JP2020100881A - Aluminum alloy clad material for heat exchanger, and heat exchanger - Google Patents

Aluminum alloy clad material for heat exchanger, and heat exchanger Download PDF

Info

Publication number
JP2020100881A
JP2020100881A JP2018240618A JP2018240618A JP2020100881A JP 2020100881 A JP2020100881 A JP 2020100881A JP 2018240618 A JP2018240618 A JP 2018240618A JP 2018240618 A JP2018240618 A JP 2018240618A JP 2020100881 A JP2020100881 A JP 2020100881A
Authority
JP
Japan
Prior art keywords
brazing
less
aluminum alloy
brazing material
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018240618A
Other languages
Japanese (ja)
Inventor
岩尾 祥平
Shohei Iwao
祥平 岩尾
いづみ 加藤
Izumi Kato
いづみ 加藤
路英 吉野
Michihide Yoshino
路英 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2018240618A priority Critical patent/JP2020100881A/en
Publication of JP2020100881A publication Critical patent/JP2020100881A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

To provide an aluminum alloy clad material for a heat exchanger, capable of improving corrosion resistance, and to provide a heat exchanger.SOLUTION: An aluminum alloy clad material for a heat exchanger, comprising an Al-Mn-based core material, and Al-Si-Zn brazing filler metals is such that: the brazing filler metals comprise an aluminum alloy which has a composition of containing by mass%, Si, 2.0% or more and 5.0% or less, and Zn, 0.2% or more and 7.0% or less, and having the balance Al with inevitable impurities; an average crystal grain size of the Al-Mn-based core material quickly chilled after heating the brazing filler metals up to 570°C is 500 μm or more in the major axis direction; an average shape ratio in a cross section parallel to a rolling direction is 4.5 or more; an eutectic Si grain in the brazing filler metals after brazing corresponding heat treatment is 2.0 μm or less at a circle equivalent diameter; a ratio of an area occupied by eutectic brazing filler metals from the boundary face between the brazing filler metals and the Al-Mn-based core material to a plate thickness center part of the brazing filler metals is 10% or less; and a thickness of the remaining brazing filler metals is 45 μm or more.SELECTED DRAWING: Figure 2

Description

本発明は、自動車等の熱交換器用部品として用いられる熱交換器用アルミニウム合金クラッド材及び熱交換器に関する。 TECHNICAL FIELD The present invention relates to an aluminum alloy clad material for a heat exchanger and a heat exchanger used as a part for a heat exchanger of an automobile or the like.

近年、電気自動車や燃料電池車に代表される環境対応車の登場により、自動車熱交換器には、従来よりも高性能化や形状の複雑化の要求が高まっている。このため、従来では耐食性確保のため犠牲材が適用されていた熱交換器冷却水側についても、ろう付を適用する例が増えており、接合性および冷却水側での耐食性を両立する様なろう材が求められている。 In recent years, with the advent of environment-friendly vehicles typified by electric vehicles and fuel cell vehicles, there is an increasing demand for automobile heat exchangers with higher performance and more complicated shapes than ever before. For this reason, in the heat exchanger cooling water side where a sacrificial material has been conventionally applied to secure corrosion resistance, there are an increasing number of cases where brazing is applied, and it is possible to achieve both jointability and corrosion resistance on the cooling water side. A brazing material is required.

例えば、特許文献1に記載の熱交換器の製造方法では、アルミニウムクラッド板材として、心材の片面にAl−Si系ろう材をクラッドし、他の片面にSi:2.5〜6.0質量%を含有するアルミニウム合金材をクラッドしてなるクラッド板材を使用し、ろう付け時、組み付けられたクラッド板材の端部近傍において、片面にクラッドされたAl−Si系ろう材からの溶融ろうがクラッド板材の端部から他の片面にクラッドされたアルミニウム合金材面に流動することにより接合部を形成している。また、このアルミニウム合金材は、Znを1.5〜6.0%含有し、犠牲陽極層としての機能を有している。 For example, in the heat exchanger manufacturing method described in Patent Document 1, as an aluminum clad plate material, one side of a core material is clad with an Al—Si brazing material, and the other side is Si: 2.5 to 6.0 mass %. When using a clad plate material obtained by clad an aluminum alloy material containing Al, at the time of brazing, in the vicinity of the end of the assembled clad plate material, the molten brazing material from the Al-Si based brazing material clad on one side is clad plate material. The joining portion is formed by flowing from the end portion to the aluminum alloy material surface clad on the other surface. Further, this aluminum alloy material contains Zn in an amount of 1.5 to 6.0% and has a function as a sacrificial anode layer.

また、特許文献2に記載のアルミニウム合金ブレージングシートは、アルミニウム合金の心材と、心材の少なくとも一方の面にクラッドされたろう付機能付与犠牲材とを備え、心材が、MnとFeを含有し残部Al及び不可避的不純物からなり、ろう付機能付与犠牲材が、Si、Zn、Feを含有し残部Al及び不可避的不純物からなり、ろう付機能付与犠牲材のクラッド率が3〜25%であり、ろう付加熱前における金属組織として、心材が繊維状組織であり、ろう付機能付与犠牲材が再結晶組織である。
これら特許文献1及び2に記載のアルミニウム合金材及びろう付け機能付与犠牲材(以下、ろう材という)は、耐食性を向上させるため、Znが添加され、これによりろう材表面から芯材内部にかけての電位勾配を確保している。
The aluminum alloy brazing sheet described in Patent Document 2 includes an aluminum alloy core material and a brazing function imparting sacrificial material that is clad on at least one surface of the core material, and the core material contains Mn and Fe and the balance Al. And the brazing function-providing sacrificial material contains Si, Zn, Fe and the balance Al and inevitable impurities, and the brazing function-providing sacrificial material has a clad ratio of 3 to 25%. As the metallographic structure before applying heat, the core material is a fibrous structure and the brazing function imparting sacrificial material is a recrystallized structure.
Zn is added to the aluminum alloy material and the sacrificial material imparting a brazing function (hereinafter, referred to as a brazing material) described in Patent Documents 1 and 2 in order to improve corrosion resistance. The potential gradient is secured.

特開2007−178062号公報JP, 2007-178062, A 特開2014−114475号公報JP, 2014-114475, A

しかしながら、特許文献1及び2に記載の構成では、ろう付熱処理の際にろう材が流動することで、材料表面に均一にZnが分布しないことや、ろう材共晶部へ局所的に腐食が進行することにより、犠牲材に匹敵するような耐食性を得ることが難しい。具体的には、ろう材は初晶(ろう材初晶)と共晶組織(共晶ろう)を有するため、犠牲材のような面状腐食にならずに芯材方向へ局部腐食が発生し易い。
以上の観点から、芯材の両面又は片面にろう材を有する熱交換器用アルミニウム合金クラッド材の耐食性を向上させることが望まれている。
However, in the configurations described in Patent Documents 1 and 2, since the brazing material flows during the brazing heat treatment, Zn is not uniformly distributed on the material surface, and the brazing material eutectic part is locally corroded. It is difficult to obtain corrosion resistance comparable to that of the sacrificial material as it progresses. Specifically, since the brazing filler metal has a primary crystal (brazing filler metal primary crystal) and a eutectic structure (eutectic brazing filler metal), local corrosion occurs in the core material direction instead of planar corrosion like the sacrificial material. easy.
From the above viewpoints, it is desired to improve the corrosion resistance of the aluminum alloy clad material for heat exchangers having the brazing material on both sides or one side of the core material.

本発明は、耐食性を向上できる熱交換器用アルミニウム合金クラッド材及び熱交換器を提供することを目的とする。 An object of the present invention is to provide an aluminum alloy clad material for a heat exchanger and a heat exchanger that can improve corrosion resistance.

本件発明者らは、上記問題点を鑑み、ろう付熱処理時に流動するろう材量を適正化し、ろう付後に材料表面で防食層として作用するろう材の厚さを大きくし、かつ熱交換器用アルミニウム合金クラッド材の芯材におけるろう付時の再結晶粒径を粗大化させることで、ろう付熱処理後のろう材組織において、共晶ろうが材料表層部近傍に広く分布する形態となることを見出した。 In view of the above problems, the present inventors have optimized the amount of brazing filler metal that flows during brazing heat treatment, increase the thickness of the brazing filler metal that acts as an anticorrosion layer on the material surface after brazing, and use aluminum for heat exchangers. It was found that by increasing the recrystallized grain size during brazing in the core material of the alloy clad material, the eutectic braze can be widely distributed near the surface layer of the material in the brazing material structure after brazing heat treatment. It was

すなわち、本発明の熱交換器用アルミニウム合金クラッド材は、Al−Mn系芯材と、その片面又は両面に張り合わされたAl−Si−Znろう材とからなる熱交換器用アルミニウム合金クラッド材であって、前記Al−Si−Znろう材は、質量%で、Si:2.0%以上5.0%、Zn:0.2%以上7.0%以下を含有し、残部がAl及び不可避不純物からなる組成のアルミニウム合金からなり、前記Al−Si−Znろう材を570℃まで加熱して急冷した前記Al−Mn系芯材の平均結晶粒径が長径方向において500μm以上であり、かつ圧延方向平行断面における各結晶粒の圧延方向長径を板厚方向短径で除した値である平均形状比が4.5以上であり、ろう付け相当熱処理後における前記Al−Si−Znろう材における共晶Si粒子が円相当径で2.0μm以下であり、かつ、圧延方向平行断面において、前記Al−Si−Znろう材と前記Al−Mn系芯材との界面から前記Al−Si−Znろう材の板厚中央部までの領域における共晶ろうが占める面積割合が10%以下であり、さらに残存ろうの厚さが45μm以上である。 That is, the aluminum alloy clad material for a heat exchanger of the present invention is an aluminum alloy clad material for a heat exchanger, which comprises an Al-Mn-based core material and an Al-Si-Zn brazing material laminated on one surface or both surfaces thereof. The Al-Si-Zn brazing material contains, by mass%, Si: 2.0% or more and 5.0%, Zn: 0.2% or more and 7.0% or less, and the balance from Al and unavoidable impurities. The Al-Mn-based brazing material, which is made of an aluminum alloy having the following composition and is obtained by heating the Al-Si-Zn brazing material to 570[deg.] C. and quenching, has an average crystal grain size of 500 [mu]m or more in the major axis direction and is parallel to the rolling direction. The average shape ratio, which is a value obtained by dividing the major axis in the rolling direction of each crystal grain in the cross section by the minor axis in the plate thickness direction, is 4.5 or more, and the eutectic Si in the Al-Si-Zn brazing material after the heat treatment equivalent to brazing is performed. The particles have a circle equivalent diameter of 2.0 μm or less, and, in a cross-section parallel to the rolling direction, from the interface between the Al—Si—Zn brazing material and the Al—Mn-based core material to the Al—Si—Zn brazing material. The area ratio occupied by the eutectic braze in the region up to the center of the plate thickness is 10% or less, and the thickness of the remaining braze is 45 μm or more.

本発明では、熱交換器用アルミニウム合金クラッド材の芯材として、Al−Mn系芯材を用いており、この芯材に含まれるMnは、芯材の強度を向上させる。また、熱交換器用アルミニウム合金クラッド材のろう材として、Al−Si−Znろう材を用いており、Siは、ろう付け性を向上させる機能を有する。なお、Siが2.0質量%未満では、その効果が十分に発揮されず、5.0質量%を超えると、ろう付時の溶融ろうの流動性が高くなり過ぎて、ろう付後に残存するろう材層(残存ろう)の厚さが低下して、45μm未満となる。また、Siのさらに好ましい範囲は、2.5質量%〜3.5質量%である。Znは、ろう材を芯材に対して卑な電位として芯材を防食する機能を有する。なお、Znが0.2質量%未満では、その効果が十分発揮されず、7.0質量%を超えると、腐食速度が速くなり過ぎて、ろう材層が早期に腐食、消耗することで耐食性が低下する。また、Znのさらに好ましい範囲は2.0質量%〜5.0質量%である。 In the present invention, an Al-Mn-based core material is used as the core material of the aluminum alloy clad material for the heat exchanger, and Mn contained in this core material improves the strength of the core material. Further, an Al—Si—Zn brazing material is used as a brazing material for the aluminum alloy clad material for the heat exchanger, and Si has a function of improving brazing property. If Si is less than 2.0% by mass, the effect is not sufficiently exhibited, and if it exceeds 5.0% by mass, the fluidity of the molten brazing material during brazing becomes too high and remains after brazing. The thickness of the brazing material layer (residual brazing material) is reduced to less than 45 μm. Moreover, the more preferable range of Si is 2.5 mass%-3.5 mass %. Zn has a function of making the brazing material a base electric potential with respect to the core material to prevent corrosion of the core material. If Zn is less than 0.2% by mass, the effect is not sufficiently exerted, and if it exceeds 7.0% by mass, the corrosion rate becomes too fast and the brazing material layer is corroded and consumed at an early stage. Is reduced. Moreover, the more preferable range of Zn is 2.0 mass%-5.0 mass %.

また、ろう付け相当熱処理後のAl−Si−Znろう材の共晶Si粒子が2.0μm以下と小さいので、共晶Si粒子が大きい場合に比べて、カソード反応が抑制されて耐食性を向上させる。なお、共晶Si粒子が2.0μmを超えると、耐食性を向上させる効果を発揮できない。
さらに、ろう付け相当熱処理後におけるAl−Si−Znろう材を570℃まで加熱して急冷したAl−Mn系芯材の平均結晶粒径(再結晶粒径)が長径方向において500μm以上であり、かつ圧延方向平行断面における各結晶粒の平均形状比が4.5以上と粗大化されていることから、ろう付相当熱処理後のAl−Si−Znろう材組織において、共晶ろうをその表層部近傍に広く分布させることができる。なお、ろう材が溶融する直前のAl−Mn系芯材の平均結晶粒径が長径方向において500μm未満である場合や、圧延方向平行断面における各結晶粒の平均形状比が4.5未満である場合の他、残存ろうの厚さが45μm未満の場合には、上記効果を十分に発揮できない。
Further, since the eutectic Si particles of the Al—Si—Zn brazing material after the brazing-corresponding heat treatment are as small as 2.0 μm or less, the cathode reaction is suppressed and the corrosion resistance is improved as compared with the case where the eutectic Si particles are large. .. If the eutectic Si particles exceed 2.0 μm, the effect of improving corrosion resistance cannot be exhibited.
Furthermore, the average crystal grain size (recrystallized grain size) of the Al-Mn-based core material obtained by heating the Al-Si-Zn brazing material after the heat treatment equivalent to brazing to 570[deg.] C. and quenching is 500 [mu]m or more in the major axis direction, In addition, since the average shape ratio of each crystal grain in the cross section parallel to the rolling direction is coarsened to 4.5 or more, in the Al-Si-Zn brazing filler metal structure after the equivalent brazing heat treatment, the eutectic brazing material has its surface layer portion. It can be widely distributed in the vicinity. The average crystal grain size of the Al-Mn-based core material immediately before melting of the brazing filler metal is less than 500 μm in the major axis direction, or the average shape ratio of each crystal grain in the cross section parallel to the rolling direction is less than 4.5. In addition to the above cases, if the thickness of the remaining solder is less than 45 μm, the above effect cannot be sufficiently exhibited.

上述したようなAl−Mn系芯材及びAl−Si−Znろう材からなる熱交換器用アルミニウム合金クラッド材に対して、ろう付け熱処理を実行すると、圧延方向平行断面において、Al−Si−Znろう材とAl−Mn系芯材との界面からAl−Si−Znろう材の板厚中央部までの領域における共晶ろうが占める面積割合が10%以下となる。すなわち、ろう材では、共晶ろうと、ろう材初晶とが2層状になる組織が得られ、表層に共晶ろうが配置され、芯材とろう材との界面側にろう材初晶が配置されることとなる。これにより、ろう材が冷却水側の腐食環境に曝された時、表層部の共晶ろうが優先腐食した後、その下にあるろう材初晶が均一に腐食し、全面腐食の形態が得られ、耐食性が向上する。 When the brazing heat treatment is performed on the aluminum alloy clad material for a heat exchanger, which is made of the Al-Mn-based core material and the Al-Si-Zn brazing material as described above, the Al-Si-Zn brazing material is formed in the rolling direction parallel cross section. The area ratio of the eutectic braze in the region from the interface between the material and the Al-Mn-based core material to the central portion of the plate thickness of the Al-Si-Zn brazing material is 10% or less. That is, in the brazing material, a structure in which the eutectic brazing material and the brazing material primary crystal have a two-layer structure is obtained, the eutectic brazing material is arranged on the surface layer, and the brazing material primary crystal is arranged on the interface side between the core material and the brazing material. Will be done. As a result, when the brazing filler metal is exposed to the corrosive environment on the cooling water side, after the eutectic brazing filler metal in the surface layer preferentially corrodes, the brazing filler metal primary crystal underneath corrodes uniformly and a general corrosion form is obtained. The corrosion resistance is improved.

本発明の熱交換器用アルミニウム合金クラッド材の好ましい態様としては、前記Al−Si−Znろう材は、質量%で、Sr:0.01%以上0.10%以下、Bi:0.01%以上0.30%以下、Mn:0.1%以上1.0%以下、Fe:0.1%以上1.0%以下のうち、一種又は二種をさらに含有しているとよい。 In a preferred embodiment of the aluminum alloy clad material for a heat exchanger of the present invention, the Al-Si-Zn brazing material is, by mass%, Sr: 0.01% or more and 0.10% or less, Bi: 0.01% or more. One or two of 0.30% or less, Mn: 0.1% or more and 1.0% or less, and Fe: 0.1% or more and 1.0% or less may be further contained.

Srは、ろう材中の共晶Si粒子を微細にすることで、ろう付熱処理後の共晶Si粒子が大きい場合に比べて、カソード反応が抑制されて耐食性を向上させる。Srが0.01質量%未満では、その効果が十分発揮されず、0.1質量%を超えると、鋳造時に巨大な金属間化合物を生成しやすく圧延が困難となる。なお、同様の理由でさらに好ましい範囲は0.02質量%以上0.05質量%以下である。
Biは、溶融したろうの表面張力を小さくして、溶融したろうの流動性を向上させる効果があり、Si濃度が低いろうにおいても接合性を向上させる。このBiが0.01質量%未満では、その効果が十分発揮されず、0.3質量%を超えると、鋳造時に巨大な金属間化合物を生成しやすく圧延が困難となる。なお、同様の理由でさらに好ましい範囲は、0.10質量%以上0.20質量%以下である。
Mn及びFeは、溶融したろうの流動性を抑制させ耐食性を向上させる。Mn及びFeが0.1質量%未満では、その効果が十分発揮されず、Mn及びFeが1.0質量%を超えると、カソードの起点となり耐食性が低下する。同様の理由でさらに好ましい範囲は、0.2質量%以上0.6質量%以下である。
By making the eutectic Si particles in the brazing material fine, Sr suppresses the cathode reaction and improves the corrosion resistance as compared with the case where the eutectic Si particles after the brazing heat treatment are large. If Sr is less than 0.01% by mass, the effect is not sufficiently exhibited, and if it exceeds 0.1% by mass, a huge intermetallic compound is likely to be formed during casting, and rolling becomes difficult. For the same reason, the more preferable range is 0.02 mass% or more and 0.05 mass% or less.
Bi has the effect of reducing the surface tension of the molten braze and improving the fluidity of the molten braze, and also improves the bondability even in braze having a low Si concentration. If Bi is less than 0.01% by mass, the effect is not sufficiently exhibited, and if it exceeds 0.3% by mass, a huge intermetallic compound is likely to be formed during casting, and rolling becomes difficult. For the same reason, a more preferable range is 0.10 mass% or more and 0.20 mass% or less.
Mn and Fe suppress the fluidity of the molten wax and improve the corrosion resistance. When Mn and Fe are less than 0.1% by mass, the effect is not sufficiently exhibited, and when Mn and Fe exceed 1.0% by mass, the starting point of the cathode is caused and the corrosion resistance is deteriorated. For the same reason, a more preferable range is 0.2 mass% or more and 0.6 mass% or less.

本発明の熱交換器は、液体が流通する液体流路と、前記液体流路に隣接して配置され、前記液体を冷却する冷却水が流通する冷却水流路と、を備え、前記液体流路及び前記冷却水流路を区画するプレートは、Al−Mn系芯材と、その片面又は両面に貼り合わされたAl−Si−Znろう材とからなる熱交換器用アルミニウム合金クラッド材により構成され、前記熱交換器用アルミニウム合金クラッド材は、前記Al−Si−Znろう材が質量%で、Si:2.0%以上5.0%、Zn:0.2%以上7.0%以下を含有し、残部がAl及び不可避不純物からなる組成のアルミニウム合金からなり、前記Al−Si−Znろう材におけるSi粒子が円相当径で2.0μm以下であり、圧延方向平行断面において、前記Al−Si−Znろう材とAl−Mn系芯材との界面から前記Al−Si−Znろう材の板厚中央部までの領域における共晶ろうが占める面積割合が10%以下であり、残存ろうの厚さが45μm以上である。 The heat exchanger of the present invention includes a liquid channel through which a liquid flows, and a cooling water channel that is disposed adjacent to the liquid channel and through which cooling water that cools the liquid flows, the liquid channel Also, the plate for partitioning the cooling water flow path is made of an aluminum alloy clad material for a heat exchanger, which is composed of an Al—Mn-based core material and an Al—Si—Zn brazing material bonded to one surface or both surfaces thereof, The aluminum alloy clad material for an exchanger contains the above Al-Si-Zn brazing material in mass%, contains Si: 2.0% or more and 5.0%, Zn: 0.2% or more and 7.0% or less, and the balance. Is an aluminum alloy having a composition of Al and unavoidable impurities, the Si particles in the Al-Si-Zn brazing material have a circle equivalent diameter of 2.0 μm or less, and the Al-Si-Zn brazing material has a cross section parallel to the rolling direction. Area ratio of the eutectic braze in the region from the interface between the Al-Mn-based core material and the Al-Si-Zn brazing material to the center of the plate thickness is 10% or less, and the thickness of the remaining brazing material is 45 μm. That is all.

本発明では、熱交換器を構成するプレートの耐食性が向上するので、熱交換器の耐食性(耐久性)を向上できる。 In the present invention, since the corrosion resistance of the plates constituting the heat exchanger is improved, the corrosion resistance (durability) of the heat exchanger can be improved.

本発明によれば、熱交換器用アルミニウム合金クラッド材及び熱交換器の耐食性を向上できる。 According to the present invention, the corrosion resistance of the aluminum alloy clad material for a heat exchanger and the heat exchanger can be improved.

本発明の実施形態に係る熱交換器用アルミニウム合金クラッド材が用いられた熱交換器を示す断面図である。It is sectional drawing which shows the heat exchanger using the aluminum alloy clad material for heat exchangers which concerns on embodiment of this invention. 図1に示す熱交換器用アルミニウム合金クラッド材のプレートの表面近傍における拡大図である。It is an enlarged view near the surface of the plate of the aluminum alloy clad material for heat exchangers shown in FIG.

以下、本発明に係る熱交換器用アルミニウム合金クラッド材及び熱交換器用アルミニウム合金クラッド材を用いた熱交換器の実施形態について、図面を用いて説明する。
本発明に係る熱交換器用アルミニウム合金クラッド材(以下、単にクラッド材という場合がある)を用いた熱交換器1は、図1に示すように、それぞれが略同一形状に形成された複数のプレート4,5と、上側プレート2と、下側プレート3と、冷却水流入パイプ6と、冷却水流出パイプ7と、インナーフィン8と、を備えている。
Hereinafter, an embodiment of an aluminum alloy clad material for a heat exchanger and a heat exchanger using the aluminum alloy clad material for a heat exchanger according to the present invention will be described with reference to the drawings.
As shown in FIG. 1, a heat exchanger 1 using an aluminum alloy clad material for a heat exchanger (hereinafter, also simply referred to as a clad material) according to the present invention has a plurality of plates each formed in substantially the same shape. 4, 5, an upper plate 2, a lower plate 3, a cooling water inflow pipe 6, a cooling water outflow pipe 7, and an inner fin 8.

各プレート4,5は、交互に積層され、これらの中央部に空間を形成し、該空間にはインナーフィン8が配置される。そして、各プレート4,5は、液体(例えば、オイル)が流通する液体流路81と冷却水が流通する冷却水流路82とを区画している。また、プレート4の外周部においては、液体が流通する液体流路41及び冷却水が流通する冷却水流路42が交互に配置されている。 The plates 4 and 5 are alternately laminated to each other to form a space in the center thereof, and the inner fin 8 is arranged in the space. Each of the plates 4 and 5 divides a liquid channel 81 through which a liquid (for example, oil) flows and a cooling water channel 82 through which cooling water flows. Further, in the outer peripheral portion of the plate 4, liquid flow channels 41 through which liquid flows and cooling water flow channels 42 through which cooling water flows are alternately arranged.

このような熱交換器1を構成しているプレート4,5及びインナーフィン8のそれぞれは、本発明に係る熱交換器用アルミニウム合金クラッド材により構成され、これらはろう付けにより接合される。なお、以下の説明では、組成が同一であるため、プレート4についてのみ説明する。 Each of the plates 4 and 5 and the inner fins 8 constituting the heat exchanger 1 is made of the aluminum alloy clad material for a heat exchanger according to the present invention, and these are joined by brazing. In addition, in the following description, since the composition is the same, only the plate 4 will be described.

図2は、プレート4のろう付け後の表面近傍の拡大断面図である。
プレート4は、本発明の熱交換器用アルミニウム合金クラッド材に相当し、ろう付け熱処理後のプレート4は、図2に示すように、圧延方向平行断面において、ろう材4bと芯材4aとの界面E1からろう材4bの板厚中央部までの領域Ar1における共晶ろうE3が占める面積割合が10%以下である。換言すると、上記領域Ar1におけるろう材初晶E2が占める面積割合が90%以上である。また、ろう材4bの表面からろう材4bの板厚中央部までの領域Ar2におけるにおける共晶ろうE3が占める面積割合は、30%以下であり、ろう材初晶E2が占める面積割合は、70%以上であり、共晶ろうE3はろう材4bの表層部近傍に広く分布する形態となっている。
FIG. 2 is an enlarged sectional view of the vicinity of the surface of the plate 4 after brazing.
The plate 4 corresponds to the aluminum alloy clad material for a heat exchanger of the present invention, and the plate 4 after the brazing heat treatment has an interface between the brazing material 4b and the core material 4a in a cross section in the rolling direction, as shown in FIG. The area ratio of the eutectic braze E3 in the region Ar1 from E1 to the center of the plate thickness of the brazing material 4b is 10% or less. In other words, the area ratio of the brazing filler metal primary crystal E2 in the region Ar1 is 90% or more. Further, the area ratio of the eutectic brazing material E3 in the region Ar2 from the surface of the brazing material 4b to the center of the plate thickness of the brazing material 4b is 30% or less, and the area ratio of the brazing material primary crystal E2 is 70% or less. %, and the eutectic brazing filler metal E3 is widely distributed in the vicinity of the surface layer of the brazing filler metal 4b.

すなわち、ろう材4bでは、共晶ろうE3とろう材初晶E2とが2層状になる組織が得られ、表層に共晶ろうE3が配置され、芯材4aとろう材4bとの界面E1側にろう材初晶E2が配置されることとなる。これにより、ろう材4bが冷却水側の腐食環境に曝された時、表層部の共晶ろうE3が優先腐食した後、その下にあるろう材初晶E2が均一に腐食し、全面腐食の形態が得られ、耐食性が向上する。 That is, in the brazing filler metal 4b, a structure in which the eutectic brazing filler metal E3 and the brazing filler metal primary crystal E2 have a two-layer structure is obtained, the eutectic brazing filler metal E3 is arranged in the surface layer, and the interface E1 side between the core material 4a and the brazing filler metal 4b is provided. The brazing filler metal primary crystal E2 is to be arranged. As a result, when the brazing filler metal 4b is exposed to the corrosive environment on the cooling water side, after the eutectic brazing filler metal E3 in the surface layer is preferentially corroded, the brazing filler metal primary crystal E2 therebelow is uniformly corroded, and the general corrosion Morphology is obtained and corrosion resistance is improved.

なお、芯材4aの板厚及びろう材4bのクラッド率は特に限定されるものではないが、例えばアルミニウム製積層型オイルクーラ用プレート材として用いる場合には、芯材4aの板厚が0.3mm以上0.6mm以下、ろう材4bのクラッド率が5%以上〜15%以下(片面)、ろう材4bの厚さが45μm以上であることが好ましい。これにより、残存ろうの厚さを45μm以上とすることが可能となる。 The plate thickness of the core material 4a and the clad ratio of the brazing material 4b are not particularly limited, but when used as a plate material for an aluminum laminated oil cooler, the core material 4a has a plate thickness of 0. It is preferable that the brazing material 4b has a cladding ratio of 3 mm or more and 0.6 mm or less, a cladding rate of 5% or more and 15% or less (one surface), and the brazing material 4b has a thickness of 45 μm or more. This allows the thickness of the remaining brazing material to be 45 μm or more.

[芯材の組成]
本実施形態では、芯材4aとしてAl−Mn系芯材を用いており、この芯材4aに含まれるMnは、芯材の強度を向上させる。具体的には、Mnを1.0質量%以上2.0質量%以下の範囲で含有し、残部がAl及び不可避不純物からなる組成のアルミニウム合金により構成されるとよい。なお、芯材4aは、Cuを0.3質量%以上1.2質量%以下の範囲で含んでもよく、さらに、Zrを0.02質量%以上0.20%以下含有してもよい。
芯材4aにおいて、Cuは、Mnと同様に芯材の強度向上機能を有しており、Zrは、芯材の強度向上、結晶粒粗大化によるエロージョンを抑制する機能がある。
[Composition of core material]
In this embodiment, an Al-Mn-based core material is used as the core material 4a, and Mn contained in this core material 4a improves the strength of the core material. Specifically, it is preferable that the aluminum alloy contains Mn in the range of 1.0% by mass or more and 2.0% by mass or less, and the balance of Al and unavoidable impurities. In addition, the core material 4a may contain Cu in the range of 0.3 mass% or more and 1.2 mass% or less, and may further contain Zr in the range of 0.02 mass% or more and 0.20% or less.
In the core material 4a, Cu has a function of improving the strength of the core material similarly to Mn, and Zr has a function of improving the strength of the core material and suppressing erosion due to coarsening of crystal grains.

芯材4aは、ろう付け相当熱処理後におけるろう材4bを570℃まで加熱して急冷した芯材4aの平均結晶粒径(再結晶粒径)が長径方向において500μm以上であり、かつ圧延方向平行断面における各結晶粒の圧延方向長径を板厚方向短径で除した値である平均形状比が4.5以上とされる。すなわち、芯材4aの結晶粒が粗大化されることにより、ろう付熱処理後のろう材4b組織において、共晶ろうE3をその表層部近傍に広く分布させることができる。なお、芯材4aの平均結晶粒径が長径方向において500μm未満である場合や、圧延方向平行断面における各結晶粒の平均形状比が4.5未満である場合には、ろう付け熱処理後のろう材4bにおいて、共晶ろうE3をその表層部近傍に分布させることができない。 The core material 4a has an average crystal grain size (recrystallized grain size) of the core material 4a, which is obtained by heating the brazing material 4b after the heat treatment equivalent to brazing to 570° C. and quenching, is 500 μm or more in the major axis direction, and is parallel to the rolling direction. The average shape ratio, which is a value obtained by dividing the major axis in the rolling direction of each crystal grain in the cross section by the minor axis in the plate thickness direction, is set to 4.5 or more. That is, by coarsening the crystal grains of the core material 4a, the eutectic brazing material E3 can be widely distributed in the vicinity of the surface layer portion in the structure of the brazing material 4b after the brazing heat treatment. In addition, when the average crystal grain size of the core material 4a is less than 500 μm in the major axis direction, or when the average shape ratio of each crystal grain in the cross section parallel to the rolling direction is less than 4.5, the brazing after the brazing heat treatment is performed. In material 4b, eutectic braze E3 cannot be distributed in the vicinity of the surface layer portion.

[ろう材の組成]
本実施形態では、ろう材4bとしてAl−Si−Znろう材を用いており、Siを2.0質量%以上5.0質量%以下、Znを0.2質量%以上7.0質量%以下の範囲で含有し、残部がAl及び不可避不純物からなる組成のアルミニウム合金により構成されるとよい。
ろう材4bにおいて、Siが2.0質量%未満であると、添加量が少ないため、ろう付け不良が発生しやすく、Siが5.0質量%を超えていると、ろう付時の溶融ろうの流動性が高くなり過ぎて、ろう付後に残存するろう材層(残存ろう)の厚さが低下して、45μm未満となるおそれがある。また、Siのさらに好ましい範囲は、2.5質量%〜3.5質量%である。また、Znは、ろう材4bを芯材4aに対して卑な電位として芯材を防食する機能を有する。なお、Znが0.2質量%未満では、その効果が十分発揮されず、7.0質量%を超えると、腐食速度が速くなり過ぎて、ろう材層が早期に腐食、消耗することで耐食性が低下する。また、Znのさらに好ましい範囲は2.0質量%〜5.0質量%である。
[Composition of brazing material]
In the present embodiment, an Al-Si-Zn brazing material is used as the brazing material 4b, Si is 2.0% by mass or more and 5.0% by mass or less, and Zn is 0.2% by mass or more and 7.0% by mass or less. It is preferable that the aluminum alloy is contained in the range of, and the balance is aluminum alloy having a composition of Al and inevitable impurities.
In the brazing material 4b, when Si is less than 2.0 mass%, the addition amount is small, so that a brazing defect easily occurs, and when Si is more than 5.0 mass%, the molten brazing material during brazing Of the brazing filler metal layer (residual brazing material) remaining after brazing may be reduced to less than 45 μm. Moreover, the more preferable range of Si is 2.5 mass%-3.5 mass %. Further, Zn has a function of making the brazing material 4b a base electric potential with respect to the core material 4a to prevent corrosion of the core material. If Zn is less than 0.2% by mass, the effect is not sufficiently exerted, and if it exceeds 7.0% by mass, the corrosion rate becomes too fast and the brazing material layer is corroded and consumed at an early stage. Is reduced. Further, a more preferable range of Zn is 2.0% by mass to 5.0% by mass.

さらに、ろう付け相当熱処理後におけるろう材4bにおける共晶Si粒子は円相当径で2.0μm以下と小さいため、ろう付け相当熱処理後の共晶Si粒子が大きい場合に比べて、カソード反応が抑制されて、耐食性を向上させる。この共晶Si粒子が2.0μmを超えると、耐食性を向上させる効果を発揮できない。 Further, since the eutectic Si particles in the brazing material 4b after the brazing-corresponding heat treatment have a circle equivalent diameter of 2.0 μm or less, the cathodic reaction is suppressed as compared with the case where the brazing-corresponding heat-treating equivalent eutectic Si particles are large. Being improved in corrosion resistance. If the eutectic Si particles exceed 2.0 μm, the effect of improving corrosion resistance cannot be exhibited.

なお、ろう材4bは、Al−Si−Znろう材からなることとしたが、ろう材4bは、Srを0.01質量%以上0.10質量%以下、Biを0.01質量%以上0.30質量%以下、Mnを0.1質量%以上1.0%質量以下、Feを0.1質量%以上1.0質量%以下のうち、一種又は二種をさらに含有しているとよい。
Srは、ろう材中の共晶Si粒子を微細にすることで、ろう付熱処理後の共晶Si粒子が大きい場合に比べて、カソード反応が抑制されて、耐食性を向上させる。Srが0.01質量%未満では、その効果が十分発揮されず、0.1質量%を超えると、鋳造時に巨大な金属間化合物を生成しやすく圧延が困難となる。なお、同様の理由でさらに好ましい範囲は、0.02質量%以上0.05質量%以下である。
Although the brazing material 4b is made of an Al—Si—Zn brazing material, the brazing material 4b contains 0.01 mass% or more and 0.10 mass% or less of Sr and 0.01 mass% or more and 0% of Bi. 30% by mass or less, 0.1% by mass or more and 1.0% by mass or less of Mn, and 0.1% by mass or more and 1.0% by mass or less of Fe may be further contained. ..
By making the eutectic Si particles in the brazing material fine, Sr suppresses the cathode reaction and improves the corrosion resistance as compared with the case where the eutectic Si particles after the brazing heat treatment are large. If Sr is less than 0.01% by mass, the effect is not sufficiently exhibited, and if it exceeds 0.1% by mass, a huge intermetallic compound is likely to be formed during casting, and rolling becomes difficult. For the same reason, the more preferable range is 0.02 mass% or more and 0.05 mass% or less.

Biは、溶融したろうの表面張力を小さくして、溶融したろうの流動性を向上させる効果があり、Si濃度が低いろうにおいても接合性を向上させる。このBiが0.01質量%未満では、その効果が十分発揮されず、0.3質量%を超えると、鋳造時に巨大な金属間化合物を生成しやすく圧延が困難となる。なお、同様の理由でさらに好ましい範囲は、0.10質量%以上0.20質量%以下である。
Mn及びFeは、溶融したろうの流動性を抑制させ耐食性を向上させる。Mn及びFeが0.1質量%未満では、その効果が十分発揮されず、Mn及びFeが1.0質量%を超えると、カソードの起点となり耐食性が低下する。同様の理由でさらに好ましい範囲は、0.2質量%以上0.6質量%以下である。
Bi has the effect of reducing the surface tension of the molten braze and improving the fluidity of the molten braze, and also improves the bondability even in braze having a low Si concentration. If Bi is less than 0.01% by mass, the effect is not sufficiently exhibited, and if it exceeds 0.3% by mass, a huge intermetallic compound is likely to be formed during casting, and rolling becomes difficult. For the same reason, a more preferable range is 0.10 mass% or more and 0.20 mass% or less.
Mn and Fe suppress the fluidity of the molten wax and improve the corrosion resistance. When Mn and Fe are less than 0.1% by mass, the effect is not sufficiently exhibited, and when Mn and Fe exceed 1.0% by mass, the starting point of the cathode is caused and the corrosion resistance is deteriorated. For the same reason, a more preferable range is 0.2 mass% or more and 0.6 mass% or less.

[熱交換器用アルミニウム合金クラッド材の製造方法]
次に、この熱交換器用アルミニウム合金クラッド材を製造する方法について説明する。
まず、溶解鋳造により芯材用アルミニウム合金(例えば、JIS A3003合金)、ろう材用アルミニウム合金(Al−Si−Zn合金)を鋳造し、得られた鋳塊について所定温度で均質化処理を行う。
芯材の均質化処理は400℃〜600℃で5〜15時間の範囲から選択することができる。
[Method for producing aluminum alloy clad material for heat exchanger]
Next, a method for manufacturing the aluminum alloy clad material for heat exchanger will be described.
First, an aluminum alloy for core material (for example, JIS A3003 alloy) and an aluminum alloy for brazing material (Al-Si-Zn alloy) are cast by melt casting, and the obtained ingot is homogenized at a predetermined temperature.
The homogenization treatment of the core material can be selected from the range of 400°C to 600°C for 5 to 15 hours.

ろう材の均質化処理は、400〜550℃で1〜5時間とする。通常、熱交換器用アルミニウム合金クラッド材(ブレージングシート)の作製工程において、ろう材層へ均質化処理を実施しないことが一般的であり、この工程にて作製されたブレージングシートのろう材層内には円相当径で1μm程度のSi粒子が多数存在する。このろう材層内のSi粒子サイズを制御するために、均質化処理が効果的であり、400〜550℃で1〜5時間の範囲から選択することができ、480〜550℃で2〜4時間の範囲で実施するのがより好ましい。 The homogenization treatment of the brazing material is performed at 400 to 550° C. for 1 to 5 hours. Usually, in the process of producing aluminum alloy clad material (brazing sheet) for heat exchangers, it is general that the brazing filler metal layer is not subjected to homogenization treatment. There are many Si particles having an equivalent circle diameter of about 1 μm. In order to control the Si particle size in the brazing material layer, homogenization treatment is effective, and can be selected from the range of 400 to 550°C for 1 to 5 hours, and 2 to 4 at 480 to 550°C. More preferably, it is carried out within the range of time.

均質化処理を実施した芯材用アルミニウム合金及びろう材用アルミニウム合金の鋳塊は、それぞれ熱間圧延を得て合金板とされる。また、鋳造工程と圧延工程とを分けずに、連続鋳造圧延を経て合金板としてもよい。この熱間圧延における圧下量は、共晶Si粒子サイズに影響するため、総圧下量は、40%以上に設定されている。
そして、これら合金板を適宜のクラッド率でクラッドされる。そのクラッドは一般には圧延により行われる。その後、さらに冷間圧延を施すことにより、所望の厚さの熱交換器用アルミニウム合金クラッド材が得られる。そして、最終焼鈍を例えば360℃で3時間行うことにより、O調質のクラッド材とする。
熱交換器用アルミニウム合金クラッド材(クラッド材)の厚みの構成は、例えば、ろう材層:芯材:犠牲材層=10%:70%:20%とすることができるが、これに限定されるものではなく、ろう材層のクラッド率を5%や15%としてもよい。
The ingots of the aluminum alloy for the core material and the aluminum alloy for the brazing material, which have been subjected to the homogenization treatment, are each hot-rolled to be an alloy plate. Alternatively, the alloy sheet may be formed by continuous casting and rolling without dividing the casting step and the rolling step. Since the reduction amount in this hot rolling affects the eutectic Si particle size, the total reduction amount is set to 40% or more.
Then, these alloy plates are clad at an appropriate clad ratio. The clad is generally made by rolling. Then, by further cold rolling, an aluminum alloy clad material for a heat exchanger having a desired thickness can be obtained. Then, the final annealing is performed, for example, at 360° C. for 3 hours to obtain an O-tempered clad material.
The thickness of the aluminum alloy clad material (clad material) for the heat exchanger may be, for example, brazing material layer:core material:sacrificial material layer=10%:70%:20%, but is not limited to this. Alternatively, the brazing material layer may have a clad ratio of 5% or 15%.

熱間圧延、冷間圧延、最終焼鈍は常法によって行えばよいが、冷間圧延工程時に、中間焼鈍を介在させることも可能である。その場合、中間焼鈍としては、例えば200〜400℃で1〜6時間の加熱によって行なうことができる。中間焼鈍後の最終圧延では、10〜50%の冷間圧延率で圧延を行なう。 Hot rolling, cold rolling, and final annealing may be performed by a conventional method, but it is also possible to intervene intermediate annealing during the cold rolling process. In that case, the intermediate annealing can be performed, for example, by heating at 200 to 400° C. for 1 to 6 hours. In the final rolling after the intermediate annealing, rolling is performed at a cold rolling rate of 10 to 50%.

以上説明した熱交換器用アルミニウム合金クラッド材により構成されるプレート4,5及びインナーフィン8を含む各構成を、図1に示す状態に組み立てた状態で全体を高温の炉内に挿入し、冷却することで、ろう材4bが溶融して各部材の接触部位がろう付け接合され、熱交換器1が構成される。この場合のろう付条件は、高純度窒素ガス雰囲気下においてドロップ形式で実行され、室温から目標温度までの到達時間が1〜20分となるような昇温速度で加熱し、590〜610℃の目標温度で1〜8分間保持し、その後、室温まで空冷を行なう処理である。
なお、上記の熱交換器の部材構成、およびろう付条件等は、あくまでも実施形態の一例であり、特にこれに限定されるものではない。
The components including the plates 4 and 5 and the inner fins 8 made of the aluminum alloy clad material for the heat exchanger described above are assembled into the state shown in FIG. 1 and the whole is inserted into a high temperature furnace and cooled. As a result, the brazing material 4b is melted, and the contact portions of the respective members are brazed and joined together to form the heat exchanger 1. The brazing conditions in this case are executed in a drop form in a high-purity nitrogen gas atmosphere, and heating is performed at a temperature rising rate such that the arrival time from room temperature to the target temperature is 1 to 20 minutes, and the temperature is 590 to 610°C. This is a process of holding the target temperature for 1 to 8 minutes and then performing air cooling to room temperature.
Note that the above-described member configuration of the heat exchanger, brazing conditions, and the like are merely examples of the embodiment, and are not particularly limited thereto.

本実施形態では、圧延方向平行断面において、Al−Si−Znろう材4bとAl−Mn系芯材4aとの界面からAl−Si−Znろう材4bの板厚中央部までの領域Ar2における共晶ろうE3が占める面積割合が10%以下、すなわち、ろう材4bでは、共晶ろうE3とろう材初晶E2とが2層状になる組織が得られ、表層に共晶ろうE3が配置され、芯材4aとろう材4bとの界面E1側にろう材初晶E2が配置されることとしたことから、ろう材4bが冷却水側の腐食環境に曝された時、表層部の共晶ろうE3が優先腐食した後、その下にあるろう材初晶E2が均一に腐食し、全面腐食の形態が得られるので、耐食性を向上できる。
また、プレート4,5及びインナーフィン8は、上記熱交換器用アルミニウム合金により構成されているので、熱交換器1の耐久性を向上できる。
In the present embodiment, in the cross section parallel to the rolling direction, the common area Ar2 from the interface between the Al-Si-Zn brazing material 4b and the Al-Mn-based brazing material 4a to the central portion of the plate thickness of the Al-Si-Zn brazing material 4b. The area ratio occupied by the crystal brazing filler metal E3 is 10% or less, that is, in the brazing filler metal 4b, a structure in which the eutectic brazing filler metal E3 and the brazing filler metal primary crystal E2 have a two-layer structure is obtained, and the eutectic brazing filler metal E3 is arranged on the surface layer. Since the brazing material primary crystal E2 is arranged on the interface E1 side between the core material 4a and the brazing material 4b, when the brazing material 4b is exposed to the corrosive environment on the cooling water side, the eutectic brazing material on the surface layer portion is formed. After E3 is preferentially corroded, the brazing filler metal primary crystal E2 thereunder is uniformly corroded, and a mode of general corrosion is obtained, so that the corrosion resistance can be improved.
Further, since the plates 4 and 5 and the inner fin 8 are made of the above aluminum alloy for heat exchanger, the durability of the heat exchanger 1 can be improved.

なお、本発明は上記実施形態の構成のものに限定されるものではなく、細部構成においては、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、本発明の熱交換器用アルミニウム合金クラッド材は、冷却対象(液体)を冷却水により冷却する構成に限定されるものではなく、冷却対象を冷却風等により冷却する構成であってもよい。また、冷却対象(液体)もオイルに限られない。
The present invention is not limited to the configurations of the above-described embodiments, and various modifications can be made in the detailed configuration without departing from the spirit of the present invention.
For example, the aluminum alloy clad material for a heat exchanger of the present invention is not limited to a configuration in which a cooling target (liquid) is cooled by cooling water, and may be a configuration in which a cooling target is cooled by cooling air or the like. Further, the cooling target (liquid) is not limited to oil.

上記実施形態では、芯材4aの一方の面にろう材4bがクラッドされ、他方の面に犠牲材がクラッドされる構成としたが、これに限らず、芯材4aの両面にろう材4bがクラッドされてもよい。 Although the brazing material 4b is clad on one surface of the core material 4a and the sacrificial material is clad on the other surface in the above embodiment, the invention is not limited to this, and the brazing material 4b is provided on both surfaces of the core material 4a. It may be clad.

半連続鋳造により芯材用アルミニウム合金およびろう材用アルミニウム合金を鋳造した。芯材用アルミニウム合金は、JIS A3003合金を用い、ろう材用アルミニウム合金には表1に示す合金(残部Alおよび不可避不純物)を用いた。芯材用の材料にはそれぞれ表1に示す条件にて均質化処理を行なった。なお、ろう材用の材料には450℃で10時間の均質化処理を行なった。
次に、芯材の一方の面にろう材を組み合わせて所定の条件にて熱間圧延してクラッド材とし、さらに冷間圧延を行った。その後、所定の圧延率とした冷間圧延により板厚を0.5mmとした後、最終焼鈍を400℃で3時間実施して、O調質のアルミニウム合金材(供試材)を作製した。この供試材の構成は、芯材の厚さ:ろう材の厚さ=90%:10%とした。また、この供試材において、ろう付け相当熱処理前の芯材の材料板厚を450μm、ろう材の材料板厚を50μmとした。
An aluminum alloy for a core material and an aluminum alloy for a brazing material were cast by semi-continuous casting. As the aluminum alloy for the core material, JIS A3003 alloy was used, and as the aluminum alloy for the brazing material, the alloy shown in Table 1 (the balance Al and unavoidable impurities) was used. The material for the core material was homogenized under the conditions shown in Table 1. The material for the brazing material was homogenized at 450° C. for 10 hours.
Next, a brazing material was combined with one surface of the core material, hot-rolled under predetermined conditions to obtain a clad material, and further cold-rolled. After that, the plate thickness was set to 0.5 mm by cold rolling at a predetermined rolling rate, and final annealing was performed at 400° C. for 3 hours to produce an O-tempered aluminum alloy material (test material). The structure of this test material was as follows: core thickness: brazing material thickness=90%:10%. In this test material, the material thickness of the core material before heat treatment equivalent to brazing was 450 μm and the material thickness of the brazing material was 50 μm.

そして、各供試材(クラッド材)について、室温から400℃の到達時間が4分〜9分、400℃〜550℃の到達時間が1分〜2分、550℃〜目標温度までの到達時間が3分〜5分となるような昇温速度で加熱し、600℃の目標温度で3分間保持し、その後、300℃まで約100℃/分で冷却した後、室温まで空冷を行なうろう付け相当熱処理を施し、ろう材の共晶Si粒子のサイズ、芯材の平均結晶粒径、平均結晶粒形状比、共晶ろうの面積を算出するとともに、耐食性試験を実行し、その結果を表2に示した。 And about each sample material (cladding material), the arrival time from room temperature to 400°C is 4 minutes to 9 minutes, the arrival time from 400°C to 550°C is 1 minute to 2 minutes, and the arrival time from 550°C to the target temperature. Is heated at a temperature rising rate of 3 to 5 minutes, kept at a target temperature of 600° C. for 3 minutes, then cooled to 300° C. at about 100° C./minute, and then air-cooled to room temperature. Corresponding heat treatment was performed to calculate the size of the eutectic Si particles of the brazing material, the average crystal grain size of the core material, the average crystal grain shape ratio, and the area of the eutectic brazing material, and the corrosion resistance test was performed. It was shown to.

[ろう材の共晶Si粒子のサイズ]
ろう材の共晶Si粒子の円相当径を走査型電子顕微鏡(FE−SEM)によって測定した。 測定方法は、ろう付熱処理前の各供試材に機械研磨およびクロスセクションポリッシャー(CP)加工により板材断面(圧延方向平行断面)を露出させた試料を作製し、FE−SEMにて10000〜50000倍で写真撮影した。10視野について写真撮影し、画像解析によって共晶Si粒子の円相当径を計測した。
[Size of eutectic Si particles of brazing material]
The equivalent circle diameter of the eutectic Si particles of the brazing material was measured by a scanning electron microscope (FE-SEM). The measurement method was to prepare a sample in which the plate material cross section (cross section parallel to the rolling direction) was exposed by mechanical polishing and cross section polisher (CP) processing to each test material before brazing heat treatment, and 10,000 to 50000 was obtained by FE-SEM. I took a picture at twice. Photographs were taken for 10 fields of view, and the equivalent circle diameter of the eutectic Si particles was measured by image analysis.

[芯材の平均結晶粒径及び平均結晶粒形状比]
570℃まで加熱して、冷却速度300℃/分で常温まで急冷した各供試材を用いて、圧延方向平行断面を樹脂埋め後、鏡面に研磨した後、エッチング液(例えば常温のケラー氏液の1〜3分浸漬)で芯材の結晶粒を現出させ、各供試材の5箇所について光学顕微鏡を用いて200倍で写真撮影した。撮影した写真から圧延方向について切断法で結晶粒径を測定し、平均結晶粒径を算出した。また得られた全ての結晶粒に関して、画像データより結晶粒の形状比を算出し、平均結晶粒形状比を求めた。
[Average crystal grain size and average crystal grain shape ratio of core material]
Using each test material that was heated to 570°C and rapidly cooled to room temperature at a cooling rate of 300°C/min, after filling the cross section parallel to the rolling direction with resin and polishing to a mirror surface, an etching solution (for example, Keller's solution at room temperature) was used. (1 to 3 minutes of immersion) to reveal the crystal grains of the core material, and photographs were taken at 5 times on each of the test materials using an optical microscope at a magnification of 200 times. From the photographed photograph, the crystal grain size was measured by the cutting method in the rolling direction, and the average crystal grain size was calculated. For all the obtained crystal grains, the shape ratio of the crystal grains was calculated from the image data, and the average crystal grain shape ratio was obtained.

[共晶ろうの面積率]
各供試材のろう付け熱処理後の残存ろう材の断面において、残存ろう材と芯材との界面から残存ろう材の厚さ方向の中心までの領域内の共晶ろうの面積率(面積占有率)を算出した。この面積率は、電子線マイクロアナライザー(EPMA)による断面組織の2値化処理より、ろう材1cm当たりの共晶ろう割合を測定し、算出した。
[Area rate of eutectic wax]
In the cross section of the residual brazing filler metal after brazing heat treatment of each test material, the area ratio (area occupation) of the eutectic brazing filler metal in the region from the interface between the residual brazing filler metal and the core material to the center in the thickness direction of the residual brazing filler metal. Rate) was calculated. This area ratio was calculated by measuring the eutectic brazing rate per 1 cm 2 of the brazing filler metal by binarizing the sectional structure with an electron beam microanalyzer (EPMA).

[定常部の耐食性の評価]
ろう付相当熱処理後の各供試材から30×50mmのサンプルを切り出し、ろう材層側について、Cl:195ppm、SO 2−:60ppm、Cu2+:1ppm、Fe3+:30ppmを含む水溶液中で80℃×8時間と室温×16時間との間のサイクルで浸漬試験を4週間実施した。腐食試験後のサンプルを沸騰させたリン酸クロム酸混合溶液に浸漬して腐食生成物を除去した後、最大腐食部の断面観察を実施して腐食深さを測定し、この結果を用いて内部耐食性を評価した。腐食深さが50μm以下であったものを良好「A」と評価し、50μmを超えて150μm以下であるのものを可「B」と評価し、150μmを超えているものを不可「C」と評価した。
[Evaluation of the corrosion resistance of the steady part]
A sample of 30×50 mm was cut out from each sample after heat treatment equivalent to brazing, and in the brazing material layer side, in an aqueous solution containing Cl : 195 ppm, SO 4 2 − : 60 ppm, Cu 2+ : 1 ppm, Fe 3+ : 30 ppm. The immersion test was carried out for 4 weeks at a cycle of 80° C.×8 hours and room temperature×16 hours. After the corrosion test sample is dipped in the boiling phosphoric chromic acid mixed solution to remove the corrosion product, the cross-section of the maximum corrosion part is observed to measure the corrosion depth. The corrosion resistance was evaluated. Those having a corrosion depth of 50 μm or less were evaluated as good “A”, those having a corrosion depth of more than 50 μm and not more than 150 μm were evaluated as “B”, and those exceeding 150 μm were evaluated as “C”. evaluated.

[接合部の耐食性の評価]
ろう付相当熱処理後の各供試材を所定の板厚で切り出した後、カップ形状に成形した。成形された2組のカップに関して、互いのろう材側が接する形でろう付処理を実施して接合部を有する腐食試験用サンプルを用意した。これらサンプルの接合部以外をマスキングして接合部のみが暴露される形とし、Cl:195ppm、SO 2−:60ppm、Cu2+:1ppm、Fe3+:30ppmを含む水溶液中で80℃×8時間と室温×16時間との間のサイクルで浸漬試験を4週間実施した。腐食試験後のサンプルを沸騰させたリン酸クロム酸混合溶液に浸漬して腐食生成物を除去した後、断面観察を実施して接合部の腐食深さを測定した。接合部に形成されたフィレット再表面からの腐食深さがフィレット全長の1/3以下であったものを良好「A」と評価し、1/2以下のものを可「B」と評価し、1/2を超えているものを不可「C」と評価した。
以上説明した測定結果及び評価は、表2に示す通りである。
[Evaluation of corrosion resistance of joints]
Each test material after the heat treatment equivalent to brazing was cut out into a predetermined plate thickness and then formed into a cup shape. The two sets of molded cups were brazed in such a manner that their brazing material sides were in contact with each other to prepare a corrosion test sample having a joint. Masking the portions other than the joint portion of these samples to expose only the joint portion, and in an aqueous solution containing Cl : 195 ppm, SO 4 2− : 60 ppm, Cu 2+ :1 ppm, Fe 3+ :30 ppm, 80° C.×8 The immersion test was carried out for 4 weeks with a cycle between 1 hour and room temperature x 16 hours. The sample after the corrosion test was immersed in a boiling chromic acid phosphoric acid mixed solution to remove the corrosion product, and then the cross-section was observed to measure the corrosion depth of the joint. When the corrosion depth from the surface of the fillet formed on the joint was 1/3 or less of the total length of the fillet, it was evaluated as good "A", and when 1/2 or less was evaluated as "B". Those exceeding 1/2 were evaluated as "C".
The measurement results and evaluations described above are as shown in Table 2.

Figure 2020100881
Figure 2020100881

Figure 2020100881
Figure 2020100881

表1及び表2から明らかなように、Al−Si−Znろう材の組成(ろう材合金の組成)が、質量%で、Si:2.0%以上5.0%、Zn:0.2%以上7.0%以下を含有し、残部がAl及び不可避不純物からなる組成のアルミニウム合金からなり、芯材の平均結晶粒径が長径方向において500μm以上であり、かつ圧延方向平行断面における各結晶粒の圧延方向長径を板厚方向短径で除した値である平均形状比(結晶粒形状比)が4.5以上であり、ろう付け相当熱処理後における共晶Si粒子が円相当径で2.0μm以下であり、かつ、圧延方向平行断面において、共晶ろうが占める面積割合(共晶ろうの面積率)が10%以下であり、さらに残存ろうの厚さが45μm以上である実施例1〜14は、耐食試験において定常部及び接合部のいずれにおいても「B」以上であった。その中でも、実施例2、3及び6は、芯材の平均結晶粒が700μm以上と大きく、かつ、結晶粒形状比も7.0以上と大きいため、耐食性試験において定常部及び接合部のいずれにおいても「A」であった。また、実施例11は、芯材の平均結晶粒及び結晶粒形状比のいずれもが小さいものの、ろう材合金にMnを含んでいるため、耐食性試験において定常部及び接合部のいずれにおいても「A」であった。 As is clear from Table 1 and Table 2, the composition of the Al—Si—Zn brazing material (composition of the brazing material alloy) is, in mass %, Si: 2.0% or more and 5.0%, Zn: 0.2. % Or more and 7.0% or less, with the balance being an aluminum alloy having a composition of Al and unavoidable impurities, the average crystal grain size of the core material being 500 μm or more in the major axis direction, and each crystal in the cross section parallel to the rolling direction. The average shape ratio (crystal grain shape ratio), which is the value obtained by dividing the major axis in the rolling direction of the grain by the minor axis in the plate thickness direction, is 4.5 or more, and the eutectic Si particles after the heat treatment equivalent to brazing have an equivalent circle diameter of 2 Example 1 in which the area ratio of the eutectic braze (area ratio of the eutectic braze) in the cross section parallel to the rolling direction (area ratio of the eutectic braze) is 10% or less, and the thickness of the remaining braze is 45 μm or more. Nos. 14 to 14 were "B" or more in both the steady portion and the joint portion in the corrosion resistance test. Among them, in Examples 2, 3 and 6, the average crystal grain of the core material is as large as 700 μm or more and the crystal grain shape ratio is as large as 7.0 or more. Therefore, in the corrosion resistance test, in both the steady portion and the joint portion. Was also "A". In addition, in Example 11, although both the average crystal grain and the crystal grain shape ratio of the core material are small, since the brazing alloy contains Mn, in the corrosion resistance test, "A" "Met.

一方、比較例1及び2は、ろう材合金のSiが上記範囲外であり、比較例3及び4はろう材合金のZnが上記範囲外であることから定常部及び接合部のいずれかにおいて「C」であり、耐食性が低下した。特に比較例1では、Siが1.9と少なかったため、接合部における接合が不十分となった。また、比較例5〜8では、共晶ろうの面積率が10%を超えていたため、定常部における耐食性が「C」となった。 On the other hand, in Comparative Examples 1 and 2, Si of the brazing alloy is outside the above range, and in Comparative Examples 3 and 4 of Zn of the brazing alloy is outside the above range, " C", and the corrosion resistance was reduced. Particularly in Comparative Example 1, since the amount of Si was as small as 1.9, the joining at the joining portion was insufficient. Further, in Comparative Examples 5 to 8, since the area ratio of the eutectic braze exceeded 10%, the corrosion resistance in the steady part was "C".

1 熱交換器
2 上側プレート
3 下側プレート
4 プレート(熱交換機用アルミニウム合金クラッド材)
4a 芯材(Al−Mn系芯材)
4b ろう材(Al−Si−Znろう材)
41 液体流路
42 冷却水流路
5 プレート
6 冷却水流入パイプ
7 冷却水流出パイプ
8 インナーフィン
81 液体流路
82 冷却水流路
1 heat exchanger 2 upper plate 3 lower plate 4 plate (aluminum alloy clad material for heat exchanger)
4a Core material (Al-Mn-based core material)
4b Brazing material (Al-Si-Zn brazing material)
41 liquid channel 42 cooling water channel 5 plate 6 cooling water inflow pipe 7 cooling water outflow pipe 8 inner fin 81 liquid channel 82 cooling water channel

Claims (3)

Al−Mn系芯材と、その片面又は両面に張り合わされたAl−Si−Znろう材とからなる熱交換器用アルミニウム合金クラッド材であって、
前記Al−Si−Znろう材は、質量%で、Si:2.0%以上5.0%、Zn:0.2%以上7.0%以下を含有し、残部がAl及び不可避不純物からなる組成のアルミニウム合金からなり、
前記Al−Si−Znろう材を570℃まで加熱して急冷した前記Al−Mn系芯材の平均結晶粒径が長径方向において500μm以上であり、かつ圧延方向平行断面における各結晶粒の圧延方向長径を板厚方向短径で除した値である平均形状比が4.5以上であり、
ろう付け相当熱処理後における前記Al−Si−Znろう材における共晶Si粒子が円相当径で2.0μm以下であり、かつ、圧延方向平行断面において、前記Al−Si−Znろう材と前記Al−Mn系芯材との界面から前記Al−Si−Znろう材の板厚中央部までの領域における共晶ろうが占める面積割合が10%以下であり、さらに残存ろうの厚さが45μm以上であることを特徴とする熱交換器用アルミニウム合金クラッド材。
An aluminum alloy clad material for a heat exchanger, comprising an Al-Mn-based core material and an Al-Si-Zn brazing material bonded to one or both surfaces thereof,
The Al-Si-Zn brazing material contains, by mass %, Si: 2.0% or more and 5.0%, Zn: 0.2% or more and 7.0% or less, and the balance of Al and unavoidable impurities. Made of aluminum alloy of composition,
The average crystal grain size of the Al-Mn-based core material obtained by heating the Al-Si-Zn brazing material to 570[deg.] C. and quenching is 500 [mu]m or more in the major axis direction, and the rolling direction of each crystal grain in the rolling direction parallel cross section. The average shape ratio, which is a value obtained by dividing the major axis by the minor axis in the plate thickness direction, is 4.5 or more,
The eutectic Si particles in the Al—Si—Zn brazing material after the heat treatment equivalent to brazing have a circle equivalent diameter of 2.0 μm or less, and in the cross section parallel to the rolling direction, the Al—Si—Zn brazing material and the Al The area ratio of the eutectic braze in the region from the interface with the —Mn-based core material to the plate thickness center of the Al—Si—Zn brazing material is 10% or less, and the thickness of the remaining brazing material is 45 μm or more. An aluminum alloy clad material for a heat exchanger, which is characterized.
前記Al−Si−Znろう材は、質量%で、Sr:0.01%以上0.10%以下、Bi:0.01%以上0.30%以下、Mn:0.1%以上1.0%以下、Fe:0.1%以上1.0%以下のうち、一種又は二種をさらに含有していることを特徴とする請求項1に記載の熱交換器用アルミニウム合金クラッド材。 The Al-Si-Zn brazing material is, in mass %, Sr: 0.01% or more and 0.10% or less, Bi: 0.01% or more and 0.30% or less, and Mn: 0.1% or more and 1.0. %, Fe: 0.1% or more and 1.0% or less, and further contains one or two kinds. The aluminum alloy clad material for a heat exchanger according to claim 1. 液体が流通する液体流路と、前記液体流路に隣接して配置され、前記液体を冷却する冷却水が流通する冷却水流路と、を備え、
前記液体流路及び前記冷却水流路を区画するプレートは、Al−Mn系芯材と、その片面又は両面に貼り合わされたAl−Si−Znろう材とからなる熱交換器用アルミニウム合金クラッド材により構成され、
前記熱交換器用アルミニウム合金クラッド材は、前記Al−Si−Znろう材が質量%で、Si:2.0%以上5.0%以下、Zn:0.2%以上7.0%以下を含有し、残部がAl及び不可避不純物からなる組成のアルミニウム合金からなり、前記Al−Si−Znろう材におけるSi粒子が円相当径で2.0μm以下であり、
圧延方向平行断面において、前記Al−Si−Znろう材とAl−Mn系芯材との界面から前記Al−Si−Znろう材の板厚中央部までの領域における共晶ろうが占める面積割合が10%以下であり、さらに残存ろうの厚さが45μm以上であることを特徴とする熱交換器。
A liquid flow path through which the liquid flows, and a cooling water flow path that is disposed adjacent to the liquid flow path and through which cooling water that cools the liquid flows,
The plate for partitioning the liquid flow path and the cooling water flow path is composed of an aluminum alloy clad material for a heat exchanger, which is composed of an Al-Mn-based core material and an Al-Si-Zn brazing material bonded to one surface or both surfaces thereof. Is
The aluminum alloy clad material for a heat exchanger contains the Al-Si-Zn brazing material in mass% and contains Si: 2.0% or more and 5.0% or less and Zn: 0.2% or more and 7.0% or less. The balance is made of an aluminum alloy having a composition of Al and unavoidable impurities, and the Si particles in the Al—Si—Zn brazing material have a circle equivalent diameter of 2.0 μm or less,
In a cross section parallel to the rolling direction, the area ratio occupied by the eutectic braze in the region from the interface between the Al-Si-Zn brazing material and the Al-Mn-based brazing material to the plate thickness center portion of the Al-Si-Zn brazing material is A heat exchanger characterized in that the thickness is 10% or less and the thickness of the remaining wax is 45 μm or more.
JP2018240618A 2018-12-25 2018-12-25 Aluminum alloy clad material for heat exchanger, and heat exchanger Pending JP2020100881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018240618A JP2020100881A (en) 2018-12-25 2018-12-25 Aluminum alloy clad material for heat exchanger, and heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018240618A JP2020100881A (en) 2018-12-25 2018-12-25 Aluminum alloy clad material for heat exchanger, and heat exchanger

Publications (1)

Publication Number Publication Date
JP2020100881A true JP2020100881A (en) 2020-07-02

Family

ID=71139051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018240618A Pending JP2020100881A (en) 2018-12-25 2018-12-25 Aluminum alloy clad material for heat exchanger, and heat exchanger

Country Status (1)

Country Link
JP (1) JP2020100881A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176420A1 (en) * 2021-02-16 2022-08-25 株式会社Uacj Aluminum alloy sheet and method for producing same, and heat exchanger

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003139480A (en) * 2001-10-31 2003-05-14 Toyo Radiator Co Ltd Laminated type oil cooler made of aluminum
JP2011006784A (en) * 2009-05-27 2011-01-13 Kobe Steel Ltd Aluminum alloy brazing sheet for heat exchanger and aluminum alloy brazed object for heat exchanger
JP2013036099A (en) * 2011-08-09 2013-02-21 Mitsubishi Alum Co Ltd Clad material for cooler, and cooler for heating element
JP2013036098A (en) * 2011-08-09 2013-02-21 Mitsubishi Alum Co Ltd Clad material for cooler, and cooler for heating element
JP2016216791A (en) * 2015-05-25 2016-12-22 三菱アルミニウム株式会社 Aluminum alloy clad material
JP2017029995A (en) * 2015-07-29 2017-02-09 株式会社神戸製鋼所 Aluminum alloy brazing sheet, manufacturing method thereof and heat exchanger
JP2017164780A (en) * 2016-03-16 2017-09-21 三菱アルミニウム株式会社 Aluminum alloy brazing sheet, and brazing method for aluminum alloy brazing sheet

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003139480A (en) * 2001-10-31 2003-05-14 Toyo Radiator Co Ltd Laminated type oil cooler made of aluminum
JP2011006784A (en) * 2009-05-27 2011-01-13 Kobe Steel Ltd Aluminum alloy brazing sheet for heat exchanger and aluminum alloy brazed object for heat exchanger
JP2013036099A (en) * 2011-08-09 2013-02-21 Mitsubishi Alum Co Ltd Clad material for cooler, and cooler for heating element
JP2013036098A (en) * 2011-08-09 2013-02-21 Mitsubishi Alum Co Ltd Clad material for cooler, and cooler for heating element
JP2016216791A (en) * 2015-05-25 2016-12-22 三菱アルミニウム株式会社 Aluminum alloy clad material
JP2017029995A (en) * 2015-07-29 2017-02-09 株式会社神戸製鋼所 Aluminum alloy brazing sheet, manufacturing method thereof and heat exchanger
JP2017164780A (en) * 2016-03-16 2017-09-21 三菱アルミニウム株式会社 Aluminum alloy brazing sheet, and brazing method for aluminum alloy brazing sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176420A1 (en) * 2021-02-16 2022-08-25 株式会社Uacj Aluminum alloy sheet and method for producing same, and heat exchanger

Similar Documents

Publication Publication Date Title
JP4702797B2 (en) Manufacturing method of aluminum alloy clad material excellent in surface bondability by brazing of sacrificial anode material surface
JP5491927B2 (en) Aluminum alloy brazing sheet
JP5057439B2 (en) Aluminum alloy clad material for high strength, high melting point heat exchanger excellent in durability, its manufacturing method, and aluminum alloy heat exchanger
JP4993440B2 (en) High strength aluminum alloy clad material for heat exchangers with excellent brazeability
JP4832354B2 (en) Aluminum alloy clad material for high strength, high melting point heat exchanger excellent in durability, its manufacturing method, and aluminum alloy heat exchanger
WO2013021266A2 (en) Clad material for cooler, cooler for heat-generating device, and method of producing cooler for heat-generating device
JP4916334B2 (en) Aluminum alloy clad material for heat exchangers with excellent strength and brazing
JP6803827B2 (en) Aluminum alloy material for heat exchanger and heat exchanger
JP6722981B2 (en) Aluminum alloy clad material
JP2017145463A (en) Aluminum alloy brazing sheet and manufacturing method, automotive heat exchanger using the brazing sheet
JP4916333B2 (en) Aluminum alloy clad material for heat exchangers with excellent strength and brazing
JP2018099726A (en) Brazing method for aluminum alloy brazing sheet
JP2007327093A (en) Clad material of high-strength aluminum alloy excellent in brazability for heat exchanger
JP2020100881A (en) Aluminum alloy clad material for heat exchanger, and heat exchanger
JP2004017116A (en) Aluminum alloy brazing sheet for brazed pipe making tubes, and its producing method
JP6480367B2 (en) Aluminum alloy brazing sheet
JP7244271B2 (en) Aluminum alloy clad material for heat exchanger and heat exchanger
JP6415144B2 (en) Aluminum alloy clad material and heat exchanger
JP2022045525A (en) Aluminum alloy bare material having excellent thermal conductivity and brazing sheet
JP2008138278A (en) Aluminum alloy clad plate for heat exchanger
JP2018099725A (en) Aluminum alloy brazing sheet
JP2022045655A (en) Aluminum alloy bare material having excellent thermal conductivity and strength and brazing sheet
JP2016169412A (en) Brazing sheet excellent in corrosion resistance after brazing
JP6738666B2 (en) Aluminum alloy heat exchanger excellent in corrosion resistance in atmospheric environment and method of manufacturing aluminum alloy heat exchanger
JP2006144041A (en) Aluminum alloy clad plate, tube for heat exchanger using the same, and heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211118

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230530