JP2012117107A - Aluminum alloy clad material - Google Patents

Aluminum alloy clad material Download PDF

Info

Publication number
JP2012117107A
JP2012117107A JP2010267405A JP2010267405A JP2012117107A JP 2012117107 A JP2012117107 A JP 2012117107A JP 2010267405 A JP2010267405 A JP 2010267405A JP 2010267405 A JP2010267405 A JP 2010267405A JP 2012117107 A JP2012117107 A JP 2012117107A
Authority
JP
Japan
Prior art keywords
aluminum alloy
core material
less
elongation
alloy clad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010267405A
Other languages
Japanese (ja)
Other versions
JP5841719B2 (en
Inventor
Michihide Yoshino
路英 吉野
Shu Kuroda
周 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2010267405A priority Critical patent/JP5841719B2/en
Publication of JP2012117107A publication Critical patent/JP2012117107A/en
Application granted granted Critical
Publication of JP5841719B2 publication Critical patent/JP5841719B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum alloy clad material for heat exchanger, excellent in elongation and hardly generating thickness reduction even in formation of unevenness as a thin-walled shape.SOLUTION: The aluminum alloy clad material has a skin material clad on at least one surface of a core material. The crystal grain structure of the core material is fibrous, and a dislocation lower texture is a subgrain structure whose average grain size is ≤1.5 μm. The aluminum alloy clad material is excellent in moldability, and thus is used for an automobile heat exchanger.

Description

本発明は、自動車熱交換器用として好適なアルミニウム合金クラッド材に関する。   The present invention relates to an aluminum alloy clad material suitable for an automobile heat exchanger.

近年、自動車熱交換器のラジエータなどにおいて冷却水が流れるチューブの内面に凹凸形状の突起を形成し、チューブの内部を流れる冷媒に乱流が生じることを促進することで、熱交換器としての性能を向上させる技術が提供されている。
しかし、熱交換器用のチューブは年々薄肉化が進められているので、チューブの内面に凹凸部を形成するためには、薄肉のアルミニウム材にプレス加工などの塑性加工を施す必要があり、薄肉のアルミニウム材に塑性加工を施すと、凹凸形成部分では減肉を伴った比較的大きな変形が生じる。このような減肉部分を生じると、薄肉化されたチューブの構造において部分的に更に薄肉の部分が生じるので、この薄肉部分において腐食が進行すると熱交換器としての耐食性に問題を生じるおそれがある。このため、薄肉化されたチューブを形成するためのアルミニウム合金素材には、凹凸形成部分においても減肉を生じないような高い伸びが必要とされる。
In recent years, in the radiator of automobile heat exchangers, etc., the formation of uneven projections on the inner surface of the tube through which the cooling water flows, promoting the occurrence of turbulent flow in the refrigerant flowing inside the tube, performance as a heat exchanger Techniques for improving the quality are provided.
However, since tubes for heat exchangers are becoming thinner every year, it is necessary to perform plastic processing such as press processing on thin aluminum materials in order to form irregularities on the inner surface of the tubes. When plastic processing is performed on an aluminum material, a relatively large deformation accompanied by thinning occurs in the unevenness forming portion. When such a thinned portion is generated, a thinned portion is partially generated in the structure of the thinned tube. Therefore, when corrosion proceeds in the thinned portion, there is a possibility that a problem occurs in the corrosion resistance as a heat exchanger. . For this reason, the aluminum alloy material for forming the thinned tube is required to have a high elongation that does not cause a reduction in thickness even in the unevenness forming portion.

従来一般的なアルミニウム合金板材は、鋳造、熱間圧延、冷間圧延を経て製造されるが、最終圧延前に焼鈍がなされた場合、焼鈍に伴う再結晶後、20〜30%程度の圧下がかけられているので、基本的には再結晶組織とされており、再結晶粒内部に歪が残存した組織状態とされている。この再結晶粒内に歪が残存された組織状態にあっては、アルミニウム合金素材として伸びが不十分になることが多いとされている。
そこで、この種のアルミニウム合金に対し、良好な伸びを有し、かつ、耐食性に優れさせたチューブ用板材を提供するために、芯材の一方の面に犠牲陽極材をクラッドし、他方の面にAl−Si系のろう材をクラッド圧着したアルミニウム合金クラッド材であって、芯材としてMn、Cu、Si、Feを規定の範囲含有させたアルミニウム合金芯材で構成し、犠牲陽極材としてZn、In、Sn、Si、Feを規定量含有したアルミニウム合金で構成し、芯材のマトリクス組織を繊維状組織としてなり、管形状に曲成し、突き合わせ溶接して溶接偏平管に成形し、作動流体通路用としたクラッド材が知られている。(特許文献1参照)
Conventionally, a general aluminum alloy sheet is manufactured through casting, hot rolling, and cold rolling. However, when annealing is performed before final rolling, a reduction of about 20 to 30% occurs after recrystallization accompanying annealing. Since it is applied, it is basically a recrystallized structure and has a structure in which strain remains in the recrystallized grains. It is said that the elongation is often insufficient as an aluminum alloy material in a structure where strain remains in the recrystallized grains.
Therefore, in order to provide a tube plate having good elongation and excellent corrosion resistance for this type of aluminum alloy, a sacrificial anode material is clad on one surface of the core material, and the other surface An aluminum alloy clad material obtained by clad-bonding an Al-Si based brazing material to a core material, which is made of an aluminum alloy core material containing Mn, Cu, Si, Fe in a specified range, and Zn as a sacrificial anode material It is made of aluminum alloy containing a specified amount of In, Sn, Si, Fe, and the matrix structure of the core material is made into a fibrous structure, bent into a tube shape, butt welded, and formed into a welded flat tube Cladding materials for fluid passages are known. (See Patent Document 1)

特許第4424569号公報Japanese Patent No. 4424569

先の特許文献1に記載されている技術に従い、芯材の結晶粒組織を繊維状組織として熱交換器用のチューブを構成するならば、ある程度の素材伸びと耐食性を得ることができるが、特許文献1に記載された技術のみでは、特に近年の薄肉化されたチューブにおいて更にその内面に凹凸部を形成したチューブを形成した場合、更なる伸びの向上と耐食性の向上効果が望まれる。
なお、アルミニウム合金の組織を繊維状とするためには、最終圧延前の焼鈍で再結晶させることなく最終圧延を行えば良く、繊維状組織とすることで従来の再結晶組織のアルミニウム合金よりも伸びを向上させたアルミニウム合金を提供することは可能であるが、更に伸びを良好とする技術については提供されていないのが現状である。
If a tube for a heat exchanger is formed by using the crystal grain structure of the core material as a fibrous structure according to the technique described in Patent Document 1, a certain degree of material elongation and corrosion resistance can be obtained. With only the technique described in No. 1, particularly when a tube having a concavo-convex portion formed on its inner surface is formed in a thin tube in recent years, further improvement in elongation and improvement in corrosion resistance are desired.
In addition, in order to make the structure of the aluminum alloy fibrous, it is only necessary to perform final rolling without recrystallization by annealing before final rolling. By making the fibrous structure, aluminum alloys having a conventional recrystallized structure can be used. Although it is possible to provide an aluminum alloy with improved elongation, there is currently no technology for further improving the elongation.

この点について本発明者らがアルミニウム合金材料の研究を行ったところ、伸びを向上させるためには、アルミニウム合金の結晶粒組織よりもよりミクロな組織である転位下部組織を制御することが有効であるとの知見を得た。また、アルミニウム合金においては一見、同じような繊維状組織であっても、転位下部組織が異なると、伸びの値が大きく異なることが判明した。   In this regard, the present inventors have studied aluminum alloy materials, and in order to improve the elongation, it is effective to control the dislocation substructure, which is a micro structure than the crystal structure of the aluminum alloy. The knowledge that there is. In addition, it seemed that the aluminum alloy has a similar fibrous structure, but the elongation value varies greatly if the dislocation substructure is different.

本発明は、上述の背景に基づきなされたものであり、熱交換器用のアルミニウム合金クラッド材について、伸びに優れ、薄肉形状として凹凸などを形成しても減肉が生じ難いクラッド材を提供することを目的とする。   The present invention has been made based on the above-mentioned background, and provides an aluminum alloy clad material for a heat exchanger that is excellent in elongation and does not cause thinning even if unevenness is formed as a thin shape. With the goal.

本発明者らが、上述した熱交換器用アルミニウム合金クラッド材の研究により得た知見に基づき、アルミニウム合金の転位下部組織について更に研究したところ、転位下部組織を均一な亜結晶粒組織とした上に、その平均結晶粒径を所定のサイズ以下に揃えることで、アルミニウム合金の特に局部伸びが向上し、これによって全伸びを向上できることが判明した。
更に、アルミニウム合金のクラッド材を構成する主体となる芯材中の晶出相を除く第2相粒子の平均サイズを所定値以下にすることによって、均一伸びが向上するため、より一層の全伸びの向上効果を得られることが判明した。
ここで、均一伸びとは、材料を引っ張った場合に材料が均一に変形する伸び量、局部伸びとは材料が局部的に減肉しながら変形する伸び量を意味する。
本発明は、かかる知見に基づいて成されたものであって、以下の構成を有する。
Based on the knowledge obtained by the study of the above-described aluminum alloy clad material for heat exchangers, the present inventors further studied the dislocation substructure of the aluminum alloy. As a result, the dislocation substructure was made a uniform subgrain structure. It has been found that by adjusting the average crystal grain size to a predetermined size or less, particularly the local elongation of the aluminum alloy is improved, and thereby the total elongation can be improved.
Furthermore, by setting the average size of the second phase particles excluding the crystallization phase in the core material constituting the clad material of the aluminum alloy to a predetermined value or less, the uniform elongation is improved. It has been found that an improvement effect can be obtained.
Here, the uniform elongation means the amount of elongation at which the material is uniformly deformed when the material is pulled, and the local elongation means the amount of elongation at which the material deforms while locally thinning.
The present invention has been made based on such findings and has the following configuration.

本発明の成形性に優れた自動車熱交換器用アルミニウム合金クラッド材は、少なくとも芯材の一方の面に皮材をクラッドしてなるアルミニウム合金クラッド材であって、芯材が、Mn:0.5%以上2.0%以下(質量%、以下同じ)、Si:0.2%以上1.3%以下、Fe:0.05%以上0.5%以下、Cu:0.3%以上1.5%以下を含有し、残部アルミニウムおよび不可避不純物からなり、前記芯材の結晶粒組織が繊維状組織であり、さらに、転位下部組織が亜結晶粒組織であって、その亜結晶粒径の平均が1.5μm以下であることを特徴とする。
本発明の自動車熱交換器用アルミニウム合金クラッド材は、芯材に更にMg:0.05%以上0.5%以下を含有してなる。
本発明の自動車熱交換器用アルミニウム合金クラッド材は、芯材に更にTi:0.05%以上0.3%以下、Zr:0.05%以上0.3%以下、Cr:0.05%以上0.3%以下のうち1種または2種以上を含有してなる。
本発明の自動車熱交換器用アルミニウム合金クラッド材は、芯材中の晶出物を除く第2相粒子のうち、Al−Mn系、Al−Mn−Si系、Al−Mn−Fe系、Al−Mn−Fe−Si系金属間化合物の平均直径が0.05μm以上0.5μm以下の範囲とされてなる。
The aluminum alloy clad material for automobile heat exchanger having excellent formability according to the present invention is an aluminum alloy clad material obtained by clad a skin material on at least one surface of a core material, and the core material has an Mn: 0.5 %: 2.0% or less (mass%, the same applies hereinafter), Si: 0.2% or more, 1.3% or less, Fe: 0.05% or more, 0.5% or less, Cu: 0.3% or more 5% or less, comprising the balance aluminum and inevitable impurities, the core grain structure is a fibrous structure, and the dislocation substructure is a subgrain structure, and the average grain size Is 1.5 μm or less.
The aluminum alloy clad material for automobile heat exchanger according to the present invention further includes Mg: 0.05% to 0.5% in the core material.
The aluminum alloy clad material for an automobile heat exchanger according to the present invention further includes Ti: 0.05% to 0.3%, Zr: 0.05% to 0.3%, Cr: 0.05% or more in the core material. It contains one or more of 0.3% or less.
The aluminum alloy clad material for automobile heat exchanger according to the present invention is an Al-Mn-based, Al-Mn-Si-based, Al-Mn-Fe-based, Al-Mn-based, among the second phase particles excluding the crystallized material in the core material. The average diameter of the Mn—Fe—Si intermetallic compound is in the range from 0.05 μm to 0.5 μm.

本発明のアルミニウム合金クラッド材は、芯材の結晶粒組織が繊維状組織であり、さらに、転位下部組織が亜結晶粒組織であって、その亜結晶粒径の平均が1.5μm以下であるので、伸びに優れ、成形性に優れる。この伸びと成形性に優れたアルミニウム合金クラッド材は、薄肉構造としてチューブを構成し、その内面に塑性加工により凹凸を形成した場合であっても、凹凸形成部周囲に減肉を起こし難いので、チューブの肉厚を均一化することができ、腐食を生じた場合であっても、減肉部が腐食することに起因する腐食貫通孔が生じ難い特徴を有する。   In the aluminum alloy clad material of the present invention, the crystal grain structure of the core material is a fibrous structure, and the dislocation substructure is a sub-crystal grain structure, and the average sub-crystal grain size is 1.5 μm or less. Therefore, it has excellent elongation and excellent moldability. The aluminum alloy clad material excellent in elongation and formability is configured to form a tube as a thin-walled structure, and even when unevenness is formed by plastic working on the inner surface, it is difficult to cause thinning around the unevenness forming part. The thickness of the tube can be made uniform, and even when corrosion occurs, a corrosion through hole due to corrosion of the reduced thickness portion is difficult to occur.

本発明のアルミニウム合金クラッド材において芯材中の晶出物を除く第2相粒子のうち、Al−Mn系、Al−Mn−Si系、Al−Mn−Fe系、Al−Mn−Fe−Si系金属間化合物の平均直径が0.05μm以上0.5μm以下の範囲とするならば、伸びに優れ、成形性の良好なチューブを提供できる。   Among the second phase particles excluding crystallized substances in the core material in the aluminum alloy clad material of the present invention, Al-Mn, Al-Mn-Si, Al-Mn-Fe, Al-Mn-Fe-Si If the average diameter of the intermetallic compound is in the range of 0.05 μm or more and 0.5 μm or less, a tube having excellent elongation and good moldability can be provided.

本発明に係るアルミニウム合金クラッド材の一例を示す断面図である。It is sectional drawing which shows an example of the aluminum alloy clad material which concerns on this invention. 同アルミニウム合金クラッド材からなるチューブの一例を示す斜視図である。It is a perspective view which shows an example of the tube which consists of the aluminum alloy clad material. 同チューブを用いたラジエータの一例を示す斜視図である。It is a perspective view showing an example of a radiator using the tube.

以下、本発明の具体的な実施形態について説明する。
図1は本発明に係るアルミニウム合金クラッド材の一実施形態を示すもので、この実施形態のアルミニウム合金クラッド材1はアルミニウム合金からなる芯材2と、この芯材2の一面2a側に被着されたろう材層(第1の皮材)3と、芯材2の他面2b側に被着された犠牲陽極材層(第2の皮材)4とを主体として構成されている。図1に示す実施形態の構造では、ろう材層3の外面がアルミニウム合金クラッド材1の表面(一面)1aとされ、犠牲陽極材層4の外面がアルミニウム合金クラッド材1の裏面(他面)1bとされている。
図1に示す構造のアルミニウム合金クラッド材1を用いて例えば図2に示す如く熱交換器用の偏平薄型のチューブ10を構成することができる。このチューブ10において内面側に犠牲陽極材層4が配置され、チューブ10において外面側にろう材層3が配置されている。
Hereinafter, specific embodiments of the present invention will be described.
FIG. 1 shows an embodiment of an aluminum alloy clad material according to the present invention. An aluminum alloy clad material 1 of this embodiment is attached to a core material 2 made of an aluminum alloy and one surface 2a side of the core material 2. The brazing material layer (first skin material) 3 and the sacrificial anode material layer (second skin material) 4 deposited on the other surface 2b side of the core material 2 are mainly constituted. In the structure of the embodiment shown in FIG. 1, the outer surface of the brazing material layer 3 is the surface (one surface) 1a of the aluminum alloy cladding material 1, and the outer surface of the sacrificial anode material layer 4 is the back surface (other surface) of the aluminum alloy cladding material 1. 1b.
By using the aluminum alloy clad material 1 having the structure shown in FIG. 1, for example, a flat and thin tube 10 for a heat exchanger can be formed as shown in FIG. The sacrificial anode material layer 4 is disposed on the inner surface side of the tube 10, and the brazing material layer 3 is disposed on the outer surface side of the tube 10.

また、図2に示す構造のチューブ10を用いて例えば図3に示す如くラジエータ20を構成することができる。
図3に示すラジエータ20は、例えば自動車のラジエータ等に用いられる構造とされ、チューブ10と、ヘッダー21と、フィン22と、サイドサポート23とから概略構成されている。ラジエータ20は、ろう付接合によってチューブ10、ヘッダー21及びフィン22が各々一体化され、更に樹脂タンク24が機械的接合(かしめ加工)により取り付けられて製造される。
そして、ラジエータ20において、ヘッダー21とチューブ10とは、ヘッダー21の下面に複数整列形成されたスロット(差込孔)21aに各チューブ10の端部を差し込み、差込部分の周りに配置したろう材を用いて両者を相互にろう付するとともに、チューブ10とフィン22は、チューブ10の表面に塗布されたろう材層3を用いて、両者を相互にろう付けすることで組み立てられている。
Further, for example, as shown in FIG. 3, a radiator 20 can be configured using the tube 10 having the structure shown in FIG.
The radiator 20 shown in FIG. 3 has a structure used for, for example, a radiator of an automobile, and includes a tube 10, a header 21, fins 22, and side supports 23. The radiator 20 is manufactured by integrating the tube 10, the header 21, and the fins 22 by brazing and further attaching a resin tank 24 by mechanical joining (caulking).
In the radiator 20, the header 21 and the tube 10 are arranged around the insertion portion by inserting the end portion of each tube 10 into a plurality of slots (insertion holes) 21 a formed on the lower surface of the header 21. The tubes 10 and the fins 22 are assembled by brazing them together using a brazing material layer 3 applied to the surface of the tube 10 while brazing them together using a material.

図3に示す如くチューブ10がラジエータ20に組み込まれるので、ラジエータ20における熱交換効率を向上させるために、チューブ10の内面側には図示略の凹凸が形成される。
チューブ10の内面側に凹凸を形成するためには、アルミニウム合金クラッド材1からチューブ10を形成する際あるいはその前にアルミニウム合金クラッド材1にプレス加工などの塑性加工により凹凸を形成しておく。
このように凹凸を有するチューブ10を用いるならば、内部に冷媒を循環させて使用する場合、熱交換器としてのラジエータ20の熱交換効率が良好となる。
Since the tube 10 is incorporated in the radiator 20 as shown in FIG. 3, irregularities (not shown) are formed on the inner surface side of the tube 10 in order to improve the heat exchange efficiency in the radiator 20.
In order to form irregularities on the inner surface side of the tube 10, irregularities are formed on the aluminum alloy clad material 1 by plastic working such as press working before or after the tube 10 is formed from the aluminum alloy clad material 1.
Thus, if the tube 10 having irregularities is used, when the refrigerant is circulated inside, the heat exchange efficiency of the radiator 20 as a heat exchanger becomes good.

以下、前記ラジエータなどの熱交換器用チューブ10の構成材料として使用されるアルミニウム合金クラッド材1を構成するアルミニウム合金の芯材2の組成について説明する。   The composition of the aluminum alloy core material 2 constituting the aluminum alloy clad material 1 used as the constituent material of the heat exchanger tube 10 such as the radiator will be described below.

芯材2は、Mn、Cu、Si、Feを含有し、残部がAlおよび不可避不純物からなるアルミニウム合金によって構成されている。各成分の含有量は質量%において、Mn:0.5%以上2.0%以下、Cu:0.3%以上1.5%以下、Si:0.2%以上1.3%以下、Fe:0.05%以上0.5%以下を含有し、
前記組成のアルミニウム合金に加え、Mgを含有する場合は0.05%以上0.5%以下の範囲で含有することが好ましい。
前記組成のアルミニウム合金に加え、Ti、Zr、Crを添加する場合は、Ti:0.05%以上0.3%以下、Zr:0.05%以上0.3%以下、Cr:0.05%以上0.3%以下を1種または2種以上の範囲とすることが好ましい。
The core material 2 contains Mn, Cu, Si, and Fe, and the balance is made of an aluminum alloy composed of Al and inevitable impurities. The content of each component is, in mass%, Mn: 0.5% to 2.0%, Cu: 0.3% to 1.5%, Si: 0.2% to 1.3%, Fe : 0.05% or more and 0.5% or less,
In addition to the aluminum alloy of the said composition, when it contains Mg, it is preferable to contain in 0.05 to 0.5% of range.
When Ti, Zr, or Cr is added to the aluminum alloy having the above composition, Ti: 0.05% to 0.3%, Zr: 0.05% to 0.3%, Cr: 0.05 % Or more and 0.3% or less are preferably in the range of one kind or two or more kinds.

Mn:Mnは、金属間化合物として晶出または析出し、ろう付後の芯材2の強度を向上させる作用がある。また、Al−Mn−Si系化合物を形成することにより、アルミニウムマトリックスのSi固溶度を低くし、マトリックスの融点を向上させる効果がある。
Mnの含有量が0.5質量%未満であると、これらの効果が十分に得られない。また、Mnの含有量が2.0質量%を超えると、鋳造時に粗大な晶出物が形成され、アルミニウム合金素材の伸びが低下してしまう。
Si:Siは、Al−Mn−Si系化合物として分散あるいはアルミニウムマトリックスに固溶して存在し、芯材2の強度を向上させる作用がある。
Siの含有量が0.2質量%未満であると、このような効果が十分に得られない。また、Siの含有量が1.3質量%を超えると、芯材2の融点が低下し、ろう付時に芯材2が溶融する可能性がある。
Mn: Mn crystallizes or precipitates as an intermetallic compound, and has the effect of improving the strength of the core material 2 after brazing. Further, by forming the Al—Mn—Si based compound, there is an effect of lowering the Si solid solubility of the aluminum matrix and improving the melting point of the matrix.
When the Mn content is less than 0.5% by mass, these effects cannot be obtained sufficiently. On the other hand, if the Mn content exceeds 2.0% by mass, a coarse crystallized product is formed during casting and the elongation of the aluminum alloy material is lowered.
Si: Si exists as an Al—Mn—Si compound dispersed or dissolved in an aluminum matrix, and has an effect of improving the strength of the core material 2.
When the Si content is less than 0.2% by mass, such an effect cannot be sufficiently obtained. Moreover, when content of Si exceeds 1.3 mass%, melting | fusing point of the core material 2 will fall, and the core material 2 may melt | dissolve at the time of brazing.

Cu:Cuは、マトリックス中に固溶して存在し、芯材2の強度を向上させる作用がある。
Cuの含有量が0.3質量%未満であると、このような効果が十分に得られない。また、Cuの含有量が1.5質量%を超えると、Cuは後述する電位勾配層の犠牲陽極効果を低減させ、その防食効果を損なってしまう。また、Cuの含有量が多過ぎると、芯材2の融点が低下し、ろう付時に芯材2が溶融する可能性がある。
Fe:Feは、金属間化合物として晶出または析出し、ろう付後の芯材2の強度を向上させる作用がある。また、Al−Fe−Si系、Al−Mn−Fe−Si系の化合物を形成することによって、アルミニウムマトリックス中のSi固溶度を低下させ、アルミニウムマトリックスの融点を向上させる効果がある。
Feの含有量が0.05質量%未満であると、これらの効果が十分に得られない。また、Feの含有量が0.5質量%を超えると、芯材2の腐食速度が速くなって耐食性が劣化してしまう。また、巨大晶出物が出現し、これによってアルミニウム合金素材の鋳造性や圧延性が低下してしまう。
Cu: Cu exists as a solid solution in the matrix, and has an effect of improving the strength of the core material 2.
When the Cu content is less than 0.3% by mass, such an effect cannot be sufficiently obtained. On the other hand, when the Cu content exceeds 1.5% by mass, Cu reduces the sacrificial anode effect of the potential gradient layer described later and impairs its anticorrosion effect. Moreover, when there is too much content of Cu, melting | fusing point of the core material 2 will fall, and the core material 2 may melt | dissolve at the time of brazing.
Fe: Fe crystallizes or precipitates as an intermetallic compound, and has the effect of improving the strength of the core material 2 after brazing. Further, by forming an Al-Fe-Si-based or Al-Mn-Fe-Si-based compound, there is an effect of reducing the Si solid solubility in the aluminum matrix and improving the melting point of the aluminum matrix.
When the Fe content is less than 0.05% by mass, these effects cannot be obtained sufficiently. Moreover, when content of Fe exceeds 0.5 mass%, the corrosion rate of the core material 2 will become quick and corrosion resistance will deteriorate. Moreover, a giant crystallized substance appears, which deteriorates the castability and rollability of the aluminum alloy material.

Mg:Mgは芯材2の強度を高めるように作用する。Mgの好ましい含有量は、0.05%以上0.5%以下であるが、その含有量が0.05%未満では十分な効果が得られ難く、0.5%を超えて含有させると、ろう付時にフラックスと反応してろう付性を顕著に劣化させるおそれがある。
Ti、Zr、Cr:TiおよびZr、Crは、組織の微細化に寄与し、ろう付後に微細な金属間化合物として分散し、芯材2の強度を向上させる作用がある。
これらの含有率が0.05質量%未満であると、このような効果が十分に得られない。また、これらの含有率が0.3質量%を超えた場合、芯材2の自己耐食性および加工性が低下してしまう。
また、芯材中の晶出物を除く第2相粒子のうち、Al−Mn系、Al−Mn−Si系、Al−Mn−Fe系、Al−Mn−Fe−Si系金属間化合物の平均直径が0.05μm以上0.5μm以下の範囲とされてなることが好ましい。
芯材中の晶出物を除く第2相粒子のうち、前記金属間化合物の平均直径が0.05μm未満であると、金属間化合物が微細なことでろう付時の再結晶が遅延されるため、ろう付後の芯材の結晶粒径が粗大となってろう付後の強度が低下する。また、0.5μmを超えると伸びが低下する。
Mg: Mg acts to increase the strength of the core material 2. The preferable content of Mg is 0.05% or more and 0.5% or less. However, if the content is less than 0.05%, it is difficult to obtain a sufficient effect. There is a possibility of reacting with the flux at the time of brazing to significantly deteriorate the brazing property.
Ti, Zr, Cr: Ti and Zr, Cr contribute to the refinement of the structure, and are dispersed as fine intermetallic compounds after brazing, and have the effect of improving the strength of the core material 2.
If these contents are less than 0.05% by mass, such effects cannot be sufficiently obtained. Moreover, when these content rates exceed 0.3 mass%, the self-corrosion resistance and workability of the core material 2 will fall.
Of the second phase particles excluding the crystallized material in the core material, the average of Al-Mn, Al-Mn-Si, Al-Mn-Fe, and Al-Mn-Fe-Si intermetallic compounds The diameter is preferably in the range of 0.05 μm or more and 0.5 μm or less.
Of the second phase particles excluding the crystallized material in the core material, if the average diameter of the intermetallic compound is less than 0.05 μm, recrystallization during brazing is delayed due to the fine intermetallic compound. Therefore, the crystal grain size of the core material after brazing becomes coarse, and the strength after brazing decreases. On the other hand, if the thickness exceeds 0.5 μm, the elongation decreases.

<クラッド材の製造工程>
本実施形態では、芯材用アルミニウム合金、犠牲材用アルミニウム合金、およびろう材用アルミニウム合金を鋳造し、得られた鋳塊に均質化処理を施し、熱間圧延によりアルミニウム合金板とした後、焼鈍し、続いて冷間圧延により目的の板厚より若干厚い程度の薄板状のアルミニウム合金板を得た後、中間焼鈍を行い、目的の板厚になるように冷間圧延を施してクラッド材1を得る製造方法において、均質化処理を低温温度域において行う。均質化温度の範囲として上述の範囲、400℃以上530℃以下の範囲、より好ましくは420℃以上500℃以下の範囲を選択できる。
<Manufacturing process of clad material>
In the present embodiment, the aluminum alloy for the core material, the aluminum alloy for the sacrificial material, and the aluminum alloy for the brazing material are cast, and the obtained ingot is subjected to homogenization treatment to obtain an aluminum alloy plate by hot rolling. A thin aluminum alloy sheet that is slightly thicker than the target sheet thickness is obtained by annealing, followed by intermediate annealing and cold rolling to the target sheet thickness to obtain a clad material In the production method for obtaining 1, the homogenization treatment is performed in a low temperature range. As the range of the homogenization temperature, the above-mentioned range, a range of 400 ° C. or more and 530 ° C. or less, more preferably a range of 420 ° C. or more and 500 ° C. or less can be selected.

次に、熱間圧延後の焼鈍条件として、再結晶温度以下、例えば150℃以上300℃以下の温度範囲、より好ましくは200℃以上270℃以下の温度範囲において、1〜10時間程度焼鈍を行う。
この後、冷間圧延を施して目的の板厚より若干大きな板厚まで圧延した後、再結晶温度以下の温度、例えば150℃以上300℃以下の温度範囲、より好ましくは200℃以上270℃以下の温度範囲に1〜10時間程度、中間焼鈍を行う。
Next, as annealing conditions after hot rolling, annealing is performed for about 1 to 10 hours at a recrystallization temperature or lower, for example, in a temperature range of 150 ° C. or higher and 300 ° C. or lower, more preferably in a temperature range of 200 ° C. or higher and 270 ° C. or lower. .
Thereafter, after cold rolling and rolling to a plate thickness slightly larger than the target plate thickness, a temperature below the recrystallization temperature, for example, a temperature range of 150 ° C. to 300 ° C., more preferably 200 ° C. to 270 ° C. The intermediate annealing is performed in the temperature range of about 1 to 10 hours.

以上説明した製造方法により、圧延方向平行断面の結晶粒組織として繊維状の金属組織を有するとともに、伸びを向上させたアルミニウム合金からなる芯材2を得ることができる。なお、焼鈍については絶対温度で示す再結晶温度をTとして、0.85T以上、より好ましくは0.9T程度で行うことが望ましく、冷間圧延後の中間焼鈍についても、0.85T以上、より好ましくは0.9T程度で行うことが望ましい。 By the manufacturing method described above, it is possible to obtain the core material 2 made of an aluminum alloy having a fibrous metal structure as the crystal grain structure of the rolling direction parallel cross section and having improved elongation. As T R recrystallization temperatures shown in absolute temperature for annealing, 0.85 T R or more, more preferably it is desirable to conduct at about 0.9 T R, also the intermediate annealing after cold rolling, 0.85 T R or more, more preferably it is desirable to conduct at about 0.9 T R.

ろう材層(第1の皮材)3は、チューブ10とヘッダー21、および、フィン22とチューブ10をろう付するろう材を供給する。
ろう材層3は一例として、SiおよびZnを含有し、残部がAlおよび不可避不純物からなるアルミニウム合金ろう材によって構成されている。SiおよびZnの含有量は一例としてSi:4.5%〜11.0質量%、Zn:0.5〜5.0質量%である。
The brazing material layer (first skin material) 3 supplies a brazing material that brazes the tube 10 and the header 21 and the fins 22 and the tube 10.
As an example, the brazing material layer 3 is made of an aluminum alloy brazing material containing Si and Zn, with the balance being made of Al and inevitable impurities. The contents of Si and Zn are, for example, Si: 4.5% to 11.0% by mass and Zn: 0.5 to 5.0% by mass.

犠牲陽極材層(第2の皮材)4はAl−Zn系合金層からなることが好ましい。犠牲陽極材層4がチューブ10の内面側に存在することにより、チューブ内面側の耐孔食性が向上し、チューブ内を流れる冷媒による孔食進行を防止できる。
Al−Zn系合金層として、Znを0.5質量%以上7.0質量%の範囲で含有することが好ましい。さらに必要により、Mgを1〜2質量%の範囲で、Mnを0.5〜2.0質量%の範囲で、Siを0.1〜1.0質量%の範囲で、Tiを0.05〜0.3質量%の範囲で添加することもできる。
The sacrificial anode material layer (second skin material) 4 is preferably made of an Al—Zn alloy layer. The presence of the sacrificial anode material layer 4 on the inner surface side of the tube 10 improves the pitting corrosion resistance on the inner surface side of the tube and can prevent the progress of pitting corrosion due to the refrigerant flowing in the tube.
As the Al—Zn-based alloy layer, it is preferable to contain Zn in a range of 0.5 mass% to 7.0 mass%. Further, if necessary, Mg is in the range of 1 to 2% by mass, Mn is in the range of 0.5 to 2.0% by mass, Si is in the range of 0.1 to 1.0% by mass, and Ti is 0.05%. It can also be added in the range of ~ 0.3% by mass.

前記クラッド材1にあっては、一方の面にろう材層3がクラッド圧着され、他方の面に犠牲陽極材層4がクラッド圧着されているが、クラッド材1として両方必須として備えている必要はなく、どちらか一方であって良い。クラッド材としてのろう材層3を略した場合は、別途塗布型のろう材層を芯材2の一方の面に塗布しても良い。また、熱交換器20として耐食性の面で必要ない場合は、チューブ10を構成する場合に犠牲陽極材層4を略しても良い。   In the clad material 1, the brazing material layer 3 is clad-crimped on one surface and the sacrificial anode material layer 4 is clad-crimped on the other surface. No, it can be either one. When the brazing filler metal layer 3 as the clad material is omitted, a separately applied brazing filler metal layer may be applied to one surface of the core member 2. When the heat exchanger 20 is not necessary in terms of corrosion resistance, the sacrificial anode material layer 4 may be omitted when the tube 10 is configured.

前記芯材2の金属組織において、転位下部組織を均一な亜結晶粒組織とした上に、その平均結晶粒径を所定のサイズ以下に揃えることで、アルミニウム合金の局部伸びを向上させることができ、これによって全伸びを向上できる。
更に、アルミニウム合金のクラッド材を構成する主体となる芯材2中の晶出相を除く第2相粒子の平均サイズを所定値以下にすることによって、均一伸びが向上するため、より一層の全伸びの向上効果を得られる。
ここで、均一伸びとは、材料を引っ張った場合に材料が均一に変形する伸び量、局部伸びとは材料が局部的に減肉しながら変形する伸び量を意味する。従って、材料の伸び(全伸び)=均一伸び+局部伸びの関係を有する。
本実施形態で説明する亜結晶粒とは、結晶粒組織を更に微細に観察して認識できる組織で、材料中に歪がどのように蓄積されているかの目安となる。材料を加工すると歪が導入されるが、歪は無秩序に導入されるので、この状態で材料に熱を加えると、歪が特定の場所に整列して結晶粒のようになり、歪の多い場所と少ない場所に分かれる。これを本実施形態では亜結晶粒と称する。本明細書において亜結晶粒の粒径とは、圧延方向に沿って切断した面において測定した粒径を示す。
In the metal structure of the core material 2, the local elongation of the aluminum alloy can be improved by making the dislocation substructure a uniform subgrain structure and making the average crystal grain size equal to or smaller than a predetermined size. This can improve the total elongation.
Further, since the uniform elongation is improved by making the average size of the second phase particles excluding the crystallization phase in the core material 2 which is the main constituent of the clad material of the aluminum alloy not more than a predetermined value, it is possible to further improve the total elongation. Elongation improvement effect can be obtained.
Here, the uniform elongation means the amount of elongation at which the material is uniformly deformed when the material is pulled, and the local elongation means the amount of elongation at which the material deforms while locally thinning. Accordingly, there is a relationship of material elongation (total elongation) = uniform elongation + local elongation.
The sub-crystal grains described in the present embodiment are structures that can be recognized by observing the crystal grain structure more finely, and serve as a measure of how strain is accumulated in the material. Strain is introduced when the material is processed, but strain is introduced randomly, so when heat is applied to the material in this state, the strain aligns at a specific location and becomes like a crystal grain, where there is a lot of strain. And divided into few places. This is referred to as sub-crystal grains in this embodiment. In the present specification, the grain size of the sub-crystal grains indicates the grain size measured on the surface cut along the rolling direction.

アルミニウム合金板の均一伸びは析出物の分散状態によって変化し、析出物が微細、高密度に分布するほど均一伸びは向上する。
次に、局部伸びは亜結晶粒のサイズによって変化し、亜結晶粒が微細、均一なほど、向上する。亜結晶粒径は、均質化処理条件と熱間圧延後の焼鈍条件の両方によって変化するが、焼鈍条件の影響がより顕著である。均質化処理温度は低温なほど、焼鈍は未実施、もしくは、再結晶温度以下とすることで亜結晶粒径は均一、微細となり、局部伸びは向上する。
The uniform elongation of the aluminum alloy plate varies depending on the dispersion state of the precipitates, and the uniform elongation improves as the precipitates are finely and densely distributed.
Next, the local elongation varies depending on the size of the sub-crystal grains, and is improved as the sub-crystal grains are fine and uniform. The subcrystal grain size varies depending on both the homogenization treatment condition and the annealing condition after hot rolling, but the influence of the annealing condition is more remarkable. As the homogenization temperature is lower, annealing is not performed or the recrystallization temperature is set to be lower than the recrystallization temperature, so that the subcrystal grain size becomes uniform and fine, and the local elongation is improved.

以下に、本発明の具体的実施例について説明するが、本願発明はこれらの実施例に限定されるものではない。
半連続鋳造により芯材用アルミニウム合金、犠牲材用アルミニウム合金、およびろう材用アルミニウム合金(JIS4045合金)を鋳造した。得られた鋳塊は前述した範囲内の所定温度で均質化処理を施した。
次に芯材の鋳塊の片面に犠牲材鋳塊を、さらにその反対面にろう材鋳塊を組合わせて熱間圧延しクラッド材とした。熱間圧延により所定の厚さにした後、コイル焼鈍し、続いて冷間圧延により目的の板厚より若干厚い程度の薄板状のアルミニウム合金板を得た後、中間焼鈍を前述した範囲内で行い、最終の冷間圧延により厚さ0.2mmのH14調質の板材を作製した。
得られたクラッド材に対して、伸びの測定、芯材の結晶粒組織、芯材の転位下部組織、および芯材中の化合物の分散状態の調査を以下の手順で行った。伸びが5%未満であるものを×、5%から7.4%のものを○、7.5%以上のものを二重丸とした。
Specific examples of the present invention will be described below, but the present invention is not limited to these examples.
An aluminum alloy for core material, an aluminum alloy for sacrificial material, and an aluminum alloy for brazing material (JIS 4045 alloy) were cast by semi-continuous casting. The obtained ingot was homogenized at a predetermined temperature within the above-described range.
Next, a sacrificial material ingot was combined on one side of the core material ingot, and a brazing material ingot was further combined on the opposite surface, and hot rolled to obtain a clad material. After obtaining a predetermined thickness by hot rolling, coil annealing is performed, and then a thin aluminum alloy sheet having a thickness slightly thicker than the target thickness is obtained by cold rolling, and then intermediate annealing is performed within the range described above. And a final cold rolling was performed to produce a 0.2 mm thick H14 tempered plate.
The obtained clad material was subjected to the following procedures for measuring the elongation, examining the crystal grain structure of the core material, the dislocation substructure of the core material, and the dispersion state of the compound in the core material. Those having an elongation of less than 5% were evaluated as x, those having 5% to 7.4% as ◯, and those having 7.5% or more as a double circle.

(伸びの測定)
作製したクラッド材から圧延方向と平行にサンプルを切り出し、JIS13号B試験片を作製し引張試験を実施した。破断後のサンプルを突合せ法で伸びを測定した。
(芯材の結晶粒組織の観察)
作製したクラッド材から圧延方向平行断面を樹脂埋め後、鏡面に研磨した後、Barker氏(バーカー氏)液法で結晶粒を現出させ、偏光顕微鏡で写真撮影し結晶粒組織を調査した。
(芯材の転位下部組織の観察)
作製したクラッド材の芯材中央部を透過電子顕微鏡観察(機械研磨にて板厚中央部を露出後、ツインジェット法により中央部を露出させてから観察)した。
(亜結晶粒サイズの測定)
亜結晶粒の平均粒径は、電解研磨法によって露出させた圧延方向平行断面の板厚中心部を後方散乱電子線回折法(EBSD)により5000倍の倍率で測定した。更に、EBSDに付属した解析装置(例えばTSL社の0IM解析装置)を用いて亜結晶粒の平均粒径を測定した。
(Elongation measurement)
A sample was cut out from the produced clad material in parallel with the rolling direction, a JIS No. 13 B test piece was produced, and a tensile test was performed. The elongation of the broken sample was measured by a butt method.
(Observation of crystal grain structure of core material)
After rolling the cross-section parallel to the rolling direction from the produced clad material and polishing it to a mirror surface, the crystal grains were revealed by the Barker liquid method, photographed with a polarizing microscope, and the crystal grain structure was investigated.
(Observation of dislocation substructure of core material)
The central portion of the core material of the clad material was observed with a transmission electron microscope (observed after exposing the central portion by twin jet method after exposing the central portion of the plate thickness by mechanical polishing).
(Subgrain size measurement)
The average grain size of the sub-crystal grains was measured at a magnification of 5000 times by a backscattered electron diffraction method (EBSD) at the central portion of the thickness of the cross section in the rolling direction exposed by the electropolishing method. Furthermore, the average grain size of the sub-crystal grains was measured using an analyzer attached to the EBSD (for example, 0IM analyzer manufactured by TSL).

(芯材中の第二相粒子の分散状態の調査)
晶出相を除く第2相粒子の分散状態の測定として、作製したクラッド材に400℃×15sのソルトバス焼鈍を行って変形ひずみを除去し、化合物を観察しやすくした後、苛性ソーダによるアルカリエッチングによって芯材を露出させ、通常の方法で機械研磨、および電解研磨によって薄膜を作製し、透過型電子顕微鏡にて20000倍で写真撮影した。同時にエネルギー分散型X線分析装置(EDS)を用いて第2相粒子の組成を調査し、Al−Mn系、Al−Mn−Fe系、Al−Mn−Si系、Al−Mn−Fe−Si系化合物のみについて画像解析し、第2相粒子の平均粒径を測定した。ここで、平均粒径2μm以上の化合物については晶出物であるのでカウントしないようにした。また、これら金属間化合物の平均粒径を規定する場合、円相当径を示す。
(Investigation of dispersion state of second phase particles in core material)
As a measurement of the dispersion state of the second phase particles excluding the crystallization phase, the produced cladding material was subjected to salt bath annealing at 400 ° C. × 15 s to remove the deformation strain and make the compound easy to observe, followed by alkaline etching with caustic soda. Then, the core material was exposed, and a thin film was prepared by mechanical polishing and electrolytic polishing by a conventional method, and photographed with a transmission electron microscope at 20000 times. At the same time, the composition of the second phase particles was investigated using an energy dispersive X-ray analyzer (EDS), and the Al-Mn, Al-Mn-Fe, Al-Mn-Si, Al-Mn-Fe-Si Image analysis was performed on only the system compound, and the average particle size of the second phase particles was measured. Here, the compounds having an average particle diameter of 2 μm or more were not counted because they were crystallized products. Moreover, when prescribing the average particle diameter of these intermetallic compounds, the equivalent circle diameter is shown.

(ろう付後の強度)
作製したクラッド材を高純度窒素ガス雰囲気中でドロップ形式で600℃×3分のろう付相当熱処理を施した。熱処理後のサンプルから圧延方向と平行にサンプルを切り出し、JIS13号B試験片を作製し、引張試験を実施して引張強さを測定した。引張強さが160MPa未満のものを×、160〜174MPaの範囲のものを○、175MPa以上のものを二重丸とした。
(内部耐食性)
ろう付熱処理後のサンプルから30×50mmのサンプルを切り出し、ろう材側についてはマスキングし、犠牲材側について、Cl:195ppm、SO 2−:60ppm、Cu2+:1ppm、Fe3+:30ppmを含む水溶液中で80℃×8時間→室温×16時間のサイクルで浸漬試験を8週間実施した。腐食試験後のサンプルを沸騰させたリン酸クロム酸混合溶液に浸漬して腐食生成物を除去した後、最大腐食部の断面観察を実施して腐食深さを測定した。その腐食深さが総板厚の半分以上であったものを×、腐食深さが総板厚の半分未満であったものを○とした。
(耐ろう侵食性(エロージョン深さ))
作製した材料を高純度窒素ガス雰囲気中でドロップ形式で600℃×3分のろう付相当熱処理を施した。ろう付相当熱処理を実施したサンプルを樹脂埋めし、圧延方向平行断面を鏡面研磨し、バーカー氏液で組織を現出後、光学顕微鏡で観察してろう侵食深さ(ろう材表面からの深さ)を測定した。侵食深さが50μm以上であったものを×、50μm未満であったものを○とした。
以上の試験結果を以下の表1、表2に示す
(Strength after brazing)
The produced clad material was subjected to heat treatment equivalent to brazing at 600 ° C. for 3 minutes in a drop form in a high purity nitrogen gas atmosphere. A sample was cut out from the heat-treated sample in parallel with the rolling direction, a JIS No. 13 B test piece was prepared, and a tensile test was performed to measure the tensile strength. Those having a tensile strength of less than 160 MPa were evaluated as x, those having a tensile strength in the range of 160 to 174 MPa as ◯, and those having a tensile strength of 175 MPa as double circles.
(Internal corrosion resistance)
A 30 × 50 mm sample is cut out from the sample after brazing heat treatment, the brazing material side is masked, and the sacrificial material side is Cl : 195 ppm, SO 4 2− : 60 ppm, Cu 2+ : 1 ppm, Fe 3+ : 30 ppm. The immersion test was carried out for 8 weeks in a solution containing 80 ° C. × 8 hours → room temperature × 16 hours. The sample after the corrosion test was immersed in a boiled chromic phosphate mixed solution to remove the corrosion products, and then the cross-section observation of the maximum corrosion portion was performed to measure the corrosion depth. The case where the corrosion depth was more than half of the total plate thickness was rated as x, and the case where the corrosion depth was less than half the total plate thickness was rated as ◯.
(Wax erosion resistance (erosion depth))
The produced material was subjected to brazing equivalent heat treatment at 600 ° C. for 3 minutes in a drop form in a high purity nitrogen gas atmosphere. The sample subjected to brazing equivalent heat treatment was filled with resin, the cross-section parallel to the rolling direction was mirror-polished, the structure was revealed with Barker's solution, and then observed with an optical microscope to observe the depth of brazing erosion (depth from the brazing material surface). ) Was measured. The case where the erosion depth was 50 μm or more was rated as x, and the case where the erosion depth was less than 50 μm was rated as ◯.
The above test results are shown in Tables 1 and 2 below.

Figure 2012117107
Figure 2012117107

Figure 2012117107
Figure 2012117107

表1と表2に示す結果から、亜結晶粒径の平均が1.5μmを超えたNo.5、6の試料は伸びが低くなった。
また、Mn含有量が少ないNo.12の試料はろう付け後の強度が低下し、Mn含有量が多いNo.13の試料では鋳造時に発生した巨大晶出物の影響で伸びが低下した。Si含有量が少ないNo.14の試料はろう付け後の強度が低下し、Si含有量が多いNo.15の試料はエロージョン深さが増加した。Cu含有量が少ないNo.16の試料はろう付け後の強度が低下し、Cu含有量が多いNo.17の試料では耐食性が低下した。Fe含有量の少ないNo.19の試料はろう付け後の強度が低下し、Fe含有量の多いNo.20の試料は耐食性が低下した。
また、化合物の平均直径が小さいNo.7の試料は同一成分のNo.1〜No.6、No.8〜No.11に比べてろう付け後の強度が若干低下する傾向となり、化合物の平均直径が大きいNo.10の試料は伸びが若干低下する傾向となった。No.11の試料は、亜結晶粒と転位セルが混在した組織となったので、伸びが低下した。
From the results shown in Tables 1 and 2, the samples Nos. 5 and 6 having an average sub-crystal grain size exceeding 1.5 μm exhibited low elongation.
In addition, the No. 12 sample with a low Mn content had a reduced strength after brazing, and the No. 13 sample with a high Mn content had a decrease in elongation due to the influence of giant crystals generated during casting. The No. 14 sample with a low Si content had a reduced strength after brazing, and the No. 15 sample with a high Si content had an increased erosion depth. The No. 16 sample with a low Cu content had a reduced strength after brazing, and the No. 17 sample with a high Cu content had a reduced corrosion resistance. The No. 19 sample with a low Fe content had reduced strength after brazing, and the No. 20 sample with a high Fe content had reduced corrosion resistance.
In addition, the No. 7 sample having a small average diameter of the compound tends to have a slightly lower strength after brazing than No. 1 to No. 6 and No. 8 to No. 11 of the same component. The sample No. 10 having a large diameter tended to have a slight decrease in elongation. Since the sample of No. 11 became a structure in which subgrains and dislocation cells were mixed, the elongation decreased.

1…アルミニウム合金クラッド材、2…芯材、3…ろう材層(第1の皮材)、4…犠牲陽極材層(第2の皮材)、10…チューブ、20…熱交換器。   DESCRIPTION OF SYMBOLS 1 ... Aluminum alloy clad material, 2 ... Core material, 3 ... Brazing material layer (1st skin material), 4 ... Sacrificial anode material layer (2nd skin material), 10 ... Tube, 20 ... Heat exchanger.

Claims (4)

少なくとも芯材の一方の面に皮材をクラッドしてなるアルミニウム合金クラッド材であって、芯材が、Mn:0.5%以上2.0%以下(質量%、以下同じ)、Si:0.2%以上1.3%以下、Fe:0.05%以上0.5%以下、Cu:0.3%以上1.5%以下を含有し、残部アルミニウムおよび不可避不純物からなり、前記芯材の結晶粒組織が繊維状組織であり、さらに、転位下部組織が亜結晶粒組織であって、その亜結晶粒径の平均が1.5μm以下であることを特徴とする成形性に優れた自動車熱交換器用アルミニウム合金クラッド材。   An aluminum alloy clad material obtained by cladding a skin material on at least one surface of a core material, the core material being Mn: 0.5% or more and 2.0% or less (mass%, the same applies hereinafter), Si: 0 .2% or more and 1.3% or less, Fe: 0.05% or more and 0.5% or less, Cu: 0.3% or more and 1.5% or less, comprising the balance aluminum and unavoidable impurities, the core material An automobile having excellent formability, wherein the crystal grain structure is a fibrous structure, the dislocation substructure is a sub-grain structure, and the average sub-crystal grain size is 1.5 μm or less Aluminum alloy clad material for heat exchanger. 芯材に更にMg:0.05%以上0.5%以下を含有してなる請求項1に記載の自動車熱交換器用アルミニウム合金クラッド材。   The aluminum alloy clad material for automobile heat exchanger according to claim 1, wherein the core material further contains Mg: 0.05% to 0.5%. 芯材に更にTi:0.05%以上0.3%以下、Zr:0.05%以上0.3%以下、Cr:0.05%以上0.3%以下を含有してなる請求項1または請求項2に記載の自動車熱交換器用アルミニウム合金クラッド材。   The core material further contains Ti: 0.05% to 0.3%, Zr: 0.05% to 0.3%, and Cr: 0.05% to 0.3%. Or the aluminum alloy clad material for motor vehicle heat exchangers of Claim 2. 芯材中の晶出物を除く第2相粒子のうち、Al−Mn系、Al−Mn−Si系、Al−Mn−Fe系、Al−Mn−Fe−Si系金属間化合物の平均直径が0.05μm以上0.5μm以下の範囲とされてなる請求項1〜3のいずれか1項に記載の自動車熱交換器用アルミニウム合金クラッド材。

Among the second phase particles excluding the crystallized material in the core material, the average diameter of Al-Mn, Al-Mn-Si, Al-Mn-Fe, and Al-Mn-Fe-Si intermetallic compounds is The aluminum alloy clad material for automobile heat exchanger according to any one of claims 1 to 3, wherein the aluminum alloy clad material is in a range of 0.05 µm or more and 0.5 µm or less.

JP2010267405A 2010-11-30 2010-11-30 Aluminum alloy clad material Active JP5841719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010267405A JP5841719B2 (en) 2010-11-30 2010-11-30 Aluminum alloy clad material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010267405A JP5841719B2 (en) 2010-11-30 2010-11-30 Aluminum alloy clad material

Publications (2)

Publication Number Publication Date
JP2012117107A true JP2012117107A (en) 2012-06-21
JP5841719B2 JP5841719B2 (en) 2016-01-13

Family

ID=46500295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010267405A Active JP5841719B2 (en) 2010-11-30 2010-11-30 Aluminum alloy clad material

Country Status (1)

Country Link
JP (1) JP5841719B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013129860A (en) * 2011-12-20 2013-07-04 Mitsubishi Alum Co Ltd Brazing sheet
JP2016017222A (en) * 2014-07-10 2016-02-01 三菱アルミニウム株式会社 Aluminum alloy clad material and heat exchanger
WO2016143119A1 (en) * 2015-03-12 2016-09-15 三菱アルミニウム株式会社 Brazing sheet with excellent corrosion resistance after brazing
US10634439B2 (en) 2016-03-29 2020-04-28 Uacj Corporation Aluminum alloy brazing sheet for a heat exchanger, and process for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5080728A (en) * 1989-04-28 1992-01-14 Vereinigte Aluminium-Werke Aktiengellschaft Rolled aluminum product and method for its production
JP2004076057A (en) * 2002-08-13 2004-03-11 Sumitomo Light Metal Ind Ltd Aluminum alloy clad plate and method for producing the same
JP2010168632A (en) * 2009-01-23 2010-08-05 Kobe Steel Ltd Aluminum alloy laminated plate excellent in fatigue characteristic
JP2011224656A (en) * 2010-03-31 2011-11-10 Kobe Steel Ltd Aluminum alloy brazing sheet and heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5080728A (en) * 1989-04-28 1992-01-14 Vereinigte Aluminium-Werke Aktiengellschaft Rolled aluminum product and method for its production
JP2004076057A (en) * 2002-08-13 2004-03-11 Sumitomo Light Metal Ind Ltd Aluminum alloy clad plate and method for producing the same
JP2010168632A (en) * 2009-01-23 2010-08-05 Kobe Steel Ltd Aluminum alloy laminated plate excellent in fatigue characteristic
JP2011224656A (en) * 2010-03-31 2011-11-10 Kobe Steel Ltd Aluminum alloy brazing sheet and heat exchanger

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6014025425; 吉野路英, 黒田周: '繊維状組織を有するAl-Mn系合金H1n調質材の伸びに及ぼす熱処理条件の影響' 軽金属学会大会講演概要 Vol.119th, 20101013, 99-100, 社団法人軽金属学会 *
JPN7015002188; 金子秀夫: '解説 金属結晶粒界の構造' 鉄と鋼 Vol.56 No.5, 1970, P.118-131 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013129860A (en) * 2011-12-20 2013-07-04 Mitsubishi Alum Co Ltd Brazing sheet
JP2016017222A (en) * 2014-07-10 2016-02-01 三菱アルミニウム株式会社 Aluminum alloy clad material and heat exchanger
WO2016143119A1 (en) * 2015-03-12 2016-09-15 三菱アルミニウム株式会社 Brazing sheet with excellent corrosion resistance after brazing
CN107429333A (en) * 2015-03-12 2017-12-01 三菱铝株式会社 The outstanding soldering lug of corrosion resistance after soldering
US20180043476A1 (en) * 2015-03-12 2018-02-15 Mitsubishi Aluminum Co., Ltd., Brazing sheet having improved corrosion resistance after brazing
US10384312B2 (en) 2015-03-12 2019-08-20 Mitsubishi Aluminum Co., Ltd. Brazing sheet having improved corrosion resistance after brazing
CN107429333B (en) * 2015-03-12 2019-12-27 三菱铝株式会社 Brazing sheet having excellent corrosion resistance after brazing
US10634439B2 (en) 2016-03-29 2020-04-28 Uacj Corporation Aluminum alloy brazing sheet for a heat exchanger, and process for producing the same

Also Published As

Publication number Publication date
JP5841719B2 (en) 2016-01-13

Similar Documents

Publication Publication Date Title
EP3093356B1 (en) Cladded aluminium-alloy material and production method therefor, and heat exchanger using said cladded aluminium-alloy material and production method therefor
EP3029169B1 (en) Aluminum-alloy clad member and method for producing the same
US9976201B2 (en) Aluminum-alloy clad material and production method therefor, and heat exchanger using said aluminum-alloy clad material and production method therefor
JP5188115B2 (en) High strength aluminum alloy brazing sheet
EP2489750B1 (en) Highly corrosion-resistant aluminum alloy brazing sheet, process for production of the brazing sheet, and highly corrosion-resistant heat exchanger equipped with the brazing sheet
US20160326614A1 (en) Aluminum alloy material and method for producing the same, and aluminum alloy clad material and method for producing the same
JP5491927B2 (en) Aluminum alloy brazing sheet
KR20070061413A (en) Method of producing an aluminum alloy brazing sheet
US10378088B2 (en) Aluminum alloy fin material and heat exchanger
KR20070061410A (en) Aluminum alloy brazing sheet
CN105229184B (en) Heat exchanger brazing sheet and its manufacture method
EP3121301A1 (en) Cladded aluminium-alloy material and production method therefor, and heat exchanger using said cladded aluminium-alloy material and production method therefor
JP7107690B2 (en) Aluminum alloy fin material for heat exchangers and heat exchangers with excellent strength, electrical conductivity, corrosion resistance, and brazeability
JP5841719B2 (en) Aluminum alloy clad material
JP5739828B2 (en) Aluminum alloy laminate
JP6407253B2 (en) Aluminum alloy clad material excellent in corrosion resistance and brazing and method for producing the same
JP4996909B2 (en) Aluminum alloy brazing sheet and method for producing the same
US9999946B2 (en) High corrosion-resistant aluminum alloy brazing sheet, method of manufacturing such sheet, and corrosive-resistant heat exchanger using such sheet
JP6166856B2 (en) Aluminum clad tube and manufacturing method thereof
US20200115779A1 (en) Aluminum alloy fin material and heat exchanger
US20200115778A1 (en) Aluminum alloy fin material and heat exchanger
JP2004017116A (en) Aluminum alloy brazing sheet for brazed pipe making tubes, and its producing method
JP2007146264A (en) Aluminum alloy fin material
JP5466080B2 (en) Aluminum alloy brazing sheet
WO2018148429A1 (en) Aluminum alloy, extruded tube formed from aluminum alloy, and heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130923

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151116

R150 Certificate of patent or registration of utility model

Ref document number: 5841719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250