JP2008064077A - Control device of internal combustion engine - Google Patents

Control device of internal combustion engine Download PDF

Info

Publication number
JP2008064077A
JP2008064077A JP2006246006A JP2006246006A JP2008064077A JP 2008064077 A JP2008064077 A JP 2008064077A JP 2006246006 A JP2006246006 A JP 2006246006A JP 2006246006 A JP2006246006 A JP 2006246006A JP 2008064077 A JP2008064077 A JP 2008064077A
Authority
JP
Japan
Prior art keywords
cylinder
air
fuel ratio
operation control
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006246006A
Other languages
Japanese (ja)
Other versions
JP4831336B2 (en
Inventor
Takenori Sakamoto
雄紀 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006246006A priority Critical patent/JP4831336B2/en
Priority to US11/819,657 priority patent/US7707822B2/en
Publication of JP2008064077A publication Critical patent/JP2008064077A/en
Application granted granted Critical
Publication of JP4831336B2 publication Critical patent/JP4831336B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a catalyst from becoming an overheat state by the occurrence of an abnormal cylinder of largely fluctuating the air-fuel ratio in the lean direction, in a system for controlling the air-fuel ratio of respective cylinders, based on output of an air-fuel ratio sensor arranged in an exhaust confluent part of an internal combustion engine. <P>SOLUTION: The existence of a lean abnormal cylinder of largely fluctuating the air-fuel ratio in the lean direction, is determined based on the air-fuel ratio of the respective cylinders estimated based on the output of the air-fuel ratio sensor 37. When determining that there is the lean abnormal cylinder, reaction heat such as the catalyst 38 becomes the overheat state (a state of being damaged by heat), is not generated by limiting an exhaust gas quantity (an oxygen quantity) flowing in the catalyst 38 by performing limiting operation control for limiting engine output. Thus, even when the air-fuel ratio of exhaust gas flowing in the catalyst 38 is deviated in the lean direction by the occurrence of the lean abnormal cylinder, the catalyst 38 can be prevented from becoming the overheat state. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、空燃比センサの出力に基づいて各気筒の空燃比(気筒別空燃比)を推定又は計測する機能を備えた内燃機関の制御装置に関する発明である。   The present invention relates to an internal combustion engine control device having a function of estimating or measuring the air-fuel ratio of each cylinder (air-fuel ratio for each cylinder) based on the output of an air-fuel ratio sensor.

近年、特許文献1(特開2005−207405号公報)に記載されているように、複数の気筒の排出ガスが合流する排気合流部に設置した1つの空燃比センサの出力に基づいて複数の気筒の空燃比を気筒毎に推定すると共に、気筒毎に空燃比の気筒間ばらつきを補正するための各気筒の空燃比補正量(気筒別空燃比補正量)を算出して、この気筒別空燃比補正量に基づいて複数の気筒の空燃比(燃料噴射量)を気筒毎に制御する気筒別空燃比制御を実施するようにしたものがある。
特開2005−207405号公報
In recent years, as described in Patent Document 1 (Japanese Patent Application Laid-Open No. 2005-207405), a plurality of cylinders based on the output of one air-fuel ratio sensor installed at an exhaust merging portion where exhaust gases from a plurality of cylinders merge. The air-fuel ratio of each cylinder is estimated for each cylinder, and the air-fuel ratio correction amount (cylinder-by-cylinder correction amount) for each cylinder for correcting the variation in the air-fuel ratio for each cylinder is calculated. There is one that performs cylinder-by-cylinder air-fuel ratio control for controlling the air-fuel ratio (fuel injection amount) of a plurality of cylinders for each cylinder based on the correction amount.
JP 2005-207405 A

ところで、上述した気筒別空燃比制御システムでは、いずれかの気筒で燃料噴射弁の故障等によって空燃比制御が困難になると、その空燃比制御が困難な異常気筒の空燃比がリーン方向に大きくばらついてしまうことがあり、その結果、触媒に流入する排出ガス(つまり異常気筒の排出ガスと正常気筒の排出ガスが混合した排出ガス)の空燃比がリーン方向にずれることがある。もし、触媒に流入する排出ガスの空燃比がリーン方向にずれると、触媒に流入するリーン成分量(酸素量)が増加してHC、CO等のリッチ成分の酸化反応が促進され、その反応熱で触媒が過熱状態になって損傷してしまう可能性がある。   By the way, in the above-described cylinder-by-cylinder air-fuel ratio control system, when air-fuel ratio control becomes difficult due to a failure of a fuel injection valve or the like in any cylinder, the air-fuel ratio of the abnormal cylinder in which the air-fuel ratio control is difficult varies greatly in the lean direction. As a result, the air-fuel ratio of the exhaust gas flowing into the catalyst (that is, the exhaust gas in which the exhaust gas from the abnormal cylinder and the exhaust gas from the normal cylinder are mixed) may shift in the lean direction. If the air-fuel ratio of the exhaust gas flowing into the catalyst deviates in the lean direction, the lean component amount (oxygen amount) flowing into the catalyst increases and the oxidation reaction of rich components such as HC and CO is promoted, and the reaction heat The catalyst may overheat and be damaged.

本発明は、このような事情を考慮してなされたものであり、従って本発明の目的は、空燃比の異常な気筒の発生によって触媒が過熱状態になることを未然に防止することができる内燃機関の制御装置を提供することにある。   The present invention has been made in view of such circumstances, and the object of the present invention is therefore an internal combustion engine that can prevent the catalyst from becoming overheated due to the occurrence of an abnormal air-fuel ratio cylinder. It is to provide an engine control device.

上記目的を達成するために、請求項1に係る発明は、内燃機関の排出ガスの空燃比を検出する空燃比センサの出力に基づいて各気筒の空燃比(以下「気筒別空燃比」という)を推定又は計測する気筒別空燃比検出手段と、空燃比センサの下流側に設置した排出ガス浄化用の触媒とを備えた内燃機関の制御装置において、気筒別空燃比に基づいて空燃比の異常な気筒(以下「異常気筒」という)の有無を異常気筒判定手段により判定し、異常気筒有りと判定されたときに内燃機関の出力及び/又は回転速度を制限する制限運転制御を制限運転制御手段により実行するようにしたものである。   In order to achieve the above object, according to the first aspect of the present invention, the air-fuel ratio of each cylinder (hereinafter referred to as “cylinder-by-cylinder air-fuel ratio”) is based on the output of an air-fuel ratio sensor that detects the air-fuel ratio of the exhaust gas of the internal combustion engine. In a control apparatus for an internal combustion engine comprising a cylinder-by-cylinder air-fuel ratio detection means for estimating or measuring the air-fuel ratio, and an exhaust gas purification catalyst installed downstream of the air-fuel ratio sensor, an abnormality in the air-fuel ratio is determined based on the cylinder-by-cylinder air-fuel ratio. Limit operation control means for limiting the output and / or rotational speed of the internal combustion engine when it is determined that there is an abnormal cylinder by determining whether there is an abnormal cylinder (hereinafter referred to as "abnormal cylinder"). Is to be executed.

この構成では、異常気筒有りと判定されたときに内燃機関の出力や回転速度を制限する制限運転制御を実行するようにしたので、異常気筒の発生によって触媒に流入する排出ガスの空燃比がリーン方向(触媒に流入する酸素量が増加して酸化反応が促進される方向)にずれた場合でも、内燃機関の出力や回転速度を制限することで触媒に流入する排出ガス量(酸素量)を制限して、触媒が過熱状態(熱により損傷する状態)にならないように反応熱を抑制することができ、異常気筒の発生によって触媒が過熱状態になることを未然に防止することができる。   In this configuration, since the limited operation control is performed to limit the output and rotation speed of the internal combustion engine when it is determined that there is an abnormal cylinder, the air-fuel ratio of the exhaust gas flowing into the catalyst due to the occurrence of the abnormal cylinder is lean. Even when the direction (the direction in which the amount of oxygen flowing into the catalyst increases and the oxidation reaction is promoted) is shifted, the amount of exhaust gas flowing into the catalyst (oxygen amount) can be reduced by limiting the output and rotational speed of the internal combustion engine. By limiting, the reaction heat can be suppressed so that the catalyst does not enter an overheated state (a state damaged by heat), and the catalyst can be prevented from being overheated due to the occurrence of an abnormal cylinder.

この場合、請求項2のように、触媒が過熱状態になる可能性の有無を触媒過熱判定手段により判定し、異常気筒有りと判定され且つ触媒が過熱状態になる可能性有りと判定されたときに制限運転制御を実行するようにしても良い。このようにすれば、異常気筒有りと判定され且つ触媒が過熱状態(熱により損傷する状態)になる可能性有りと判定された場合には、制限運転制御を実行して触媒が過熱状態になることを確実に防止することができ、異常気筒有りと判定されても触媒が過熱状態になる可能性無しと判定された場合には、制限運転制御を実行しないようにして制限運転制御によるドライバビリティの低下を回避することができる。   In this case, as in claim 2, when the catalyst overheat determination means determines whether or not there is a possibility that the catalyst is overheated, and when it is determined that there is an abnormal cylinder and the catalyst is likely to be overheated Alternatively, the limited operation control may be executed. In this way, when it is determined that there is an abnormal cylinder and it is determined that there is a possibility that the catalyst will be in an overheated state (a state of being damaged by heat), the limited operation control is executed and the catalyst is in an overheated state. If it is determined that there is no possibility that the catalyst will be overheated even if it is determined that there is an abnormal cylinder, the limited operation control is not performed and the drivability by the limited operation control is determined. Can be avoided.

更に、請求項3のように、内燃機関の運転領域毎に異常気筒の有無を判定し、異常気筒有りと判定した運転領域で制限運転制御を実行するようにしても良い。このようにすれば、異常気筒有りと判定した運転領域では制限運転制御を実行して触媒が過熱状態になることを確実に防止しながら、それ以外の運転領域では制限運転制御を実行しないようにして制限運転制御によるドライバビリティの低下を回避することができる。   Further, as in claim 3, the presence or absence of an abnormal cylinder may be determined for each operation region of the internal combustion engine, and the limited operation control may be performed in the operation region determined to have an abnormal cylinder. In this way, the limited operation control is executed in the operation region determined to have an abnormal cylinder to reliably prevent the catalyst from being overheated, while the limited operation control is not executed in other operation regions. Thus, a decrease in drivability due to the limited operation control can be avoided.

また、制限運転制御の具体的な方法は、請求項4のように、スロットル開度を制御することで制限運転制御を実行するようにしても良い。例えば、内燃機関の出力や回転速度が所定値以上になったときに、スロットル開度を閉じ方向(吸入空気量の減少方向)に制御して内燃機関の出力や回転速度を低下させることで、内燃機関の出力や回転速度を所定値以下に制限することができる。   Further, as a specific method of the limited operation control, the limited operation control may be executed by controlling the throttle opening as in the fourth aspect. For example, when the output or rotational speed of the internal combustion engine becomes equal to or higher than a predetermined value, the throttle opening is controlled in the closing direction (increase direction of the intake air amount) to reduce the output or rotational speed of the internal combustion engine, The output and rotational speed of the internal combustion engine can be limited to a predetermined value or less.

更に、請求項5のように、燃料カット制御を実施することで制限運転制御を実行するようにしても良いし、請求項6のように、点火カット制御を実施することで制限運転制御を実行するようにしても良い。例えば、内燃機関の出力や回転速度が所定値以上になったときに、燃料カット制御や点火カット制御を実施して内燃機関の出力や回転速度を低下させることで、内燃機関の出力や回転速度を所定値以下に制限することができる。   Further, the limited operation control may be executed by executing the fuel cut control as in claim 5, or the limited operation control is executed by executing the ignition cut control as in claim 6. You may make it do. For example, when the output or rotational speed of the internal combustion engine exceeds a predetermined value, the output or rotational speed of the internal combustion engine is reduced by performing fuel cut control or ignition cut control to reduce the output or rotational speed of the internal combustion engine. Can be limited to a predetermined value or less.

また、請求項7のように、内燃機関の吸気バルブ及び/又は排気バルブの開閉特性を変化させる可変バルブ装置を備えたシステムの場合には、可変バルブ装置を制御することで制限運転制御を実行するようにしても良い。例えば、内燃機関の出力が所定値以上になったときに、可変バルブ装置で吸気バルブや排気バルブの開閉特性(開閉タイミング、リフト量、開弁期間等)を内燃機関の出力が低下する方向に変化させて内燃機関の出力を低下させることで、内燃機関の出力を所定値以下に制限することができる。   In the case of a system having a variable valve device that changes the opening / closing characteristics of the intake valve and / or the exhaust valve of the internal combustion engine as in claim 7, the limited operation control is executed by controlling the variable valve device. You may make it do. For example, when the output of the internal combustion engine exceeds a predetermined value, the opening / closing characteristics (opening / closing timing, lift amount, valve opening period, etc.) of the intake valve and exhaust valve are reduced in the variable valve device in a direction in which the output of the internal combustion engine decreases. By changing the output of the internal combustion engine to reduce the output, the output of the internal combustion engine can be limited to a predetermined value or less.

また、請求項8のように、変速装置の変速比を制御することで制限運転制御を実行するようにしても良い。例えば、内燃機関の回転速度が所定値以上になったときに、変速装置の変速比を内燃機関の回転速度が低下する方向に変化させて内燃機関の回転速度を低下させることで、内燃機関の回転速度を所定値以下に制限することができる。   Further, the limited operation control may be executed by controlling the gear ratio of the transmission as in the eighth aspect. For example, when the rotational speed of the internal combustion engine exceeds a predetermined value, the rotational speed of the internal combustion engine is decreased by changing the speed ratio of the transmission in a direction in which the rotational speed of the internal combustion engine is decreased. The rotation speed can be limited to a predetermined value or less.

以下、本発明を実施するための最良の形態を具体化した幾つかの実施例を説明する。   Several embodiments embodying the best mode for carrying out the present invention will be described below.

本発明の実施例1を図1乃至図3に基づいて説明する。
まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。
内燃機関である例えば直列4気筒のエンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、吸入空気量を検出するエアフローメータ14が設けられている。このエアフローメータ14の下流側には、モータ等によって開度調節されるスロットルバルブ15とスロットル開度を検出するスロットル開度センサ16とが設けられている。
A first embodiment of the present invention will be described with reference to FIGS.
First, a schematic configuration of the entire engine control system will be described with reference to FIG.
An air cleaner 13 is provided at the most upstream portion of the intake pipe 12 of an in-line four-cylinder engine 11 that is an internal combustion engine, for example, and an air flow meter 14 that detects the intake air amount is provided downstream of the air cleaner 13. . On the downstream side of the air flow meter 14, a throttle valve 15 whose opening is adjusted by a motor or the like and a throttle opening sensor 16 for detecting the throttle opening are provided.

更に、スロットルバルブ15の下流側には、サージタンク17が設けられ、このサージタンク17には、吸気管圧力を検出する吸気管圧力センサ18が設けられている。また、サージタンク17には、エンジン11の各気筒に空気を導入する吸気マニホールド19が設けられ、各気筒の吸気マニホールド19の吸気ポート近傍に、それぞれ燃料を噴射する燃料噴射弁20が取り付けられている。エンジン運転中は、燃料タンク21内の燃料が燃料ポンプ22によりデリバリパイプ23に送られ、各気筒の噴射タイミング毎に各気筒の燃料噴射弁20から燃料が噴射される。デリバリパイプ23には、燃料圧力(燃圧)を検出する燃圧センサ24が取り付けられている。   Further, a surge tank 17 is provided on the downstream side of the throttle valve 15, and an intake pipe pressure sensor 18 for detecting the intake pipe pressure is provided in the surge tank 17. The surge tank 17 is provided with an intake manifold 19 for introducing air into each cylinder of the engine 11, and a fuel injection valve 20 for injecting fuel is attached in the vicinity of the intake port of the intake manifold 19 of each cylinder. Yes. During engine operation, the fuel in the fuel tank 21 is sent to the delivery pipe 23 by the fuel pump 22 and fuel is injected from the fuel injection valve 20 of each cylinder at each injection timing of each cylinder. A fuel pressure sensor 24 that detects fuel pressure (fuel pressure) is attached to the delivery pipe 23.

また、エンジン11には、吸気バルブ25と排気バルブ26の開閉タイミングをそれぞれ可変する可変バルブタイミング機構27,28が設けられている。更に、エンジン11には、吸気カム軸29と排気カム軸30の回転に同期してカム角信号を出力する吸気カム角センサ31と排気カム角センサ32が設けられ、エンジン11のクランク軸の回転に同期して所定クランク角毎(例えば30℃A毎)にクランク角信号のパルスを出力するクランク角センサ33が設けられている。   Further, the engine 11 is provided with variable valve timing mechanisms 27 and 28 for changing the opening and closing timings of the intake valve 25 and the exhaust valve 26, respectively. Further, the engine 11 is provided with an intake cam angle sensor 31 and an exhaust cam angle sensor 32 that output a cam angle signal in synchronization with the rotation of the intake cam shaft 29 and the exhaust cam shaft 30, and the rotation of the crank shaft of the engine 11. Is provided with a crank angle sensor 33 for outputting a pulse of a crank angle signal at every predetermined crank angle (for example, every 30 ° C. A).

一方、エンジン11の各気筒の排気マニホールド35が合流する排気合流部36には、排出ガスの空燃比を検出する空燃比センサ37が設置され、この空燃比センサ37の下流側に排出ガス中のCO,HC,NOx等を浄化する三元触媒等の触媒38が設けられている。   On the other hand, an air-fuel ratio sensor 37 for detecting the air-fuel ratio of the exhaust gas is installed in the exhaust gas converging portion 36 where the exhaust manifold 35 of each cylinder of the engine 11 joins. A catalyst 38 such as a three-way catalyst for purifying CO, HC, NOx and the like is provided.

上記空燃比センサ37等の各種センサの出力は、エンジン制御回路(以下「ECU」と表記する)40に入力される。このECU40は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御プログラムを実行することで、エンジン運転状態に応じて各気筒の燃料噴射弁20の燃料噴射量や点火時期を制御する。   Outputs of various sensors such as the air-fuel ratio sensor 37 are input to an engine control circuit (hereinafter referred to as “ECU”) 40. The ECU 40 is mainly composed of a microcomputer, and executes various engine control programs stored in a built-in ROM (storage medium), so that the fuel of the fuel injection valve 20 of each cylinder according to the engine operating state. Control injection quantity and ignition timing.

本実施例1では、ECU40は、図2の気筒別空燃比制御ルーチンを実行することで、エンジン運転中に後述する気筒別空燃比推定モデルを用いて空燃比センサ37の検出値(排気合流部36を流れる排出ガスの実空燃比)に基づいて各気筒の空燃比(気筒別空燃比)を推定し、全気筒の推定空燃比の平均値を算出して、その平均値を基準空燃比(全気筒の目標空燃比)に設定すると共に、各気筒の推定空燃比(気筒別推定空燃比)と基準空燃比との偏差を各気筒毎に算出して、その偏差が小さくなるように各気筒の燃料噴射量に対する燃料補正係数(気筒別空燃比補正量)を算出すると共に、この気筒別空燃比補正量をなまし処理等により学習して、気筒別空燃比補正量とその学習値に基づいて各気筒の燃料噴射量を補正することで、各気筒に供給する混合気の空燃比を各気筒毎に補正して気筒間の空燃比ばらつきを少なくするように制御する(以下、この制御を気筒別空燃比制御という)。この際、気筒別空燃比補正量をなまし処理等により学習して、その学習値をECU40のバックアップRAM等の書き換え可能な不揮発性メモリ(図示せず)に気筒毎に更新記憶する。尚、気筒別空燃比の推定が困難(気筒別空燃比補正量の算出が困難)となる運転条件では、気筒別空燃比補正量の学習値を用いて気筒別空燃比制御を実施するようにしても良い。   In the first embodiment, the ECU 40 executes the cylinder-by-cylinder air-fuel ratio control routine of FIG. 2 to detect the detected value (exhaust gas merging unit) of the air-fuel ratio sensor 37 using the cylinder-by-cylinder air-fuel ratio estimation model described later during engine operation. 36, the air-fuel ratio (cylinder-by-cylinder) of each cylinder is estimated based on the actual air-fuel ratio of the exhaust gas flowing through 36, the average value of the estimated air-fuel ratios of all cylinders is calculated, and the average value is used as the reference air-fuel ratio ( The target air-fuel ratio of all the cylinders is set, and the deviation between the estimated air-fuel ratio of each cylinder (the estimated air-fuel ratio for each cylinder) and the reference air-fuel ratio is calculated for each cylinder so that the deviation is reduced. A fuel correction coefficient (cylinder-by-cylinder air-fuel ratio correction amount) is calculated for each of the fuel injection amounts, and the cylinder-by-cylinder air-fuel ratio correction amount is learned by a smoothing process or the like. By correcting the fuel injection amount for each cylinder, Correcting the air-fuel ratio of the mixture supplied to each cylinder to control so as to reduce the air-fuel ratio variation among the cylinders (hereinafter, this control that cylinder air-fuel ratio control). At this time, the cylinder-by-cylinder air-fuel ratio correction amount is learned by a smoothing process or the like, and the learned value is updated and stored for each cylinder in a rewritable nonvolatile memory (not shown) such as a backup RAM of the ECU 40. Note that, under operating conditions in which it is difficult to estimate the cylinder-by-cylinder air-fuel ratio (calculation of the cylinder-by-cylinder air-fuel ratio correction amount), the cylinder-by-cylinder air-fuel ratio control is performed using the learning value of the cylinder-by-cylinder air-fuel ratio correction amount. May be.

ここで、空燃比センサ37の検出値(排気合流部36を流れる排出ガスの実空燃比)に基づいて各気筒の空燃比を推定するモデル(以下「気筒別空燃比推定モデル」という)の具体例を説明する。   Here, a specific example of a model (hereinafter referred to as “cylinder-specific air-fuel ratio estimation model”) that estimates the air-fuel ratio of each cylinder based on the detection value of the air-fuel ratio sensor 37 (the actual air-fuel ratio of the exhaust gas flowing through the exhaust gas merging portion 36). An example will be described.

排気合流部36におけるガス交換に着目して、空燃比センサ37の検出値を、排気合流部36における各気筒の推定空燃比の履歴と空燃比センサ37の検出値の履歴とにそれぞれ所定の重みを乗じて加算したものとしてモデル化し、該モデルを用いて各気筒の空燃比を推定するようにしている。この際、オブザーバとしてはカルマンフィルタを用いる。   Paying attention to the gas exchange in the exhaust gas merging section 36, the detected value of the air-fuel ratio sensor 37 is given a predetermined weight to the estimated air-fuel ratio history of each cylinder and the detected value history of the air-fuel ratio sensor 37 in the exhaust gas merging section 36, respectively. The model is obtained by multiplying and adding, and the air-fuel ratio of each cylinder is estimated using the model. At this time, a Kalman filter is used as an observer.

より具体的には、排気合流部36におけるガス交換のモデルを次の(1)式にて近似する。
ys(t)=k1 ×u(t-1) +k2 ×u(t-2) −k3 ×ys(t-1)−k4 ×ys(t-2)
……(1)
ここで、ys は空燃比センサ37の検出値、uは排気合流部36に流入するガスの空燃比、k1 〜k4 は定数である。
More specifically, a gas exchange model in the exhaust merging portion 36 is approximated by the following equation (1).
ys (t) = k1 * u (t-1) + k2 * u (t-2) -k3 * ys (t-1) -k4 * ys (t-2)
...... (1)
Here, ys is a detected value of the air-fuel ratio sensor 37, u is an air-fuel ratio of the gas flowing into the exhaust merging section 36, and k1 to k4 are constants.

排気系では、排気合流部36におけるガス流入及び混合の一次遅れ要素と、空燃比センサ37の応答遅れによる一次遅れ要素とが存在する。そこで、上記(1)式では、これらの一次遅れ要素を考慮して過去2回分の履歴を参照することとしている。   In the exhaust system, there are a primary delay element of gas inflow and mixing in the exhaust confluence 36 and a primary delay element due to a response delay of the air-fuel ratio sensor 37. Therefore, in the above equation (1), the history for the past two times is referred to in consideration of these first order lag elements.

上記(1)式を状態空間モデルに変換すると、次の(2a)、(2b)式が導き出される。
X(t+1) =A・X(t) +B・u(t) +W(t) ……(2a)
Y(t) =C・X(t) +D・u(t) ……(2b)
ここで、A,B,C,Dはモデルのパラメータ、Yは空燃比センサ37の検出値、Xは状態変数としての各気筒の推定空燃比、Wはノイズである。
When the above equation (1) is converted into a state space model, the following equations (2a) and (2b) are derived.
X (t + 1) = A.X (t) + B.u (t) + W (t) (2a)
Y (t) = C · X (t) + D · u (t) (2b)
Here, A, B, C, and D are model parameters, Y is a detected value of the air-fuel ratio sensor 37, X is an estimated air-fuel ratio of each cylinder as a state variable, and W is noise.

更に、上記(2a)、(2b)式によりカルマンフィルタを設計すると、次の(3)式が得られる。
X^(k+1|k)=A・X^(k|k-1)+K{Y(k) −C・A・X^(k|k-1)} ……(3) ここで、X^(エックスハット)は各気筒の推定空燃比、Kはカルマンゲインである。X^(k+1|k)の意味は、時間(k) の推定値により次の時間(k+1) の推定値を求めることを表す。
Further, when the Kalman filter is designed by the above equations (2a) and (2b), the following equation (3) is obtained.
X ^ (k + 1 | k) = A.X ^ (k | k-1) + K {Y (k) -C.A.X ^ (k | k-1)} (3) where X ^ (X hat) is the estimated air-fuel ratio of each cylinder, and K is the Kalman gain. The meaning of X ^ (k + 1 | k) represents that the estimated value of the next time (k + 1) is obtained from the estimated value of time (k).

以上のようにして、気筒別空燃比推定モデルをカルマンフィルタ型オブザーバにて構成することにより、燃焼サイクルの進行に伴って各気筒の空燃比を順次推定することができる。   As described above, the cylinder-by-cylinder air-fuel ratio estimation model is configured by the Kalman filter type observer, whereby the air-fuel ratio of each cylinder can be sequentially estimated as the combustion cycle proceeds.

ところで、上述した気筒別空燃比制御システムでは、いずれかの気筒で燃料噴射弁20の故障等によって空燃比制御が困難になると、その空燃比制御が困難な異常気筒の空燃比がリーン方向に大きくばらついてしまうことがあり、その結果、触媒38に流入する排出ガス(つまり異常気筒の排出ガスと正常気筒の排出ガスが混合した排出ガス)の空燃比がリーン方向にずれることがある。もし、触媒38に流入する排出ガスの空燃比がリーン方向にずれると、触媒38に流入するリーン成分量(酸素量)が増加してHC、CO等のリッチ成分の酸化反応が促進され、その反応熱で触媒38が過熱状態になって損傷してしまう可能性がある。   By the way, in the above-described cylinder-by-cylinder air-fuel ratio control system, if the air-fuel ratio control becomes difficult due to a failure of the fuel injection valve 20 or the like in any cylinder, the air-fuel ratio of the abnormal cylinder in which the air-fuel ratio control is difficult becomes large in the lean direction. As a result, the air-fuel ratio of the exhaust gas flowing into the catalyst 38 (that is, the exhaust gas in which the exhaust gas of the abnormal cylinder and the exhaust gas of the normal cylinder are mixed) may shift in the lean direction. If the air-fuel ratio of the exhaust gas flowing into the catalyst 38 deviates in the lean direction, the lean component amount (oxygen amount) flowing into the catalyst 38 increases and the oxidation reaction of rich components such as HC and CO is promoted. The heat of reaction may cause the catalyst 38 to be overheated and damaged.

そこで、本実施例1では、ECU40は、気筒別空燃比に基づいて空燃比がリーン方向に大きくばらついたリーン異常気筒の有無を判定し、リーン異常気筒有りと判定されたときに、エンジン出力を制限する制限運転制御を実行することで、触媒38に流入する排出ガス量(酸素量)を制限して触媒38が過熱状態になるほどの反応熱が発生しないようにしている。   Therefore, in the first embodiment, the ECU 40 determines the presence or absence of a lean abnormal cylinder in which the air-fuel ratio varies greatly in the lean direction based on the cylinder-by-cylinder air-fuel ratio, and outputs engine output when it is determined that there is a lean abnormal cylinder. By performing the limited operation control to limit, the amount of exhaust gas (oxygen amount) flowing into the catalyst 38 is limited so that the reaction heat is not generated to the extent that the catalyst 38 is overheated.

以上説明した気筒別空燃比制御と制限運転制御は、ECU40によって図2及び図3の各ルーチンに従って実行される。以下、各ルーチンの処理内容を説明する。   The cylinder-by-cylinder air-fuel ratio control and the limited operation control described above are executed by the ECU 40 according to the routines shown in FIGS. The processing contents of each routine will be described below.

[気筒別空燃比制御ルーチン]
図2に示す気筒別空燃比制御ルーチンは、クランク角センサ33の出力パルスに同期して所定クランク角毎(例えば30℃A毎)に起動される。本ルーチンが起動されると、まず、ステップ101で、空燃比センサ37の出力(空燃比検出値)を読み込む。この後、ステップ102に進み、前記気筒別空燃比推定モデルを用いて今回の空燃比推定対象となる気筒の空燃比を空燃比センサ37の検出値に基づいて推定する。このステップ102の処理が特許請求の範囲でいう気筒別空燃比検出手段としての役割を果たす。
[Air-fuel ratio control routine for each cylinder]
The cylinder-by-cylinder air-fuel ratio control routine shown in FIG. 2 is started at every predetermined crank angle (for example, every 30 ° C. A) in synchronization with the output pulse of the crank angle sensor 33. When this routine is started, first, in step 101, the output (air-fuel ratio detection value) of the air-fuel ratio sensor 37 is read. Thereafter, the routine proceeds to step 102 where the air-fuel ratio of the cylinder that is the current air-fuel ratio estimation target is estimated based on the detected value of the air-fuel ratio sensor 37 using the cylinder-by-cylinder air-fuel ratio estimation model. The processing in step 102 serves as cylinder-by-cylinder air-fuel ratio detection means in the claims.

この後、ステップ103に進み、全気筒の推定空燃比の平均値を算出して、その平均値を基準空燃比(全気筒の目標空燃比)に設定する。この後、ステップ104に進み、各気筒の推定空燃比と基準空燃比との偏差を算出して、その偏差が小さくなるように気筒別空燃比補正量(各気筒の燃料補正量)を算出する。   Thereafter, the process proceeds to step 103, where an average value of estimated air-fuel ratios of all cylinders is calculated, and the average value is set as a reference air-fuel ratio (target air-fuel ratio of all cylinders). Thereafter, the routine proceeds to step 104, where the deviation between the estimated air-fuel ratio of each cylinder and the reference air-fuel ratio is calculated, and the cylinder-by-cylinder air-fuel ratio correction amount (fuel correction amount of each cylinder) is calculated so that the deviation becomes small. .

この後、ステップ105に進み、各気筒の気筒別空燃比補正量に基づいて各気筒の燃料噴射量を補正することで、各気筒に供給する混合気の空燃比を各気筒毎に補正して気筒間の空燃比ばらつきを少なくするように制御する気筒別空燃比制御を実行する。   Thereafter, the routine proceeds to step 105, where the air-fuel ratio of the air-fuel mixture supplied to each cylinder is corrected for each cylinder by correcting the fuel injection amount of each cylinder based on the cylinder-by-cylinder air-fuel ratio correction amount of each cylinder. Cylinder-by-cylinder air-fuel ratio control is executed to control the variation in air-fuel ratio among the cylinders.

この後、ステップ106に進み、各気筒の推定空燃比と基準空燃比との偏差がリーン側異常判定値よりも大きいか否かを判定し、推定空燃比と基準空燃比との偏差がリーン側異常判定値よりも大きい気筒(つまり空燃比がリーン方向に大きくばらついた気筒)をリーン異常気筒として検出する。この後、ステップ107に進み、上記ステップ106の検出結果に基づいてリーン異常気筒が有るか否かを判定する。これらのステップ106,107の処理が特許請求の範囲でいう異常気筒判定手段としての役割を果たす。   Thereafter, the routine proceeds to step 106, where it is determined whether or not the deviation between the estimated air-fuel ratio of each cylinder and the reference air-fuel ratio is larger than the lean-side abnormality determination value, and the deviation between the estimated air-fuel ratio and the reference air-fuel ratio is lean A cylinder larger than the abnormality determination value (that is, a cylinder in which the air-fuel ratio greatly varies in the lean direction) is detected as a lean abnormality cylinder. Thereafter, the routine proceeds to step 107, where it is determined whether or not there is a lean abnormal cylinder based on the detection result of step 106. The processing of these steps 106 and 107 serves as an abnormal cylinder determining means in the claims.

このステップ107で、リーン異常気筒無しと判定された場合には、そのまま本ルーチンを終了する。   If it is determined in this step 107 that there is no lean abnormal cylinder, this routine is immediately terminated.

一方、上記ステップ107で、リーン異常気筒有りと判定された場合には、ステップ108に進み、後述する図3の制限運転制御ルーチンを実行することで、エンジン出力を制限する制限運転制御を実行して、触媒38に流入する排出ガス量(酸素量)を制限して触媒38が過熱状態になるほどの反応熱が発生しないようにする。   On the other hand, if it is determined in step 107 that there is a lean abnormal cylinder, the routine proceeds to step 108, where a limited operation control routine for limiting engine output is executed by executing a limited operation control routine of FIG. Thus, the amount of exhaust gas (oxygen amount) flowing into the catalyst 38 is limited so that the reaction heat is not generated to the extent that the catalyst 38 is overheated.

[制限運転制御ルーチン]
図3に示す制限運転制御ルーチンは、前記図2の気筒別空燃比制御ルーチンのステップ108で実行されるサブルーチンであり、特許請求の範囲でいう制限運転制御手段としての役割を果たす。本ルーチンが起動されると、まず、ステップ201で、エンジン出力が所定値以上であるか否かを判定する。この場合、エンジン出力と相関関係のある情報(例えば、吸入空気量、吸気管圧力、筒内圧力、充填空気率、エンジン軸トルク等)のうちの1つ又は2つ以上に基づいて推定したエンジン出力が所定値以上であるか否かを判定するようにしても良い。或は、エンジン出力と相関関係のある情報のうちの1つ又は2つ以上が所定値以上であるか否かによって、エンジン出力が所定値以上であるか否かを判定するようにしても良い。
[Restricted operation control routine]
The limited operation control routine shown in FIG. 3 is a subroutine executed in step 108 of the cylinder-by-cylinder air-fuel ratio control routine of FIG. 2, and serves as a limited operation control means in the claims. When this routine is started, first, at step 201, it is determined whether or not the engine output is equal to or greater than a predetermined value. In this case, the engine estimated based on one or more of information correlated with the engine output (for example, intake air amount, intake pipe pressure, in-cylinder pressure, filling air rate, engine shaft torque, etc.) You may make it determine whether an output is more than predetermined value. Alternatively, whether or not the engine output is greater than or equal to a predetermined value may be determined based on whether or not one or more of the information correlated with the engine output is greater than or equal to a predetermined value. .

このステップ201で、エンジン出力が所定値よりも小さいと判定された場合には、エンジン出力を制限することなく、そのまま本ルーチンを終了する。   If it is determined in step 201 that the engine output is smaller than the predetermined value, this routine is terminated without limiting the engine output.

一方、上記ステップ201で、エンジン出力が所定値以上であると判定された場合には、ステップ202aに進み、スロットル開度を閉じ方向(吸入空気量の減少方向)に制御してエンジン出力を低下させることで、エンジン出力を所定値以下に制限する。これにより、触媒38に流入する排出ガス量(酸素量)を制限して触媒38が過熱状態になるような反応熱が発生しないようにする。   On the other hand, if it is determined in step 201 that the engine output is equal to or greater than the predetermined value, the process proceeds to step 202a, where the throttle opening is controlled in the closing direction (intake air decreasing direction) to decrease the engine output. As a result, the engine output is limited to a predetermined value or less. Thereby, the amount of exhaust gas (oxygen amount) flowing into the catalyst 38 is limited so that reaction heat that causes the catalyst 38 to be overheated is not generated.

尚、ステップ202aの処理に代えて、ステップ202bの処理を実行して、可変バルブタイミング機構27,28で吸気バルブ25や排気バルブ26のバルブタイミング(開閉タイミング)をエンジン出力低下方向に変化させてエンジン出力を低下させることで、エンジン出力を所定値以下に制限するようにしても良い。   Instead of the process of step 202a, the process of step 202b is executed, and the valve timing (opening / closing timing) of the intake valve 25 and the exhaust valve 26 is changed in the engine output decreasing direction by the variable valve timing mechanisms 27 and 28. The engine output may be limited to a predetermined value or less by reducing the engine output.

また、可変バルブリフト機構を備えたシステムの場合には、吸気バルブ25や排気バルブ26のリフト量をエンジン出力低下方向に変化させて、エンジン出力を所定値以下に制限するようにしても良い。或は、可変バルブ作用角機構を備えたシステムの場合には、吸気バルブ25や排気バルブ26の作用角(開弁期間)をエンジン出力低下方向に変化させて、エンジン出力を所定値以下に制限するようにしても良い。   In the case of a system including a variable valve lift mechanism, the lift amount of the intake valve 25 or the exhaust valve 26 may be changed in the engine output decreasing direction to limit the engine output to a predetermined value or less. Alternatively, in the case of a system equipped with a variable valve working angle mechanism, the working angle (opening period) of the intake valve 25 and the exhaust valve 26 is changed in the engine output decreasing direction to limit the engine output to a predetermined value or less. You may make it do.

また、ステップ202aの処理に代えて、ステップ202cの処理を実行して、燃料カット制御を実施してエンジン出力を低下させることで、エンジン出力を所定値以下に制限するようにしても良い。   Further, instead of the process of step 202a, the process of step 202c may be executed to perform fuel cut control to reduce the engine output, thereby limiting the engine output to a predetermined value or less.

また、ステップ202aの処理に代えて、ステップ202dの処理を実行して、点火カット制御を実施してエンジン出力を低下させることで、エンジン出力を所定値以下に制限するようにしても良い。
また、ステップ202a〜202dの処理のうちの2つ以上の処理を組み合わせて実行するようにしても良い。
Further, the engine output may be limited to a predetermined value or less by executing the process of step 202d instead of the process of step 202a and performing the ignition cut control to reduce the engine output.
Further, two or more of the processes in steps 202a to 202d may be executed in combination.

以上説明した本実施例1では、リーン異常気筒有りと判定されたときに、エンジン出力を制限する制限運転制御を実行するようにしたので、異常気筒の発生によって触媒38に流入する排出ガスの空燃比がリーン方向(触媒38に流入する酸素量が増加して酸化反応が促進される方向)にずれた場合でも、エンジン出力を制限することで触媒38に流入する排出ガス量(酸素量)を制限して触媒38が過熱状態になるような反応熱が発生しないようにすることができ、異常気筒の発生によって触媒38が過熱状態になることを未然に防止することができる。   In the first embodiment described above, when it is determined that there is a lean abnormal cylinder, the limited operation control for limiting the engine output is executed, so that the exhaust gas flowing into the catalyst 38 due to the occurrence of the abnormal cylinder is emptied. Even when the fuel ratio deviates in the lean direction (the direction in which the amount of oxygen flowing into the catalyst 38 increases and the oxidation reaction is promoted), the exhaust gas amount (oxygen amount) flowing into the catalyst 38 is reduced by limiting the engine output. By limiting, it is possible to prevent reaction heat that would cause the catalyst 38 to be overheated, and to prevent the catalyst 38 from being overheated due to the occurrence of an abnormal cylinder.

次に、図4を用いて本発明の実施例2を説明する。
前記実施例1では、リーン異常気筒有りと判定されたときに、エンジン出力を制限する制限運転制御を実行するようにしたが、本実施例2では、リーン異常気筒有りと判定されたときに、図4に示す制限運転制御ルーチンを実行することで、エンジン回転速度を制限する制限運転制御を実行するようにしている。
Next, Embodiment 2 of the present invention will be described with reference to FIG.
In the first embodiment, the limited operation control for limiting the engine output is performed when it is determined that there is a lean abnormal cylinder. In the second embodiment, when it is determined that there is a lean abnormal cylinder, By executing the limited operation control routine shown in FIG. 4, the limited operation control for limiting the engine rotation speed is executed.

図4に示す制限運転制御ルーチンでは、まず、ステップ301で、エンジン回転速度が所定値以上であるか否かを判定する。尚、エンジン回転速度と相関関係のある情報(例えば車速等)が所定値以上であるか否かによって、エンジン回転速度が所定値以上であるか否かを判定するようにしても良い。   In the limited operation control routine shown in FIG. 4, first, in step 301, it is determined whether or not the engine speed is equal to or higher than a predetermined value. Note that it may be determined whether or not the engine rotational speed is greater than or equal to a predetermined value depending on whether or not information correlated with the engine rotational speed (such as vehicle speed) is greater than or equal to a predetermined value.

このステップ301で、エンジン回転速度が所定値よりも低いと判定された場合には、エンジン回転速度を制限することなく、そのまま本ルーチンを終了する。   If it is determined in step 301 that the engine rotational speed is lower than the predetermined value, this routine is terminated without limiting the engine rotational speed.

一方、上記ステップ301で、エンジン回転速度が所定値以上であると判定された場合には、ステップ302aに進み、スロットル開度を閉じ方向(吸入空気量の減少方向)に制御してエンジン回転速度を低下させることで、エンジン回転速度を所定値以下に制限する。これにより、触媒38に流入する排出ガス量(酸素量)を制限して触媒38が過熱状態になるような反応熱が発生しないようにする。   On the other hand, if it is determined in step 301 that the engine speed is greater than or equal to the predetermined value, the process proceeds to step 302a, where the engine opening speed is controlled by controlling the throttle opening in the closing direction (increase direction of the intake air amount). By reducing the engine speed, the engine speed is limited to a predetermined value or less. Thereby, the amount of exhaust gas (oxygen amount) flowing into the catalyst 38 is limited so that reaction heat that causes the catalyst 38 to be overheated is not generated.

尚、ステップ302aの処理に代えて、ステップ302bの処理を実行して、変速機のギヤをシフトアップして変速比をエンジン回転速度低下方向に変化させてエンジン回転速度を低下させることで、エンジン回転速度を所定値以下に制限するようにしても良い。   Instead of the process of step 302a, the process of step 302b is executed to shift up the gear of the transmission and change the gear ratio in the direction of decreasing the engine rotational speed to decrease the engine rotational speed. The rotational speed may be limited to a predetermined value or less.

また、ステップ302aの処理に代えて、ステップ302cの処理を実行して、燃料カット制御を実施してエンジン回転速度を低下させることで、エンジン回転速度を所定値以下に制限するようにしても良い。   Further, instead of the process of step 302a, the process of step 302c may be executed to perform fuel cut control to reduce the engine speed, thereby limiting the engine speed to a predetermined value or less. .

また、ステップ302aの処理に代えて、ステップ302dの処理を実行して、点火カット制御を実施してエンジン回転速度を低下させることで、エンジン回転速度を所定値以下に制限するようにしても良い。   Further, instead of the process of step 302a, the process of step 302d may be executed to perform the ignition cut control to reduce the engine speed, thereby limiting the engine speed to a predetermined value or less. .

また、ステップ302a〜302dの処理のうちの2つ以上の処理を組み合わせて実行するようにしても良い。
以上説明した本実施例2でも、前記実施例1と同様の効果を得ることができる。
Further, two or more of the processes in steps 302a to 302d may be executed in combination.
In the second embodiment described above, the same effect as that of the first embodiment can be obtained.

次に、図5乃至図8を用いて本発明の実施例3を説明する。
本実施例3では、図5に示す気筒別空燃比制御ルーチンを実行することで、エンジン運転領域毎にリーン異常気筒の有無を判定し、リーン異常気筒有りと判定された運転領域で制限運転制御を実行するようにしている。
Next, Embodiment 3 of the present invention will be described with reference to FIGS.
In the third embodiment, by executing the cylinder-by-cylinder air-fuel ratio control routine shown in FIG. 5, it is determined whether or not there is a lean abnormal cylinder for each engine operating region, and limited operation control is performed in the operating region where it is determined that there is a lean abnormal cylinder. To do.

図5に示す気筒別空燃比制御ルーチンでは、空燃比センサ37の検出値に基づいて各気筒の推定空燃比と基準空燃比を算出した後、各気筒の推定空燃比と基準空燃比との偏差を算出して、その偏差が小さくなるように気筒別空燃比補正量(各気筒の燃料補正量)を算出する(ステップ401〜404)。   In the cylinder-by-cylinder air-fuel ratio control routine shown in FIG. 5, after calculating the estimated air-fuel ratio and the reference air-fuel ratio of each cylinder based on the detection value of the air-fuel ratio sensor 37, the deviation between the estimated air-fuel ratio of each cylinder and the reference air-fuel ratio. And the cylinder-by-cylinder air-fuel ratio correction amount (fuel correction amount of each cylinder) is calculated so that the deviation becomes small (steps 401 to 404).

この後、各気筒の気筒別空燃比補正量に基づいて各気筒の燃料噴射量を補正することで、各気筒に供給する混合気の空燃比を各気筒毎に補正して気筒間の空燃比ばらつきを少なくするように制御する気筒別空燃比制御を実行する(ステップ405)。   Thereafter, by correcting the fuel injection amount of each cylinder based on the cylinder-by-cylinder air-fuel ratio correction amount of each cylinder, the air-fuel ratio of the air-fuel mixture supplied to each cylinder is corrected for each cylinder, and the air-fuel ratio between the cylinders is corrected. The cylinder-by-cylinder air-fuel ratio control is executed to control the variation (step 405).

この後、ステップ406に進み、各気筒の推定空燃比と基準空燃比との偏差がリーン側異常判定値よりも大きいか否かを判定し、推定空燃比と基準空燃比との偏差がリーン側異常判定値よりも大きい気筒(つまり空燃比がリーン方向に大きくばらついた気筒)をリーン異常気筒として検出する。その際、例えば図6に示すように、エンジン回転速度と負荷とに応じて区分された複数のエンジン運転領域毎にリーン異常気筒を検出し、リーン異常気筒を検出したエンジン運転領域を異常検出運転領域とする。   Thereafter, the routine proceeds to step 406, where it is determined whether or not the deviation between the estimated air-fuel ratio of each cylinder and the reference air-fuel ratio is larger than the lean-side abnormality determination value, and the deviation between the estimated air-fuel ratio and the reference air-fuel ratio is lean A cylinder larger than the abnormality determination value (that is, a cylinder in which the air-fuel ratio greatly varies in the lean direction) is detected as a lean abnormality cylinder. In that case, for example, as shown in FIG. 6, a lean abnormal cylinder is detected for each of a plurality of engine operation areas divided according to the engine speed and load, and the engine operation area in which the lean abnormal cylinder is detected is detected as an abnormality detection operation. This is an area.

この後、ステップ407に進み、上記ステップ406の検出結果に基づいて、いずれかのエンジン運転領域おいてリーン異常気筒が有るか否かを判定し、いずれかのエンジン運転領域おいてリーン異常気筒有りと判定された場合には、ステップ408に進み、現在のエンジン運転領域が異常検出運転領域(リーン異常気筒有りと判定されたエンジン運転領域)であるか否かを判定する。   Thereafter, the process proceeds to step 407, where it is determined whether or not there is a lean abnormal cylinder in any engine operating region based on the detection result in step 406, and there is a lean abnormal cylinder in any engine operating region. If it is determined, the process proceeds to step 408, and it is determined whether or not the current engine operation region is an abnormality detection operation region (an engine operation region determined to have a lean abnormal cylinder).

このステップ408で、現在のエンジン運転領域が異常検出運転領域であると判定された場合には、ステップ409に進み、触媒38が過熱状態(熱により損傷する状態)になる可能性の有無を、例えば、次の(1) と(2) の条件のうちのいずれか一方でも満たすか否かによって判定する。このステップ409の処理が特許請求の範囲でいう触媒過熱判定手段としての役割を果たす。
(1) リーン異常気筒が2つ以上有ること
(2) 触媒38が過熱状態になる可能性の高い運転領域(例えば図7に示す高回転運転領域や高負荷運転領域)であること
If it is determined in step 408 that the current engine operation region is the abnormality detection operation region, the process proceeds to step 409 to determine whether or not the catalyst 38 may be overheated (a state damaged by heat). For example, the determination is made based on whether one of the following conditions (1) and (2) is satisfied. The processing in step 409 serves as catalyst overheat determination means in the claims.
(1) There are two or more lean abnormal cylinders
(2) The operation region (for example, the high rotation operation region and the high load operation region shown in FIG. 7) in which the catalyst 38 is likely to be overheated.

上記(1) ,(2) の条件のうちのいずれか一方を満たせば、触媒38が過熱状態になる可能性有りと判定するが、上記(1) ,(2) の条件を両方とも満たさなければ、触媒38が過熱状態になる可能性無しと判定する。   If either one of the above conditions (1) and (2) is satisfied, it is determined that the catalyst 38 may be overheated. However, both of the above conditions (1) and (2) must be satisfied. In this case, it is determined that there is no possibility that the catalyst 38 is overheated.

つまり、リーン異常気筒が2つ以上有ると、触媒38に流入する排出ガスの空燃比がリーン方向に大きくずれて、触媒38に流入する酸素量が増加して酸化反応が促進され、その反応熱で触媒38が過熱状態になる可能性が高くなるため、リーン異常気筒が2つ以上有るときには触媒38が過熱状態になる可能性有りと判定することができる。   That is, if there are two or more lean abnormal cylinders, the air-fuel ratio of the exhaust gas flowing into the catalyst 38 is greatly shifted in the lean direction, the amount of oxygen flowing into the catalyst 38 is increased, and the oxidation reaction is promoted. Therefore, the possibility that the catalyst 38 will be overheated becomes high. Therefore, when there are two or more lean abnormal cylinders, it can be determined that the catalyst 38 may be overheated.

また、エンジン11の吸入空気量が多い高回転運転領域や高負荷運転領域では触媒38に流入する排出ガス量が増加するため、リーン異常気筒が1つでも触媒38に流入する酸素量が増加して酸化反応が促進され、その反応熱で触媒38が過熱状態になる可能性が高くなる。従って、高回転運転領域や高負荷運転領域では触媒38が過熱状態になる可能性有りと判定することができる。   Further, since the amount of exhaust gas flowing into the catalyst 38 increases in the high rotation operation region and the high load operation region where the intake air amount of the engine 11 is large, the amount of oxygen flowing into the catalyst 38 increases even if there is one lean abnormal cylinder. Thus, the oxidation reaction is promoted, and the possibility that the catalyst 38 is overheated by the heat of reaction increases. Therefore, it can be determined that there is a possibility that the catalyst 38 is overheated in the high rotation operation region and the high load operation region.

上記ステップ408で現在のエンジン運転領域が異常検出運転領域であると判定され、且つ、上記ステップ409で触媒38が過熱状態になる可能性有りと判定された場合には、ステップ410に進み、前述した図3又は図4の制限運転制御ルーチンを実行することで、エンジン出力又はエンジン回転速度を制限する制限運転制御を実行して、触媒38に流入する排出ガス量(酸素量)を制限して触媒38が過熱状態になるような反応熱が発生しないようにすると共に、エンジン運転領域が異常検出運転領域外になるようにする。   If it is determined in step 408 that the current engine operation region is an abnormality detection operation region, and it is determined in step 409 that the catalyst 38 may be overheated, the process proceeds to step 410, and the above-described operation is performed. By executing the limited operation control routine of FIG. 3 or FIG. 4, the limited operation control for limiting the engine output or the engine speed is executed to limit the exhaust gas amount (oxygen amount) flowing into the catalyst 38. Reaction heat that causes the catalyst 38 to be overheated is prevented from being generated, and the engine operation region is outside the abnormality detection operation region.

一方、上記ステップ408で現在のエンジン運転領域が異常検出運転領域ではないと判定された場合、又は、上記ステップ409で触媒38が過熱状態になる可能性無しと判定された場合には、制限運転制御を実行することなく、そのまま本ルーチンを終了する。   On the other hand, if it is determined in step 408 that the current engine operation region is not the abnormality detection operation region, or if it is determined in step 409 that there is no possibility that the catalyst 38 will be in an overheated state, limited operation is performed. This routine is ended without executing the control.

以上説明した本実施例3の制御例を図8のタイムチャートを用いて説明する。
#1気筒〜#4気筒のうちの#1気筒の燃料噴射弁20の故障等によって#1気筒の空燃比がリーン方向に大きくばらつくと、#1気筒の推定空燃比と基準空燃比との偏差がリーン側異常判定値よりも大きくなった時点t1 で、リーン異常気筒有りと判定し、更に、#2気筒の推定空燃比と基準空燃比との偏差がリーン側異常判定値よりも大きくなってリーン異常気筒が2つになった時点t2 で、触媒38が過熱状態(熱により損傷する状態)になる可能性有りと判定する。この後、エンジン出力が所定値以上であると判定された時点t3 で、エンジン出力を制限する制限運転制御を開始して、触媒38に流入する排出ガス量(酸素量)を制限して触媒38が過熱状態になるような反応熱が発生しないようにする。
A control example of the third embodiment described above will be described with reference to the time chart of FIG.
When the air-fuel ratio of the # 1 cylinder greatly varies in the lean direction due to a failure of the fuel injection valve 20 of the # 1 cylinder among the # 1 to # 4 cylinders, the deviation between the estimated air-fuel ratio of the # 1 cylinder and the reference air-fuel ratio At time t1 when the value becomes larger than the lean-side abnormality determination value, it is determined that there is a lean abnormality cylinder, and the deviation between the estimated air-fuel ratio of the # 2 cylinder and the reference air-fuel ratio becomes larger than the lean-side abnormality determination value. At the time t2 when the number of lean abnormal cylinders becomes two, it is determined that there is a possibility that the catalyst 38 is in an overheated state (a state damaged by heat). Thereafter, at the time t3 when it is determined that the engine output is equal to or greater than the predetermined value, the limit operation control for limiting the engine output is started, and the amount of exhaust gas (oxygen amount) flowing into the catalyst 38 is limited. The reaction heat is not generated so as to be overheated.

以上説明した本実施例3では、リーン異常気筒有りと判定されたときに、異常検出運転領域であると判定され且つ触媒38が過熱状態になる可能性有りと判定された場合に、制限運転制御を実行するようにしたので、触媒38が過熱状態になることを確実に防止することができ、更に、異常気筒有りと判定されても触媒38が過熱状態になる可能性無しと判定された場合や、異常検出運転領域以外の運転領域では、制限運転制御を実行しないようにしたので、制限運転制御によるドライバビリティの低下を回避することができる。   In the third embodiment described above, when it is determined that there is a lean abnormal cylinder, it is determined that it is in the abnormality detection operation region, and if it is determined that there is a possibility that the catalyst 38 is in an overheated state, the limited operation control is performed. In this case, it is possible to reliably prevent the catalyst 38 from being overheated. Further, even if it is determined that there is an abnormal cylinder, it is determined that the catalyst 38 is not likely to be overheated. In addition, since the limited operation control is not executed in the operation region other than the abnormality detection operation region, it is possible to avoid a decrease in drivability due to the limited operation control.

尚、上記各実施例1〜3では、制限運転制御の際に、エンジン出力とエンジン回転速度のうちのいずれか一方のみを制限するようにしたが、エンジン出力とエンジン回転速度を両方とも制限するようにしても良い。   In each of the first to third embodiments, only one of the engine output and the engine rotation speed is limited during the limited operation control. However, both the engine output and the engine rotation speed are limited. You may do it.

また、上記各実施例1〜3では、空燃比がリーン方向に大きくばらついたリーン異常気筒有りと判定された場合に、制限運転制御を実行するようにしたが、空燃比がリッチ方向に大きくばらついたリッチ異常気筒有りと判定された場合に、制限運転制御を実行するようにしても良い。   In each of the first to third embodiments, the limit operation control is performed when it is determined that there is a lean abnormal cylinder in which the air-fuel ratio varies greatly in the lean direction. However, the air-fuel ratio varies greatly in the rich direction. The limited operation control may be executed when it is determined that there is a rich abnormal cylinder.

また、上記各実施例1〜3では、排気合流部に設置した1つの空燃比センサの出力に基づいて各気筒の空燃比を推定するシステムに本発明を適用したが、各気筒の排気マニホールドにそれぞれ空燃比センサを設置し、各気筒の空燃比センサの出力に基づいて各気筒の空燃比を計測するシステムに本発明を適用しても良い。   Further, in each of the first to third embodiments, the present invention is applied to a system that estimates the air-fuel ratio of each cylinder based on the output of one air-fuel ratio sensor installed in the exhaust merge section. The present invention may be applied to a system in which an air-fuel ratio sensor is installed and the air-fuel ratio of each cylinder is measured based on the output of the air-fuel ratio sensor of each cylinder.

本発明の実施例1におけるエンジン制御システム全体の概略構成図である。It is a schematic block diagram of the whole engine control system in Example 1 of this invention. 実施例1の気筒別空燃比制御ルーチンの処理の流れを示すフローチャートである。3 is a flowchart showing a flow of processing of a cylinder-by-cylinder air-fuel ratio control routine according to the first embodiment. 実施例1の制限運転制御ルーチンの処理の流れを示すフローチャートである。4 is a flowchart illustrating a process flow of a limited operation control routine according to the first embodiment. 実施例2の制限運転制御ルーチンの処理の流れを示すフローチャートである。6 is a flowchart showing a flow of processing of a limited operation control routine of Example 2. 実施例3の気筒別空燃比制御ルーチンの処理の流れを示すフローチャートである。12 is a flowchart showing a flow of processing of a cylinder-by-cylinder air-fuel ratio control routine according to a third embodiment. 異常検出運転領域を説明する図である。It is a figure explaining an abnormality detection operation field. 触媒が過熱状態になる可能性の高い運転領域を説明する図である。It is a figure explaining the driving | operation area | region with a high possibility that a catalyst will be in an overheated state. 本実施例3の制御例を説明するタイムチャートである。It is a time chart explaining the example of control of the present Example 3.

符号の説明Explanation of symbols

11…エンジン(内燃機関)、12…吸気管、16…スロットルバルブ、20…燃料噴射弁、35…排気マニホールド、36…排気合流部、37…空燃比センサ、38…触媒、40…ECU(気筒別空燃比検出手段,異常気筒判定手段,制限運転制御手段,触媒過熱判定手段)   DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Intake pipe, 16 ... Throttle valve, 20 ... Fuel injection valve, 35 ... Exhaust manifold, 36 ... Exhaust junction, 37 ... Air-fuel ratio sensor, 38 ... Catalyst, 40 ... ECU (cylinder) Separate air / fuel ratio detection means, abnormal cylinder determination means, limited operation control means, catalyst overheat determination means)

Claims (8)

内燃機関の排出ガスの空燃比を検出する空燃比センサの出力に基づいて各気筒の空燃比(以下「気筒別空燃比」という)を推定又は計測する気筒別空燃比検出手段と、前記空燃比センサの下流側に設置した排出ガス浄化用の触媒とを備えた内燃機関の制御装置において、
前記気筒別空燃比に基づいて空燃比の異常な気筒(以下「異常気筒」という)の有無を判定する異常気筒判定手段と、
前記異常気筒判定手段で前記異常気筒有りと判定されたときに内燃機関の出力及び/又は回転速度を制限する制限運転制御を実行する制限運転制御手段と
を備えていることを特徴とする内燃機関の制御装置。
A cylinder-by-cylinder air-fuel ratio detecting means for estimating or measuring an air-fuel ratio of each cylinder (hereinafter referred to as “cylinder-by-cylinder air-fuel ratio”) based on an output of an air-fuel ratio sensor for detecting an air-fuel ratio of exhaust gas from the internal combustion engine; In a control device for an internal combustion engine provided with an exhaust gas purification catalyst installed on the downstream side of the sensor,
Abnormal cylinder determining means for determining the presence or absence of an abnormal air-fuel ratio cylinder (hereinafter referred to as “abnormal cylinder”) based on the cylinder-specific air-fuel ratio;
An internal combustion engine comprising: limiting operation control means for executing limited operation control for limiting the output and / or rotational speed of the internal combustion engine when the abnormal cylinder determining means determines that the abnormal cylinder is present. Control device.
前記触媒が過熱状態になる可能性の有無を判定する触媒過熱判定手段を備え、
前記制限運転制御手段は、前記異常気筒判定手段で前記異常気筒有りと判定され且つ前記触媒過熱判定手段で前記触媒が過熱状態になる可能性有りと判定されたときに前記制限運転制御を実行することを特徴とする請求項1に記載の内燃機関の制御装置。
A catalyst overheat determination means for determining whether or not the catalyst may be in an overheated state;
The limited operation control means executes the limited operation control when the abnormal cylinder determining means determines that the abnormal cylinder is present and the catalyst overheat determining means determines that the catalyst may be in an overheated state. The control apparatus for an internal combustion engine according to claim 1.
前記異常気筒判定手段は、内燃機関の運転領域毎に前記異常気筒の有無を判定し、
前記制限運転制御手段は、前記異常気筒判定手段で前記異常気筒有りと判定された運転領域で前記制限運転制御を実行することを特徴とする請求項1又は2に記載の内燃機関の制御装置。
The abnormal cylinder determining means determines the presence or absence of the abnormal cylinder for each operating region of the internal combustion engine,
The control apparatus for an internal combustion engine according to claim 1, wherein the limited operation control unit performs the limited operation control in an operation region in which the abnormal cylinder determination unit determines that the abnormal cylinder is present.
前記制限運転制御手段は、スロットル開度を制御することで前記制限運転制御を実行することを特徴とする請求項1乃至3のいずれかに記載の内燃機関の制御装置。   4. The control apparatus for an internal combustion engine according to claim 1, wherein the limited operation control means executes the limited operation control by controlling a throttle opening. 前記制限運転制御手段は、燃料カット制御を実施することで前記制限運転制御を実行することを特徴とする請求項1乃至4のいずれかに記載の内燃機関の制御装置。   5. The control device for an internal combustion engine according to claim 1, wherein the limited operation control unit performs the limited operation control by performing fuel cut control. 6. 前記制限運転制御手段は、点火カット制御を実施することで前記制限運転制御を実行することを特徴とする請求項1乃至5のいずれかに記載の内燃機関の制御装置。   6. The control device for an internal combustion engine according to claim 1, wherein the limited operation control means executes the limited operation control by performing ignition cut control. 内燃機関の吸気バルブ及び/又は排気バルブの開閉特性を変化させる可変バルブ装置を備え、
前記制限運転制御手段は、前記可変バルブ装置を制御することで前記制限運転制御を実行することを特徴とする請求項1乃至6のいずれかに記載の内燃機関の制御装置。
A variable valve device for changing the opening and closing characteristics of an intake valve and / or an exhaust valve of an internal combustion engine;
The control device for an internal combustion engine according to any one of claims 1 to 6, wherein the limited operation control means executes the limited operation control by controlling the variable valve device.
前記制限運転制御手段は、変速装置の変速比を制御することで前記制限運転制御を実行することを特徴とする請求項1乃至7のいずれかに記載の内燃機関の制御装置。   8. The control apparatus for an internal combustion engine according to claim 1, wherein the limited operation control means executes the limited operation control by controlling a speed ratio of the transmission.
JP2006246006A 2006-08-08 2006-09-11 Control device for internal combustion engine Active JP4831336B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006246006A JP4831336B2 (en) 2006-09-11 2006-09-11 Control device for internal combustion engine
US11/819,657 US7707822B2 (en) 2006-08-08 2007-06-28 Cylinder air-fuel ratio controller for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006246006A JP4831336B2 (en) 2006-09-11 2006-09-11 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2008064077A true JP2008064077A (en) 2008-03-21
JP4831336B2 JP4831336B2 (en) 2011-12-07

Family

ID=39286991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006246006A Active JP4831336B2 (en) 2006-08-08 2006-09-11 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4831336B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073369A1 (en) * 2008-12-26 2010-07-01 トヨタ自動車株式会社 Device for controlling internal combustion engine using variable valve mechanism
CN102483005B (en) * 2009-08-28 2015-07-08 丰田自动车株式会社 Device for determining imbalance in air/fuel ratio among cylinders of internal combustion engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025736A (en) * 1988-06-23 1990-01-10 Nippon Denso Co Ltd Device for diagnosing failure of fuel injection device
JPH0510198A (en) * 1991-07-03 1993-01-19 Nippondenso Co Ltd Misfire time fail-safe unit of internal combustion engine
JPH0645644Y2 (en) * 1989-06-09 1994-11-24 株式会社ユニシアジェックス Fuel injection valve diagnostic device
JP2000248989A (en) * 1999-02-25 2000-09-12 Fuji Heavy Ind Ltd Misfire detecting device for multi-cylinder engine
JP2006138280A (en) * 2004-11-15 2006-06-01 Denso Corp Control device for internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025736A (en) * 1988-06-23 1990-01-10 Nippon Denso Co Ltd Device for diagnosing failure of fuel injection device
JPH0645644Y2 (en) * 1989-06-09 1994-11-24 株式会社ユニシアジェックス Fuel injection valve diagnostic device
JPH0510198A (en) * 1991-07-03 1993-01-19 Nippondenso Co Ltd Misfire time fail-safe unit of internal combustion engine
JP2000248989A (en) * 1999-02-25 2000-09-12 Fuji Heavy Ind Ltd Misfire detecting device for multi-cylinder engine
JP2006138280A (en) * 2004-11-15 2006-06-01 Denso Corp Control device for internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073369A1 (en) * 2008-12-26 2010-07-01 トヨタ自動車株式会社 Device for controlling internal combustion engine using variable valve mechanism
US8285469B2 (en) 2008-12-26 2012-10-09 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine including variable valve operating mechanism
JP5099216B2 (en) * 2008-12-26 2012-12-19 トヨタ自動車株式会社 Control device for internal combustion engine having variable valve mechanism
CN102483005B (en) * 2009-08-28 2015-07-08 丰田自动车株式会社 Device for determining imbalance in air/fuel ratio among cylinders of internal combustion engine

Also Published As

Publication number Publication date
JP4831336B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
US7707822B2 (en) Cylinder air-fuel ratio controller for internal combustion engine
JP4363398B2 (en) Air-fuel ratio control device for internal combustion engine
JP4420288B2 (en) Cylinder-by-cylinder air-fuel ratio control apparatus for internal combustion engine
JP4736058B2 (en) Air-fuel ratio control device for internal combustion engine
JP2893308B2 (en) Air-fuel ratio control device for internal combustion engine
JP4706590B2 (en) Cylinder-by-cylinder air-fuel ratio control apparatus for internal combustion engine
JP2008121534A (en) Abnormality diagnostic device of internal combustion engine
JP4497132B2 (en) Catalyst degradation detector
JP2005163696A (en) Misfire detection device of internal combustion engine
JP2008144639A (en) Control device for internal combustion engine
JP4314636B2 (en) Air-fuel ratio control device for internal combustion engine
JP4320778B2 (en) Air-fuel ratio sensor abnormality diagnosis device
CN108386261B (en) Catalyst degradation determination device
JP4193869B2 (en) Exhaust gas purification catalyst deterioration diagnosis device
JP2008128080A (en) Control device for internal combustion engine
JP2008064078A (en) Control device of internal combustion engine
US9109524B2 (en) Controller for internal combustion engine
JP2008128160A (en) Control device of internal combustion engine
JP4831336B2 (en) Control device for internal combustion engine
JP2007211609A (en) Device for controlling air-fuel ratio per cylinder of internal combustion engine
JP2006177371A (en) Internal combustion engine control device
JP2008014178A (en) Cylinder-by-cylinder air-fuel ratio control device for internal combustion engine
JP2008095627A (en) Air-fuel ratio control device for internal combustion engine
JP2008038784A (en) Cylinder-by-cylinder air-fuel ratio control device of internal combustion engine
JP2008128161A (en) Control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110906

R151 Written notification of patent or utility model registration

Ref document number: 4831336

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250