JP2016039790A - Plant production method - Google Patents

Plant production method Download PDF

Info

Publication number
JP2016039790A
JP2016039790A JP2014164612A JP2014164612A JP2016039790A JP 2016039790 A JP2016039790 A JP 2016039790A JP 2014164612 A JP2014164612 A JP 2014164612A JP 2014164612 A JP2014164612 A JP 2014164612A JP 2016039790 A JP2016039790 A JP 2016039790A
Authority
JP
Japan
Prior art keywords
light
plant
irradiation
irradiating
green light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014164612A
Other languages
Japanese (ja)
Other versions
JP6362135B2 (en
Inventor
佐藤 正幸
Masayuki Sato
正幸 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Light & Plants Res Corp
Light & Plants Research Corp
Original Assignee
Light & Plants Res Corp
Light & Plants Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Light & Plants Res Corp, Light & Plants Research Corp filed Critical Light & Plants Res Corp
Priority to JP2014164612A priority Critical patent/JP6362135B2/en
Publication of JP2016039790A publication Critical patent/JP2016039790A/en
Application granted granted Critical
Publication of JP6362135B2 publication Critical patent/JP6362135B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To construct a system in which the ability of a plant to adapt to an environment is stimulated by a combination radiation of monochromatic lights under a dark condition, disease damage resistance is enhanced, and simultaneously the growth of the plant is promoted, in order to achieve a safe vegetable cultivation technique by which the reduction of agricultural chemicals used is possible and yield is increased.SOLUTION: The invention relates to a method of comprising irradiating a plant with a green light under a dark condition, and irradiating it with a red light under a dark condition after a given time has elapsed.SELECTED DRAWING: Figure 1

Description

本発明は、緑色光、赤色光及び青色光等の単色光の組み合せ、あるいはそれらと白色光(自然光又は自然に近い人工光)の組み合せ照射による植物の生産方法に関する。   The present invention relates to a method for producing a plant by combining monochromatic light such as green light, red light and blue light, or by combining them with white light (natural light or artificial light close to nature).

植物の生産過程において病害対策や果菜類の収量増大等を目的に単色光を照射し、特定のタンパク質や植物ホルモンを誘引することが検討されている。
特許文献1には、緑色光を暗黒時に果菜類に照射して、着果及び果実肥大を促進させる技術を開示する。
特許文献2には、植物に緑色光を照射することで植物遺伝子の発現を誘導し、病害抵抗性を高める技術を開示する。
特許文献3には、植物に紫色光を照射することにより病原抵抗性を高める技術を開示する。
特許文献2では、暗条件下で緑色光照射によりジャスモン酸生合成経路の二つの酵素(AOS,LOX)発現を確認していることからジャスモン酸の誘導を示唆しているものと思われるが、ジャスモン酸は活物寄生菌への防御効果はない(非特許文献4)。
また、ジャスモン酸は植物の生長には抑制的な作用を有するのに特許文献1では果菜類の収量増加に寄与するとしているが、そのメカニズムが明らかでない。
In the production process of plants, it has been studied to irradiate specific proteins and plant hormones by irradiating monochromatic light for the purpose of disease control or increasing yield of fruits and vegetables.
Patent Document 1 discloses a technology for accelerating fruit set and fruit enlargement by irradiating fruit and vegetables with green light in the dark.
Patent Document 2 discloses a technique for inducing plant gene expression by irradiating a plant with green light to increase disease resistance.
Patent Document 3 discloses a technique for increasing pathogenic resistance by irradiating a plant with purple light.
In Patent Document 2, it seems that the induction of jasmonic acid is suggested from the fact that the expression of two enzymes (AOS, LOX) in the biosynthesis pathway of jasmonic acid was confirmed by irradiation with green light under dark conditions. Jasmonic acid has no protective effect against active parasites (Non-Patent Document 4).
Moreover, although jasmonic acid has an inhibitory effect on plant growth, Patent Document 1 states that it contributes to an increase in the yield of fruit vegetables, but the mechanism is not clear.

国際公開WO2011/007868号公報International Publication WO2011 / 007868 特許第5028407号公報Japanese Patent No. 5028407 国際公開WO2013/015442号公報International publication WO2013 / 015442

M. Hentrich et.al The jasmonic acid signaling pathway is linked to auxin homeostasis through the modulation of YUCCA8 and YUCCA9 gene expression.The plant journal 2013 74,626-637M. Hentrich et.al The jasmonic acid signaling pathway is linked to auxin homeostasis through the modulation of YUCCA8 and YUCCA9 gene expression.The plant journal 2013 74,626-637 Wim Grunewald et.al Expression of the Arabidopsis jasmonate signaling repressorJAZ1/TIFY10A is stimulated by auxin. EMBO reports Vol10/NO8/2009Wim Grunewald et.al Expression of the Arabidopsis jasmonate signaling repressorJAZ1 / TIFY10A is stimulated by auxin.EMBO reports Vol10 / NO8 / 2009 Motomu Endo et.al CRYPTCHROME2 in vascular bundles regulates flowering in Arabidopsis. The Plant Cell, Vol.19:84-93 January 2007Motomu Endo et.al CRYPTCHROME2 in vascular bundles regulates flowering in Arabidopsis.The Plant Cell, Vol. 19: 84-93 January 2007 A. Leon-Reyes et.al salicylate-mediated suppression of jasmonate-responsive gene expression in Arabidopsis is targeted downstream of jasmonate biosynthesis pathway.Planta(2010) 232: 1423-1432A. Leon-Reyes et.al salicylate-mediated suppression of jasmonate-responsive gene expression in Arabidopsis is targeted downstream of jasmonate biosynthesis pathway.Planta (2010) 232: 1423-1432 X. Liu et.al Low-Fluence Red Light Increase the transport and Biosynthesis of Auxin Plant physiology, October 2011, Vol.157, pp.891-904X. Liu et.al Low-Fluence Red Light Increase the transport and Biosynthesis of Auxin Plant physiology, October 2011, Vol.157, pp.891-904 G. Segarra et.al Simultaneous quantitative LC-ESI-MS/MS analyses of salicylic acid and jasmonic acid in crude extracts of Cucumis sativus under biotic stress. Phytochemistry 67(2006): 395-401G. Segarra et.al Simultaneous quantitative LC-ESI-MS / MS analyzes of salicylic acid and jasmonic acid in crude extracts of Cucumis sativus under biotic stress. Phytochemistry 67 (2006): 395-401 Z. Cheng et.al A study of Blue-Light Dependent Phosphorylation, Degradation, and Photobody-Formation of Arabidopsis CRY2. Molecular Plant Volume5 Nomber3 726-733 May 2012.Z. Cheng et.al A study of Blue-Light Dependent Phosphorylation, Degradation, and Photobody-Formation of Arabidopsis CRY2. Molecular Plant Volume5 Nomber3 726-733 May 2012.

本発明は、植物の環境対応能力を暗条件下での単色光の組合せ照射により刺激し、病害抵抗を増強し、同時に植物の成長促進するシステムを構築する。
これにより農薬使用削減が可能となる安全な、かつ収量が増加する植物の生産方法を実現することを目的とする。
The present invention constructs a system that stimulates the ability of plants to respond to the environment by combined irradiation of monochromatic light under dark conditions, enhances disease resistance, and simultaneously promotes plant growth.
The purpose of this is to realize a safe and yielding plant production method that can reduce the use of pesticides.

本発明に係る植物の生産方法は、植物に、緑色光を暗条件下で照射するステップと、所定の時間経過後に赤色光を暗条件下で照射するステップとを有することを特徴とする。
この場合に、緑色光を照射するステップと赤色光を照射するステップとの間に白色光を照射するステップを有するようにしてもよい。
ここで白色光とは自然光のみならず、自然光に近い人工光が含まれる趣旨である。
The plant production method according to the present invention includes a step of irradiating a plant with green light under dark conditions and a step of irradiating red light under dark conditions after elapse of a predetermined time.
In this case, you may make it have a step which irradiates white light between the step which irradiates green light, and the step which irradiates red light.
Here, white light means not only natural light but also artificial light close to natural light.

詳細は後述するが、上記のように照射光をコントロールすると次の作用がある。
緑色光を暗条件下で照射して植物の青、緑光の受容体であるクリプトクロム2で緑色光を受容し、師管伴細胞内のクリプトクロム2による開花促進効果を発揮させる。
また同時に植物ホルモンのジャスモン酸を発現させる。
このジャスモン酸は死物寄生菌に対する防御たんぱく質を誘導する他に食害に対しての防御の効果を有する。
またジャスモン酸は根の伸長抑制など成長抑制効果を有する。
その後暗条件下で赤色光を照射して赤色光受容体であるフィトクロムBを刺激して成長ホルモンであるオーキシンを誘引する。
オーキシンはイチゴなどの果菜類における開花した後の果実肥大に必要な植物ホルモンである。
Although details will be described later, when the irradiation light is controlled as described above, the following effects are obtained.
Green light is irradiated under dark conditions, and green light is received by cryptochrome 2 which is a blue and green light receptor of the plant, and the effect of promoting flowering by cryptochrome 2 in the phloem associated cells is exhibited.
At the same time, the plant hormone jasmonic acid is expressed.
This jasmonic acid not only induces a protective protein against dead parasites, but also has a protective effect against food damage.
Jasmonic acid also has growth-inhibiting effects such as suppression of root elongation.
Thereafter, red light is irradiated under dark conditions to stimulate phytochrome B, which is a red light receptor, and attract auxin, which is a growth hormone.
Auxin is a plant hormone necessary for fruit enlargement after flowering in fruits and vegetables such as strawberries.

本発明においては、赤色光を照射するステップの替わりに青色光を照射するステップを有するようにしてもよい。
このようにすると、緑色光を暗条件で照射して上記のように師管伴細胞内のクリプトクロム2による開花促進効果を発揮させ、同時に植物ホルモンのジャスモン酸を発現させる。
このジャスモン酸は上述したとおり死物寄生菌に対する防御たんぱく質を誘導する他に食害に対しての防御の効果を有するが、一方活物寄生菌に対しての防御効果はなく、根の伸長抑制や開花抑制など成長抑制効果を有する。
そこで緑色光の照射後に後暗条件下で青色光を照射してサリチル酸を発現させることにしたものである。
サリチル酸はジャスモン酸と拮抗作用を持ち、かつ開花促進効果を有する。
またサリチル酸は活物寄生菌に対する防御応答を誘引する。
従って、この方式ではジャスモン酸とサリチル酸を交互に誘引して死物寄生菌および活物寄生菌の両者に対しての防御を誘引することができ、また開花を大きく促進することができる。
In this invention, you may make it have a step which irradiates blue light instead of the step which irradiates red light.
If it does in this way, it will irradiate with green light on dark conditions, and the flowering promotion effect by the cryptochrome 2 in a phloem accompanying cell will be exhibited as mentioned above, and the plant hormone jasmonic acid is expressed simultaneously.
As described above, this jasmonic acid has a protective effect against feeding damage in addition to inducing a defense protein against dead parasites, but has no protective effect against active parasites, Has growth-inhibiting effects such as flowering inhibition.
Therefore, salicylic acid is expressed by irradiating blue light under the after-dark condition after irradiation with green light.
Salicylic acid has an antagonistic action with jasmonic acid and has a flowering promoting effect.
Salicylic acid also induces a defense response against active parasites.
Therefore, in this system, jasmonic acid and salicylic acid can be attracted alternately to induce defense against both dead and active parasites, and flowering can be greatly promoted.

本発明は緑色光を暗条件下、例えば夜間に照射することでクリプトクロム2を刺激して開花誘導する他、成長抑制型の植物ホルモンであるジャスモン酸を一旦発生させたのちに、暗条件下で青色光または赤色光を照射し、ジャスモン酸と拮抗作用を持つサリチル酸、またはオーキシンを発現させることで植物の恒常性を保とうとする復元力を最大限発揮させる、所謂ホメオスタシス効果を活用して病原菌への耐性を高く保ちつつ収量の高い植物の生産方法を提供するものである。
なお照射のスケジュールは暗条件下での単色光照射から植物ホルモン等を誘導するまでに数時間レベルの期間を要することから太陽光利用型の植物栽培では夜間の暗条件下で単色光照射を繰り返すのが合理的である。
人工光利用型の植物栽培では暗条件を自由に設定できるので数時間置いた同一の暗期間に緑色光照射と赤色光照射又は青色光照射をすることで同一の効果が得られる。
なお、緑色光,赤色光及び青色光の照射組み合せは、上記各単色光の効果を考慮して自由に組み合せることができ、白色光と組み合せることもできる。
The present invention stimulates Cryptochrome 2 by irradiating green light under dark conditions, for example, at night, and induces flowering. In addition, after generating jasmonic acid, a growth-inhibiting plant hormone, Pathogens using the so-called homeostasis effect that maximizes the resilience of maintaining plant homeostasis by irradiating with blue or red light and expressing salicylic acid or auxin that has an antagonistic effect on jasmonic acid The present invention provides a method for producing a plant with a high yield while maintaining a high tolerance to water.
The irradiation schedule requires a period of several hours from the irradiation of monochromatic light under dark conditions to the induction of plant hormones, etc., so in plant cultivation using sunlight, monochromatic light irradiation is repeated under dark conditions at night Is reasonable.
In artificial light utilization type plant cultivation, since dark conditions can be set freely, the same effect can be obtained by irradiating green light and red light or blue light in the same dark period set for several hours.
In addition, the irradiation combination of green light, red light, and blue light can be freely combined in consideration of the effect of each monochromatic light, and can also be combined with white light.

緑色光照射用光源、赤色光照射用光源および青色光照射用光源は、培地上面の光量子束が各単色光光源で10〜55μmol/m/secに照射できるのが好ましい。
緑色光は波長530±30nmにピークがあり、赤色光は波長650±40nmにピークがあり、青色光は波長450±30nmにピークがある光源であれば蛍光灯に限らず発光ダイオード(LED)、冷陰極管エレクトロイルミネッセンス(EL)、レーザー光など他の光源も使用できる。
In the green light irradiation light source, the red light irradiation light source, and the blue light irradiation light source, it is preferable that the photon flux on the upper surface of the medium can be irradiated at 10 to 55 μmol / m 2 / sec with each monochromatic light source.
Green light has a peak at a wavelength of 530 ± 30 nm, red light has a peak at a wavelength of 650 ± 40 nm, and blue light has a peak at a wavelength of 450 ± 30 nm. Other light sources such as cold cathode tube electroluminescence (EL) and laser light can also be used.

本発明に係る単色光の組み合せ照射による植物の生産方法を用いて、例えば緑色光を所定時間夜間に照射し、翌晩に赤色光を所定時間照射することを複数回繰り返すと、緑色光の照射によるジャスモン酸の発現誘導と赤色光の照射によるオーキシンの発現誘導が繰り返される結果、次のような作用が生じる。
ジャスモン酸の発現によりオーキシン生合成酵素(YUCCA)が増加し(非特許文献1)、またオーキシン生成によりジャスモン酸合成経路の受容体(JAZ1)が誘導される(非特許文献2)等、いわゆるクロストークにより成長抑制ホルモンのジャスモン酸は成長促進ホルモンのオーキシンと連携して常時反転できる体制を整えて恒常性を保とうとすることで積極的にオーキシンの誘導を促し果菜類の収量が増加する。
Using the method for producing a plant by combined irradiation of monochromatic light according to the present invention, for example, when green light is irradiated for a predetermined time at night and then red light is irradiated for a predetermined time the next night, a plurality of times, As a result of repeated induction of jasmonic acid expression and auxin expression by irradiation with red light, the following effects occur.
Expression of jasmonic acid increases auxin biosynthetic enzyme (YUCCA) (Non-patent Document 1), and auxin production induces a receptor for jasmonic acid synthesis pathway (JAZ1) (Non-patent Document 2). The talk shows that the growth inhibitory hormone jasmonic acid actively promotes the induction of auxin and increases the yield of fruit and vegetables by establishing a system that can always be reversed in cooperation with the growth promoting hormone auxin.

また、緑色光照射と青色光照射を組み合せると、ジャスモン酸とサリチル酸とを交互に発現誘導させることで死物寄生菌と活性寄生菌の両者に耐性を有するようになり、サリチル酸の積極的な誘導により花成誘導が促進される。   In addition, when green light irradiation and blue light irradiation are combined, jasmonic acid and salicylic acid are alternately induced to induce resistance to both dead and active parasites. Induction promotes flowering induction.

組合せ単色光照射とイチゴ収量比の調査結果を示す。The investigation results of combined monochromatic light irradiation and strawberry yield ratio are shown. 組合せ単色光照射とイチゴの開花数調査結果を示す。The combined monochromatic light irradiation and strawberry flowering number survey results are shown. 単色光の照射パターンの説明図を示す。The explanatory view of the irradiation pattern of monochromatic light is shown. イチゴの栽培における照射光とハダニ被害の関係の調査結果を示す。The investigation result of the relation between irradiation light and spider mite damage in strawberry cultivation is shown. 各単色光を照射したイチゴの葉のジャスモン酸含有量の分析結果を示す。The analysis result of the jasmonic acid content of the strawberry leaf irradiated with each monochromatic light is shown. 各単色光照射したイチゴの葉のサリチル酸含有量の分析結果を示す。The analysis result of the salicylic acid content of the strawberry leaf irradiated with each monochromatic light is shown. シロイヌナズナの各変異体の開花率推移を示す。The flowering rate transition of each mutant of Arabidopsis thaliana is shown.

本発明に係る植物の生産方法の説明の前に、各単色光を植物に照射することで発現する作用を実験にて確認したので説明する。   Prior to the description of the plant production method according to the present invention, the effects of irradiating the plant with each monochromatic light were confirmed by experiments, which will be described.

昼間、自然光が当たるガラス温室内でイチゴを栽培し、夜間に暗条件下で緑色光,赤色光及び青色光の単色光をそれぞれ照射したものと、非照射のものを比較調査した。
<栽培条件>
各区にイチゴ、宝交早生10本の苗を定植した。
それぞれの区における単色光照射は、火,木,土の午前1時〜3時の夜間2時間、暗条件下で照射した。
各区の照射量は次のとおりとした。
緑色光照射区:20.3〜36.0μmol/m/s
赤色光照射区:11.3〜27.0μmol/m/s
青色光照射区:22.5〜67.0μmol/m/s
非照射区 :0μmol/m/s
なお、雲、雨天時のみ、ガラス温室内を白熱灯+電球型LEDにて補光を8:00〜20:00の12時間の範囲内で行った。
補光の強さは補光単独で120〜150μmol/m/sであった。
<ハダニの被害調査結果>
苗定植80日後にハダニの発生を確認した。
被害量を定量化するためにスコアを下記のとおり6段階に層別し、点数化した。
スコア0:変化なし。
スコア1:葉裏に黒点付着しているが黄変はない。
スコア2:葉裏に黄色のマダラ模様、葉表変化なし。
スコア3:葉裏全体が黄色いが葉表は変化なし。
スコア4:葉裏全体が黄色くなり、葉表に白点が進行している。
スコア5:葉に蜘蛛の巣は張った状態である。
完全展開した三枚葉の被害スコアから株毎の平均被害量を計算し、グラフにした結果を図4に示す。
この結果から緑色光照射区は他区に対して1%誤差水準、有意でハダニ被害が少なかった。
<ジャスモン酸含有量の調査結果>
ハダニ被害量の評価後、バロックフロアブルでハダニを駆除し、その2週間後に各区から完全展開した三つ葉で最も若い葉を選び約5g採取し、LC−MS/MSで分析した結果を図5のグラフに示す。
なお、ジャスモン酸含有量の分析は非特許文献6に記載の方法に準じて行った。
この結果、緑色光照射区が他区に対して1%有意でもってジャスモン酸の含有量が多くなっていた。
このことから、暗条件下での緑色光照射はジャスモン酸発現を誘導し、結果として虫害に対する防御能力が向上したと推定される。
ジャスモン酸はネクロトロフィックな病害に対しての防御誘導することも知られている。
<サリチル酸含有量の調査結果>
非特許文献6の記載に準じてLC−MS/MSにより分析したサリチル酸含有量を図6のグラフに示す。
グラフに示すとおり、青色光の照射区のサリチル酸含有量が赤色光照射区、緑色光照射区よりも有意に多くなっている。
サリチル酸の生成はバイオトロフィックな病害に対する全身獲得性抵抗(SAR)を誘導する他に、ジャスモン酸の生合成経路を阻害してジャスモン酸の作用を打ち消す拮抗作用を有する。
Strawberries were cultivated in a glass greenhouse exposed to natural light during the day, and a comparison was made between those irradiated with monochromatic light of green light, red light and blue light under dark conditions and those not irradiated at night.
<Cultivation conditions>
In each ward, 10 seedlings of strawberries and precious fast-growing were planted.
Monochromatic light irradiation in each section was performed under dark conditions for 2 hours at night from 1 am to 3 am on fire, wood, and soil.
The irradiation dose in each section was as follows.
Green light irradiation section: 20.3 to 36.0 μmol / m 2 / s
Red light irradiation zone: 11.3 to 27.0 μmol / m 2 / s
Blue light irradiation section: 22.5 to 67.0 μmol / m 2 / s
Non-irradiation zone: 0 μmol / m 2 / s
In addition, only in the case of clouds and rainy weather, the glass greenhouse was supplemented with an incandescent lamp and a light bulb type LED within a range of 12 hours from 8:00 to 20:00.
The intensity of supplemental light was 120 to 150 μmol / m 2 / s with supplemental light alone.
<Results of spider mite damage survey>
The occurrence of spider mites was confirmed 80 days after seedling planting.
In order to quantify the amount of damage, the score was divided into 6 levels as shown below and scored.
Score 0: No change.
Score 1: Black spots are attached to the back of the leaves, but there is no yellowing.
Score 2: Yellow spotted pattern on the back of leaf, no change in leaf surface.
Score 3: The entire leaf back is yellow, but the leaf surface is unchanged.
Score 4: The entire leaf back is yellow, and white spots are progressing on the leaf surface.
Score 5: A spider web is stretched on the leaf.
FIG. 4 shows the result of calculating the average damage amount for each stock from the damage score of the fully developed three-leaf sheet and making a graph.
From this result, the green light irradiation section was 1% error level compared to the other sections, and it was significantly less spoiled.
<Results of investigation of jasmonic acid content>
After evaluation of spider mite damage, we removed the spider mites using Baroque Flowable, and after about 2 weeks, we selected the youngest leaves among the three leaves fully developed from each section, collected about 5g, and analyzed the results by LC-MS / MS. Shown in
The analysis of jasmonic acid content was performed according to the method described in Non-Patent Document 6.
As a result, the content of jasmonic acid was increased because the green light irradiation section was 1% more significant than the other sections.
From this, it is presumed that irradiation with green light under dark conditions induced the expression of jasmonic acid, and as a result, the ability to defend against insect damage was improved.
Jasmonic acid is also known to induce defense against necrotrophic diseases.
<Survey result of salicylic acid content>
The salicylic acid content analyzed by LC-MS / MS according to the description of Non-Patent Document 6 is shown in the graph of FIG.
As shown in the graph, the salicylic acid content in the blue light irradiation section is significantly higher than that in the red light irradiation section and the green light irradiation section.
In addition to inducing systemic acquired resistance (SAR) against biotrophic diseases, the generation of salicylic acid has an antagonism that inhibits the action of jasmonic acid by inhibiting the biosynthetic pathway of jasmonic acid.

次に、植物モデル、シロイヌナズナを用いて単色光の照射実験を行った。
実験に用いたシロイヌナズナは野生種(Col−0)、クリプトクロム1欠損変異体(cry1)、クリプトクロム2欠損変異体(cry2)、ジャスモン酸生合成酵素欠損変異体(jar1)の4種類である。
種子をガラス瓶内のMS培地上の播種し人工気象器で栽培し、発芽2週間後に100mlのポリポット内の土壌培地に移植し人工気象器に戻した。
土壌培地には、バーミキュライト:ピートモス:パーライト=1:1:1ものを用いた。
人工気象器は18時間日長(5:00〜21:00),6時間暗条件(21:00〜5:00),23℃,相対湿度70%の条件に設定し、緑色光照射区、青色光照射区、非照射区の3区画を設定した。
単色光の照射は火,木,日の週3回、暗条件時の間で1:00〜3:00の2時間とした。
照射量は培地上面で緑色光29μmol/m/s、青色光26μmol/m/sとした。
開花率の調査結果を図7に示す。
播種後38日目(DAS38)においてジャスモン酸生合成酵素欠損変異体(jar1)の開花が最も早く、次にクリプトクロム1欠損変異体(cry1)と野生種(col−0)が続き、クリプトクロム2欠損変異体(cry2)はまだ開花していなかった。
また、図示を省略したが緑色光照射区では開花が早く、青色光照射区、非照射区の2区画の間での開花には有意差がなかった。
このことからクリプトクロム2が光刺激を受けて開花が促進される。
また、ジャスモン酸発現がなければさらに開花が早まることが分かる。
また、クリプトクロム2を刺激しての開花促進とジャスモン酸発現の経路とは独立と考えられる。
なお、非特許文献3にはクリプトクロム2が開花促進の光受容体であることが記載されている。
Next, a monochromatic light irradiation experiment was performed using a plant model, Arabidopsis thaliana.
There are four types of Arabidopsis used in the experiment: wild species (Col-0), cryptochrome 1 deficient mutant (cry1), cryptochrome 2 deficient mutant (cry2), and jasmonate biosynthetic enzyme deficient mutant (jar1). .
The seeds were sown on an MS medium in a glass bottle and cultivated with an artificial weather device, and after 2 weeks germination, transplanted to a soil medium in a 100 ml polypot and returned to the artificial weather device.
As the soil medium, vermiculite: peat moss: perlite = 1: 1: 1 was used.
The artificial meteorograph is set to 18 hours long (5: 00 to 21:00), 6 hours dark condition (21: 00 to 5:00), 23 ° C, 70% relative humidity, green light irradiation zone, Three sections, a blue light irradiation section and a non-irradiation section, were set.
The monochromatic light was irradiated three times a week on Tuesdays, Thursdays and Sundays for 2 hours from 1:00 to 3:00 between dark conditions.
Dose was in medium top green light 29μmol / m 2 / s, and blue light 26μmol / m 2 / s.
Fig. 7 shows the results of the survey on the flowering rate.
On the 38th day after sowing (DAS38), the jasmonate biosynthetic enzyme-deficient mutant (jar1) flowered first, followed by the cryptochrome 1-deficient mutant (cry1) and the wild species (col-0), followed by cryptochrome. The 2-deficient mutant (cry2) was not yet flowering.
Moreover, although illustration was abbreviate | omitted, the flowering was quick in the green light irradiation section, and there was no significant difference in the flowering between the two sections of the blue light irradiation section and the non-irradiation section.
For this reason, cryptochrome 2 receives light stimulation and promotes flowering.
It can also be seen that flowering is further accelerated if jasmonic acid is not expressed.
Moreover, it is thought that the flowering promotion by stimulating cryptochrome 2 and the pathway of jasmonic acid expression are independent.
Non-Patent Document 3 describes that cryptochrome 2 is a photoreceptor that promotes flowering.

以上の予備的実験をふまえて、以下本発明に係る植物の生産方法である単色光の組合せ例について調査結果を説明する。   Based on the preliminary experiments described above, the results of the investigation will be described below with respect to a combination example of monochromatic light which is a plant production method according to the present invention.

<イチゴの栽培条件>
高さ1mの台上にロックウールまたはゼオライトを入れた長さ1m、幅20cmの培地をセットし、台の下においた液肥入りの水タンクからポンプで水を培地に噴霧し、余分な水はドレン回路でタンクに戻す循環型の水耕栽培でイチゴを栽培した。
液肥濃度はEC1.5±0.3で調整した。
照射用蛍光灯は培地斜め上40cmに設置した。
単色光の照射方法としては図3に示す。
(a)はG照射方法として週に3回、火,木,日の夜間、1:00〜3:00の2時間緑色光を照射し,昼間は自然光に当てた。
(b)はG−R照射方式として週3回、火,木,日の夜間1:00〜3:00の2時間緑色光を照射し、翌晩である月,水,金の夜間1:00〜3:00の2時間赤色光を照射した。
なお、昼間は自然光を当てた。
(c)はG−B照射方式として週3回、火,木,金の夜間1:00〜3:00の2時間緑色光を照射し、翌晩である月,水,金の夜間1:00〜3:00の2時間青色光を照射した。
なお、昼間は自然光を当てた。
また、比較にために夜間にいずれの単色光を照射しない非照射区を設けた。
各照射区の間には仕切りカーテンを設け、他区域の照射の影響を受けないようにした培地上面での単色光の照射強さは緑色光、赤色光、青色光ともに10〜55μmol/m/sであった。
イチゴ宝交早生の定植数は非照射区5本、単色光区にはそれぞれ10本とした。
栽培結果として図1にイチゴ収量、図2に開花数を示す。
図1は非照射区1.000に対する収量比を示し、ジャスモン酸発現後に翌晩にオーキシンを発現させるG−R方式は非照射区に対して約2倍、G照射方式に対しても約1.7の収量であった。
図2は苗数に対する開花数を示し、ジャスモン酸発現後に翌晩に青色光でサリチル酸を
発現させたG−B照射方式が最も開花が進んでいた。
G−B照射方式は図2の結果からG−R照射方式ほどに収量が増加していないものの、開花数が図1に示すとおり進んでいることから、花卉類の栽培や一般作物の栄養成長段階の病害防御手段として利用できる。
なお、非特許文献5にトマト苗で暗条件下、赤色光照射でフィトクロムが刺激されてオーキシンを誘導することが報告されている。
非特許文献7に花成誘導に必要な受容体であるクリプトクロム2は緑色光照射には安定だが太陽光内に豊富に存在する青色光の連続照射に対して不安定であり消去されると報告されている。
これらの非特許文献と上記実験結果から暗条件下での弱い単色光照射はクリプトクロムやフィトクロム等の光受容体を刺激し、信号伝達物質である植物ホルモンを誘導して植物の形態形成に影響を与えていることが分かる。
<Cultivation conditions for strawberries>
Set a 1m long, 20cm wide medium with rock wool or zeolite on a 1m high table, spray water onto the medium from a liquid tank with liquid manure under the table. Strawberries were cultivated by circulating hydroponics that returned to the tank with a drain circuit.
The liquid fertilizer concentration was adjusted to EC1.5 ± 0.3.
The fluorescent lamp for irradiation was installed 40 cm above the medium.
A monochromatic light irradiation method is shown in FIG.
(A) As a G irradiation method, green light was irradiated 3 times a week on Tuesdays, Thursdays, and nights for 2 hours from 1:00 to 3:00, and was exposed to natural light in the daytime.
(B) As a G-R irradiation method, green light is irradiated 3 times a week for two hours from 10:00 to 3:00 on nights on Tuesdays, Thursdays and Sundays. Irradiated with red light for 2 hours at ~ 3: 00.
In the daytime, natural light was applied.
(C) is a GB irradiation method, which is irradiated with green light for 2 hours from 10:00 to 3:00 on Tuesdays, Thursdays and Fridays three times a week, and at 1:00 on Mondays, Wednesdays and Fridays the following night. Irradiated with blue light for ˜3: 00 for 2 hours.
In the daytime, natural light was applied.
For comparison, a non-irradiation zone where no monochromatic light was irradiated at night was provided.
A partition curtain is provided between each irradiation zone, and the irradiation intensity of monochromatic light on the upper surface of the medium which is not affected by the irradiation of other zones is 10 to 55 μmol / m 2 for green light, red light and blue light. / S.
The fixed number of strawberry treasure seedlings was 5 in the non-irradiated area and 10 in the monochromatic area.
As a cultivation result, FIG. 1 shows the strawberry yield, and FIG. 2 shows the number of flowering.
FIG. 1 shows the yield ratio relative to the non-irradiated zone 1.000. The GR method for expressing auxin the next night after jasmonic acid expression is about twice that for the non-irradiated zone, and about 1. The yield was 7.
FIG. 2 shows the number of flowering with respect to the number of seedlings, and the GB irradiation method in which salicylic acid was expressed with blue light the next night after jasmonic acid expression was the most flowering.
Although the yield of the GB irradiation method does not increase as much as the GR irradiation method from the results shown in FIG. 2, the number of flowering progresses as shown in FIG. It can be used as a means of disease prevention in stages.
Non-patent document 5 reports that phytochrome is stimulated by irradiation with red light under dark conditions in tomato seedlings to induce auxin.
In non-patent document 7, Cryptochrome 2 which is a receptor necessary for inducing flowering is stable to green light irradiation but unstable to continuous irradiation of blue light abundantly in sunlight. It has been reported.
From these non-patent documents and the above experimental results, weak monochromatic light irradiation under dark conditions stimulates photoreceptors such as cryptochrome and phytochrome, and induces plant hormones, which are signal transmitters, to affect plant morphogenesis. It can be seen that

Claims (3)

植物に、緑色光を暗条件下で照射するステップと、所定の時間経過後に赤色光を暗条件下で照射するステップとを有することを特徴とする植物の生産方法。   A method for producing a plant, comprising: irradiating the plant with green light under dark conditions; and irradiating the plant with red light under dark conditions after a predetermined time has elapsed. 前記緑色光を照射するステップと赤色光を照射するステップとの間に白色光を照射するステップを有することを特徴とする請求項1記載の植物の生産方法。   The plant production method according to claim 1, further comprising a step of irradiating white light between the step of irradiating the green light and the step of irradiating the red light. 前記、赤色光を照射するステップの替わりに青色光を照射するステップを有することを特徴とする請求項1又は2記載の植物の生産方法。   The plant production method according to claim 1, further comprising a step of irradiating with blue light instead of the step of irradiating with red light.
JP2014164612A 2014-08-13 2014-08-13 Plant production method Active JP6362135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014164612A JP6362135B2 (en) 2014-08-13 2014-08-13 Plant production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014164612A JP6362135B2 (en) 2014-08-13 2014-08-13 Plant production method

Publications (2)

Publication Number Publication Date
JP2016039790A true JP2016039790A (en) 2016-03-24
JP6362135B2 JP6362135B2 (en) 2018-07-25

Family

ID=55540452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014164612A Active JP6362135B2 (en) 2014-08-13 2014-08-13 Plant production method

Country Status (1)

Country Link
JP (1) JP6362135B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019031559A1 (en) * 2017-08-08 2019-02-14 Agcグリーンテック株式会社 Plant cultivation method and plant cultivation device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06276858A (en) * 1993-03-31 1994-10-04 Iwasaki Electric Co Ltd Device for lighting plant in closed space
US20040109302A1 (en) * 2001-02-28 2004-06-10 Kenji Yoneda Method of cultivating plant and illuminator for cultivating plant
WO2011007868A1 (en) * 2009-07-16 2011-01-20 四国電力株式会社 Fruit and vegetable cultivation method using illumination by green light, and green light illumination system
JP2012161313A (en) * 2011-01-17 2012-08-30 Shikoku Res Inst Inc Method for producing leaf vegetable
JP5028407B2 (en) * 2006-03-08 2012-09-19 株式会社四国総合研究所 Method for inducing plant gene and method for producing plant
JP2012183003A (en) * 2011-03-03 2012-09-27 Fairy Plant Technology Inc Plant growth device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06276858A (en) * 1993-03-31 1994-10-04 Iwasaki Electric Co Ltd Device for lighting plant in closed space
US20040109302A1 (en) * 2001-02-28 2004-06-10 Kenji Yoneda Method of cultivating plant and illuminator for cultivating plant
JP5028407B2 (en) * 2006-03-08 2012-09-19 株式会社四国総合研究所 Method for inducing plant gene and method for producing plant
WO2011007868A1 (en) * 2009-07-16 2011-01-20 四国電力株式会社 Fruit and vegetable cultivation method using illumination by green light, and green light illumination system
JP2012161313A (en) * 2011-01-17 2012-08-30 Shikoku Res Inst Inc Method for producing leaf vegetable
JP2012183003A (en) * 2011-03-03 2012-09-27 Fairy Plant Technology Inc Plant growth device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019031559A1 (en) * 2017-08-08 2019-02-14 Agcグリーンテック株式会社 Plant cultivation method and plant cultivation device
JPWO2019031559A1 (en) * 2017-08-08 2020-07-09 Agcグリーンテック株式会社 Plant cultivation method and plant cultivation device

Also Published As

Publication number Publication date
JP6362135B2 (en) 2018-07-25

Similar Documents

Publication Publication Date Title
Ji et al. Far-red radiation increases dry mass partitioning to fruits but reduces Botrytis cinerea resistance in tomato
Zieslin et al. Light on roses. A review
Riikonen et al. Growth and development of Norway spruce and Scots pine seedlings under different light spectra
Hao et al. LED inter-lighting in year-round greenhouse mini-cucumber production
US20200260651A1 (en) Method for cultivating plant seedling by artificial light
CN104813856B (en) A kind of method for inducing tomato to improve low-temperature resistance
CN104996140A (en) Planting method for grapes interplanting garlic for preventing and treating grape diseases
CN110235760A (en) Cultivation method of tomatoes in a kind of plant factor
Bergstrand et al. Development and acclimatisation of horticultural plants subjected to narrow-band lighting
CN105830685A (en) Technology for growing cucumber seedlings by using LED plant lamps
CN105660216B (en) A method of pepper seedling raising is carried out with LED plant lamp
KR20180009115A (en) Culturing method of Brassica oleracea var. acephala
JP6362135B2 (en) Plant production method
Park et al. Comparing photosynthesis, growth, and yield of paprika (Capsicum annuum L.'Cupra') under supplemental sulfur plasma and high-pressure sodium lamps in growth chambers and greenhouses
JP2011055816A (en) Method for controlling growth of plant utilizing light ray
JP2011055816A5 (en)
JP2014131506A5 (en)
JP2014131506A (en) Method for pests control during plant growth using light beam and device using light beam, method for phenol content increase and device using light beam, and method for kjeldahl nitrogen increase
Kumar et al. Effect of photoperiod on growth characteristics in Chrysanthemum morifolium Ramat. cv. Zembla
Rakutko et al. Comparative evaluation of tomato transplant growth parameters under led, fluorescent and high-pressure sodium lamps
JP5505830B2 (en) Method for controlling powdery mildew control using light rays
CN111418380B (en) Illumination culture method for promoting green stalk vegetable and Chinese cabbage heart to increase green
JP2018143203A (en) Method for controlling form of matricaria recutita l
Riikonen Content of far-red light in supplemental light modified characteristics related to drought tolerance and post-planting growth in Scots pine seedlings
Smith et al. Effect of Light-emitting Diodes, Ultraviolet-B, and Fluorescent Supplemental Greenhouse Lights on Strawberry Plant Growth and Response to Infection by the Anthracnose Pathogen Colletotrichum gloeosporioides

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180620

R150 Certificate of patent or registration of utility model

Ref document number: 6362135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250