JP2008038784A - Cylinder-by-cylinder air-fuel ratio control device of internal combustion engine - Google Patents

Cylinder-by-cylinder air-fuel ratio control device of internal combustion engine Download PDF

Info

Publication number
JP2008038784A
JP2008038784A JP2006215165A JP2006215165A JP2008038784A JP 2008038784 A JP2008038784 A JP 2008038784A JP 2006215165 A JP2006215165 A JP 2006215165A JP 2006215165 A JP2006215165 A JP 2006215165A JP 2008038784 A JP2008038784 A JP 2008038784A
Authority
JP
Japan
Prior art keywords
cylinder
fuel ratio
air
learning
correction amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006215165A
Other languages
Japanese (ja)
Inventor
Tatsunori Kato
辰則 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006215165A priority Critical patent/JP2008038784A/en
Priority to US11/819,652 priority patent/US7519467B2/en
Publication of JP2008038784A publication Critical patent/JP2008038784A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the deterioration in control accuracy of the cylinder-by-cylinder air-fuel ratio by erroneous learning of a cylinder-by-cylinder air-fuel ratio correction quantity, in a system for controlling the air-fuel ratio of respective cylinders based on a detecting value of one air-fuel ratio sensor arranged in an exhaust confluent part of an internal combustion engine. <P>SOLUTION: The air-fuel ratio of the respective cylinders is estimated based on the detecting value of the air-fuel ratio sensor 37 arranged in the exhaust confluent part 36; the cylinder-by-cylinder air-fuel ratio correction quantity is calculated based on the estimated air-fuel ratio of the respective cylinders; the cylinder-by-cylinder air-fuel ratio correction quantity is learnt by annealing processing; the air-fuel ratio (a fuel injection quantity) of an air-fuel mixture supplied to the respective cylinders, is corrected with respective cylinders based on the cylinder-by-cylinder air-fuel ratio correction quantity and its learning value; and is controlled so as to reduce a variation in the air-fuel ratio between the cylinders. The erroneous learning of the cylinder-by-cylinder air-fuel ratio correction quantity is prevented by prohibiting learning of the cylinder-by-cylinder air-fuel ratio correction quantity, when a state of falling wide of a predetermined range (an allowable range) in the cylinder-by-cylinder air-fuel ration correction quantity of any cylinder, continues for a whole, when controlling this cylinder-by-cylinder air-fuel ratio. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、複数の気筒の排出ガスが合流する排気合流部に設置した空燃比センサの検出値に基づいて各気筒の空燃比(気筒別空燃比)を推定する機能を備えた内燃機関の気筒別空燃比制御装置に関する発明である。   The present invention relates to a cylinder of an internal combustion engine having a function of estimating an air-fuel ratio (cylinder-specific air-fuel ratio) of each cylinder based on a detection value of an air-fuel ratio sensor installed in an exhaust gas merging portion where exhaust gases of a plurality of cylinders merge. It is an invention related to another air-fuel ratio control device.

近年、特許文献1(特開2005−207405号公報)に記載されているように、複数の気筒の排出ガスが合流する排気合流部に設置した1つの空燃比センサの出力に基づいて複数の気筒の空燃比を気筒毎に推定すると共に、気筒毎に空燃比の気筒間ばらつきを補正するための各気筒の空燃比補正量(気筒別空燃比補正量)を算出して、この気筒別空燃比補正量をなまし処理等により学習し、気筒別空燃比補正量とその学習値に基づいて複数の気筒の空燃比(燃料噴射量)を気筒毎に制御する気筒別空燃比制御を実施するようにしたものがある。更に、この特許文献1の気筒別空燃比制御システムでは、気筒別空燃比の推定が困難(気筒別空燃比補正量の算出が困難)となる運転条件では、気筒別空燃比補正量の学習値を用いて気筒別空燃比制御を実施するようにしている。
特開2005−207405号公報
In recent years, as described in Patent Document 1 (Japanese Patent Application Laid-Open No. 2005-207405), a plurality of cylinders based on the output of one air-fuel ratio sensor installed at an exhaust merging portion where exhaust gases from a plurality of cylinders merge. The air-fuel ratio of each cylinder is estimated for each cylinder, and the air-fuel ratio correction amount (cylinder-by-cylinder correction amount) for each cylinder for correcting the variation in the air-fuel ratio for each cylinder is calculated. The correction amount is learned by a smoothing process or the like, and the cylinder-by-cylinder air-fuel ratio control is performed in which the air-fuel ratio (fuel injection amount) of a plurality of cylinders is controlled for each cylinder based on the cylinder-by-cylinder air-fuel ratio correction amount and the learned value. There is something that was made. Further, in the cylinder-by-cylinder air-fuel ratio control system of Patent Document 1, the learning value of the cylinder-by-cylinder air-fuel ratio correction amount is obtained under operating conditions in which it is difficult to estimate the cylinder-by-cylinder air-fuel ratio (it is difficult to calculate the cylinder-by-cylinder air-fuel ratio correction amount). Is used to perform the air-fuel ratio control for each cylinder.
JP 2005-207405 A

このような気筒別空燃比制御システムでは、例えば、空燃比センサ出力のサンプルタイミング(各気筒の空燃比検出タイミング)のずれによって気筒別空燃比の推定精度が低下したり、各気筒の燃料噴射系の個体差(燃料噴射弁の製造ばらつきや経時劣化等)によって燃料噴射量のばらつきが大きくなったりすると、気筒間の空燃比ばらつきが大きくなって、気筒別空燃比補正量やその学習値が大きくなることがある。しかし、気筒別空燃比補正量やその学習値が大きくなるほど、それらの精度が悪くなると考えられるため、気筒別空燃比補正量の学習値を無制限に更新すると、気筒別空燃比補正量を誤学習して気筒別空燃比制御が間違った方向に働く可能性があり、却って気筒別空燃比制御の精度が悪化する可能性がある。   In such a cylinder-by-cylinder air-fuel ratio control system, for example, the estimation accuracy of the cylinder-by-cylinder air-fuel ratio decreases due to a deviation in the sampling timing of the air-fuel ratio sensor output (air-fuel ratio detection timing of each cylinder), or the fuel injection system of each cylinder If the variation in fuel injection amount becomes large due to individual differences (manufacturing variation of fuel injection valves, deterioration over time, etc.), the variation in air-fuel ratio among cylinders will increase, and the cylinder-by-cylinder air-fuel ratio correction amount and its learning value will increase. May be. However, as the cylinder-by-cylinder air-fuel ratio correction amount and its learning value increase, their accuracy is considered to deteriorate. Therefore, if the learning value of the cylinder-by-cylinder air-fuel ratio correction amount is updated indefinitely, the cylinder-by-cylinder air-fuel ratio correction amount is erroneously learned. As a result, the cylinder-by-cylinder air-fuel ratio control may work in the wrong direction, and the accuracy of the cylinder-by-cylinder air-fuel ratio control may deteriorate.

本発明はこのような事情を考慮してなされたものであり、従ってその目的は、気筒別空燃比補正量の誤学習による気筒別空燃比制御の精度悪化を防止することができる内燃機関の気筒別空燃比制御装置を提供することにある。   The present invention has been made in view of such circumstances, and therefore the object of the present invention is to provide a cylinder of an internal combustion engine that can prevent deterioration in accuracy of cylinder-by-cylinder air-fuel ratio control due to erroneous learning of the cylinder-by-cylinder air-fuel ratio correction amount. Another object is to provide a separate air-fuel ratio control apparatus.

上記目的を達成するために、請求項1に係る発明は、内燃機関の複数の気筒の排出ガスが合流する排気合流部に、該排出ガスの空燃比を検出する空燃比センサを設置し、前記空燃比センサの検出値に基づいて各気筒の空燃比を推定する気筒別空燃比推定手段と、前記複数の気筒について気筒毎に空燃比の気筒間ばらつきを補正するための各気筒の空燃比補正量(以下「気筒別空燃比補正量」という)を算出する気筒別空燃比補正量算出手段と、前記気筒別空燃比補正量を学習する気筒別学習手段と、前記気筒別空燃比補正量及び/又はその学習値に基づいて各気筒の燃料噴射量を補正して気筒間の空燃比ばらつきを小さくする気筒別空燃比制御を実行する気筒別空燃比制御手段とを備えた内燃機関の気筒別空燃比制御装置において、いずれか1つ又は2つ以上の気筒の気筒別空燃比補正量が所定範囲を外れたときに前記気筒別学習手段による気筒別空燃比補正量の学習を学習禁止手段によって禁止するようにしたものである。このようにすれば、いずれか1つ又は2つ以上の気筒の気筒別空燃比補正量が所定範囲(許容範囲)から外れたときに気筒別空燃比補正量の学習を禁止することができるので、気筒別空燃比補正量の誤学習を防止することができ、気筒別空燃比制御の精度悪化を防止することができる。   In order to achieve the above object, according to the first aspect of the present invention, an air-fuel ratio sensor for detecting an air-fuel ratio of the exhaust gas is installed at an exhaust merging portion where exhaust gases of a plurality of cylinders of the internal combustion engine merge, Cylinder air-fuel ratio estimating means for estimating the air-fuel ratio of each cylinder based on the detection value of the air-fuel ratio sensor, and air-fuel ratio correction of each cylinder for correcting the inter-cylinder variation of the air-fuel ratio for each of the plurality of cylinders Cylinder-by-cylinder air-fuel ratio correction amount calculating means for calculating the amount (hereinafter referred to as “cylinder-by-cylinder air-fuel ratio correction amount”), cylinder-by-cylinder learning means for learning the cylinder-by-cylinder air-fuel ratio correction amount, And / or cylinder-specific air-fuel ratio control means for performing cylinder-specific air-fuel ratio control that corrects the fuel injection amount of each cylinder based on the learned value to reduce the air-fuel ratio variation between cylinders. In the air-fuel ratio control device, either One or cylinder air-fuel ratio correction amount of two or more cylinders is obtained so as to prohibit the learning prohibition means learning cylinder air-fuel ratio correction amount by the cylinder learning means when out of a predetermined range. In this way, learning of the cylinder-by-cylinder air-fuel ratio correction amount can be prohibited when the cylinder-by-cylinder air-fuel ratio correction amount of any one or more cylinders deviates from the predetermined range (allowable range). Thus, erroneous learning of the cylinder-by-cylinder air-fuel ratio correction amount can be prevented, and deterioration in accuracy of the cylinder-by-cylinder air-fuel ratio control can be prevented.

この場合、請求項2のように、内燃機関の運転領域毎に気筒別空燃比補正量を学習する場合は、いずれか1つ又は2つ以上の気筒の気筒別空燃比補正量が所定範囲を外れた運転領域についてのみ気筒別空燃比補正量の学習を禁止するようにしても良い。このようにすれば、気筒別空燃比補正量が所定範囲を外れた運転領域のみで気筒別空燃比補正量の学習を禁止して気筒別空燃比補正量の誤学習を防止しながら、気筒別空燃比補正量が所定範囲内に収まる他の運転領域では、気筒別空燃比補正量の学習を継続して、気筒別空燃比補正量の学習精度を高めることができる。   In this case, when learning the air-fuel ratio correction amount for each cylinder for each operating region of the internal combustion engine as in claim 2, the air-fuel ratio correction amount for each cylinder of any one or more cylinders falls within a predetermined range. The learning of the cylinder-by-cylinder air-fuel ratio correction amount may be prohibited only for the deviated operation region. In this way, the learning of the cylinder-by-cylinder air-fuel ratio correction amount is prohibited only in the operation region where the cylinder-by-cylinder air-fuel ratio correction amount is outside the predetermined range, thereby preventing erroneous learning of the cylinder-by-cylinder air-fuel ratio correction amount. In other operating regions where the air-fuel ratio correction amount falls within the predetermined range, learning of the cylinder-by-cylinder air-fuel ratio correction amount can be continued to improve the learning accuracy of the cylinder-by-cylinder air-fuel ratio correction amount.

また、請求項3のように、気筒別空燃比補正量が所定範囲を外れた気筒又は気筒グループについてのみ前記気筒別学習手段による気筒別空燃比補正量の学習を禁止するようにしても良い。このようにすれば、気筒別空燃比補正量が所定範囲を外れた気筒又は気筒グループについてのみ、気筒別空燃比補正量の学習を禁止して気筒別空燃比補正量の誤学習を防止しながら、気筒別空燃比補正量が所定範囲内に収まる他の気筒又は気筒グループについては、気筒別空燃比補正量の学習を継続して、気筒別空燃比補正量の学習精度を高めることができる。   According to a third aspect of the present invention, learning of the cylinder-by-cylinder air-fuel ratio correction amount by the cylinder-by-cylinder learning unit may be prohibited only for cylinders or cylinder groups in which the cylinder-by-cylinder air-fuel ratio correction amount is outside a predetermined range. In this way, learning of the cylinder-by-cylinder air-fuel ratio correction amount is prohibited only for the cylinders or cylinder groups whose cylinder-by-cylinder air-fuel ratio correction amount is outside the predetermined range, thereby preventing erroneous learning of the cylinder-by-cylinder air-fuel ratio correction amount. For other cylinders or cylinder groups in which the cylinder-by-cylinder air-fuel ratio correction amount falls within the predetermined range, learning of the cylinder-by-cylinder air-fuel ratio correction amount can be continued to improve the learning accuracy of the cylinder-by-cylinder air-fuel ratio correction amount.

更に、請求項4のように、いずれか1つ又は2つ以上の気筒の気筒別空燃比補正量が所定範囲を外れた運転領域において、気筒別空燃比補正量が所定範囲を外れた気筒又は気筒グループについてのみ前記気筒別学習手段による気筒別空燃比補正量の学習を禁止するようにしても良い。このようにすれば、気筒別空燃比補正量の学習を禁止する運転領域と気筒を最小限にすることができる。   Further, as in claim 4, in the operation region where the cylinder-by-cylinder air-fuel ratio correction amount of any one or more cylinders is out of the predetermined range, The learning of the cylinder specific air-fuel ratio correction amount by the cylinder specific learning means may be prohibited only for the cylinder group. In this way, it is possible to minimize the operation region and the cylinder in which learning of the air-fuel ratio correction amount for each cylinder is prohibited.

また、請求項5のように、いずれか1つ又は2つ以上の気筒の気筒別空燃比補正量の学習値が所定範囲を外れたときに前記気筒別学習手段による気筒別空燃比補正量の学習を禁止するようにしても良い。このようにしても、前記請求項1と同様の効果を得ることができる。   Further, as described in claim 5, when the learning value of the cylinder-by-cylinder air-fuel ratio correction amount of any one or more cylinders is out of a predetermined range, You may make it prohibit learning. Even if it does in this way, the effect similar to the said Claim 1 can be acquired.

この場合も、請求項6のように、いずれか1つ又は2つ以上の気筒の気筒別空燃比補正量の学習値が所定範囲を外れた運転領域についてのみ気筒別空燃比補正量の学習を禁止するようにしたり、或は、請求項7のように、気筒別空燃比補正量が所定範囲を外れた気筒又は気筒グループについてのみ気筒別空燃比補正量の学習を禁止するようにしたり、或は、請求項8のように、いずれか1つ又は2つ以上の気筒の気筒別空燃比補正量の学習値が所定範囲を外れた運転領域において、気筒別空燃比補正量の学習値が所定範囲を外れた気筒又は気筒グループについてのみ気筒別空燃比補正量の学習を禁止するようにしても良い。いずれの場合も、前記請求項2〜4に係る発明と同様の効果を得ることができる。   Also in this case, as in the sixth aspect, the learning of the cylinder-by-cylinder air-fuel ratio correction amount is performed only in the operation region in which the learning value of the cylinder-by-cylinder air-fuel ratio correction amount of any one or more cylinders is out of the predetermined range. Or prohibiting learning of the cylinder-by-cylinder air-fuel ratio correction amount only for the cylinder or the cylinder group in which the cylinder-by-cylinder air-fuel ratio correction amount is outside the predetermined range, as in claim 7. As in claim 8, the learning value of the cylinder-by-cylinder air-fuel ratio correction amount is predetermined in the operating region where the learning value of the cylinder-by-cylinder air-fuel ratio correction amount of any one or more cylinders is outside the predetermined range. The learning of the cylinder-by-cylinder air-fuel ratio correction amount may be prohibited only for a cylinder or a cylinder group outside the range. In either case, the same effects as those of the inventions according to claims 2 to 4 can be obtained.

以下、本発明を実施するための最良の形態を具体化した幾つかの実施例を説明する。   Several embodiments embodying the best mode for carrying out the present invention will be described below.

本発明の実施例1を図1乃至図7に基づいて説明する。
まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。
内燃機関である例えば直列4気筒のエンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、吸入空気量を検出するエアフローメータ14が設けられている。このエアフローメータ14の下流側には、モータ等によって開度調節されるスロットルバルブ15とスロットル開度を検出するスロットル開度センサ16とが設けられている。
A first embodiment of the present invention will be described with reference to FIGS.
First, a schematic configuration of the entire engine control system will be described with reference to FIG.
An air cleaner 13 is provided at the most upstream portion of the intake pipe 12 of an in-line four-cylinder engine 11 that is an internal combustion engine, for example, and an air flow meter 14 that detects the intake air amount is provided downstream of the air cleaner 13. . On the downstream side of the air flow meter 14, a throttle valve 15 whose opening is adjusted by a motor or the like and a throttle opening sensor 16 for detecting the throttle opening are provided.

更に、スロットルバルブ15の下流側には、サージタンク17が設けられ、このサージタンク17には、吸気管圧力を検出する吸気管圧力センサ18が設けられている。また、サージタンク17には、エンジン11の各気筒に空気を導入する吸気マニホールド19が設けられ、各気筒の吸気マニホールド19の吸気ポート近傍に、それぞれ燃料を噴射する燃料噴射弁20が取り付けられている。エンジン運転中は、燃料タンク21内の燃料が燃料ポンプ22によりデリバリパイプ23に送られ、各気筒の噴射タイミング毎に各気筒の燃料噴射弁20から燃料が噴射される。デリバリパイプ23には、燃料圧力(燃圧)を検出する燃圧センサ24が取り付けられている。   Further, a surge tank 17 is provided on the downstream side of the throttle valve 15, and an intake pipe pressure sensor 18 for detecting the intake pipe pressure is provided in the surge tank 17. The surge tank 17 is provided with an intake manifold 19 for introducing air into each cylinder of the engine 11, and a fuel injection valve 20 for injecting fuel is attached in the vicinity of the intake port of the intake manifold 19 of each cylinder. Yes. During engine operation, the fuel in the fuel tank 21 is sent to the delivery pipe 23 by the fuel pump 22 and fuel is injected from the fuel injection valve 20 of each cylinder at each injection timing of each cylinder. A fuel pressure sensor 24 that detects fuel pressure (fuel pressure) is attached to the delivery pipe 23.

また、エンジン11には、吸気バルブ25と排気バルブ26の開閉タイミングをそれぞれ可変する可変バルブタイミング機構27,28が設けられている。更に、エンジン11には、吸気カム軸29と排気カム軸30の回転に同期してカム角信号を出力する吸気カム角センサ31と排気カム角センサ32が設けられ、エンジン11のクランク軸の回転に同期して所定クランク角毎(例えば30℃A毎)にクランク角信号のパルスを出力するクランク角センサ33が設けられている。   Further, the engine 11 is provided with variable valve timing mechanisms 27 and 28 for changing the opening and closing timings of the intake valve 25 and the exhaust valve 26, respectively. Further, the engine 11 is provided with an intake cam angle sensor 31 and an exhaust cam angle sensor 32 that output a cam angle signal in synchronization with the rotation of the intake cam shaft 29 and the exhaust cam shaft 30, and the rotation of the crank shaft of the engine 11. Is provided with a crank angle sensor 33 for outputting a pulse of a crank angle signal at every predetermined crank angle (for example, every 30 ° C. A).

一方、エンジン11の各気筒の排気マニホールド35が合流する排気合流部36には、排出ガスの空燃比を検出する空燃比センサ37が設置され、この空燃比センサ37の下流側に排出ガス中のCO,HC,NOx等を浄化する三元触媒等の触媒38が設けられている。   On the other hand, an air-fuel ratio sensor 37 for detecting the air-fuel ratio of the exhaust gas is installed in the exhaust gas converging portion 36 where the exhaust manifold 35 of each cylinder of the engine 11 joins. A catalyst 38 such as a three-way catalyst for purifying CO, HC, NOx and the like is provided.

上記空燃比センサ37等の各種センサの出力は、エンジン制御回路(以下「ECU」と表記する)40に入力される。このECU40は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御プログラムを実行することで、エンジン運転状態に応じて各気筒の燃料噴射弁20の燃料噴射量や点火時期を制御する。   Outputs of various sensors such as the air-fuel ratio sensor 37 are input to an engine control circuit (hereinafter referred to as “ECU”) 40. The ECU 40 is mainly composed of a microcomputer, and executes various engine control programs stored in a built-in ROM (storage medium), so that the fuel of the fuel injection valve 20 of each cylinder according to the engine operating state. Control injection quantity and ignition timing.

本実施例1では、ECU40は、図2乃至図5の気筒別空燃比制御用の各ルーチンを実行することで、エンジン運転中に後述する気筒別空燃比推定モデルを用いて空燃比センサ37の検出値(排気合流部36を流れる排出ガスの実空燃比)に基づいて各気筒の空燃比(気筒別空燃比)を推定し、全気筒の推定空燃比の平均値を算出して、その平均値を基準空燃比(全気筒の目標空燃比)に設定すると共に、各気筒の推定空燃比(気筒別推定空燃比)と基準空燃比との偏差を各気筒毎に算出して、その偏差が小さくなるように各気筒の燃料噴射量に対する燃料補正係数(気筒別空燃比補正量)を算出すると共に、この気筒別空燃比補正量をなまし処理等により学習して、気筒別空燃比補正量とその学習値に基づいて各気筒の燃料噴射量を補正することで、各気筒に供給する混合気の空燃比を各気筒毎に補正して気筒間の空燃比ばらつきを少なくするように制御する(以下、この制御を気筒別空燃比制御という)。この際、気筒別空燃比補正量をなまし処理等により学習して、その学習値をECU40のバックアップRAM等の書き換え可能な不揮発性メモリ(図示せず)に気筒毎に更新記憶する。尚、気筒別空燃比の推定が困難(気筒別空燃比補正量の算出が困難)となる運転条件では、気筒別空燃比補正量の学習値を用いて気筒別空燃比制御を実施するようにしても良い。   In the first embodiment, the ECU 40 executes the routines for cylinder-by-cylinder air-fuel ratio control in FIGS. 2 to 5, thereby using the cylinder-by-cylinder air-fuel ratio estimation model to be described later during engine operation. Based on the detected value (the actual air-fuel ratio of the exhaust gas flowing through the exhaust gas merging portion 36), the air-fuel ratio of each cylinder (air-fuel ratio for each cylinder) is estimated, and the average value of the estimated air-fuel ratios of all cylinders is calculated. The value is set to the reference air-fuel ratio (target air-fuel ratio for all cylinders), and the deviation between the estimated air-fuel ratio of each cylinder (the estimated air-fuel ratio for each cylinder) and the reference air-fuel ratio is calculated for each cylinder. A fuel correction coefficient (cylinder-by-cylinder air-fuel ratio correction amount) for the fuel injection amount of each cylinder is calculated so as to decrease, and this cylinder-by-cylinder air-fuel ratio correction amount is learned by smoothing processing, etc. And the fuel injection amount of each cylinder based on the learned value It is, controlled so as to reduce the air-fuel ratio variation among the cylinders fuel ratio of a mixture supplied to each cylinder is corrected for each cylinder (hereinafter, this control of cylinder air-fuel ratio control). At this time, the cylinder-by-cylinder air-fuel ratio correction amount is learned by a smoothing process or the like, and the learned value is updated and stored for each cylinder in a rewritable nonvolatile memory (not shown) such as a backup RAM of the ECU 40. Note that, under operating conditions in which it is difficult to estimate the cylinder-by-cylinder air-fuel ratio (calculation of the cylinder-by-cylinder air-fuel ratio correction amount), the cylinder-by-cylinder air-fuel ratio control is performed using the learning value of the cylinder-by-cylinder air-fuel ratio correction amount. May be.

ここで、空燃比センサ37の検出値(排気合流部36を流れる排出ガスの実空燃比)に基づいて各気筒の空燃比を推定するモデル(以下「気筒別空燃比推定モデル」という)の具体例を説明する。   Here, a specific example of a model (hereinafter referred to as “cylinder-specific air-fuel ratio estimation model”) that estimates the air-fuel ratio of each cylinder based on the detection value of the air-fuel ratio sensor 37 (the actual air-fuel ratio of the exhaust gas flowing through the exhaust gas merging portion 36). An example will be described.

排気合流部36におけるガス交換に着目して、空燃比センサ37の検出値を、排気合流部36における各気筒の推定空燃比の履歴と空燃比センサ37の検出値の履歴とにそれぞれ所定の重みを乗じて加算したものとしてモデル化し、該モデルを用いて各気筒の空燃比を推定するようにしている。この際、オブザーバとしてはカルマンフィルタを用いる。   Paying attention to the gas exchange in the exhaust gas merging section 36, the detected value of the air-fuel ratio sensor 37 is given a predetermined weight to the estimated air-fuel ratio history of each cylinder and the detected value history of the air-fuel ratio sensor 37 in the exhaust gas merging section 36, respectively. The model is obtained by multiplying and adding, and the air-fuel ratio of each cylinder is estimated using the model. At this time, a Kalman filter is used as an observer.

より具体的には、排気合流部36におけるガス交換のモデルを次の(1)式にて近似する。
ys(t)=k1 ×u(t-1) +k2 ×u(t-2) −k3 ×ys(t-1)−k4 ×ys(t-2)
……(1)
ここで、yS は空燃比センサ37の検出値、uは排気合流部36に流入するガスの空燃比、k1 〜k4 は定数である。
More specifically, a gas exchange model in the exhaust merging portion 36 is approximated by the following equation (1).
ys (t) = k1 * u (t-1) + k2 * u (t-2) -k3 * ys (t-1) -k4 * ys (t-2)
...... (1)
Here, yS is the detected value of the air-fuel ratio sensor 37, u is the air-fuel ratio of the gas flowing into the exhaust merging section 36, and k1 to k4 are constants.

排気系では、排気合流部36におけるガス流入及び混合の一次遅れ要素と、空燃比センサ37の応答遅れによる一次遅れ要素とが存在する。そこで、上記(1)式では、これらの一次遅れ要素を考慮して過去2回分の履歴を参照することとしている。   In the exhaust system, there are a primary delay element of gas inflow and mixing in the exhaust confluence 36 and a primary delay element due to a response delay of the air-fuel ratio sensor 37. Therefore, in the above equation (1), the history for the past two times is referred to in consideration of these first order lag elements.

上記(1)式を状態空間モデルに変換すると、次の(2a)、(2b)式が導き出される。
X(t+1) =A・X(t) +B・u(t) +W(t) ……(2a)
Y(t) =C・X(t) +D・u(t) ……(2b)
When the above equation (1) is converted into a state space model, the following equations (2a) and (2b) are derived.
X (t + 1) = A.X (t) + B.u (t) + W (t) (2a)
Y (t) = C · X (t) + D · u (t) (2b)

ここで、A,B,C,Dはモデルのパラメータ、Yは空燃比センサ37の検出値、Xは状態変数としての各気筒の推定空燃比、Wはノイズである。   Here, A, B, C, and D are model parameters, Y is a detected value of the air-fuel ratio sensor 37, X is an estimated air-fuel ratio of each cylinder as a state variable, and W is noise.

更に、上記(2a)、(2b)式によりカルマンフィルタを設計すると、次の(3)式が得られる。
X^(k+1|k)=A・X^(k|k-1)+K{Y(k) −C・A・X^(k|k-1)} ……(3)
ここで、X^(エックスハット)は各気筒の推定空燃比、Kはカルマンゲインである。X^(k+1|k)の意味は、時間(k) の推定値により次の時間(k+1) の推定値を求めることを表す。
Further, when the Kalman filter is designed by the above equations (2a) and (2b), the following equation (3) is obtained.
X ^ (k + 1 | k) = A.X ^ (k | k-1) + K {Y (k) -C.A.X ^ (k | k-1)} (3)
Here, X ^ (X hat) is the estimated air-fuel ratio of each cylinder, and K is the Kalman gain. The meaning of X ^ (k + 1 | k) represents that the estimated value of the next time (k + 1) is obtained from the estimated value of time (k).

以上のようにして、気筒別空燃比推定モデルをカルマンフィルタ型オブザーバにて構成することにより、燃焼サイクルの進行に伴い各気筒の空燃比を順次推定することができる。   As described above, by configuring the cylinder-by-cylinder air-fuel ratio estimation model using the Kalman filter type observer, it is possible to sequentially estimate the air-fuel ratio of each cylinder as the combustion cycle progresses.

本実施例1では、各気筒の推定空燃比(気筒別推定空燃比)と基準空燃比との偏差に基づいて算出した気筒別空燃比補正量をなまし処理等により学習して、その学習値をECU40のバックアップRAM等の書き換え可能な不揮発性メモリ(図示せず)に気筒毎に更新記憶するが、気筒別空燃比補正量が大きくなるほど、その学習精度が悪くなると考えられるため、気筒別空燃比補正量の学習値を無制限に更新すると、気筒別空燃比補正量を誤学習して気筒別空燃比制御が間違った方向に働く可能性があり、却って気筒別空燃比制御の精度が悪化する可能性がある。   In the first embodiment, the cylinder-by-cylinder air-fuel ratio correction amount calculated based on the deviation between the estimated air-fuel ratio (cylinder-by-cylinder estimated air-fuel ratio) of each cylinder and the reference air-fuel ratio is learned by a smoothing process or the like. Is updated and stored for each cylinder in a rewritable non-volatile memory (not shown) such as a backup RAM of the ECU 40. The larger the cylinder air-fuel ratio correction amount, the worse the learning accuracy. If the learning value of the fuel ratio correction amount is updated indefinitely, there is a possibility that the cylinder-by-cylinder air-fuel ratio correction amount is mislearned and the cylinder-by-cylinder air-fuel ratio control may work in the wrong direction. there is a possibility.

この対策として、本実施例1では、いずれかの気筒の気筒別空燃比補正量が所定範囲(許容範囲)から外れた状態が暫く続いたときに気筒別空燃比補正量の学習を禁止することで、気筒別空燃比補正量の誤学習を防止するようにしている。   As a countermeasure, in the first embodiment, the learning of the cylinder-by-cylinder air-fuel ratio correction amount is prohibited when a state in which the cylinder-by-cylinder air-fuel ratio correction amount is out of a predetermined range (allowable range) continues for a while. Therefore, erroneous learning of the cylinder-by-cylinder air-fuel ratio correction amount is prevented.

以上説明した気筒別空燃比制御と気筒別空燃比補正量の学習は、ECU40によって図2乃至図5の各ルーチンに従って実行される。以下、各ルーチンの処理内容を説明する。   The learning of the cylinder-by-cylinder air-fuel ratio control and the cylinder-by-cylinder air-fuel ratio correction amount described above is executed by the ECU 40 in accordance with the routines shown in FIGS. The processing contents of each routine will be described below.

[気筒別空燃比制御メインルーチン]
図2の気筒別空燃比制御メインルーチンは、クランク角センサ33の出力パルスに同期して所定クランク角毎(例えば30℃A毎)に起動され、特許請求の範囲でいう気筒別空燃比制御手段としての役割を果たす。本ルーチンが起動されると、まずステップ101で、気筒別空燃比制御の実行条件が成立しているか否かを判定する。この気筒別空燃比制御の実行条件としては、例えば次の条件(1) 〜(4) がある。
[Air-fuel ratio control routine for each cylinder]
The cylinder-by-cylinder air-fuel ratio control main routine of FIG. 2 is started at every predetermined crank angle (for example, every 30 ° C. A) in synchronization with the output pulse of the crank angle sensor 33. As a role. When this routine is started, first, at step 101, it is determined whether or not an execution condition for the cylinder-by-cylinder air-fuel ratio control is satisfied. As execution conditions for the cylinder-by-cylinder air-fuel ratio control, for example, there are the following conditions (1) to (4).

(1) 空燃比センサ37が活性状態であること
(2) 空燃比センサ37が異常(故障)と判定されていないこと
(3) エンジン11が暖機状態(例えば冷却水温が所定温度以上)であること
(4) エンジン運転領域(例えばエンジン回転速度と吸気管圧力)が空燃比推定精度を確保できる運転領域であること
(1) The air-fuel ratio sensor 37 is in an active state
(2) The air-fuel ratio sensor 37 is not determined to be abnormal (failure)
(3) The engine 11 is in a warm-up state (for example, the cooling water temperature is equal to or higher than a predetermined temperature).
(4) The engine operating range (for example, engine speed and intake pipe pressure) must be an operating range where air-fuel ratio estimation accuracy can be ensured.

これら4つの条件(1) 〜(4) を全て満したときに気筒別空燃比制御の実行条件が成立し、いずれか1つでも満たさない条件があれば、実行条件が不成立となる。この実行条件が不成立であれば、以降の処理を行うことなく、本ルーチンを終了する。   The execution condition of the cylinder-by-cylinder air-fuel ratio control is satisfied when all of these four conditions (1) to (4) are satisfied. If any one of the conditions is not satisfied, the execution condition is not satisfied. If this execution condition is not satisfied, this routine is terminated without performing the subsequent processing.

一方、実行条件が成立していれば、ステップ102に進み、各気筒の空燃比検出タイミング(空燃比センサ37の出力のサンプルタイミング)を、その時点のエンジン負荷(例えば吸気管圧力)に応じてマップにより設定する。尚、各気筒の空燃比検出タイミングをエンジン負荷とエンジン回転速度に応じてマップにより設定しても良い。   On the other hand, if the execution condition is satisfied, the routine proceeds to step 102, where the air-fuel ratio detection timing (sample timing of the output of the air-fuel ratio sensor 37) of each cylinder is set according to the engine load (for example, intake pipe pressure) at that time. Set by map. Note that the air-fuel ratio detection timing of each cylinder may be set by a map according to the engine load and the engine speed.

この後、ステップ103に進み、現在のクランク角が上記ステップ102で設定した空燃比検出タイミングであるか否かを判定し、空燃比検出タイミングでなければ、以降の処理を行うことなく、本ルーチンを終了する。   Thereafter, the routine proceeds to step 103, where it is determined whether or not the current crank angle is the air-fuel ratio detection timing set in step 102. If it is not the air-fuel ratio detection timing, this routine is executed without performing the subsequent processing. Exit.

これに対して、現在のクランク角が上記ステップ102で設定した空燃比検出タイミングであれば、ステップ104に進み、図3の気筒別空燃比制御実行ルーチンを実行して、本ルーチンを終了する。   On the other hand, if the current crank angle is the air-fuel ratio detection timing set in step 102, the routine proceeds to step 104, the cylinder-by-cylinder air-fuel ratio control execution routine of FIG. 3 is executed, and this routine is terminated.

[気筒別空燃比制御実行ルーチン]
図3の気筒別空燃比制御実行ルーチンは、図2の気筒別空燃比制御メインルーチンのステップ104で実行されるサブルーチンである。本ルーチンが起動されると、まずステップ201で、空燃比センサ37の出力(空燃比検出値)を読み込む。この後、ステップ202に進み、前記気筒別空燃比推定モデルを用いて今回の空燃比推定対象となる気筒の空燃比を空燃比センサ37の検出値に基づいて推定する。このステップ202の処理が特許請求の範囲でいう気筒別空燃比推定手段としての役割を果たす。この後、ステップ203に進み、全気筒の推定空燃比の平均値を算出して、その平均値を基準空燃比(全気筒の目標空燃比)に設定する。
[Cylinder-specific air-fuel ratio control execution routine]
The cylinder-by-cylinder air-fuel ratio control execution routine of FIG. 3 is a subroutine executed in step 104 of the cylinder-by-cylinder air-fuel ratio control main routine of FIG. When this routine is started, first, at step 201, the output (air-fuel ratio detection value) of the air-fuel ratio sensor 37 is read. Thereafter, the routine proceeds to step 202 where the air-fuel ratio of the cylinder that is the current air-fuel ratio estimation target is estimated based on the detected value of the air-fuel ratio sensor 37 using the cylinder-by-cylinder air-fuel ratio estimation model. The process of step 202 serves as the cylinder-by-cylinder air-fuel ratio estimating means in the claims. Thereafter, the process proceeds to step 203, where an average value of estimated air-fuel ratios of all cylinders is calculated, and the average value is set as a reference air-fuel ratio (target air-fuel ratio of all cylinders).

この後、ステップ204に進み、各気筒の推定空燃比と基準空燃比との偏差を算出して、その偏差が小さくなるように気筒別空燃比補正量(各気筒の燃料補正量)を算出した後、ステップ205に進み、後述する図4の気筒別空燃比補正量学習ルーチンを実行して、気筒別空燃比補正量を学習する。   Thereafter, the routine proceeds to step 204, where the deviation between the estimated air-fuel ratio of each cylinder and the reference air-fuel ratio is calculated, and the cylinder-by-cylinder air-fuel ratio correction amount (fuel correction amount of each cylinder) is calculated so that the deviation becomes smaller. Thereafter, the routine proceeds to step 205, where a cylinder-by-cylinder air-fuel ratio correction amount learning routine of FIG. 4 described later is executed to learn the cylinder-by-cylinder air-fuel ratio correction amount.

そして、次のステップ206で、各気筒の気筒別空燃比補正量とその学習値を用いて、各気筒の燃料噴射量を補正することで、各気筒に供給する混合気の空燃比を各気筒毎に補正して気筒間の空燃比ばらつきを少なくするように制御する。   Then, in the next step 206, the air-fuel ratio of the air-fuel mixture supplied to each cylinder is changed to each cylinder by correcting the fuel injection amount of each cylinder using the cylinder-by-cylinder air-fuel ratio correction amount and the learning value thereof. Correction is performed every time and control is performed so as to reduce variation in the air-fuel ratio between cylinders.

[気筒別空燃比補正量学習ルーチン]
図4の気筒別空燃比補正量学習ルーチンは、図3の気筒別空燃比制御実行ルーチンのステップ205で実行されるサブルーチンであり、特許請求の範囲でいう気筒別学習手段としての役割を果たす。本ルーチンが起動されると、まずステップ301で、学習実行条件が成立しているか否かを判定する。ここで、学習実行条件としては、例えば次の2つの条件(1) ,(2) がある。
[Cylinder-specific air-fuel ratio correction amount learning routine]
The cylinder-by-cylinder air-fuel ratio correction amount learning routine in FIG. 4 is a subroutine executed in step 205 of the cylinder-by-cylinder air-fuel ratio control execution routine in FIG. 3, and plays a role as cylinder-by-cylinder learning means in the claims. When this routine is started, first, at step 301, it is determined whether or not a learning execution condition is satisfied. Here, the learning execution conditions include, for example, the following two conditions (1) and (2).

(1) 気筒別空燃比制御の実行中であること
(2) 空燃比変動量が所定値以下の安定した運転状態であること
上記2つの条件(1) ,(2) を両方とも満たせば、学習実行条件が成立し、いずれか1つでも満たさない条件があれば、学習実行条件が不成立となる。この学習実行条件が不成立であれば、以降の処理を行うことなく、本ルーチンを終了する。
(1) The air-fuel ratio control for each cylinder is being executed.
(2) The air-fuel ratio fluctuation amount is in a stable operating state with a predetermined value or less. If both of the above two conditions (1) and (2) are satisfied, the learning execution condition is satisfied, and any one of them is not satisfied. If there is a condition, the learning execution condition is not satisfied. If this learning execution condition is not satisfied, this routine is terminated without performing the subsequent processing.

一方、学習実行条件が成立していれば、ステップ302に進み、後述する図5の学習禁止判定ルーチンを実行して、いずれかの気筒の気筒別空燃比補正量が所定範囲外(許容範囲外)であるか否かを判定し、いずれかの気筒の気筒別空燃比補正量が所定範囲外である状態が所定時間継続した時点で、学習禁止フラグを学習禁止を意味するONにセットする。   On the other hand, if the learning execution condition is satisfied, the routine proceeds to step 302, where a learning prohibition determination routine of FIG. 5 described later is executed, and the cylinder-by-cylinder air-fuel ratio correction amount is outside the predetermined range (outside the allowable range). When the state where the cylinder-by-cylinder air-fuel ratio correction amount of any cylinder is outside the predetermined range continues for a predetermined time, the learning prohibition flag is set to ON, meaning that learning is prohibited.

そして、次のステップ303で、学習禁止フラグが学習禁止を意味するONにセットされているか否かを判定し、学習禁止フラグがON(学習禁止)にセットされていれば、以降の処理を行うことなく、本ルーチンを終了する。これにより、気筒別空燃比補正量の学習が禁止される。   Then, in the next step 303, it is determined whether or not the learning prohibition flag is set to ON meaning that learning is prohibited. If the learning prohibition flag is set to ON (learning prohibition), the subsequent processing is performed. This routine is terminated without any processing. This prohibits learning of the cylinder specific air-fuel ratio correction amount.

これに対して、学習禁止フラグがOFF(学習許可)であれば、ステップ304に進み、ECU40の書き換え可能な不揮発性メモリ(図示せず)に記憶されている図7の気筒別空燃比補正量学習マップにおいて、現在のエンジン運転領域(エンジン回転速度と負荷)に対応する学習領域(気筒別空燃比補正量の学習値を更新する学習領域)を選択する。この後、ステップ305に進み、気筒毎に気筒別空燃比補正量のなまし値をなまし係数Kを用いて次式により算出する。
気筒別空燃比補正量なまし値=
{前回なまし値×(K−1)+今回の気筒別空燃比補正量}/K
On the other hand, if the learning prohibition flag is OFF (learning permission), the routine proceeds to step 304, and the cylinder-by-cylinder air-fuel ratio correction amount of FIG. 7 stored in the rewritable nonvolatile memory (not shown) of the ECU 40. In the learning map, a learning area (learning area for updating the learning value of the cylinder-by-cylinder air-fuel ratio correction amount) corresponding to the current engine operating area (engine speed and load) is selected. Thereafter, the routine proceeds to step 305, where the smoothing value of the cylinder-by-cylinder air-fuel ratio correction amount is calculated for each cylinder by the following equation using the smoothing coefficient K.
Air-fuel ratio correction amount by cylinder Smoothing value =
{Previous annealing value × (K-1) + Current cylinder air-fuel ratio correction amount} / K

この後、ステップ306に進み、気筒別空燃比補正量学習値の更新タイミングであるか否かを判定する。この学習値更新タイミングは、学習値の更新周期が少なくとも気筒別補正量の算出周期よりも長くなるよう設定されている。このステップ306で、学習値の更新タイミングでないと判定されれば、そのまま本ルーチンを終了する。   Thereafter, the process proceeds to step 306, where it is determined whether it is the update timing of the cylinder-by-cylinder air-fuel ratio correction amount learning value. The learning value update timing is set so that the learning value update period is at least longer than the cylinder-by-cylinder correction amount calculation period. If it is determined in this step 306 that it is not the learning value update timing, this routine is immediately terminated.

一方、上記ステップ306で、学習値の更新タイミングであると判定されれば、ステップ307に進み、気筒別空燃比補正量なまし値の絶対値が所定値THA以上であるか否かを判定し、当該なまし値の絶対値が所定値THAよりも小さければ、学習値を更新する必要がないと判断して本ルーチンを終了する。   On the other hand, if it is determined in step 306 that it is the learning value update timing, the routine proceeds to step 307, where it is determined whether or not the absolute value of the cylinder-by-cylinder air-fuel ratio correction amount smoothing value is equal to or greater than a predetermined value THA. If the absolute value of the smoothed value is smaller than the predetermined value THA, it is determined that it is not necessary to update the learning value, and this routine is terminated.

また、上記ステップ307で、気筒別空燃比補正量なまし値の絶対値が所定値THA以上であると判定されれば、ステップ308に進み、気筒別空燃比補正量なまし値に基づいてマップにより学習値更新量を算出する。この学習値更新量を算出するマップは、気筒別空燃比補正量なまし値が大きくなるほど、学習値更新量が大きくなるように設定されている。   If it is determined in step 307 that the absolute value of the cylinder-by-cylinder air-fuel ratio correction amount is greater than or equal to the predetermined value THA, the process proceeds to step 308, where the map is based on the cylinder-by-cylinder air-fuel ratio correction amount annealing value. Thus, the learning value update amount is calculated. The map for calculating the learning value update amount is set so that the learning value update amount increases as the cylinder-by-cylinder air-fuel ratio correction amount smoothing value increases.

この後、ステップ309に進み、前回の気筒別空燃比補正量学習値に今回の学習値更新量を加算して求めた値を、新たな気筒別空燃比補正量学習値としてECU40の書き換え可能な不揮発性メモリ(図示せず)に更新記憶する。この際、図7の気筒別空燃比補正量学習マップのうちの前記ステップ304で選択された学習領域の学習値が更新される。尚、図7の気筒別空燃比補正量学習マップは、気筒毎に作成される。   Thereafter, the process proceeds to step 309, and the ECU 40 can rewrite the value obtained by adding the current learning value update amount to the previous cylinder-by-cylinder air-fuel ratio correction amount learning value as a new cylinder-by-cylinder air-fuel ratio correction amount learning value. Update and store in a non-volatile memory (not shown). At this time, the learning value in the learning region selected in step 304 in the cylinder-by-cylinder air-fuel ratio correction amount learning map in FIG. 7 is updated. Note that the cylinder-by-cylinder air-fuel ratio correction amount learning map in FIG. 7 is created for each cylinder.

[学習禁止判定ルーチン]
図5の学習禁止判定ルーチンは、図4の気筒別空燃比補正量学習ルーチンのステップ302で実行されるサブルーチンであり、特許請求の範囲でいう学習禁止手段としての役割を果たす。
[Learning prohibition judgment routine]
The learning prohibition determination routine of FIG. 5 is a subroutine executed in step 302 of the cylinder-by-cylinder air-fuel ratio correction amount learning routine of FIG. 4, and serves as learning prohibition means in the claims.

本ルーチンが起動されると、まずステップ401で、各気筒の気筒別空燃比補正量を読み込み、次のステップ402で、いずれかの気筒の気筒別空燃比補正量が所定範囲外(許容範囲外)であるか否かを判定し、全ての気筒の気筒別空燃比補正量が所定範囲内であれば、気筒別空燃比補正量の学習が許可される。この場合は、ステップ406に進み、気筒別空燃比補正量が所定範囲外になっている状態の継続時間を計測するディレイ時間カウンタTの値を0にリセットして本ルーチンを終了する。   When this routine is started, first, in step 401, the cylinder-by-cylinder air-fuel ratio correction amount is read, and in step 402, the cylinder-by-cylinder air-fuel ratio correction amount is outside the predetermined range (outside the allowable range). If the air-fuel ratio correction amount for each cylinder is within the predetermined range, learning of the air-fuel ratio correction amount for each cylinder is permitted. In this case, the process proceeds to step 406, the value of the delay time counter T that measures the duration of the state where the cylinder-by-cylinder air-fuel ratio correction amount is outside the predetermined range is reset to 0, and this routine is ended.

これに対して、上記ステップ402で、いずれかの気筒の気筒別空燃比補正量が所定範囲外であると判定されれば、ステップ403に進み、ディレイ時間カウンタTをカウントアップして、気筒別空燃比補正量が所定範囲外になっている状態の継続時間を計測する。この後、ステップ404に進み、ディレイ時間カウンタTのカウント時間が所定値を越えたか否かを判定し、ディレイ時間カウンタTのカウント値が所定値を越えていなければ、そのまま本ルーチンを終了する。その後、ディレイ時間カウンタTのカウント値が所定値を越えた時点で、ステップ405に進み、学習禁止フラグをON(学習禁止)にセットして本ルーチンを終了する。   On the other hand, if it is determined in step 402 that the cylinder-by-cylinder air-fuel ratio correction amount is outside the predetermined range, the process proceeds to step 403, where the delay time counter T is incremented and The duration of the state where the air-fuel ratio correction amount is outside the predetermined range is measured. Thereafter, the process proceeds to step 404, where it is determined whether or not the count time of the delay time counter T exceeds a predetermined value. If the count value of the delay time counter T does not exceed the predetermined value, this routine is ended as it is. Thereafter, when the count value of the delay time counter T exceeds a predetermined value, the process proceeds to step 405, the learning prohibition flag is set to ON (learning prohibition), and this routine is terminated.

以上説明した本実施例1の制御例を図6のタイムチャートを用いて説明する。
図6の例では、時刻t1 で、気筒別空燃比制御の実行条件が成立して、気筒別空燃比制御が開始され、各気筒#1〜#4の気筒別空燃比補正量が算出される。この気筒別空燃比制御の実行中は、各気筒#1〜#4の気筒別空燃比補正量が所定範囲外であるか否かが判定され、いずれかの気筒(図6の例では#1)の気筒別空燃比補正量が所定範囲外になった時点t2 で、ディレイ時間カウンタTのカウントアップ動作が開始され、気筒別空燃比補正量が所定範囲外になっている状態の継続時間が計測される。
A control example of the first embodiment described above will be described with reference to the time chart of FIG.
In the example of FIG. 6, at the time t1, the execution condition of the cylinder-by-cylinder air-fuel ratio control is satisfied, the cylinder-by-cylinder air-fuel ratio control is started, and the cylinder-by-cylinder air-fuel ratio correction amount of each cylinder # 1 to # 4 is calculated. . During execution of the cylinder-by-cylinder air-fuel ratio control, it is determined whether or not the cylinder-by-cylinder air-fuel ratio correction amount of each of the cylinders # 1 to # 4 is outside a predetermined range, and any cylinder (# 1 in the example of FIG. 6) is determined. ) At time t2 when the cylinder-by-cylinder air-fuel ratio correction amount is outside the predetermined range, the count-up operation of the delay time counter T is started, and the duration of the state where the cylinder-by-cylinder air-fuel ratio correction amount is outside the predetermined range is started. It is measured.

その後、ディレイ時間カウンタTのカウント値が所定値を越えた時点t3 で、学習禁止フラグがON(学習禁止)にセットされる。この後は、気筒別空燃比補正量の学習が禁止される。   Thereafter, at the time t3 when the count value of the delay time counter T exceeds a predetermined value, the learning prohibition flag is set to ON (learning prohibition). Thereafter, learning of the cylinder-by-cylinder air-fuel ratio correction amount is prohibited.

以上説明した本実施例1によれば、いずれかの気筒の気筒別空燃比補正量が所定範囲外になっている状態が暫く続いたときに、気筒別空燃比補正量の学習を禁止するようにしたので、気筒別空燃比補正量の誤学習を防止することができ、気筒別空燃比制御の精度悪化を防止することができる。   According to the first embodiment described above, the learning of the cylinder-by-cylinder air-fuel ratio correction amount is prohibited when a state where the cylinder-by-cylinder air-fuel ratio correction amount is outside the predetermined range continues for a while. Thus, erroneous learning of the cylinder-by-cylinder air-fuel ratio correction amount can be prevented, and deterioration in accuracy of the cylinder-by-cylinder air-fuel ratio control can be prevented.

尚、本発明は、いずれか1つの気筒の気筒別空燃比補正量が所定範囲外になっている状態が暫く続いたときに、気筒別空燃比補正量の学習を禁止する構成に限定されず、いずれか2つ以上の気筒の気筒別空燃比補正量が所定範囲外になっている状態が暫く続いたときに、気筒別空燃比補正量の学習を禁止するようにしても良い。   Note that the present invention is not limited to a configuration in which learning of the cylinder-by-cylinder air-fuel ratio correction amount is prohibited when a state in which the cylinder-by-cylinder air-fuel ratio correction amount is outside the predetermined range continues for a while. The learning of the cylinder-by-cylinder air-fuel ratio correction amount may be prohibited when a state where the cylinder-by-cylinder air-fuel ratio correction amount of any two or more cylinders is outside the predetermined range continues for a while.

また、本発明は、気筒別空燃比補正量が所定範囲を外れた気筒又は気筒グループについてのみ気筒別空燃比補正量の学習を禁止するようにしても良い。このようにすれば、気筒別空燃比補正量が所定範囲を外れた気筒又は気筒グループについてのみ、気筒別空燃比補正量の学習を禁止して気筒別空燃比補正量の誤学習を防止しながら、気筒別空燃比補正量が所定範囲内に収まる他の気筒又は気筒グループについては、気筒別空燃比補正量の学習を継続して、気筒別空燃比補正量の学習精度を高めることができる。   In the present invention, the learning of the cylinder-by-cylinder air-fuel ratio correction amount may be prohibited only for the cylinder or the cylinder group in which the cylinder-by-cylinder air-fuel ratio correction amount is out of the predetermined range. In this way, learning of the cylinder-by-cylinder air-fuel ratio correction amount is prohibited only for the cylinders or cylinder groups whose cylinder-by-cylinder air-fuel ratio correction amount is outside the predetermined range, thereby preventing erroneous learning of the cylinder-by-cylinder air-fuel ratio correction amount. For other cylinders or cylinder groups in which the cylinder-by-cylinder air-fuel ratio correction amount falls within the predetermined range, learning of the cylinder-by-cylinder air-fuel ratio correction amount can be continued to improve the learning accuracy of the cylinder-by-cylinder air-fuel ratio correction amount.

上記実施例1で説明した図4の気筒別空燃比補正量学習ルーチンでは、エンジン運転領域(エンジン回転速度と負荷)毎に気筒別空燃比補正量学習値を更新するようにしている(図7参照)。   In the cylinder-by-cylinder air-fuel ratio correction amount learning routine of FIG. 4 described in the first embodiment, the cylinder-by-cylinder air-fuel ratio correction amount learning value is updated for each engine operating region (engine speed and load) (FIG. 7). reference).

この点を考慮して、図8及び図9に示す本発明の実施例2では、いずれかの気筒の気筒別空燃比補正量が所定範囲を外れた場合に、気筒別空燃比補正量が所定範囲を外れた運転領域についてのみ気筒別空燃比補正量の学習を禁止し、それ以外の運転領域では、気筒別空燃比補正量の学習を許可するようにしている。   In consideration of this point, in the second embodiment of the present invention shown in FIGS. 8 and 9, when the cylinder-by-cylinder air-fuel ratio correction amount is out of the predetermined range, the cylinder-by-cylinder air-fuel ratio correction amount is predetermined. The learning of the cylinder-by-cylinder air-fuel ratio correction amount is prohibited only in the operation region outside the range, and the learning of the cylinder-by-cylinder air-fuel ratio correction amount is permitted in the other operation regions.

以下、本実施例2で実行する図8及び図9のルーチンの処理内容を説明する。
図8の気筒別空燃比補正量学習ルーチンは、前記実施例1で説明した図4の気筒別空燃比補正量学習ルーチンのステップ303の次にステップ303aの判定処理を追加しただけであり、その他のステップの処理は同じである。
The processing contents of the routines shown in FIGS. 8 and 9 executed in the second embodiment will be described below.
The cylinder-by-cylinder air-fuel ratio correction amount learning routine of FIG. 8 is merely the addition of the determination process of step 303a after step 303 of the cylinder-by-cylinder air-fuel ratio correction amount learning routine of FIG. 4 described in the first embodiment. The processing of these steps is the same.

図8の気筒別空燃比補正量学習ルーチンでは、ステップ301で、学習実行条件が成立していると判定されれば、ステップ302に進み、後述する図9の学習禁止判定ルーチンを実行する。   In the cylinder-by-cylinder air-fuel ratio correction amount learning routine of FIG. 8, if it is determined in step 301 that the learning execution condition is satisfied, the routine proceeds to step 302, and a learning prohibition determination routine of FIG.

そして、次のステップ303で、学習禁止フラグが学習禁止を意味するONにセットされているか否かを判定し、学習禁止フラグがON(学習禁止)にセットされていれば、ステップ303aに進み、現在のエンジン運転領域(エンジン回転速度と負荷)が後述する図9の学習禁止判定ルーチンによって記憶された学習禁止領域であるか否かを判定する。その結果、現在のエンジン運転領域が学習禁止領域であれば、以降の処理を行うことなく、本ルーチンを終了する。これにより、学習禁止領域についてのみ、気筒別空燃比補正量の学習が禁止される。   Then, in the next step 303, it is determined whether or not the learning prohibition flag is set to ON meaning that learning is prohibited. If the learning prohibition flag is set to ON (learning prohibition), the process proceeds to step 303a. It is determined whether or not the current engine operation region (engine speed and load) is a learning prohibition region stored by a learning prohibition determination routine shown in FIG. As a result, if the current engine operation region is the learning prohibited region, this routine is terminated without performing the subsequent processing. Thereby, learning of the cylinder specific air-fuel ratio correction amount is prohibited only in the learning prohibited region.

これに対して、上記ステップ303aで、現在のエンジン運転領域が学習禁止領域でなければ、気筒別空燃比補正量の学習可能と判断して、ステップ304以降の処理に進み、前記実施例1と同様の方法で、現在のエンジン運転領域に対応する学習領域の気筒別空燃比補正量学習値を更新する。   On the other hand, if the current engine operation region is not the learning prohibition region in step 303a, it is determined that the cylinder-by-cylinder air-fuel ratio correction amount can be learned, and the process proceeds to step 304 and the subsequent steps. In the same way, the cylinder-by-cylinder air-fuel ratio correction amount learning value in the learning region corresponding to the current engine operation region is updated.

図9の学習禁止判定ルーチンは、図8の気筒別空燃比補正量学習ルーチンのステップ302で実行されるサブルーチンであり、前記実施例1で説明した図5の学習禁止判定ルーチンのステップ405の次にステップ407の処理を追加しただけであり、その他のステップの処理は同じである。   The learning prohibition determination routine of FIG. 9 is a subroutine executed in step 302 of the cylinder-by-cylinder air-fuel ratio correction amount learning routine of FIG. 8, and is subsequent to step 405 of the learning prohibition determination routine of FIG. 5 described in the first embodiment. Step 407 is simply added, and the other steps are the same.

図9の学習禁止判定ルーチンでは、ステップ401〜405の処理により、いずれかの気筒の気筒別空燃比補正量が所定範囲外になっている状態が所定時間経過すると、学習禁止フラグをON(学習禁止)にセットする。この後、ステップ407に進み、現在のエンジン運転領域を学習禁止領域としてECU40の書き換え可能な不揮発性メモリ(図示せず)に記憶し、以後、この学習禁止領域についてのみ、気筒別空燃比補正量の学習を禁止する。   In the learning prohibition determination routine of FIG. 9, the learning prohibition flag is set to ON (learning) when a predetermined time elapses when the cylinder-by-cylinder air-fuel ratio correction amount is outside the predetermined range by the processing of steps 401 to 405. Set to (Prohibited). Thereafter, the process proceeds to step 407, where the current engine operation region is stored as a learning prohibition region in a rewritable nonvolatile memory (not shown) of the ECU 40, and thereafter, the cylinder-by-cylinder air-fuel ratio correction amount only for this learning prohibition region. Prohibit learning.

以上説明した本実施例2では、いずれかの気筒の気筒別空燃比補正量が所定範囲を外れた運転領域のみで気筒別空燃比補正量の学習を禁止して気筒別空燃比補正量の誤学習を防止しながら、気筒別空燃比補正量が所定範囲内に収まる他の運転領域では、気筒別空燃比補正量の学習を継続することができ、気筒別空燃比補正量の学習精度を高めることができる。   In the second embodiment described above, learning of the cylinder-by-cylinder air-fuel ratio correction amount is prohibited only in the operation region where the cylinder-by-cylinder air-fuel ratio correction amount is outside the predetermined range, and the cylinder-by-cylinder air-fuel ratio correction amount is erroneously corrected. In other operating regions where the cylinder-by-cylinder air-fuel ratio correction amount falls within the predetermined range while preventing learning, learning of the cylinder-by-cylinder air-fuel ratio correction amount can be continued, and the learning accuracy of the cylinder-by-cylinder air-fuel ratio correction amount can be improved. be able to.

尚、本発明は、いずれか1つの気筒の気筒別空燃比補正量が所定範囲を外れた運転領域のみで気筒別空燃比補正量の学習を禁止する構成に限定されず、いずれか2つ以上の気筒の気筒別空燃比補正量が所定範囲を外れた運転領域のみで気筒別空燃比補正量の学習を禁止するようにしても良い。   Note that the present invention is not limited to a configuration in which learning of the cylinder-by-cylinder air-fuel ratio correction amount is prohibited only in the operation region in which the cylinder-by-cylinder air-fuel ratio correction amount is out of the predetermined range. The learning of the cylinder-by-cylinder air-fuel ratio correction amount may be prohibited only in the operation region where the cylinder-by-cylinder air-fuel ratio correction amount is out of the predetermined range.

図10及び図11に示す本発明の実施例3では、いずれかの気筒の気筒別空燃比補正量が所定範囲を外れた運転領域において、気筒別空燃比補正量が所定範囲を外れた気筒についてのみ気筒別空燃比補正量の学習を禁止するようにしている。   In the third embodiment of the present invention shown in FIG. 10 and FIG. 11, in the operation region where the cylinder-by-cylinder air-fuel ratio correction amount is out of the predetermined range, the cylinder in which the cylinder-by-cylinder air-fuel ratio correction amount is out of the predetermined range. Only the learning of the cylinder-by-cylinder air-fuel ratio correction amount is prohibited.

図10の気筒別空燃比補正量学習ルーチンは、前記実施例2で説明した図8の気筒別空燃比補正量学習ルーチンのステップ303aの次にステップ303bの判定処理を追加しただけであり、その他のステップの処理は同じである。   The cylinder-by-cylinder air-fuel ratio correction amount learning routine of FIG. 10 is merely the addition of the determination process of step 303b after step 303a of the cylinder-by-cylinder air-fuel ratio correction amount learning routine of FIG. 8 described in the second embodiment. The processing of these steps is the same.

図10の気筒別空燃比補正量学習ルーチンでは、ステップ301で、学習実行条件が成立していると判定されれば、ステップ302に進み、後述する図11の学習禁止判定ルーチンを実行する。   In the cylinder-by-cylinder air-fuel ratio correction amount learning routine of FIG. 10, if it is determined in step 301 that the learning execution condition is satisfied, the routine proceeds to step 302, where a learning prohibition determination routine of FIG.

そして、次のステップ303で、学習禁止フラグが学習禁止を意味するONにセットされているか否かを判定し、学習禁止フラグがON(学習禁止)にセットされていれば、ステップ303aに進み、現在のエンジン運転領域(エンジン回転速度と負荷)が後述する図11の学習禁止判定ルーチンによって記憶された学習禁止領域であるか否かを判定する。その結果、現在のエンジン運転領域が学習禁止領域であると判定されれば、ステップ303bに進み、後述する図11の学習禁止判定ルーチンによって記憶された学習禁止気筒の気筒別空燃比補正量学習値の更新タイミングであるか否かを判定し、学習禁止気筒の気筒別空燃比補正量学習値の更新タイミングであれば、以降の処理を行うことなく、本ルーチンを終了する。これにより、学習禁止気筒の気筒別空燃比補正量学習マップ(図7参照)のうちの学習禁止領域についてのみ、気筒別空燃比補正量の学習が禁止される。   Then, in the next step 303, it is determined whether or not the learning prohibition flag is set to ON meaning that learning is prohibited. If the learning prohibition flag is set to ON (learning prohibition), the process proceeds to step 303a. It is determined whether or not the current engine operation region (engine speed and load) is a learning prohibition region stored by a learning prohibition determination routine of FIG. As a result, if it is determined that the current engine operation region is the learning prohibition region, the process proceeds to step 303b, and the cylinder-by-cylinder air-fuel ratio correction amount learning value of the learning prohibition cylinder stored by the learning prohibition determination routine of FIG. If it is an update timing of the cylinder-by-cylinder air-fuel ratio correction amount learning value of the learning-inhibited cylinder, this routine is terminated without performing the subsequent processing. Thereby, learning of the cylinder-by-cylinder air-fuel ratio correction amount is prohibited only in the learning-inhibited region of the cylinder-by-cylinder air-fuel ratio correction amount learning map (see FIG. 7).

これに対して、上記ステップ303a又はステップ303bで「No」と判定された場合、つまり、現在のエンジン運転領域が学習禁止領域でない場合、又は、学習禁止気筒の気筒別空燃比補正量学習値の更新タイミングでない場合は、気筒別空燃比補正量の学習可能と判断して、ステップ304以降の処理に進み、前記実施例1と同様の方法で、学習が許可された気筒の気筒別空燃比補正量学習マップのうちの現在のエンジン運転領域に対応する学習領域の気筒別空燃比補正量学習値を更新する。   On the other hand, if “No” is determined in step 303a or step 303b, that is, if the current engine operating region is not the learning prohibited region, or the learning value of the cylinder-by-cylinder air-fuel ratio correction amount learning value of the learning prohibited cylinder is determined. If it is not the update timing, it is judged that learning of the cylinder-by-cylinder air-fuel ratio correction amount is possible, the process proceeds to step 304 and the subsequent steps, and the cylinder-by-cylinder air-fuel ratio correction of the cylinders for which learning is permitted is performed in the same manner as in the first embodiment. The cylinder-by-cylinder air-fuel ratio correction amount learning value in the learning region corresponding to the current engine operation region in the amount learning map is updated.

図11の学習禁止判定ルーチンは、図10の気筒別空燃比補正量学習ルーチンのステップ302で実行されるサブルーチンであり、前記実施例2で説明した図9の学習禁止判定ルーチンのステップ407の処理をステップ407aの処理に変更しただけであり、その他のステップの処理は同じである。   The learning prohibition determination routine of FIG. 11 is a subroutine executed in step 302 of the cylinder-by-cylinder air-fuel ratio correction amount learning routine of FIG. 10, and the processing of step 407 of the learning prohibition determination routine of FIG. 9 described in the second embodiment. Is changed to the process of step 407a, and the processes of the other steps are the same.

図11の学習禁止判定ルーチンでは、ステップ401〜405の処理により、いずれかの気筒の気筒別空燃比補正量が所定範囲外になっている状態が所定時間経過すると、学習禁止フラグをON(学習禁止)にセットする。この後、ステップ407aに進み、現在のエンジン運転領域を学習禁止領域として記憶すると共に、気筒別空燃比補正量が所定範囲を外れた気筒を学習禁止気筒として記憶し、以後、この学習禁止気筒の気筒別空燃比補正量学習マップのうちの学習禁止領域についてのみ、気筒別空燃比補正量の学習を禁止する。   In the learning prohibition determination routine of FIG. 11, when the state where the cylinder-by-cylinder air-fuel ratio correction amount is outside the predetermined range is reached for a predetermined time by the processing of steps 401 to 405, the learning prohibition flag is turned on (learning). Set to (Prohibited). Thereafter, the process proceeds to step 407a, where the current engine operating region is stored as a learning prohibition region, and the cylinder whose cylinder-by-cylinder air-fuel ratio correction amount is outside the predetermined range is stored as a learning prohibition cylinder. The learning of the cylinder-by-cylinder air-fuel ratio correction amount is prohibited only for the learning prohibition region in the cylinder-by-cylinder air-fuel ratio correction amount learning map.

以上説明した本実施例3では、いずれかの気筒の気筒別空燃比補正量が所定範囲を外れた運転領域において、気筒別空燃比補正量が所定範囲を外れた気筒についてのみ気筒別空燃比補正量の学習を禁止するようにしたので、気筒別空燃比補正量の学習を禁止する運転領域と気筒を最小限にすることができ、気筒別空燃比補正量の学習精度を高めることができる。   In the third embodiment described above, the cylinder-by-cylinder air-fuel ratio correction is performed only for the cylinder in which the cylinder-by-cylinder air-fuel ratio correction amount is outside the predetermined range in the operation region where the cylinder-by-cylinder air-fuel ratio correction amount is outside the predetermined range. Since the learning of the amount is prohibited, it is possible to minimize the operation region and the cylinder in which the learning of the cylinder-by-cylinder air-fuel ratio correction amount is prohibited, and to improve the learning accuracy of the cylinder-by-cylinder air-fuel ratio correction amount.

尚、本発明は、いずれか1つの気筒の気筒別空燃比補正量が所定範囲を外れた運転領域において、当該1つの気筒についてのみ気筒別空燃比補正量の学習を禁止する構成に限定されず、いずれか2つ以上の気筒の気筒別空燃比補正量が所定範囲を外れた運転領域において、当該2つ以上の気筒別空燃比補正量の学習を禁止するようにしても良い。   Note that the present invention is not limited to a configuration in which learning of the cylinder-by-cylinder air-fuel ratio correction amount is prohibited only for the one cylinder in the operation region where the cylinder-by-cylinder air-fuel ratio correction amount is outside the predetermined range. The learning of the two or more cylinder-by-cylinder air-fuel ratio correction amounts may be prohibited in the operation region in which the cylinder-by-cylinder air-fuel ratio correction amount of any two or more cylinders is out of the predetermined range.

また、いずれかの気筒の気筒別空燃比補正量が所定範囲を外れた運転領域において、当該気筒が属する気筒グループについて気筒別空燃比補正量の学習を禁止するようにしても良い。   Further, in the operating region where the cylinder-by-cylinder air-fuel ratio correction amount of any of the cylinders is out of the predetermined range, learning of the cylinder-by-cylinder air-fuel ratio correction amount may be prohibited for the cylinder group to which the cylinder belongs.

上記実施例1〜3では、いずれかの気筒の気筒別空燃比補正量が所定範囲を外れた場合に、気筒別空燃比補正量の学習を禁止するようにしたが、いずれかの気筒の気筒別空燃比補正量学習値が所定範囲を外れた場合に、気筒別空燃比補正量の学習を禁止するようにしても良い。以下、これを具体化した本発明の実施例4を説明する。   In the first to third embodiments, learning of the cylinder-by-cylinder air-fuel ratio correction amount is prohibited when the cylinder-by-cylinder air-fuel ratio correction amount is out of the predetermined range. The learning of the cylinder-by-cylinder air-fuel ratio correction amount may be prohibited when the other air-fuel ratio correction amount learning value is out of a predetermined range. A fourth embodiment of the present invention that embodies this will be described below.

本実施例4では、図12の学習禁止判定ルーチンを実行して、まず、気筒別空燃比補正量学習値を読み込み(ステップ401a)、いずれかの気筒の気筒別空燃比補正量学習値が所定範囲外であるか否かを判定し(ステップ402a)、いずれかの気筒の気筒別空燃比補正量学習値が所定範囲外になっている状態の継続時間を計測するディレイ時間カウンタTのカウント値が所定値を越えた時点で、学習禁止フラグを学習禁止を意味するONにセットする(ステップステップ403〜405)。これ以外の処理は前記実施例1と同じである。   In the fourth embodiment, the learning prohibition determination routine of FIG. 12 is executed. First, the cylinder-by-cylinder air-fuel ratio correction amount learning value is read (step 401a), and the cylinder-by-cylinder air-fuel ratio correction amount learning value is predetermined. It is determined whether or not the value is out of the range (step 402a), and the count value of the delay time counter T that measures the duration in which the cylinder-by-cylinder air-fuel ratio correction amount learning value is outside the predetermined range. When the value exceeds a predetermined value, the learning prohibition flag is set to ON which means that learning is prohibited (steps 403 to 405). The other processes are the same as those in the first embodiment.

本実施例4の制御例を図13のタイムチャートを用いて説明する。
図13の例では、時刻t1 で、気筒別空燃比制御の実行条件が成立して、気筒別空燃比制御が開始され、各気筒#1〜#4の気筒別空燃比補正量が算出される。
A control example of the fourth embodiment will be described with reference to the time chart of FIG.
In the example of FIG. 13, at time t1, the cylinder-by-cylinder air-fuel ratio control execution condition is satisfied, the cylinder-by-cylinder air-fuel ratio control is started, and the cylinder-by-cylinder air-fuel ratio correction amount is calculated for each cylinder # 1 to # 4. .

その後、時刻t2 で、学習実行条件が成立して、気筒別空燃比補正量の学習が開始され、各気筒#1〜#4の気筒別空燃比補正量学習値が更新される。   Thereafter, at time t2, the learning execution condition is satisfied, learning of the air-fuel ratio correction amount for each cylinder is started, and the air-fuel ratio correction amount learning value for each cylinder # 1 to # 4 is updated.

その後、各気筒#1〜#4の気筒別空燃比補正量学習値が所定範囲外(許容範囲外)であるか否かが判定され、いずれかの気筒の気筒別空燃比補正量学習値が所定範囲外になった時点t3 で、ディレイ時間カウンタTのカウントアップ動作が開始され、気筒別空燃比補正量学習値が所定範囲外になっている状態の継続時間が計測される。   Thereafter, it is determined whether the cylinder-by-cylinder air-fuel ratio correction amount learning value for each cylinder # 1 to # 4 is outside a predetermined range (outside the allowable range), and the cylinder-by-cylinder air-fuel ratio correction amount learning value for any cylinder is determined. At a time point t3 when it is outside the predetermined range, the count-up operation of the delay time counter T is started, and the duration time in which the cylinder-by-cylinder air-fuel ratio correction amount learning value is outside the predetermined range is measured.

その後、ディレイ時間カウンタTのカウント値が所定値を越えた時点t4 で、学習禁止フラグがON(学習禁止)にセットされる。この後は、気筒別空燃比補正量の学習が禁止される。   Thereafter, at the time t4 when the count value of the delay time counter T exceeds a predetermined value, the learning prohibition flag is set to ON (learning prohibition). Thereafter, learning of the cylinder-by-cylinder air-fuel ratio correction amount is prohibited.

以上説明した本実施例4においても、前記実施例1と同様の効果を得ることができる。 尚、本発明は、いずれか1つの気筒の気筒別空燃比補正量学習値が所定範囲外になっている状態が暫く続いたときに、気筒別空燃比補正量の学習を禁止する構成に限定されず、いずれか2つ以上の気筒の気筒別空燃比補正量学習値が所定範囲外になっている状態が暫く続いたときに、気筒別空燃比補正量の学習を禁止するようにしても良い。   Also in the fourth embodiment described above, the same effect as in the first embodiment can be obtained. Note that the present invention is limited to a configuration in which learning of the cylinder-by-cylinder air-fuel ratio correction amount is prohibited when a state in which the cylinder-by-cylinder air-fuel ratio correction amount learning value of any one cylinder is outside the predetermined range continues for a while. The learning of the cylinder-by-cylinder air-fuel ratio correction amount is prohibited when the cylinder-by-cylinder air-fuel ratio correction amount learning value of any two or more cylinders is outside the predetermined range for a while. good.

また、本発明は、気筒別空燃比補正量学習値が所定範囲を外れた気筒又は気筒グループについてのみ気筒別空燃比補正量の学習を禁止するようにしても良い。このようにすれば、気筒別空燃比補正量学習値が所定範囲を外れた気筒又は気筒グループについてのみ、気筒別空燃比補正量の学習を禁止して気筒別空燃比補正量の誤学習を防止しながら、気筒別空燃比補正量学習値が所定範囲内に収まる他の気筒又は気筒グループについては、気筒別空燃比補正量の学習を継続して、気筒別空燃比補正量の学習精度を高めることができる。   Further, according to the present invention, the learning of the cylinder-by-cylinder air-fuel ratio correction amount may be prohibited only for the cylinder or the cylinder group whose cylinder-by-cylinder air-fuel ratio correction amount learning value is out of the predetermined range. In this way, the learning of the cylinder-by-cylinder air-fuel ratio correction amount is prohibited only for the cylinder or the cylinder group whose cylinder-by-cylinder air-fuel ratio correction amount learning value is outside the predetermined range, thereby preventing erroneous learning of the cylinder-by-cylinder air-fuel ratio correction amount. However, for other cylinders or cylinder groups in which the cylinder-by-cylinder air-fuel ratio correction amount learning value falls within the predetermined range, the learning of the cylinder-by-cylinder air-fuel ratio correction amount is continued to improve the learning accuracy of the cylinder-by-cylinder air-fuel ratio correction amount. be able to.

図14に示す本発明の実施例5では、いずれかの気筒の気筒別空燃比補正量学習値が所定範囲(許容範囲)を外れた場合に、気筒別空燃比補正量学習値が所定範囲を外れた運転領域についてのみ気筒別空燃比補正量の学習を禁止し、それ以外の運転領域では、気筒別空燃比補正量の学習を許可するようにしている。   In the fifth embodiment of the present invention shown in FIG. 14, when the cylinder-by-cylinder air-fuel ratio correction amount learning value of any cylinder is out of the predetermined range (allowable range), the cylinder-by-cylinder air-fuel ratio correction amount learning value falls within the predetermined range. The learning of the cylinder-by-cylinder air-fuel ratio correction amount is prohibited only for the out-of-operation region, and the learning of the cylinder-by-cylinder air-fuel ratio correction amount is permitted in the other operation regions.

本実施例5で実行する図14の学習禁止判定ルーチンは、前記実施例4で説明した図12の学習禁止判定ルーチンのステップ405の次にステップ407の処理を追加しただけであり、その他のステップの処理は同じである。   The learning prohibition determination routine of FIG. 14 executed in the fifth embodiment is simply the addition of the processing of step 407 after step 405 of the learning prohibition determination routine of FIG. 12 described in the fourth embodiment. The process is the same.

図14の学習禁止判定ルーチンでは、ステップ401a〜405の処理により、いずれかの気筒の気筒別空燃比補正量学習値が所定範囲外になっている状態が所定時間経過すると、学習禁止フラグをON(学習禁止)にセットする。この後、ステップ407に進み、現在のエンジン運転領域を学習禁止領域としてECU40の書き換え可能な不揮発性メモリ(図示せず)に記憶し、以後、この学習禁止領域についてのみ、気筒別空燃比補正量の学習を禁止する。本実施例5では、前記実施例2で説明した図8の気筒別空燃比補正量学習ルーチンが実行される。   In the learning prohibition determination routine of FIG. 14, the learning prohibition flag is turned on when a state where the learning value of the cylinder air-fuel ratio correction amount for any of the cylinders is outside the predetermined range elapses for a predetermined time by the processing of steps 401 a to 405. Set to (learning prohibited). Thereafter, the process proceeds to step 407, where the current engine operation region is stored as a learning prohibition region in a rewritable nonvolatile memory (not shown) of the ECU 40, and thereafter, the cylinder-by-cylinder air-fuel ratio correction amount only for this learning prohibition region. Prohibit learning. In the fifth embodiment, the cylinder-by-cylinder air-fuel ratio correction amount learning routine of FIG. 8 described in the second embodiment is executed.

以上説明した本実施例5では、いずれかの気筒の気筒別空燃比補正量学習値が所定範囲を外れた運転領域のみで気筒別空燃比補正量の学習を禁止して気筒別空燃比補正量の誤学習を防止しながら、気筒別空燃比補正量学習値が所定範囲内に収まる他の運転領域では、気筒別空燃比補正量の学習を継続することができ、気筒別空燃比補正量の学習精度を高めることができる。   In the fifth embodiment described above, the cylinder-by-cylinder air-fuel ratio correction amount is prohibited by prohibiting learning of the cylinder-by-cylinder air-fuel ratio correction amount only in the operation region where the cylinder-by-cylinder air-fuel ratio correction amount learning value is outside the predetermined range. In other operating regions where the learning value of the cylinder-by-cylinder air-fuel ratio correction amount falls within the predetermined range, the learning of the cylinder-by-cylinder air-fuel ratio correction amount can be continued. Learning accuracy can be increased.

尚、本発明は、いずれか1つの気筒の気筒別空燃比補正量学習値が所定範囲を外れた運転領域のみで気筒別空燃比補正量の学習を禁止する構成に限定されず、いずれか2つ以上の気筒の気筒別空燃比補正量学習値が所定範囲を外れた運転領域のみで気筒別空燃比補正量の学習を禁止するようにしても良い。   Note that the present invention is not limited to a configuration in which learning of the cylinder-by-cylinder air-fuel ratio correction amount is prohibited only in the operation region where the cylinder-by-cylinder air-fuel ratio correction amount learning value of any one cylinder is outside the predetermined range. The learning of the cylinder-by-cylinder air-fuel ratio correction amount may be prohibited only in the operation region in which the cylinder-by-cylinder air-fuel ratio correction amount learning value of one or more cylinders is outside the predetermined range.

図15に示す本発明の実施例6では、いずれかの気筒の気筒別空燃比補正量学習値が所定範囲を外れた運転領域において、気筒別空燃比補正量学習値が所定範囲を外れた気筒についてのみ気筒別空燃比補正量の学習を禁止するようにしている。   In the sixth embodiment of the present invention shown in FIG. 15, in the operating region where the cylinder-by-cylinder air-fuel ratio correction amount learning value of any of the cylinders is out of the predetermined range, the cylinders whose cylinder-by-cylinder air-fuel ratio correction amount learning value is out of the predetermined range. The learning of the cylinder-by-cylinder air-fuel ratio correction amount is prohibited only for.

図15の学習禁止判定ルーチンは、前記実施例5で説明した図14の学習禁止判定ルーチンのステップ407の処理をステップ407aの処理に変更しただけであり、その他のステップの処理は同じである。   The learning prohibition determination routine of FIG. 15 is the same as the processing of step 407a, except that the processing of step 407 of the learning prohibition determination routine of FIG. 14 described in the fifth embodiment is the same.

図15の学習禁止判定ルーチンでは、ステップ401a〜405の処理により、いずれかの気筒の気筒別空燃比補正量学習値が所定範囲外になっている状態が所定時間経過すると、学習禁止フラグをON(学習禁止)にセットする。この後、ステップ407aに進み、現在のエンジン運転領域を学習禁止領域として記憶すると共に、気筒別空燃比補正量学習値が所定範囲を外れた気筒を学習禁止気筒として記憶し、以後、この学習禁止気筒の気筒別空燃比補正量学習マップのうちの学習禁止領域についてのみ、気筒別空燃比補正量の学習を禁止する。本実施例6では、前記実施例3で説明した図10の気筒別空燃比補正量学習ルーチンが実行される。   In the learning prohibition determination routine of FIG. 15, the learning prohibition flag is turned on when a state where the learning value of the air-fuel ratio correction amount for each cylinder is outside the predetermined range elapses for a predetermined time by the processing of steps 401 a to 405. Set to (learning prohibited). Thereafter, the process proceeds to step 407a, where the current engine operation region is stored as a learning prohibition region, and the cylinder whose cylinder-by-cylinder air-fuel ratio correction amount learning value is out of the predetermined range is stored as a learning prohibition cylinder. The learning of the cylinder-by-cylinder air-fuel ratio correction amount is prohibited only in the learning prohibition region in the cylinder-by-cylinder air-fuel ratio correction amount learning map. In the sixth embodiment, the cylinder-by-cylinder air-fuel ratio correction amount learning routine of FIG. 10 described in the third embodiment is executed.

以上説明した本実施例6では、いずれかの気筒の気筒別空燃比補正量学習値が所定範囲を外れた運転領域において、気筒別空燃比補正量学習値が所定範囲を外れた気筒についてのみ気筒別空燃比補正量の学習を禁止するようにしたので、気筒別空燃比補正量の学習を禁止する運転領域と気筒を最小限にすることができ、気筒別空燃比補正量の学習精度を高めることができる。   In the sixth embodiment described above, in the operation region where the cylinder-by-cylinder air-fuel ratio correction amount learning value of any of the cylinders is out of the predetermined range, only the cylinders for which the cylinder-by-cylinder air-fuel ratio correction amount learning value is out of the predetermined range are used. Since the learning of the separate air-fuel ratio correction amount is prohibited, it is possible to minimize the operation region and the cylinder in which the learning of the individual cylinder air-fuel ratio correction amount is prohibited, and to improve the learning accuracy of the individual air-fuel ratio correction amount. be able to.

尚、本発明は、いずれか1つの気筒の気筒別空燃比補正量学習値が所定範囲を外れた運転領域において、当該1つの気筒についてのみ気筒別空燃比補正量の学習を禁止する構成に限定されず、いずれか2つ以上の気筒の気筒別空燃比補正量学習値が所定範囲を外れた運転領域において、当該2つ以上の気筒別空燃比補正量の学習を禁止するようにしても良い。   Note that the present invention is limited to a configuration in which learning of the cylinder-by-cylinder air-fuel ratio correction amount is prohibited only for the one cylinder in the operation region in which the cylinder-by-cylinder air-fuel ratio correction amount learning value of any one cylinder is outside the predetermined range. Alternatively, learning of the two or more cylinder-by-cylinder air-fuel ratio correction amounts may be prohibited in an operating region where the cylinder-by-cylinder air-fuel ratio correction amount learning value of any two or more cylinders is outside a predetermined range. .

また、いずれかの気筒の気筒別空燃比補正量学習値が所定範囲を外れた運転領域において、当該気筒が属する気筒グループについて気筒別空燃比補正量の学習を禁止するようにしても良い。   Further, in the operation region where the cylinder-by-cylinder air-fuel ratio correction amount learning value of any cylinder is out of a predetermined range, learning of the cylinder-by-cylinder air-fuel ratio correction amount may be prohibited for the cylinder group to which the cylinder belongs.

その他、本発明は、吸気ポート噴射エンジンに限定されず、筒内噴射エンジンにも適用して実施できる等、要旨を逸脱しない範囲で種々変更して実施できる。   In addition, the present invention is not limited to the intake port injection engine, and can be implemented with various modifications without departing from the gist, such as being applicable to a cylinder injection engine.

本発明の実施例1におけるエンジン制御システム全体の概略構成図である。It is a schematic block diagram of the whole engine control system in Example 1 of this invention. 実施例1の気筒別空燃比制御メインルーチンの処理の流れを示すフローチャートである。4 is a flowchart showing a process flow of a cylinder-by-cylinder air-fuel ratio control main routine according to the first embodiment. 実施例1の気筒別空燃比制御実行ルーチンの処理の流れを示すフローチャートである。4 is a flowchart showing a flow of processing of a cylinder-by-cylinder air-fuel ratio control execution routine according to the first embodiment. 実施例1の気筒別空燃比補正量学習ルーチンの処理の流れを示すフローチャートである。6 is a flowchart illustrating a processing flow of a cylinder-by-cylinder air-fuel ratio correction amount learning routine according to the first embodiment. 実施例1の学習禁止判定ルーチンの処理の流れを示すフローチャートである。6 is a flowchart illustrating a processing flow of a learning prohibition determination routine according to the first exemplary embodiment. 実施例1の制御例を説明するタイムチャートである。3 is a time chart for explaining a control example of the first embodiment. 実施例1の気筒別空燃比補正量学習マップを概念的に示す図である。It is a figure which shows notionally the air-fuel ratio correction amount learning map according to cylinder of Example 1 conceptually. 実施例2の気筒別空燃比補正量学習ルーチンの処理の流れを示すフローチャートである。7 is a flowchart illustrating a processing flow of a cylinder-by-cylinder air-fuel ratio correction amount learning routine according to a second embodiment. 実施例2の学習禁止判定ルーチンの処理の流れを示すフローチャートである。10 is a flowchart illustrating a processing flow of a learning prohibition determination routine according to the second embodiment. 実施例3の気筒別空燃比補正量学習ルーチンの処理の流れを示すフローチャートである。FIG. 10 is a flowchart illustrating a processing flow of a cylinder-by-cylinder air-fuel ratio correction amount learning routine according to a third embodiment. 実施例3の学習禁止判定ルーチンの処理の流れを示すフローチャートである。12 is a flowchart illustrating a processing flow of a learning prohibition determination routine according to the third embodiment. 実施例4の学習禁止判定ルーチンの処理の流れを示すフローチャートである。14 is a flowchart illustrating a processing flow of a learning prohibition determination routine according to the fourth embodiment. 実施例4の制御例を説明するタイムチャートである。10 is a time chart for explaining a control example of the fourth embodiment. 実施例5の学習禁止判定ルーチンの処理の流れを示すフローチャートである。14 is a flowchart illustrating a processing flow of a learning prohibition determination routine according to the fifth embodiment. 実施例6の学習禁止判定ルーチンの処理の流れを示すフローチャートである。18 is a flowchart illustrating a processing flow of a learning prohibition determination routine according to the sixth embodiment.

符号の説明Explanation of symbols

11…エンジン(内燃機関)、12…吸気管、14…エアフローメータ、15…スロットルバルブ、19…吸気マニホールド、20…燃料噴射弁、22…燃料ポンプ、24…燃圧センサ、27,28…可変バルブタイミング機構、35…排気マニホールド、36…排気合流部、37…空燃比センサ、38…触媒、40…ECU(気筒別空燃比推定手段,気筒別空燃比補正量算出手段,気筒別空燃比制御手段,気筒別学習手段,学習禁止手段)   DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Intake pipe, 14 ... Air flow meter, 15 ... Throttle valve, 19 ... Intake manifold, 20 ... Fuel injection valve, 22 ... Fuel pump, 24 ... Fuel pressure sensor, 27, 28 ... Variable valve Timing mechanism 35 ... Exhaust manifold 36 ... Exhaust gas merging section 37 ... Air-fuel ratio sensor 38 ... Catalyst 40 ... ECU (Each cylinder air-fuel ratio estimation means, Cylinder air-fuel ratio correction amount calculation means, Cylinder air-fuel ratio control means , Learning means by cylinder, learning prohibition means)

Claims (8)

内燃機関の複数の気筒の排出ガスが合流する排気合流部に、該排出ガスの空燃比を検出する空燃比センサを設置し、前記空燃比センサの検出値に基づいて各気筒の空燃比を推定する気筒別空燃比推定手段と、前記複数の気筒について気筒毎に空燃比の気筒間ばらつきを補正するための各気筒の空燃比補正量(以下「気筒別空燃比補正量」という)を算出する気筒別空燃比補正量算出手段と、前記気筒別空燃比補正量を学習する気筒別学習手段と、前記気筒別空燃比補正量及び/又はその学習値に基づいて各気筒の燃料噴射量を補正して気筒間の空燃比ばらつきを小さくする気筒別空燃比制御を実行する気筒別空燃比制御手段とを備えた内燃機関の気筒別空燃比制御装置において、
いずれか1つ又は2つ以上の気筒の気筒別空燃比補正量が所定範囲を外れたときに前記気筒別学習手段による気筒別空燃比補正量の学習を禁止する学習禁止手段を備えていることを特徴とする内燃機関の気筒別空燃比制御装置。
An air-fuel ratio sensor for detecting the air-fuel ratio of the exhaust gas is installed at an exhaust gas merging portion where the exhaust gases of a plurality of cylinders of the internal combustion engine merge, and the air-fuel ratio of each cylinder is estimated based on the detection value of the air-fuel ratio sensor And a cylinder-by-cylinder air-fuel ratio estimating means for calculating an air-fuel ratio correction amount (hereinafter referred to as “cylinder-by-cylinder air-fuel ratio correction amount”) for each cylinder for correcting the inter-cylinder variation of the air-fuel ratio for each cylinder. Cylinder air-fuel ratio correction amount calculation means, cylinder-specific learning means for learning the cylinder-by-cylinder air-fuel ratio correction amount, and fuel injection amount of each cylinder is corrected based on the cylinder-by-cylinder air-fuel ratio correction amount and / or its learned value In the cylinder-by-cylinder air-fuel ratio control device of the internal combustion engine, the cylinder-by-cylinder air-fuel ratio control means for executing the cylinder-by-cylinder air-fuel ratio control to reduce the air-fuel ratio variation between the cylinders,
Learning prohibiting means for prohibiting learning of the cylinder-by-cylinder air-fuel ratio correction amount by the cylinder-by-cylinder learning means when the cylinder-by-cylinder air-fuel ratio correction amount of any one or more cylinders is out of a predetermined range; A cylinder-by-cylinder air-fuel ratio control apparatus for an internal combustion engine.
前記気筒別学習手段は、内燃機関の運転領域毎に前記気筒別空燃比補正量を学習し、
前記学習禁止手段は、前記いずれか1つ又は2つ以上の気筒の気筒別空燃比補正量が所定範囲を外れた運転領域についてのみ前記気筒別学習手段による気筒別空燃比補正量の学習を禁止することを特徴とする請求項1に記載の内燃機関の気筒別空燃比制御装置。
The cylinder-specific learning means learns the cylinder-specific air-fuel ratio correction amount for each operating region of the internal combustion engine,
The learning prohibiting means prohibits learning of the cylinder-by-cylinder air-fuel ratio correction amount by the cylinder-by-cylinder learning means only in an operation region where the cylinder-by-cylinder air-fuel ratio correction amount of the one or more cylinders is out of a predetermined range. The air-fuel ratio control apparatus for each cylinder of the internal combustion engine according to claim 1.
前記学習禁止手段は、前記気筒別空燃比補正量が所定範囲を外れた気筒又は気筒グループについてのみ前記気筒別学習手段による気筒別空燃比補正量の学習を禁止することを特徴とする請求項1に記載の内燃機関の気筒別空燃比制御装置。   2. The learning prohibiting unit prohibits learning of the cylinder-by-cylinder air-fuel ratio correction amount by the cylinder-by-cylinder learning unit only for a cylinder or a cylinder group in which the cylinder-by-cylinder air-fuel ratio correction amount is out of a predetermined range. The cylinder-by-cylinder air-fuel ratio control apparatus according to claim 1. 前記気筒別学習手段は、内燃機関の運転領域毎に前記気筒別空燃比補正量を学習し、
前記学習禁止手段は、前記いずれか1つ又は2つ以上の気筒の気筒別空燃比補正量が所定範囲を外れた運転領域において、前記気筒別空燃比補正量が所定範囲を外れた気筒又は気筒グループについてのみ前記気筒別学習手段による気筒別空燃比補正量の学習を禁止することを特徴とする請求項1に記載の内燃機関の気筒別空燃比制御装置。
The cylinder-specific learning means learns the cylinder-specific air-fuel ratio correction amount for each operating region of the internal combustion engine,
The learning prohibiting means includes a cylinder or a cylinder in which the cylinder-by-cylinder air-fuel ratio correction amount is out of the predetermined range in an operation region in which the cylinder-by-cylinder air-fuel ratio correction amount is out of the predetermined range. 2. The cylinder-by-cylinder air-fuel ratio control apparatus for an internal combustion engine according to claim 1, wherein learning of the cylinder-by-cylinder air-fuel ratio correction amount by the cylinder-by-cylinder learning unit is prohibited only for the group.
内燃機関の複数の気筒の排出ガスが合流する排気合流部に、該排出ガスの空燃比を検出する空燃比センサを設置し、前記空燃比センサの検出値に基づいて各気筒の空燃比を推定する気筒別空燃比推定手段と、前記複数の気筒について気筒毎に空燃比の気筒間ばらつきを補正するための各気筒の空燃比補正量(以下「気筒別空燃比補正量」という)を算出する気筒別空燃比補正量算出手段と、前記気筒別空燃比補正量を学習する気筒別学習手段と、前記気筒別空燃比補正量及び/又はその学習値に基づいて各気筒の燃料噴射量を補正して気筒間の空燃比ばらつきを小さくする気筒別空燃比制御を実行する気筒別空燃比制御手段とを備えた内燃機関の気筒別空燃比制御装置において、
いずれか1つ又は2つ以上の気筒の気筒別空燃比補正量の学習値が所定範囲を外れたときに前記気筒別学習手段による気筒別空燃比補正量の学習を禁止する学習禁止手段を備えていることを特徴とする内燃機関の気筒別空燃比制御装置。
An air-fuel ratio sensor for detecting the air-fuel ratio of the exhaust gas is installed at an exhaust gas merging portion where the exhaust gases of a plurality of cylinders of the internal combustion engine merge, and the air-fuel ratio of each cylinder is estimated based on the detection value of the air-fuel ratio sensor And a cylinder-by-cylinder air-fuel ratio estimating means for calculating an air-fuel ratio correction amount (hereinafter referred to as “cylinder-by-cylinder air-fuel ratio correction amount”) for each cylinder for correcting the inter-cylinder variation of the air-fuel ratio for each cylinder. Cylinder air-fuel ratio correction amount calculation means, cylinder-specific learning means for learning the cylinder-by-cylinder air-fuel ratio correction amount, and fuel injection amount of each cylinder is corrected based on the cylinder-by-cylinder air-fuel ratio correction amount and / or its learned value In the cylinder-by-cylinder air-fuel ratio control device of the internal combustion engine, the cylinder-by-cylinder air-fuel ratio control means for executing the cylinder-by-cylinder air-fuel ratio control to reduce the air-fuel ratio variation between the cylinders,
Learning prohibiting means for prohibiting learning of the cylinder-by-cylinder air-fuel ratio correction amount by the cylinder-by-cylinder learning means when the learning value of the cylinder-by-cylinder air-fuel ratio correction amount of any one or more cylinders is out of a predetermined range; A cylinder-by-cylinder air-fuel ratio control apparatus for an internal combustion engine.
前記気筒別学習手段は、内燃機関の運転領域毎に前記気筒別空燃比補正量を学習し、
前記学習禁止手段は、前記いずれか1つ又は2つ以上の気筒の気筒別空燃比補正量の学習値が所定範囲を外れた運転領域についてのみ前記気筒別学習手段による気筒別空燃比補正量の学習を禁止することを特徴とする請求項5に記載の内燃機関の気筒別空燃比制御装置。
The cylinder-specific learning means learns the cylinder-specific air-fuel ratio correction amount for each operating region of the internal combustion engine,
The learning prohibiting means sets the cylinder-by-cylinder air-fuel ratio correction amount by the cylinder-by-cylinder learning means only in an operating region where the learning value of the cylinder-by-cylinder air-fuel ratio correction amount of any one or more cylinders is out of a predetermined range. 6. The cylinder-by-cylinder air-fuel ratio control apparatus for an internal combustion engine according to claim 5, wherein learning is prohibited.
前記学習禁止手段は、前記気筒別空燃比補正量が所定範囲を外れた気筒又は気筒グループについてのみ前記気筒別学習手段による気筒別空燃比補正量の学習を禁止することを特徴とする請求項5に記載の内燃機関の気筒別空燃比制御装置。   6. The learning prohibiting unit prohibits learning of the cylinder-by-cylinder air-fuel ratio correction amount by the cylinder-by-cylinder learning unit only for a cylinder or a cylinder group in which the cylinder-by-cylinder air-fuel ratio correction amount is out of a predetermined range. The cylinder-by-cylinder air-fuel ratio control apparatus for an internal combustion engine according to claim 1. 前記気筒別学習手段は、内燃機関の運転領域毎に前記気筒別空燃比補正量を学習し、
前記学習禁止手段は、前記いずれか1つ又は2つ以上の気筒の気筒別空燃比補正量の学習値が所定範囲を外れた運転領域において、前記気筒別空燃比補正量の学習値が所定範囲を外れた気筒又は気筒グループについてのみ前記気筒別学習手段による気筒別空燃比補正量の学習を禁止することを特徴とする請求項5に記載の内燃機関の気筒別空燃比制御装置。
The cylinder-specific learning means learns the cylinder-specific air-fuel ratio correction amount for each operating region of the internal combustion engine,
The learning prohibiting means is configured such that the learning value of the cylinder-by-cylinder air-fuel ratio correction amount is within a predetermined range in an operation region where the learning value of the cylinder-by-cylinder air-fuel ratio correction amount of the one or more cylinders is outside a predetermined range. 6. The cylinder-by-cylinder air-fuel ratio control apparatus for an internal combustion engine according to claim 5, wherein learning of the cylinder-by-cylinder air-fuel ratio correction amount by the cylinder-by-cylinder learning means is prohibited only for cylinders or cylinder groups that are out of range.
JP2006215165A 2006-08-08 2006-08-08 Cylinder-by-cylinder air-fuel ratio control device of internal combustion engine Pending JP2008038784A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006215165A JP2008038784A (en) 2006-08-08 2006-08-08 Cylinder-by-cylinder air-fuel ratio control device of internal combustion engine
US11/819,652 US7519467B2 (en) 2006-08-08 2007-06-28 Cylinder air-fuel ratio controller for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006215165A JP2008038784A (en) 2006-08-08 2006-08-08 Cylinder-by-cylinder air-fuel ratio control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2008038784A true JP2008038784A (en) 2008-02-21

Family

ID=39174102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006215165A Pending JP2008038784A (en) 2006-08-08 2006-08-08 Cylinder-by-cylinder air-fuel ratio control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2008038784A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209747A (en) * 2008-03-03 2009-09-17 Toyota Motor Corp Abnormality diagnostic device of air-fuel ratio sensor
JP2015059450A (en) * 2013-09-17 2015-03-30 株式会社デンソー Cylinder-by-cylinder air fuel ratio control device for internal combustion engine
JP2022010838A (en) * 2020-06-29 2022-01-17 株式会社デンソー Injection control device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10153140A (en) * 1996-09-26 1998-06-09 Honda Motor Co Ltd Air-fuel ratio control device for internal combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10153140A (en) * 1996-09-26 1998-06-09 Honda Motor Co Ltd Air-fuel ratio control device for internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209747A (en) * 2008-03-03 2009-09-17 Toyota Motor Corp Abnormality diagnostic device of air-fuel ratio sensor
JP2015059450A (en) * 2013-09-17 2015-03-30 株式会社デンソー Cylinder-by-cylinder air fuel ratio control device for internal combustion engine
JP2022010838A (en) * 2020-06-29 2022-01-17 株式会社デンソー Injection control device

Similar Documents

Publication Publication Date Title
JP4706590B2 (en) Cylinder-by-cylinder air-fuel ratio control apparatus for internal combustion engine
JP4420288B2 (en) Cylinder-by-cylinder air-fuel ratio control apparatus for internal combustion engine
US7707822B2 (en) Cylinder air-fuel ratio controller for internal combustion engine
US7519467B2 (en) Cylinder air-fuel ratio controller for internal combustion engine
JP4736058B2 (en) Air-fuel ratio control device for internal combustion engine
US20070240695A1 (en) Air-fuel ratio detection apparatus of internal combustion engine
JP2008144639A (en) Control device for internal combustion engine
JP2007154840A (en) Air-fuel ratio control device of internal combustion engine
JP2005188503A (en) Air-fuel ratio control system by cylinder for internal combustion engine
JP4314636B2 (en) Air-fuel ratio control device for internal combustion engine
JP2008128080A (en) Control device for internal combustion engine
JP6213085B2 (en) Cylinder-by-cylinder air-fuel ratio control apparatus for internal combustion engine
US20130184973A1 (en) Fuel injection amount control apparatus for an internal combustion engine
JP2008128160A (en) Control device of internal combustion engine
JP6213078B2 (en) Cylinder-by-cylinder air-fuel ratio control apparatus for internal combustion engine
JP2008064078A (en) Control device of internal combustion engine
JP2008038784A (en) Cylinder-by-cylinder air-fuel ratio control device of internal combustion engine
JP2013253593A (en) Cylinder-by-cylinder air fuel ratio control device for internal combustion engine
JP2007211609A (en) Device for controlling air-fuel ratio per cylinder of internal combustion engine
JP2008014178A (en) Cylinder-by-cylinder air-fuel ratio control device for internal combustion engine
JP2006177371A (en) Internal combustion engine control device
JP4600699B2 (en) Cylinder-by-cylinder air-fuel ratio control apparatus for internal combustion engine
JP2008038786A (en) Cylinder-by-cylinder air-fuel ratio control device of internal combustion engine
JP2008128161A (en) Control device of internal combustion engine
JP4831336B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100722