JP2016017222A - Aluminum alloy clad material and heat exchanger - Google Patents

Aluminum alloy clad material and heat exchanger Download PDF

Info

Publication number
JP2016017222A
JP2016017222A JP2014142437A JP2014142437A JP2016017222A JP 2016017222 A JP2016017222 A JP 2016017222A JP 2014142437 A JP2014142437 A JP 2014142437A JP 2014142437 A JP2014142437 A JP 2014142437A JP 2016017222 A JP2016017222 A JP 2016017222A
Authority
JP
Japan
Prior art keywords
mass
aluminum alloy
alloy clad
clad material
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014142437A
Other languages
Japanese (ja)
Other versions
JP6415144B2 (en
Inventor
路英 吉野
Michihide Yoshino
路英 吉野
江戸 正和
Masakazu Edo
正和 江戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2014142437A priority Critical patent/JP6415144B2/en
Publication of JP2016017222A publication Critical patent/JP2016017222A/en
Application granted granted Critical
Publication of JP6415144B2 publication Critical patent/JP6415144B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum alloy clad material adding corrosion resistance in a high cooling water side while having a layer structure of which both sides has a wax material, capable of forming complex structure and suppressing material manufacturing cost, a heat exchanger using the clad material.SOLUTION: An aluminum alloy clad material is an aluminum alloy clad material of which double faces of a core material is clad by a shell material, the shell material contains Si:3 mass% to 6 mass%, Zn:2 mass% to 4 mass% and the balance Al with inevitable impurities, a core material contains Mn:0.8 mass% to 1.8 mass%, Si:0.05 mass% to 0.5 mass%, Cu:0.05 mass% to 0.3 mass%, Fe:0.1 mass% to 0.6 mass% and the balance Al with inevitable impurities and crystal particle diameter of the core material after a heat treatment at 600°C to 610°C for 3 minutes to 15 minutes in a range of 50 μm to 200 μm.SELECTED DRAWING: None

Description

本発明は、自動車熱交換器用部品等に用いられるアルミニウム合金クラッド材及びこのクラッド材を用いた熱交換器に関する。   The present invention relates to an aluminum alloy clad material used for automobile heat exchanger parts and the like and a heat exchanger using the clad material.

近年、他部品や流体を冷却するための熱交換器の需要が増えている。これらの熱交換器では水(又は水+LLC)で冷却が行われるため、冷却水流路側には高い耐食性が要求される。さらに、他部材と接合することも必要であることから、当該用途には犠牲材、芯材、ろう材からなるブレージングシートが使用されることが多い。   In recent years, the demand for heat exchangers for cooling other parts and fluids has increased. Since these heat exchangers are cooled with water (or water + LLC), high corrosion resistance is required on the cooling water flow path side. Furthermore, since it is also necessary to join with other members, a brazing sheet made of a sacrificial material, a core material, and a brazing material is often used for the application.

特許文献1に開示の熱交換器用アルミニウム合金クラッド材は、芯材として、Mn,Cuを含有し、残りがAl及び不可避不純物からなる合金が用いられ、その芯材の片面に、Al−Si系あるいはAl−Si−Zn系ろう材をクラッドし、他方の面に、Fe,Niのうちの一種または2種を含有し、残りがAl及び不可避不純物からなる犠牲陽極皮材がクラッドされている。
特許文献2に開示の熱交換器用アルミニウム合金クラッド材は、Mn,Cuを含有し、残りがAl及び不可避不純物からなる組成の芯材の片面に、Al−Si系あるいはAl−Si−Zn系ろう材をクラッドし、他方の面に、Mnを含有し、残りがAl及び不可避不純物からなる犠牲陽極皮材がクラッドされている。
特許文献3に開示のアルミニウム合金ブレージングシートは、Mn,Si,Cu,Fe,Mg,Znを含有し、残りがAl及び不可避不純物からなる組成の芯材の片面に、Si,Znを含有し、残りがAl及び不可避不純物からなるろう材、他の面に、Zn、Mg、Mn,Siを含有し、残りがAl及び不可避不純物からなる犠牲材がクラッドされている。
The aluminum alloy clad material for heat exchanger disclosed in Patent Document 1 contains Mn, Cu as the core material, and the remaining alloy composed of Al and inevitable impurities is used. Alternatively, an Al—Si—Zn-based brazing material is clad, and the other surface contains one or two of Fe and Ni, and the remainder is clad with a sacrificial anode skin material made of Al and inevitable impurities.
The aluminum alloy clad material for a heat exchanger disclosed in Patent Document 2 contains Mn and Cu, and the remainder is Al-Si or Al-Si-Zn brazing on one side of a core material composed of Al and inevitable impurities. The material is clad, and the other surface is clad with a sacrificial anode skin material containing Mn and the remainder consisting of Al and inevitable impurities.
The aluminum alloy brazing sheet disclosed in Patent Document 3 contains Mn, Si, Cu, Fe, Mg, Zn, and the remainder contains Si and Zn on one side of the core material composed of Al and inevitable impurities. The rest is brazing material made of Al and unavoidable impurities, and the other surface is clad with a sacrificial material containing Zn, Mg, Mn, Si, and the remainder made of Al and unavoidable impurities.

特開2000−297338号公報JP 2000-297338 A 特開2000−297339号公報JP 2000-297339 A 特許第3852047号公報Japanese Patent No. 382047

しかし、このような用途に使用される熱交換器は種々の形態をとり、また、複雑な構造を持つこともあるため、片側にしかろう材層がない場合には、構造が制限される問題がある。一方で、両側にろう材を配置した場合には、上記の問題は解決されるが、冷却水側の耐食性が不十分になるという問題がある。また、犠牲材、芯材、ろう材からなるブレージングシートの犠牲材側にさらにろう材を設けた4層材も使用できるが、この場合、上記問題は解決されるものの、材料製造コストが増加してしまう。   However, the heat exchanger used for such an application takes various forms and may have a complicated structure. Therefore, when there is only a brazing material layer on one side, the structure is limited. There is. On the other hand, when brazing materials are arranged on both sides, the above problem is solved, but there is a problem that the corrosion resistance on the cooling water side becomes insufficient. In addition, a four-layer material in which a brazing material is further provided on the sacrificial material side of a brazing sheet made of a sacrificial material, a core material, and a brazing material can also be used. End up.

本発明はこのような背景に鑑みてなされたものであり、両側にろう材を配置した層構造でありながら高い冷却水側の耐食性を付与し、複雑な構造を形成することが可能で、しかも材料製造コストを抑えたアルミニウム合金クラッド材及びこのクラッド材を用いた熱交換器を提供することを目的とする。   The present invention has been made in view of such a background, and although it is a layered structure in which brazing material is arranged on both sides, it can provide high corrosion resistance on the cooling water side and can form a complicated structure. An object of the present invention is to provide an aluminum alloy clad material with reduced material production costs and a heat exchanger using the clad material.

本発明のアルミニウム合金クラッド材は、芯材の両側の面に皮材をクラッドしたアルミニウム合金クラッド材であって、前記皮材は、Si:3質量%〜6質量%、Zn:2質量%〜4質量%を含有し、残部がAl及び不可避不純物からなり、前記芯材は、Mn:0.8質量%〜1.8質量%、Si:0.05質量%〜0.5質量%、Cu:0.05質量%〜0.3質量%、Fe:0.1質量%〜0.6質量%を含有し、残部がAl及び不可避不純物からなり、さらに600℃〜610℃で3分〜15分の熱処理後の芯材の結晶粒径が50μm〜200μmの範囲にあることを特徴とする。   The aluminum alloy clad material of the present invention is an aluminum alloy clad material in which a skin material is clad on both sides of a core material, and the skin material is composed of Si: 3 mass% to 6 mass%, Zn: 2 mass% to 4% by mass, the balance is made of Al and inevitable impurities, and the core material is Mn: 0.8% by mass to 1.8% by mass, Si: 0.05% by mass to 0.5% by mass, Cu : 0.05% by mass to 0.3% by mass, Fe: 0.1% by mass to 0.6% by mass, with the balance consisting of Al and inevitable impurities, and further at 600 ° C to 610 ° C for 3 minutes to 15 The crystal grain size of the core material after heat treatment for 5 minutes is in the range of 50 μm to 200 μm.

[皮材成分]
Siは材料の融点を低下させるので、皮材に添加した場合、ろう付熱処理時に溶融して他部材と接合する機能を付与する効果がある。下限未満ではその効果が十分発揮されず、上限を超えると溶融ろうの流動性が高くなりすぎて、ろう付後に残存するろう厚さが低下するとともに表面Zn濃度が低下することで耐食性が劣化する。
Znは材料の電位を卑にするので皮材に添加した場合、皮材の電位を卑にして芯材を防食する効果がある。下限未満ではその効果が十分発揮されず、上限を超えると、接合部にZnが過剰に濃縮して優先的に腐食するようになるので、接合部の耐食性が劣化する。
[Skin material ingredients]
Since Si lowers the melting point of the material, when added to the skin material, it has an effect of providing a function of melting and joining to other members during brazing heat treatment. If the amount is less than the lower limit, the effect is not sufficiently exhibited. If the upper limit is exceeded, the flowability of the molten braze becomes too high, and the brazing thickness remaining after brazing decreases and the surface Zn concentration decreases and the corrosion resistance deteriorates. .
Since Zn lowers the potential of the material, when it is added to the skin material, it has the effect of preventing the core material by lowering the potential of the skin material. If it is less than the lower limit, the effect is not sufficiently exhibited, and if it exceeds the upper limit, Zn is excessively concentrated in the joint portion and becomes preferentially corroded, so that the corrosion resistance of the joint portion is deteriorated.

[芯材成分]
Mnはマトリックス中にAl−Mn−Si系、Al−Mn−Fe系、Al−Mn−Fe−Si系金属間化合物を微細に形成し、材料の強度を高める効果がある。下限未満ではその効果が十分発揮されず、上限を超えると鋳造時に巨大な金属間化合物を生成するため材料の成形性が低下してしまう。
Siはマトリックス中にAl−Mn−Si系、Al−Mn−Fe系、Al−Mn−Fe−Si系金属間化合物を微細に形成し、材料の強度を高める効果がある。下限未満ではその効果が十分発揮されず、上限を超えると鋳造時に巨大な金属間化合物を生成するため材料の成形性が低下してしまう。
Cuはマトリックス中に固溶し、材料の強度を高める効果がある。下限未満ではその効果が十分に発揮されず、上限を超えると粒界腐食が発生しやすくなり耐食性が低下してしまう。
Feはマトリックス中に粗大なAl−Mn−Fe系、Al−Mn−Fe−Si系金属間化合物を形成して、ろう付熱処理後の結晶粒径を小さくする効果がある。下限未満ではその効果が十分に発揮されず、上限を超えると鋳造時に巨大な金属間化合物が生成するため材料の成形性が低下してしまう。
[Core material component]
Mn forms an Al—Mn—Si, Al—Mn—Fe, and Al—Mn—Fe—Si intermetallic compound in the matrix and has the effect of increasing the strength of the material. If the amount is less than the lower limit, the effect is not sufficiently exhibited. If the amount exceeds the upper limit, a huge intermetallic compound is generated at the time of casting, so that the formability of the material is deteriorated.
Si has the effect of forming Al—Mn—Si, Al—Mn—Fe, and Al—Mn—Fe—Si intermetallic compounds in the matrix to increase the strength of the material. If the amount is less than the lower limit, the effect is not sufficiently exhibited. If the amount exceeds the upper limit, a huge intermetallic compound is generated at the time of casting, so that the formability of the material is deteriorated.
Cu is dissolved in the matrix and has the effect of increasing the strength of the material. If it is less than the lower limit, the effect is not sufficiently exhibited, and if it exceeds the upper limit, intergranular corrosion tends to occur and the corrosion resistance is lowered.
Fe has the effect of forming coarse Al—Mn—Fe and Al—Mn—Fe—Si intermetallic compounds in the matrix and reducing the crystal grain size after brazing heat treatment. If the amount is less than the lower limit, the effect is not sufficiently exhibited. If the amount exceeds the upper limit, a huge intermetallic compound is generated at the time of casting, so that the formability of the material is deteriorated.

[熱処理後の芯材の結晶粒径]
結晶粒界はろう侵食の起点となることで溶融ろうの流動に対する抵抗になる。そのため、ろう溶融直前の芯材の結晶粒径が微細な場合にはろうの流動性が低下して、ろう付後に残存するろう材厚さを増す効果がある。また、それにともなってろう付後の表面Zn濃度が増加するため耐食性が向上する。
上記熱処理条件はろう付条件を想定したものであり、この熱処理後の芯材の結晶粒径が下限未満ではろう侵食の起点が多くなりすぎて著しいエロージョンが発生する。上限を超えるとろうの流動性を低下させる効果が不十分となり、残存ろう厚さが薄くなるとともに表面Zn濃度が低下して耐食性が劣化する。さらに接合部にろうが流動しやすくなり接合部のZn濃度が高くなり過ぎて、接合部の耐食性が低下する。なお、ろう溶融直前の結晶粒組織とろう付後の結晶粒組織はほとんど変化しない。
[Crystal grain size of core material after heat treatment]
Grain boundaries become the starting point for wax erosion and become a resistance to the flow of molten wax. For this reason, when the crystal grain size of the core material just before the melting of the brazing is fine, the flowability of the brazing is lowered, and there is an effect of increasing the thickness of the brazing material remaining after brazing. Moreover, since the surface Zn density | concentration after brazing increases in connection with it, corrosion resistance improves.
The heat treatment conditions are assumed to be brazing conditions. When the crystal grain size of the core material after the heat treatment is less than the lower limit, the number of starting points of brazing erosion becomes excessive and significant erosion occurs. When the upper limit is exceeded, the effect of lowering the flowability of the wax becomes insufficient, the residual wax thickness becomes thinner, and the surface Zn concentration decreases to deteriorate the corrosion resistance. Furthermore, the solder tends to flow into the joint, the Zn concentration in the joint becomes too high, and the corrosion resistance of the joint decreases. It should be noted that the crystal grain structure immediately before the solder melting and the crystal grain structure after brazing hardly change.

本発明のアルミニウム合金クラッド材において、前記芯材中の晶出相を除く第二相粒子であるAl−Mn系、Al−Mn−Si系、Al−Mn−Fe系、Al−Mn−Fe−Si系化合物の円相当平均直径が0.1μm〜0.8μmの範囲にあることが好ましい。   In the aluminum alloy clad material of the present invention, Al-Mn, Al-Mn-Si, Al-Mn-Fe, Al-Mn-Fe-, which are second phase particles excluding the crystallization phase in the core material. It is preferable that the circle-equivalent average diameter of the Si-based compound is in the range of 0.1 μm to 0.8 μm.

芯材中の晶出相を除く第二相粒子の大きさは、芯材の結晶粒径に影響を与え、微細なサイズの粒子が分布する場合には製造工程中の焼鈍、およびろう付熱処理時の再結晶を遅延して芯材の結晶粒径を粗大にする。一方、粗大なサイズの粒子が分布する場合には再結晶を促進して結晶粒径を微細にする。下限未満だと結晶粒径が粗大となってしまう。上限を超えると微細になりすぎて耐ろう侵食性が低下してしまう。   The size of the second phase particles excluding the crystallization phase in the core material affects the crystal grain size of the core material. If fine particles are distributed, annealing during the manufacturing process, and brazing heat treatment The recrystallization at the time is delayed to make the crystal grain size of the core material coarse. On the other hand, when coarse-sized particles are distributed, recrystallization is promoted to reduce the crystal grain size. If it is less than the lower limit, the crystal grain size becomes coarse. If the upper limit is exceeded, it becomes too fine and the wax erosion resistance decreases.

本発明のアルミニウム合金クラッド材において、前記皮材は、さらにMn:0.05質量%〜0.5質量%、Fe:0.05質量%〜0.5質量%、Sr:0.05質量%〜0.5質量%、Ti:0.05質量%〜0.5質量%、Zr:0.05質量%〜0.5%の内の1種または2種以上を含有してもよい。   In the aluminum alloy clad material of the present invention, the skin material further includes Mn: 0.05 mass% to 0.5 mass%, Fe: 0.05 mass% to 0.5 mass%, Sr: 0.05 mass%. One or more of ˜0.5 mass%, Ti: 0.05 mass% to 0.5 mass%, and Zr: 0.05 mass% to 0.5% may be contained.

皮材(ろう材)にMn,Fe,Sr,Ti,Zrが添加された場合、ろうの流動性を低下させる効果がある。下限未満ではその効果が十分発揮されず、上限を超えると巨大な金属間化合物を生成するおそれがある。   When Mn, Fe, Sr, Ti, Zr is added to the skin material (brazing material), there is an effect of reducing the fluidity of the brazing material. If it is less than the lower limit, the effect is not sufficiently exhibited, and if it exceeds the upper limit, a huge intermetallic compound may be formed.

本発明のアルミニウム合金クラッド材において、前記芯材は、さらにTi,Zr,Crがそれぞれ0.05質量%〜0.3質量%の範囲で1種または2種以上含有してもよい。   In the aluminum alloy clad material of the present invention, the core material may further contain one or more of Ti, Zr, and Cr in the range of 0.05% by mass to 0.3% by mass, respectively.

芯材にTi,Zr,Crが添加された場合、腐食形態を層状にして深さ方向への腐食の進展を抑制することで耐食性を向上させる効果がある。下限未満ではその効果が十分発揮されず、上限を超えると巨大な金属間化合物を生成するおそれがある。   When Ti, Zr, and Cr are added to the core material, there is an effect of improving the corrosion resistance by suppressing the progress of corrosion in the depth direction by making the corrosion form into a layer. If it is less than the lower limit, the effect is not sufficiently exhibited, and if it exceeds the upper limit, a huge intermetallic compound may be formed.

本発明の熱交換器は、本発明のアルミニウム合金クラッド材の少なくとも一部がろう付されており、ろう付されていない部分の前記アルミニウム合金クラッド材の表面のZn濃度が1.5質量%〜3.0質量%の範囲にある。   In the heat exchanger of the present invention, at least a part of the aluminum alloy clad material of the present invention is brazed, and the Zn concentration of the surface of the aluminum alloy clad material in the unbrazed portion is 1.5 mass% to It is in the range of 3.0% by mass.

ろう付後の材料表面のZn濃度は芯材に対する皮材の防食性能の大小と関係があり、表面Zn濃度が高いほど、芯材に対して皮材の電位がより卑となり、芯材を防食しやすい。下限未満だと芯材に対する防食性能が不十分となり芯材に腐食が到達しやすくなり耐食性が劣化する。一方、上限を超えると皮材の腐食速度が速くなりすぎて皮材が早期に腐食・消耗することで耐食性が劣化する。   The Zn concentration on the surface of the material after brazing is related to the magnitude of the anticorrosion performance of the skin against the core material. The higher the surface Zn concentration, the lower the potential of the skin material relative to the core material, and the anticorrosion of the core material. It's easy to do. If it is less than the lower limit, the anticorrosion performance with respect to the core material becomes insufficient, and the core material is likely to be corroded and the corrosion resistance is deteriorated. On the other hand, if the upper limit is exceeded, the corrosion rate of the skin material becomes too fast and the skin material is corroded and consumed at an early stage, thereby deteriorating the corrosion resistance.

本発明の熱交換器において、前記アルミニウム合金クラッド材のろう付接合部における最大Zn濃度が6質量%未満であるとよい。   In the heat exchanger of the present invention, the maximum Zn concentration in the brazed joint of the aluminum alloy clad material is preferably less than 6% by mass.

ろう付接合部における最大Zn濃度は接合部(特にフィレット部)の腐食速度と関係があり、最大Zn濃度が高いほど腐食速度は速くなる。上限を超えた場合には腐食速度が速くなりすぎるためフィレット部が腐食・消耗しやすくなる。   The maximum Zn concentration in the brazed joint is related to the corrosion rate of the joint (particularly the fillet), and the higher the maximum Zn concentration, the faster the corrosion rate. If the upper limit is exceeded, the corrosion rate will be too fast, and the fillet will be easily corroded and consumed.

本発明によれば、ろう材の成分(Si量とZn量)を所定の値に調整すること、および芯材の金属組織を制御することで、ろう材でありながら高い冷却水側の耐食性を付与することができる。それによって、両面にろう材があることで複雑な構造を形成することが可能で、かつ、冷却水側耐食性に優れ、しかも材料製造コストを抑えた材料を提供することができる。   According to the present invention, by adjusting the components of the brazing material (Si content and Zn content) to predetermined values and controlling the metal structure of the core material, high corrosion resistance on the cooling water side while being brazing material. Can be granted. As a result, it is possible to provide a material that can form a complicated structure due to the presence of the brazing material on both sides, has excellent cooling water side corrosion resistance, and suppresses the material manufacturing cost.

本発明の効果確認のための試験で用意した試料の概要を説明する模式図である。It is a schematic diagram explaining the outline | summary of the sample prepared by the test for the effect confirmation of this invention.

以下、本発明に係るアルミニウム合金クラッド材の実施形態を説明する。
このアルミニウム合金クラッド材は、自動車熱交換器用部品として用いられるもので、芯材の両面に皮材がクラッドされており、皮材は、Si:3質量%〜6質量%、Zn:2質量%〜4質量%を含有し、残部がAl及び不可避不純物からなり、芯材は、Mn:0.8質量%〜1.8質量%、Si:0.05質量%〜0.5質量%、Cu:0.05質量%〜0.3質量%、Fe:0.1質量%〜0.6質量%を含有し、残部がAl及び不可避不純物からなる質別Oの材料からなり、さらに600℃〜610℃で3分〜15分の熱処理後の芯材の結晶粒径が50μm〜200μmの範囲にある。
この場合、芯材中の晶出相を除く第二相粒子であるAl−Mn系、Al−Mn−Si系、Al−Mn−Fe系、Al−Mn−Fe−Si系化合物の円相当平均直径が0.1μm〜0.8μmの範囲にあることが好ましい。
上記基本組成に加えて、皮材は、さらにMn:0.05質量%〜0.5質量%、Fe:0.05質量%〜0.5質量%、Sr:0.05質量%〜0.5質量%、Ti:0.05質量%〜0.5質量%、Zr:0.05質量%〜0.5%の内の1種または2種以上を含有してもよい。
また、芯材については、さらにTi,Zr,Crがそれぞれ0.05質量%〜0.3質量%の範囲で1種または2種以上含有してもよい。
これらの特定理由は上述した通りであるが、これらのうち、皮材のSi含有量は4質量%〜5.5質量%、Zn含有量は3質量%〜4質量%がさらに好ましい。
Hereinafter, embodiments of the aluminum alloy clad material according to the present invention will be described.
This aluminum alloy clad material is used as an automotive heat exchanger component, and a skin material is clad on both sides of a core material. The skin material is Si: 3 mass% to 6 mass%, Zn: 2 mass%. -4 mass%, the balance is made of Al and inevitable impurities, and the core material is Mn: 0.8 mass% to 1.8 mass%, Si: 0.05 mass% to 0.5 mass%, Cu : 0.05% by mass to 0.3% by mass, Fe: 0.1% by mass to 0.6% by mass, the balance being made of a material of grade O consisting of Al and inevitable impurities, The crystal grain size of the core after heat treatment at 610 ° C. for 3 minutes to 15 minutes is in the range of 50 μm to 200 μm.
In this case, the circle equivalent average of the Al—Mn, Al—Mn—Si, Al—Mn—Fe, and Al—Mn—Fe—Si compounds, which are the second phase particles excluding the crystallization phase in the core material The diameter is preferably in the range of 0.1 μm to 0.8 μm.
In addition to the above basic composition, the skin material further comprises Mn: 0.05% by mass to 0.5% by mass, Fe: 0.05% by mass to 0.5% by mass, Sr: 0.05% by mass to 0.00%. You may contain 1 type (s) or 2 or more types in 5 mass%, Ti: 0.05 mass%-0.5 mass%, Zr: 0.05 mass%-0.5%.
Moreover, about core material, Ti, Zr, and Cr may contain 1 type (s) or 2 or more types in the range of 0.05 mass%-0.3 mass%, respectively.
Although these specific reasons are as above-mentioned, among these, as for Si content of a skin material, 4 mass%-5.5 mass%, and Zn content are further more preferable 3 mass%-4 mass%.

[製造方法]
このアルミニウム合金クラッド材は以下の方法にて製造される。
まず、半連続鋳造により芯材用アルミニウム合金、皮材(ろう材)用アルミニウム合金を鋳造し、得られた芯材の鋳塊については所定温度で均質化処理を行う。
この均質化処理は、530℃〜610℃で3時間〜20時間が適切であり、高温あるいは長時間側にすることで第二相粒子を粗大にしてろう付後の結晶粒径を微細にする作用がある。皮材については均質化処理しなくてよいが、均質化処理してもよい。
この均質化処理の後、芯材の鋳塊の両面に皮材の鋳塊を組み合わせて熱間圧延することによりクラッド材とし、さらに冷間圧延により目的の厚さまで圧延し、さらに最終焼鈍を例えば350℃で6時間行うことにより、質別Oのクラッド材とする。熱間圧延、冷間圧延、最終焼鈍は常法によって行えばよい。ただし、製造工程はこれに限定されるものではなく、冷間圧延の途中に中間焼鈍を追加することも可能である。
最終的なアルミニウム合金クラッド材の構成は、厚さの比率で、例えば皮材:芯材:皮材=10%:80%:10%とされるが、これに限定されるものではなく、例えば、皮材のクラッド率を12%、15%や20%にしてもよい。
[Production method]
This aluminum alloy clad material is manufactured by the following method.
First, an aluminum alloy for a core material and an aluminum alloy for a skin material (brazing material) are cast by semi-continuous casting, and the ingot of the obtained core material is homogenized at a predetermined temperature.
This homogenization treatment is suitable at 530 ° C. to 610 ° C. for 3 hours to 20 hours, and by setting the temperature to a high temperature or a long time side, the second phase particles become coarse and the crystal grain size after brazing becomes fine. There is an effect. The skin material need not be homogenized, but may be homogenized.
After this homogenization treatment, the ingot of the core material is combined with the ingot of the skin material and hot-rolled to form a clad material, further rolled to the desired thickness by cold rolling, and further subjected to final annealing, for example By performing the treatment at 350 ° C. for 6 hours, a grade O cladding material is obtained. Hot rolling, cold rolling, and final annealing may be performed by conventional methods. However, a manufacturing process is not limited to this, It is also possible to add intermediate annealing in the middle of cold rolling.
The final configuration of the aluminum alloy clad material is a ratio of thickness, for example, skin material: core material: skin material = 10%: 80%: 10%, but is not limited to this. For example, The clad rate of the skin material may be 12%, 15% or 20%.

[ろう付による熱交換器への組付]
このようにして製造されるアルミニウム合金クラッド材は、自動車の熱交換器用部材として用いられ、その片面あるいは両面の少なくとも一部が他部品とろう付されて熱交換器に組み付けられる。この場合のろう付条件は、595℃〜620℃で1分〜15分保持が適切である。
特に、ろう付条件を595℃〜610℃で1分〜7分保持に制御することで、ろう付後に、ろう付されていない部分のアルミニウム合金クラッド材の表面のZn濃度が1.5質量%〜3.0質量%の範囲にあり、また、ろう付接合部における最大Zn濃度が6質量%未満になる。
このようなZn濃度となることで、冷却水に対する耐食性がさらに向上し、腐食・消耗しにくくなる。
[Assembling to heat exchanger by brazing]
The aluminum alloy clad material manufactured in this way is used as a member for a heat exchanger of an automobile, and at least a part of one side or both sides thereof is brazed with other parts and assembled to the heat exchanger. The brazing conditions in this case are suitably held at 595 ° C. to 620 ° C. for 1 minute to 15 minutes.
In particular, by controlling the brazing condition at 595 ° C. to 610 ° C. for 1 minute to 7 minutes, the Zn concentration on the surface of the aluminum alloy clad material in the unbrazed portion after brazing is 1.5% by mass. It is in the range of -3.0% by mass, and the maximum Zn concentration in the brazed joint is less than 6% by mass.
With such a Zn concentration, the corrosion resistance to cooling water is further improved, and corrosion and wear are less likely to occur.

半連続鋳造により表1に示す組成の芯材用アルミニウム合金、表2に示す組成の皮材(ろう材)用アルミニウム合金を鋳造し、得られた芯材は表3に示す均質化処理を行った。芯材鋳塊の両面に皮材鋳塊を表3に示す組み合わせで重ねて熱間圧延し、冷間圧延により厚さ0.6mmとし、さらに最終焼鈍を350℃で6時間行って、質別Oのアルミニウム合金クラッド材を作製した。このクラッド材の構成は、厚さの比率で、皮材:芯材:皮材=10%:80%:10%とした。   The aluminum alloy for core material having the composition shown in Table 1 and the aluminum alloy for skin material (brazing material) having the composition shown in Table 2 were cast by semi-continuous casting, and the obtained core material was subjected to the homogenization treatment shown in Table 3. It was. The core material ingots are overlapped with the combinations shown in Table 3 on both sides of the core material ingot and hot-rolled, cold-rolled to a thickness of 0.6 mm, and further subjected to final annealing at 350 ° C. for 6 hours. An aluminum alloy clad material of O was produced. The composition of the clad material was the ratio of thickness: skin material: core material: skin material = 10%: 80%: 10%.

Figure 2016017222
Figure 2016017222

Figure 2016017222
Figure 2016017222

Figure 2016017222
Figure 2016017222

得られたアルミニウム合金クラッド材について、芯材中の第二相粒子の円相当平均直径、熱処理後の芯材の結晶粒径、ろう付後の表面のZn濃度、ろう付接合部のZn濃度を測定し、耐ろう侵食性、接合性、内部侵食性を評価した。   About the obtained aluminum alloy clad material, the circle equivalent average diameter of the second phase particles in the core material, the crystal grain size of the core material after heat treatment, the Zn concentration of the surface after brazing, the Zn concentration of the brazed joint Measurements were made to evaluate wax erosion resistance, bondability and internal erosion.

[芯材中の第二相粒子の円相当平均直径]
作製した試料を苛性ソーダによるアルカリエッチングおよび機械研磨によって芯材中央部付近を露出させ、通常の方法で機械研磨、および電解研磨によって薄膜を作製し、TEMで10000倍で写真撮影した。撮影した写真5視野について画像解析し、第二相粒子の平均サイズを求めた。その際、1μm以上のサイズのものは晶出物と判断して計測からは除外した。
[Average equivalent circle diameter of second phase particles in the core]
The prepared sample was exposed in the vicinity of the center of the core material by alkali etching with caustic soda and mechanical polishing, a thin film was prepared by mechanical polishing and electrolytic polishing by a conventional method, and a photograph was taken with a TEM at a magnification of 10,000 times. Image analysis was performed on five fields of photographed photographs to determine the average size of the second phase particles. At that time, those having a size of 1 μm or more were judged as crystallized substances and excluded from the measurement.

[熱処理後の芯材の結晶粒径]
図1(a)に示すようにJIS3003アルミニウム合金のO材からなる厚さ1.0mmの板1とクラッド材試料2とを用意し、熱処理として、これらを表3に示す条件で図1(b)に示すようにろう付接合した。ろう付した接合体3の非接合部4からサンプルを採取し、素材の圧延方向に平行な縦断面を樹脂埋め後、エメリー研磨、バフ研磨によって鏡面に研磨した後、バーカー氏液を用いた陽極酸化によって結晶粒を現出させ、偏光顕微鏡で芯材の結晶粒組織を観察した。撮影倍率は100倍とし、結晶粒が微細な場合や粗大な場合に観察が困難となった際は200倍、あるいは50倍を選択した。測定視野数は3箇所とし、撮影した写真から圧延方向について切断法で結晶粒径を測定した。
[Crystal grain size of core material after heat treatment]
As shown in FIG. 1A, a 1.0 mm-thick plate 1 made of O material of JIS3003 aluminum alloy and a clad material sample 2 are prepared, and these are subjected to heat treatment under the conditions shown in Table 3 as shown in FIG. And brazed as shown in FIG. A sample is taken from the non-joined part 4 of the brazed joined body 3, and a longitudinal section parallel to the rolling direction of the material is filled with resin, then polished to a mirror surface by emery polishing and buff polishing, and then an anode using Barker's liquid Crystal grains were revealed by oxidation, and the crystal grain structure of the core material was observed with a polarizing microscope. The photographing magnification was set to 100 times, and when the observation became difficult when the crystal grains were fine or coarse, 200 times or 50 times was selected. The number of fields of view was three, and the crystal grain size was measured by a cutting method in the rolling direction from the photograph taken.

[ろう付後の表面のZn濃度]
ろう付した接合体3の非接合部4からサンプルを採取し、その箇所を樹脂埋め後、エメリー研磨、バフ研磨によって鏡面に研磨した後、EPMA線分析でZn拡散状態を調査し(ステップサイズは1μm)、材料表面から3μm〜7μmの位置での平均Zn濃度を求め、表面Zn濃度とした。5箇所でZn濃度を測定し、その平均を求めた。
[Zn concentration on the surface after brazing]
A sample is taken from the non-joined portion 4 of the brazed joined body 3, and after filling the portion with resin, it is polished to a mirror surface by emery polishing and buff polishing, and then the Zn diffusion state is investigated by EPMA line analysis (the step size is 1 μm), the average Zn concentration at a position of 3 μm to 7 μm from the surface of the material was determined and used as the surface Zn concentration. The Zn concentration was measured at five locations, and the average was obtained.

[ろう付接合部のZn濃度]
ろう付した接合体3の接合部5からサンプルを採取し、その箇所を樹脂埋め後、エメリー研磨、バフ研磨によって接合部の断面を鏡面に研磨した後、EPMA線分析でZn拡散状態を調査し(ステップサイズは1μm)、測定される最大Zn濃度を求めた。5箇所で最大Zn濃度を測定し、その平均を求めた。
[Zn concentration in brazed joints]
A sample is taken from the joint portion 5 of the brazed joint 3 and the cross-section of the joint portion is polished to a mirror surface by emery polishing and buffing after filling in the resin, and then the Zn diffusion state is investigated by EPMA line analysis. (Step size is 1 μm) and the maximum Zn concentration to be measured was determined. The maximum Zn concentration was measured at five locations and the average was determined.

[耐ろう侵食性]
ろう付した接合体3の接合部5からサンプルを採取し、その箇所を樹脂埋め後、エメリー研磨、バフ研磨によって接合部の断面を鏡面に研磨した後、光学顕微鏡で観察して芯材へのろう侵食状態(エロージョン深さ)を調査した。
エロ―ジョン深さが50μm以上であったものを×、50μm未満であったものを○とした。
[Wax erosion resistance]
A sample is taken from the joined part 5 of the brazed joined body 3, and after filling the part with resin, the cross-section of the joined part is polished to a mirror surface by emery polishing and buffing, and then observed with an optical microscope. The state of erosion of erosion (erosion depth) was investigated.
The case where the erosion depth was 50 μm or more was rated as x, and the case where the erosion depth was less than 50 μm was rated as ◯.

[接合性]
ろう付した接合体3の接合部5からサンプルを採取し、その箇所を樹脂埋め後、エメリー研磨、バフ研磨によって接合部の断面を鏡面に研磨した後、光学顕微鏡で観察し、その断面における接合長さを測定し、ろう付前の接触長さとの関係から、「(空隙を除く接合長さ)/(ろう付前の接触長)」を接合率として評価した。
接合率が80%未満であったものを×、80%以上90%未満であったものを○とし、90%以上であったものを〇〇とした。
[Jointability]
A sample is taken from the joined part 5 of the brazed joined body 3, the portion is filled with resin, the cross section of the joined part is polished to a mirror surface by emery polishing and buffing, and then observed with an optical microscope. The length was measured, and “(joining length excluding voids) / (contact length before brazing)” was evaluated as a joining rate from the relationship with the contact length before brazing.
The case where the joining rate was less than 80% was rated as x, the case where it was 80% or more and less than 90% was marked as ◯, and the case where it was 90% or more was marked as 〇.

[内部耐食性]
接合体3の端部および評価面と反対側をマスキング後、Cl:195ppm、SO 2−:60ppm、Cu2+:1ppm、Fe3+:30ppmを含む水溶液中で80℃×8時間→室温×16時間のサイクルで浸漬試験を10週間実施した。腐食試験後のサンプルを沸騰させたリン酸クロム酸混合溶液に浸漬して腐食生成物を除去した後、接合部および非接合部それぞれについて断面観察を実施して腐食状況を測定した。
非接合部4の耐食性については、腐食深さが150μmを超えていたものを×、100μmを超え150μm以下であったものを○、100μm以下であったものを○○とした。
接合部5の耐食性については、接合部5の長さに対して腐食長さが1/2以上あったものを×、1/2未満1/3以上であったものを○とし、1/3未満であったものを〇〇とした。
[Internal corrosion resistance]
After masking the end of the joined body 3 and the side opposite to the evaluation surface, 80 ° C. × 8 hours → room temperature × in an aqueous solution containing Cl : 195 ppm, SO 4 2− : 60 ppm, Cu 2+ : 1 ppm, Fe 3+ : 30 ppm. The immersion test was conducted for 10 weeks with a 16 hour cycle. The sample after the corrosion test was immersed in a boiled phosphoric acid chromic acid mixed solution to remove the corrosion products, and then a cross-sectional observation was performed on each of the joint and non-joint to measure the corrosion state.
Regarding the corrosion resistance of the non-joined part 4, the case where the corrosion depth exceeded 150 μm was evaluated as “X”, the case where it exceeded 100 μm and was 150 μm or less was rated as “◯”, and the case where it was 100 μm or less was rated as “◯”.
With respect to the corrosion resistance of the joint 5, the corrosion length is 1/2 or more with respect to the length of the joint 5, and the corrosion resistance of less than 1/2 is 1/3 or more is 1/3. Those that were less than 0 were marked as 0.

[総合評価]
以上の各評価項目のうち、いずれかが×であったものは×、全てが○又は〇〇であったものを○、エロ―ジョン深さが〇でそれ以外が○○であったものを○○とした。
これらの結果を表4に示す。
[Comprehensive evaluation]
Of the above evaluation items, one of which was x, x, all of which were ○ or ○ ○, those of which the erosion depth was 0 and the others were ○○ XX.
These results are shown in Table 4.

Figure 2016017222
Figure 2016017222

この表4において、No.1は皮材の成分のうちSi含有量が少ないためにろう付した接合体3における接合率が50%と極めて低かったため、接合部の耐食性については「評価外」とした。No.5は逆に皮材のSi含有量が多すぎるために耐食性が劣っている。No.6は皮材のZn含有量が少ないために、芯材に対する防食効果が劣っており、No.10は逆に皮材のZn含有量が多すぎるために接合部の耐食性が劣っている。No.22は芯材の結晶粒径が小さいため、エロ―ジョン深さが大きくなっており、No.26は結晶粒径が大きいため、表面(非接合部)の耐食性が劣っている。No.28は芯材の結晶粒径が大きすぎるため、表面のZn濃度が低く、表面の耐食性が劣っている。
これら以外のクラッド材は、総合評価が○以上であり、接合性、耐食性とも良好であった。
In Table 4, no. Since the joining rate in the brazed joined body 3 was as low as 50% due to the low Si content of the skin material component 1, the corrosion resistance of the joint was set to “Not evaluated”. No. On the other hand, 5 is inferior in corrosion resistance because the skin material has too much Si content. No. No. 6 is inferior in the anticorrosive effect on the core material because the Zn content of the skin material is small. On the other hand, since the Zn content of the skin material is too large, the corrosion resistance of the joint is inferior. No. No. 22 has a large erosion depth because the core has a small crystal grain size. Since No. 26 has a large crystal grain size, the corrosion resistance of the surface (non-bonded portion) is inferior. No. In No. 28, since the crystal grain size of the core material is too large, the surface Zn concentration is low and the surface corrosion resistance is poor.
The clad materials other than these had a comprehensive evaluation of ◯ or higher, and both the bondability and corrosion resistance were good.

なお、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   In addition, this invention is not limited to the said embodiment, A various change can be added in the range which does not deviate from the meaning of this invention.

1 板
2 クラッド材
3 接合体
4 非接合部
5 接合部
1 plate 2 clad material 3 joined body 4 non-joined part 5 joined part

Claims (6)

芯材の両側の面に皮材をクラッドしたアルミニウム合金クラッド材であって、前記皮材は、Si:3質量%〜6質量%、Zn:2質量%〜4質量%を含有し、残部がAl及び不可避不純物からなり、前記芯材は、Mn:0.8質量%〜1.8質量%、Si:0.05質量%〜0.5質量%、Cu:0.05質量%〜0.3質量%、Fe:0.1質量%〜0.6質量%を含有し、残部がAl及び不可避不純物からなり、さらに600℃〜610℃で3分〜15分の熱処理後の芯材の結晶粒径が50μm〜200μmの範囲にあることを特徴とするアルミニウム合金クラッド材。   An aluminum alloy clad material in which a skin material is clad on both sides of a core material, wherein the skin material contains Si: 3% by mass to 6% by mass, Zn: 2% by mass to 4% by mass, and the balance It consists of Al and inevitable impurities, and the core material has Mn: 0.8% by mass to 1.8% by mass, Si: 0.05% by mass to 0.5% by mass, Cu: 0.05% by mass to 0.00%. 3% by mass, Fe: 0.1% by mass to 0.6% by mass, the balance is made of Al and inevitable impurities, and the core crystal after heat treatment at 600 ° C. to 610 ° C. for 3 minutes to 15 minutes An aluminum alloy clad material having a particle size in the range of 50 μm to 200 μm. 前記芯材中の晶出相を除く第二相粒子のうち、Al−Mn系、Al−Mn−Si系、Al−Mn−Fe系、Al−Mn−Fe−Si系化合物の円相当平均直径が0.1μm〜0.8μmの範囲にあることを特徴とする請求項1記載のアルミニウム合金クラッド材。   Among the second phase particles excluding the crystallization phase in the core material, the equivalent circle average diameter of Al-Mn, Al-Mn-Si, Al-Mn-Fe, and Al-Mn-Fe-Si compounds. The aluminum alloy clad material according to claim 1, wherein is in the range of 0.1 μm to 0.8 μm. 前記皮材は、さらにMn:0.05質量%〜0.5質量%、Fe:0.05質量%〜0.5質量%、Sr:0.05質量%〜0.5質量%、Ti:0.05質量%〜0.5質量%、Zr:0.05質量%〜0.5%の内の1種または2種以上を含有することを特徴とする請求項1又は2記載のアルミニウム合金クラッド材。   The skin material further includes Mn: 0.05 mass% to 0.5 mass%, Fe: 0.05 mass% to 0.5 mass%, Sr: 0.05 mass% to 0.5 mass%, Ti: The aluminum alloy according to claim 1 or 2, characterized by containing one or more of 0.05% by mass to 0.5% by mass and Zr: 0.05% by mass to 0.5%. Clad material. 前記芯材は、さらにTi,Zr,Crがそれぞれ0.05質量%〜0.3質量%の範囲で1種または2種以上含有することを特徴とする請求項1から3のいずれか一項記載のアルミニウム合金クラッド材。   4. The core material according to claim 1, further comprising Ti, Zr, and Cr in a range of 0.05 mass% to 0.3 mass%, respectively. The aluminum alloy clad material described. 請求項1から4のいずれか一項記載のアルミニウム合金クラッド材の少なくとも一部がろう付されており、ろう付されていない部分の前記アルミニウム合金クラッド材の表面のZn濃度が1.5質量%〜3.0質量%の範囲にあることを特徴とする熱交換器。   The aluminum alloy clad material according to any one of claims 1 to 4, wherein at least a part of the aluminum alloy clad material is brazed, and the Zn concentration of the surface of the aluminum alloy clad material in the unbrazed portion is 1.5 mass%. A heat exchanger characterized by being in the range of -3.0% by mass. 前記アルミニウム合金クラッド材のろう付接合部における最大Zn濃度が6質量%未満であることを特徴とする請求項5記載の熱交換器。   The heat exchanger according to claim 5, wherein the maximum Zn concentration in the brazed joint of the aluminum alloy clad material is less than 6 mass%.
JP2014142437A 2014-07-10 2014-07-10 Aluminum alloy clad material and heat exchanger Active JP6415144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014142437A JP6415144B2 (en) 2014-07-10 2014-07-10 Aluminum alloy clad material and heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014142437A JP6415144B2 (en) 2014-07-10 2014-07-10 Aluminum alloy clad material and heat exchanger

Publications (2)

Publication Number Publication Date
JP2016017222A true JP2016017222A (en) 2016-02-01
JP6415144B2 JP6415144B2 (en) 2018-10-31

Family

ID=55232665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014142437A Active JP6415144B2 (en) 2014-07-10 2014-07-10 Aluminum alloy clad material and heat exchanger

Country Status (1)

Country Link
JP (1) JP6415144B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107619970A (en) * 2017-10-26 2018-01-23 江苏亚太安信达铝业有限公司 Aluminium alloy for domestic air conditioning composite pipe and preparation method thereof
JP2020041189A (en) * 2018-09-11 2020-03-19 三菱アルミニウム株式会社 Aluminum alloy brazing sheet

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004330266A (en) * 2003-05-09 2004-11-25 Denso Corp Manufacturing method of lamination type heat exchanger
JP2009228010A (en) * 2008-03-19 2009-10-08 Kobe Steel Ltd Brazing sheet made from aluminum alloy and method for manufacturing heat exchanger
JP2012117107A (en) * 2010-11-30 2012-06-21 Mitsubishi Alum Co Ltd Aluminum alloy clad material
JP2013194244A (en) * 2012-03-15 2013-09-30 Kobe Steel Ltd Aluminum alloy laminate
JP2013204105A (en) * 2012-03-29 2013-10-07 Mitsubishi Alum Co Ltd Plate material made of aluminum alloy
JP2014054656A (en) * 2012-09-12 2014-03-27 Uacj Corp Aluminum alloy heat exchanger and aluminum alloy heat exchanger manufacturing method
JP2014055326A (en) * 2012-09-12 2014-03-27 Uacj Corp Aluminum alloy clad material, heat exchanger, and method for producing heat exchanger

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004330266A (en) * 2003-05-09 2004-11-25 Denso Corp Manufacturing method of lamination type heat exchanger
JP2009228010A (en) * 2008-03-19 2009-10-08 Kobe Steel Ltd Brazing sheet made from aluminum alloy and method for manufacturing heat exchanger
JP2012117107A (en) * 2010-11-30 2012-06-21 Mitsubishi Alum Co Ltd Aluminum alloy clad material
JP2013194244A (en) * 2012-03-15 2013-09-30 Kobe Steel Ltd Aluminum alloy laminate
JP2013204105A (en) * 2012-03-29 2013-10-07 Mitsubishi Alum Co Ltd Plate material made of aluminum alloy
JP2014054656A (en) * 2012-09-12 2014-03-27 Uacj Corp Aluminum alloy heat exchanger and aluminum alloy heat exchanger manufacturing method
JP2014055326A (en) * 2012-09-12 2014-03-27 Uacj Corp Aluminum alloy clad material, heat exchanger, and method for producing heat exchanger

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107619970A (en) * 2017-10-26 2018-01-23 江苏亚太安信达铝业有限公司 Aluminium alloy for domestic air conditioning composite pipe and preparation method thereof
JP2020041189A (en) * 2018-09-11 2020-03-19 三菱アルミニウム株式会社 Aluminum alloy brazing sheet
WO2020054325A1 (en) * 2018-09-11 2020-03-19 三菱アルミニウム株式会社 Aluminum alloy brazing sheet
CN112673120A (en) * 2018-09-11 2021-04-16 三菱铝株式会社 Aluminum alloy brazing sheet
CN112673120B (en) * 2018-09-11 2022-04-15 三菱铝株式会社 Aluminum alloy brazing sheet
US11697180B2 (en) 2018-09-11 2023-07-11 Ma Aluminum Corporation Aluminum alloy brazing sheet

Also Published As

Publication number Publication date
JP6415144B2 (en) 2018-10-31

Similar Documents

Publication Publication Date Title
JP6243837B2 (en) Aluminum alloy brazing sheet for heat exchanger, brazing body made of aluminum alloy for heat exchanger and method for producing the same
JP4111456B1 (en) Aluminum alloy brazing sheet for heat exchanger
JP5057439B2 (en) Aluminum alloy clad material for high strength, high melting point heat exchanger excellent in durability, its manufacturing method, and aluminum alloy heat exchanger
JP4702797B2 (en) Manufacturing method of aluminum alloy clad material excellent in surface bondability by brazing of sacrificial anode material surface
JP4993440B2 (en) High strength aluminum alloy clad material for heat exchangers with excellent brazeability
JP4832354B2 (en) Aluminum alloy clad material for high strength, high melting point heat exchanger excellent in durability, its manufacturing method, and aluminum alloy heat exchanger
JP4916334B2 (en) Aluminum alloy clad material for heat exchangers with excellent strength and brazing
JP2008188616A (en) Aluminum alloy-brazing sheet for heat exchanger having excellent brazability and corrosion resistance, and heat exchanger tube having excellent corrosion resistance
JP4916333B2 (en) Aluminum alloy clad material for heat exchangers with excellent strength and brazing
JP6154645B2 (en) Brazed joint structure
JP5279277B2 (en) Brazing sheet for tube material of heat exchanger, heat exchanger and manufacturing method thereof
JP6286335B2 (en) Aluminum alloy brazing sheet
JP5279278B2 (en) Brazing sheet for tube material of heat exchanger and method of manufacturing heat exchanger using the same
JP5836695B2 (en) Aluminum alloy fin material for heat exchangers with excellent strength and corrosion resistance after brazing
JP2011042853A (en) Heat exchanger made from aluminum alloy superior in corrosion resistance and durability
JP6722981B2 (en) Aluminum alloy clad material
JP4993439B2 (en) High strength aluminum alloy clad material for heat exchangers with excellent brazeability
JP6415144B2 (en) Aluminum alloy clad material and heat exchanger
JP6178483B1 (en) Aluminum alloy brazing sheet
JP6480367B2 (en) Aluminum alloy brazing sheet
JP2012082459A (en) Aluminum alloy clad material
JP2011012327A (en) Brazing sheet having excellent brazability, and method for producing the brazing sheet
JP4596618B2 (en) High corrosion resistance aluminum alloy composite for heat exchanger and anticorrosion aluminum alloy for heat exchanger
JP5498214B2 (en) Aluminum alloy clad material for high-strength heat exchangers with excellent brazeability
JP2020100881A (en) Aluminum alloy clad material for heat exchanger, and heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181002

R150 Certificate of patent or registration of utility model

Ref document number: 6415144

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250