加分とが相殺され、筒内の燃焼可能な燃料が余剰となってリッチ状態となることが防止される。その結果、空燃比の制御精度を向上でき、排気エミッションが良好となる。   As a result, when the engine warms up, valve overlap begins to occur, and when the valve overlap amount increases, the increase in the internal EGR rate in the cylinder is promoted, and this increase in the internal EGR rate increases the in-cylinder ambient temperature. Promote. Therefore, when the increase in the in-cylinder ambient temperature increases, the amount of vaporization of the fuel wet adhering to the in-cylinder or the intake port increases. Correspondingly, when a valve overlap that promotes an increase in the in-cylinder atmosphere temperature (increase in the internal EGR amount) occurs, a temperature correction coefficient that is made smaller than “1” in accordance with the increase in the in-cylinder atmosphere temperature. Since ktemp is multiplied by the warm-up increase base value Kwbase, the decrease in the warm-up increase value Kw and the increase in vaporization of the fuel wet are offset, and the in-cylinder combustible fuel becomes surplus and becomes rich. Is prevented. As a result, the control accuracy of the air-fuel ratio can be improved, and the exhaust emission is improved.

以上詳述した本実施の形態によれば、以下の優れた効果が得られる。   According to the embodiment described above in detail, the following excellent effects can be obtained.

本実施の形態では、ECU40は、暖機増量値Kwを算出するための暖機増量ベース値Kwbaseを算出し、検出したバルブオーバーラップ量を用い推定筒内雰囲気温度を算出し、算出した推定筒内雰囲気温度に基づいて暖機増量値Kwの温度補正係数ktempを算出し、暖機増量ベース値Kwbaseに温度補正係数ktempを反映させて暖機増量値Kwを算出し、算出した暖機増量値Kwに基づいて燃料噴射量の暖機増量補正を実施している。すなわち、本実施の形態のように可変動弁機構25,26を備えたエンジン10では、バルブオーバーラップが生じることにより内部EGRが生じ、筒内(燃焼室23内)に高温の既燃ガス(EGRガス)が残留する。またバルブオーバーラップ量の増加は、筒内の内部EGR率の増加を促進させ、この内部EGR率の増加は、筒内雰囲気温度の上昇を促進させる。これにより、燃料ウェットの気化が促進され、燃焼に寄与できる燃料が増加する。そのため、バルブオーバーラップによる筒内雰囲気温度の上昇に基づいた燃料ウェットの気化増加分を予め暖機増量値Kwから除いて互いが相殺するようにすれば、筒内の燃焼可能な燃料が余剰となってリッチ状態となることを防止することができる。その結果、空燃比の制御精度を向上することができ、排気エミッションを良好とすることができる。   In the present embodiment, the ECU 40 calculates the warm-up increase base value Kwbase for calculating the warm-up increase value Kw, calculates the estimated in-cylinder atmosphere temperature using the detected valve overlap amount, and calculates the estimated cylinder Calculate the temperature correction coefficient ktemp of the warm-up increase value Kw based on the internal ambient temperature, calculate the warm-up increase value Kw by reflecting the temperature correction coefficient ktemp in the warm-up increase base value Kwbase, and calculate the calculated warm-up increase value The warm-up increase correction of the fuel injection amount is performed based on Kw. That is, in the engine 10 provided with the variable valve mechanisms 25 and 26 as in the present embodiment, internal EGR occurs due to valve overlap, and high temperature burned gas (inside the combustion chamber 23) ( EGR gas) remains. An increase in the valve overlap amount promotes an increase in the internal EGR rate in the cylinder, and an increase in the internal EGR rate promotes an increase in the in-cylinder atmosphere temperature. Thereby, vaporization of fuel wet is promoted, and the fuel that can contribute to combustion increases. For this reason, if the increase in fuel wet vaporization based on the increase in the in-cylinder ambient temperature due to the valve overlap is removed in advance from the warm-up increase value Kw, the fuel that can be combusted in the cylinder will be surplus. Thus, the rich state can be prevented. As a result, the control accuracy of the air-fuel ratio can be improved, and the exhaust emission can be improved.

また本実施の形態では、ECU40は、バルブオーバーラップ量及び吸入空気量を用い内部EGR率を算出し、その内部EGR率を用い推定筒内雰囲気温度を算出している。すなわち、上記のようにバルブオーバーラップ量の増加は、筒内の内部EGR率の増加を促進させ筒内雰囲気温度の上昇を促進させるため、このバルブオーバーラップ量と、内部EGR率を算出するのに重要な要素である吸入空気量とを用いることで、精度の高い推定筒内雰囲気温度を検出することができる。そのため、空燃比の制御精度をより確実に向上することができる。   In the present embodiment, the ECU 40 calculates the internal EGR rate using the valve overlap amount and the intake air amount, and calculates the estimated in-cylinder atmosphere temperature using the internal EGR rate. That is, as described above, an increase in the valve overlap amount promotes an increase in the internal EGR rate in the cylinder and promotes an increase in the in-cylinder ambient temperature. Therefore, the valve overlap amount and the internal EGR rate are calculated. The estimated in-cylinder atmosphere temperature can be detected with high accuracy by using the intake air amount, which is an important factor for. Therefore, the control accuracy of the air-fuel ratio can be improved more reliably.

また本実施の形態では、ECU40は、内部EGR率と、点火時期及び空燃比を用い算出される内部EGR推定温度と、吸気温度と、を用い推定筒内雰囲気温度を算出している。すなわち、推定筒内雰囲気温度を算出するのに重要な要素である内部EGR率と内部EGR推定温度と吸気温度とに基づいて該筒内雰囲気温度が算出されるので、これによって更に精度の高い推定筒内雰囲気温度を検出することができ、空燃比の制御精度をより確実に向上することができる。   In the present embodiment, the ECU 40 calculates the estimated in-cylinder atmosphere temperature using the internal EGR rate, the estimated internal EGR temperature calculated using the ignition timing and the air-fuel ratio, and the intake air temperature. That is, the in-cylinder atmosphere temperature is calculated based on the internal EGR rate, the internal EGR estimated temperature, and the intake air temperature, which are important factors for calculating the estimated in-cylinder atmosphere temperature. The in-cylinder atmosphere temperature can be detected, and the control accuracy of the air-fuel ratio can be improved more reliably.

また本実施の形態では、ECU40は、筒内雰囲気温度が所定温度Tlimit となるまでの正常範囲では、推定筒内雰囲気温度の上昇に応じて暖機増量値Kwが減少するような温度補正係数ktempを算出する。この筒内雰囲気温度の正常範囲では、エンジン10の暖機が進んでくるに従って筒内雰囲気温度が上昇し、筒内や吸気ポートに付着している燃料ウェットの気化量が増加し、この気化分で筒内の燃焼可能な燃料が補填されるため、暖機増量値Kwを減少させることで、空燃比の制御精度をより確実に向上することができる。   Further, in the present embodiment, the ECU 40 corrects the temperature correction coefficient ktemp so that the warm-up increase value Kw decreases as the estimated in-cylinder atmosphere temperature increases in the normal range until the in-cylinder atmosphere temperature reaches the predetermined temperature Tlimit. Is calculated. In the normal range of the in-cylinder ambient temperature, the in-cylinder ambient temperature rises as the engine 10 warms up, and the amount of vaporized fuel wet adhering to the in-cylinder and the intake port increases. Thus, the combustible fuel in the cylinder is supplemented, so that the control accuracy of the air-fuel ratio can be improved more reliably by reducing the warm-up increase value Kw.

また本実施の形態では、ECU40は、筒内雰囲気温度が所定温度Tlimit を超える異常範囲では、ECU40は、推定筒内雰囲気温度の上昇に応じて所定温度の暖機増量値Kwから該暖機増量値Kwが増加するような温度補正係数ktempを算出する。この筒内雰囲気温度の異常範囲では、筒内雰囲気温度が上昇するほど燃焼が不安定になるため、暖機増量値Kwを増加させることで、燃焼を安定化させることができる。   In the present embodiment, the ECU 40 determines that the warm-up increase amount from the warm-up increase value Kw at the predetermined temperature according to the increase in the estimated in-cylinder atmosphere temperature in the abnormal range where the in-cylinder ambient temperature exceeds the predetermined temperature Tlimit. A temperature correction coefficient ktemp is calculated such that the value Kw increases. In this abnormal range of the in-cylinder atmosphere temperature, the combustion becomes unstable as the in-cylinder atmosphere temperature increases. Therefore, the combustion can be stabilized by increasing the warm-up increase value Kw.

なお、本発明は上記実施の形態の記載内容に限定されず、例えば次のように実施しても良い。   In addition, this invention is not limited to the content of description of the said embodiment, For example, you may implement as follows.

上記実施の形態では、暖機増量値Kwを図3に示す演算ロジックにて算出したが、暖機増量値Kwの算出はこれに限定されるものではなく、適宜変更しても良い。例えば、暖機増量ベース値Kwbaseや推定筒内雰囲気温度を算出するパラメータの変更や、その組み合わせ等を適宜変更しても良い。この場合、加算乗算以外に加え、減算除算を用いて算出するようにしても良い。また、バルブオーバーラップ量から内部EGR率(又は量)を算出し、この内部EGR率(又は量)と内部EGR推定温度と吸気温度とに基づいて推定筒内雰囲気温度を算出したが、バルブオーバーラップ量から直接的に推定筒内雰囲気温度を算出するようにしても良い。   In the above embodiment, the warm-up increase value Kw is calculated by the arithmetic logic shown in FIG. 3, but the calculation of the warm-up increase value Kw is not limited to this and may be changed as appropriate. For example, the parameter for calculating the warm-up increase base value Kwbase or the estimated in-cylinder atmosphere temperature, the combination thereof, or the like may be changed as appropriate. In this case, in addition to addition multiplication, subtraction division may be used for calculation. Also, the internal EGR rate (or amount) was calculated from the valve overlap amount, and the estimated in-cylinder atmosphere temperature was calculated based on this internal EGR rate (or amount), the internal EGR estimated temperature, and the intake air temperature. The estimated in-cylinder atmosphere temperature may be calculated directly from the lap amount.

上記実施の形態では、温度補正係数ktempを図4に示す推定筒内雰囲気温度との関係から求めたが、図4に示す推定筒内雰囲気温度と温度補正係数ktempとの関係はこれに限定されるものではなく、適宜変更しても良い。   In the above embodiment, the temperature correction coefficient ktemp is obtained from the relationship between the estimated in-cylinder atmosphere temperature shown in FIG. 4, but the relationship between the estimated in-cylinder atmosphere temperature and the temperature correction coefficient ktemp shown in FIG. 4 is limited to this. It may be changed as appropriate.

発明の実施の形態におけるエンジン制御システムの概略を示す構成図である。It is a block diagram which shows the outline of the engine control system in embodiment of invention. 暖機増量補正時に用いる暖機増量値を算出するためのフロー図である。It is a flowchart for calculating the warm-up increase value used at the time of warm-up increase correction. 暖機増量値を算出するための演算ロジックを示す機能ブロック図である。It is a functional block diagram which shows the arithmetic logic for calculating a warm-up increase value. 筒内雰囲気温度と温度補正係数との関係を示す図である。It is a figure which shows the relationship between cylinder atmospheric temperature and a temperature correction coefficient. 暖機完了時までの暖機増量値の変化を示す図である。It is a figure which shows the change of the warming-up increase value until the time of warming-up completion.

符号の説明Explanation of symbols

10…エンジン、21…吸気バルブ、22…排気バルブ、25,26…可変動弁機構、40…ECU(ベース値算出手段、オーバーラップ量検出手段、筒内温度推定手段、温度補正項算出手段、暖機増量値算出手段)、Kw…暖機増量値、Kwbase…暖機増量ベース値、ktemp…温度補正係数(温度補正項)、Tlimit …所定温度。   DESCRIPTION OF SYMBOLS 10 ... Engine, 21 ... Intake valve, 22 ... Exhaust valve, 25, 26 ... Variable valve mechanism, 40 ... ECU (base value calculation means, overlap amount detection means, in-cylinder temperature estimation means, temperature correction term calculation means, Warm-up increase value calculation means), Kw ... Warm-up increase value, Kwbase ... Warm-up increase base value, ktemp ... Temperature correction coefficient (temperature correction term), Tlimit ... Predetermined temperature.

Claims (5)

吸気バルブと排気バルブとのバルブオーバーラップ量を調整可能な可変動弁機構と、内燃機関の吸気ポート近傍に燃料を噴射供給する燃料噴射弁とを備えた内燃機関の暖機期間中において、その時々の暖機増量値を算出し、算出した暖機増量値に基づいて燃料噴射量の暖機増量補正を実施する内燃機関の制御装置であって、
前記暖機増量値を算出するための暖機増量ベース値を算出するベース値算出手段と、
前記バルブオーバーラップ量を検出するオーバーラップ量検出手段と、
検出した前記バルブオーバーラップ量を用い前記バルブオーバーラップ量が大きくなるほど推定筒内雰囲気温度が上昇するように算出する筒内温度推定手段と、
算出した前記推定筒内雰囲気温度に基づいて前記暖機増量値の温度補正項を算出する温度補正項算出手段と、
前記暖機増量ベース値に前記温度補正項を反映させて前記暖機増量値を算出する暖機増量値算出手段とを備えたことを特徴とする内燃機関の制御装置。
During the warm-up period of the internal combustion engine, which includes a variable valve mechanism that can adjust the valve overlap amount between the intake valve and the exhaust valve, and a fuel injection valve that injects fuel near the intake port of the internal combustion engine. A control device for an internal combustion engine that calculates a warm-up increase value from time to time and performs a warm-up increase correction of a fuel injection amount based on the calculated warm-up increase value,
Base value calculating means for calculating a warm-up increase base value for calculating the warm-up increase value;
An overlap amount detecting means for detecting the valve overlap amount;
In-cylinder temperature estimation means that calculates the estimated in-cylinder atmosphere temperature as the valve overlap amount increases using the detected valve overlap amount;
A temperature correction term calculation means for calculating a temperature correction term of the warm-up increase value based on the calculated estimated in-cylinder atmosphere temperature;
A control apparatus for an internal combustion engine, comprising: a warm-up increase value calculating means for calculating the warm-up increase value by reflecting the temperature correction term on the warm-up increase base value.
前記筒内温度推定手段は、前記バルブオーバーラップ量及び吸入空気量を用い内部EGR率又は内部EGR量を算出し、その内部EGR率又は内部EGR量を用い前記推定筒内雰囲気温度を算出することを特徴とする請求項1に記載の内燃機関の制御装置。     The in-cylinder temperature estimating means calculates an internal EGR rate or an internal EGR amount using the valve overlap amount and the intake air amount, and calculates the estimated in-cylinder ambient temperature using the internal EGR rate or the internal EGR amount. The control device for an internal combustion engine according to claim 1. 前記筒内温度推定手段は、前記内部EGR率又は内部EGR量と、点火時期及び空燃比を用いて算出される内部EGR推定温度と、吸気温度と、を用い前記推定筒内雰囲気温度を算出することを特徴とする請求項2に記載の内燃機関の制御装置。     The in-cylinder temperature estimating means calculates the estimated in-cylinder atmosphere temperature using the internal EGR rate or the internal EGR amount, the estimated internal EGR temperature calculated using the ignition timing and the air-fuel ratio, and the intake air temperature. The control apparatus for an internal combustion engine according to claim 2. 前記温度補正項算出手段は、前記推定筒内雰囲気温度が所定温度となるまでは、前記推定筒内雰囲気温度の上昇に応じて前記暖機増量値が減少するような前記温度補正項を算出することを特徴とする請求項1〜3のいずれかに記載の内燃機関の制御装置。     The temperature correction term calculation means calculates the temperature correction term such that the warm-up increase value decreases as the estimated in-cylinder atmosphere temperature increases until the estimated in-cylinder atmosphere temperature reaches a predetermined temperature. The control apparatus for an internal combustion engine according to any one of claims 1 to 3. 前記温度補正項算出手段は、前記推定筒内雰囲気温度が所定温度を超えると、前記推定筒内雰囲気温度の上昇に応じて前記所定温度の前記暖機増量値から該暖機増量値が増加するような前記温度補正項を算出することを特徴とする請求項4に記載の内燃機関の制御装置。     When the estimated in-cylinder ambient temperature exceeds a predetermined temperature, the temperature correction term calculating means increases the warm-up increase value from the warm-up increase value at the predetermined temperature in accordance with an increase in the estimated in-cylinder atmosphere temperature. 5. The control apparatus for an internal combustion engine according to claim 4, wherein the temperature correction term is calculated.
JP2004266357A 2004-09-14 2004-09-14 Control device for internal combustion engine Active JP4415803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004266357A JP4415803B2 (en) 2004-09-14 2004-09-14 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004266357A JP4415803B2 (en) 2004-09-14 2004-09-14 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2006083710A JP2006083710A (en) 2006-03-30
JP4415803B2 true JP4415803B2 (en) 2010-02-17

Family

ID=36162439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004266357A Active JP4415803B2 (en) 2004-09-14 2004-09-14 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4415803B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5321559B2 (en) * 2010-09-30 2013-10-23 日産自動車株式会社 Fuel injection control device for internal combustion engine
JP5930126B2 (en) * 2013-05-22 2016-06-08 日産自動車株式会社 Control device and control method for internal combustion engine

Also Published As

Publication number Publication date
JP2006083710A (en) 2006-03-30

Similar Documents

Publication Publication Date Title
JP4158328B2 (en) Fuel injection control device for in-cylinder internal combustion engine
JP4470773B2 (en) Control device for internal combustion engine
US9133811B2 (en) Method and apparatus for controlling start-up of internal combustion engine
US9708986B2 (en) Method and apparatus for controlling start-up of internal combustion engine
US20100043749A1 (en) Ignition control system for internal combustion engines
JP2006291877A (en) Control device for internal combustion engine
WO2012086059A1 (en) Apparatus for controlling internal combustion engine
JP3799898B2 (en) In-cylinder injection engine control device
JP2008208784A (en) Control system for internal combustion engine
JP3931820B2 (en) Internal combustion engine and control method for internal combustion engine
JP3541523B2 (en) Engine control device
US20120222407A1 (en) Catalyst warming-up controller for internal combustion engine
JP2002227706A (en) Control device for cylinder injection type internal combustion engine
JP4378829B2 (en) Control device for internal combustion engine
JP4346118B2 (en) Catalyst temperature control device for internal combustion engine
JP4254021B2 (en) Catalyst early warm-up control device for in-cylinder internal combustion engine
JP4000926B2 (en) Control device and control method for direct-injection spark ignition engine
JP4348705B2 (en) Fuel injection control device for internal combustion engine
JP2008151038A (en) Control system for internal combustion engine
JP4415803B2 (en) Control device for internal combustion engine
JP4379670B2 (en) Fuel property determination device for internal combustion engine
JP2002130024A (en) Controller for direct injection spark ignition type internal combustion engine
JP4100806B2 (en) In-cylinder injection internal combustion engine control device
US20140261300A1 (en) Fuel injection control apparatus for internal combustion engine
JP4788632B2 (en) Internal combustion engine control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090827

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R151 Written notification of patent or utility model registration

Ref document number: 4415803

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250