JP4832354B2 - Aluminum alloy clad material for high strength, high melting point heat exchanger excellent in durability, its manufacturing method, and aluminum alloy heat exchanger - Google Patents

Aluminum alloy clad material for high strength, high melting point heat exchanger excellent in durability, its manufacturing method, and aluminum alloy heat exchanger Download PDF

Info

Publication number
JP4832354B2
JP4832354B2 JP2007105678A JP2007105678A JP4832354B2 JP 4832354 B2 JP4832354 B2 JP 4832354B2 JP 2007105678 A JP2007105678 A JP 2007105678A JP 2007105678 A JP2007105678 A JP 2007105678A JP 4832354 B2 JP4832354 B2 JP 4832354B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
sacrificial anode
less
brazing
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007105678A
Other languages
Japanese (ja)
Other versions
JP2008261026A (en
Inventor
勇樹 寺本
竜雄 尾崎
蜷川  稔英
健二 根倉
宏和 田中
高弘 小山
良太 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Sumitomo Light Metal Industries Ltd
Original Assignee
Denso Corp
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Sumitomo Light Metal Industries Ltd filed Critical Denso Corp
Priority to JP2007105678A priority Critical patent/JP4832354B2/en
Publication of JP2008261026A publication Critical patent/JP2008261026A/en
Application granted granted Critical
Publication of JP4832354B2 publication Critical patent/JP4832354B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Prevention Of Electric Corrosion (AREA)

Description

本発明は、とくに、不活性ガス雰囲気中でフッ化物フラックスやセシウム化合物を含むフラックスを用いたろう付けによってラジエータやヒータコアなどのアルミニウム合金製熱交換器を製造する場合、その構造部材であるチューブ材(クラッド材を曲成し、溶接またはろう付けによりチューブ形状としたものを含む)やヘッダープレート材、あるいはこれらの熱交換器を接続するための配管材として好適な耐久性に優れた高強度、高融点熱交換器用アルミニウム合金クラッド材とその製造方法、および熱交換器に関する。   In particular, when manufacturing an aluminum alloy heat exchanger such as a radiator or a heater core by brazing using a flux containing a fluoride flux or a cesium compound in an inert gas atmosphere, the tube material (the structural member) High strength and high durability suitable for pipe materials for connecting clad materials (including tubes made by welding or brazing) and header plate materials, or pipes for connecting these heat exchangers The present invention relates to an aluminum alloy clad material for a melting point heat exchanger, a manufacturing method thereof, and a heat exchanger.

自動車用熱交換器、例えばラジエータは、外面にフィンを有し、内面が作動流体(冷媒)の通路となるチューブおよびヘッダーから構成されている。このような自動車のラジエータまたはヒータなどのチューブ材やヘッダープレート材には、JIS A3003などのAl−Mn系合金を心材とし、心材の片面にAl−Si系合金ろう材をクラッドした二層構造のアルミニウム合金クラッド材、心材の一方の面にろう材をクラッドし、他方の面にAl−Zn系合金またはAl−Zn−Mg系合金の犠牲陽極材をクラッドした三層構造のアルミニウム合金クラッド材が用いられている。   2. Description of the Related Art An automobile heat exchanger, for example, a radiator, includes a tube and a header that have fins on the outer surface and whose inner surface serves as a passage for a working fluid (refrigerant). The tube material or header plate material of such an automobile radiator or heater has a two-layer structure in which an Al—Mn alloy such as JIS A3003 is used as a core material and an Al—Si alloy brazing material is clad on one side of the core material. An aluminum alloy clad material having a three-layer structure in which a brazing material is clad on one surface of a core material and a sacrificial anode material of an Al-Zn alloy or an Al-Zn-Mg alloy is clad on the other surface It is used.

アルミニウム合金製熱交換器は、フッ化物系フラックスやセシウム系フラックスを用いた不活性ガス雰囲気ろう付けにより接合されることが多く、クラッド材のAl−Si系ろう材は、アルミニウム合金製熱交換器を製作するとき、チューブとフィンとの接合、チューブとヘッダープレートとの接合、またはクラッド板からチューブを製造する場合のろう付け接合のためにクラッドされている。また、犠牲陽極材は、たとえばチューブの内面側に使用され、作動流体と接して犠牲陽極作用を発揮し、心材の孔食や隙間腐食の発生を防止する。   Aluminum alloy heat exchangers are often joined by brazing with an inert gas atmosphere using a fluoride flux or a cesium flux, and the Al-Si brazing filler metal is an aluminum alloy heat exchanger. When the tube is manufactured, it is clad for joining the tube and the fin, joining the tube and the header plate, or brazing when manufacturing the tube from the clad plate. Further, the sacrificial anode material is used, for example, on the inner surface side of the tube, and exerts a sacrificial anode action in contact with the working fluid to prevent the core material from pitting or crevice corrosion.

自動車用熱交換器の間を結ぶ配管材については、JIS A3003 などのAl−Mn 系合金を心材とし、内面、あるいは内面と外面にJIS A7072 などのAl−Zn 系合金の犠牲陽極材をクラッドした二層または三層のクラッドチューブが用いられている。クラッド管の内面の犠牲陽極材は、使用中にクーラントと接触して犠牲陽極効果を発揮して、心材に対する孔食または隙間腐食の発生を防止し、外面の犠牲陽極材は、過酷な環境で使用された場合、犠牲陽極効果を発揮して心材に発生する孔食または隙間腐食を防止する。   For piping materials connecting between heat exchangers for automobiles, an Al-Mn alloy such as JIS A3003 is used as a core material, and a sacrificial anode material of Al-Zn alloy such as JIS A7072 is clad on the inner surface or the inner and outer surfaces. Two-layer or three-layer clad tubes are used. The sacrificial anode material on the inner surface of the clad tube is in contact with the coolant during use to exert a sacrificial anode effect to prevent the occurrence of pitting corrosion or crevice corrosion on the core material, and the outer surface sacrificial anode material is used in harsh environments. When used, the sacrificial anode effect is exhibited to prevent pitting corrosion or crevice corrosion occurring in the core material.

ラジエータやヒータコアの製造は、図1に示すように、心材2の片面にろう材3、他の片面に犠牲陽極材4をクラッドしたクラッド板材1を曲成し、溶接する(溶接部W)ことにより偏平チューブとし、ヘッダープレートに組み付けた後、一体にろう付けする(溶接型)ことにより行われていたが、近年、図2〜3に示すように、クラッド板材1を曲げ加工するだけで溶接することなくチューブ形状とし、ヘッダープレートに組み付けて一体ろう付けする(ろう付け型)ことにより製造される手法が行われるようになっている。   As shown in FIG. 1, the radiator and the heater core are manufactured by bending and welding the brazing material 3 with the brazing material 3 on one side of the core material 2 and the sacrificial anode material 4 on the other side (welding portion W). It was made by flattening the tube, assembling it to the header plate, and then brazing it integrally (welding type), but recently, as shown in FIGS. Thus, a method of manufacturing a tube by forming it into a tube shape and assembling it to a header plate and integrally brazing (brazing die) is performed.

近年、自動車の軽量化の要請に伴い、自動車用熱交換器においても省エネルギー、省資源の観点から構成材料の薄肉化が要請され、チューブ材についても薄肉化が進行している。チューブ材を薄肉化するためには、材料の強度と耐久性(疲労寿命)をさらに高める必要から心材には多量のMn、Cu、Siなどが含有されるが、これらの元素の含有により心材の耐食性が低下するため、犠牲陽極材に多量のZnを添加して心材との電位差を確保し、確実に犠牲陽極効果が得られるようにした材料構成が提案されている(特許文献1参照)。   In recent years, with the demand for reducing the weight of automobiles, automobile heat exchangers are also required to be thinner from the viewpoint of energy saving and resource saving, and the thickness of tube materials has also been reduced. In order to reduce the thickness of the tube material, the core material contains a large amount of Mn, Cu, Si, etc. because it is necessary to further increase the strength and durability (fatigue life) of the material. Since the corrosion resistance is reduced, a material configuration has been proposed in which a large amount of Zn is added to the sacrificial anode material to ensure a potential difference from the core material and to ensure the sacrificial anode effect (see Patent Document 1).

また、犠牲陽極材に多量のMgを添加して、犠牲陽極材と心材の界面にMgSiを微細析出させたり、心材に0.05〜0.5%のMgを添加して心材中にMgSiを微細析出させ、さらに強度を高めた材料構成のものも提案されている(特許文献2参照)。 Also, a large amount of Mg is added to the sacrificial anode material, and Mg 2 Si is finely precipitated at the interface between the sacrificial anode material and the core material, or 0.05 to 0.5% Mg is added to the core material to add to the core material. A material structure in which Mg 2 Si is finely precipitated and the strength is further increased has been proposed (see Patent Document 2).

犠牲陽極材へのMgの添加は、溶接型に関しては有効であるが、ろう付け型に関しては、犠牲陽極材とろうが直接接合される面があり、Mgがフラックスと反応してMgFなどの化合物を形成し、フラックスの機能が損なわれ、ろう付け欠陥が生じるという問題がある。心材にMgを添加すると、心材からろう材へMgが拡散し、同様にMgがフラックスと反応してMgFなどの化合物を形成し、フラックスの機能が損なわれ、ろう付け欠陥が生じるという問題があるため、Mgの添加量は0.5%以下に限定されており、ろう付け型の場合には、Mg添加による高強度化には限界がある。 The addition of Mg to the sacrificial anode material is effective with respect to the welding die, but with respect to the brazing die, there is a surface where the sacrificial anode material and the braze are directly joined, and Mg reacts with the flux to react with MgF 2 or the like. There is a problem that a compound is formed, the function of the flux is impaired, and a brazing defect occurs. When Mg is added to the core material, Mg diffuses from the core material to the brazing material, and similarly, Mg reacts with the flux to form a compound such as MgF 2 , thereby reducing the function of the flux and causing a brazing defect. For this reason, the amount of Mg added is limited to 0.5% or less, and in the case of a brazing type, there is a limit to increasing the strength by adding Mg.

Mgの添加量を増やすために、心材のMn量とSi量の比を制限することにより心材の結晶粒を粗大化し、心材からろう材へのMgの拡散量を低減させ、Mgの添加量が0.5%を超えてもろう付け欠陥を生じない材料構成のものも提案されている(特許文献3参照)。しかしながら、この場合、605℃を超える比較的高温でろう付けされると、心材の融点(固相線温度)が低いために心材には粒界に沿った著しいエロージョンが生じ易く、その結果、高強度は得られるものの、疲労試験においてエロージョンした部分に沿って早期に亀裂が進展し、疲労寿命が低下するという問題が生じる。   In order to increase the amount of Mg added, by restricting the ratio of the amount of Mn and Si in the core material, the crystal grains of the core material are coarsened, the amount of Mg diffused from the core material to the brazing material is reduced, and the amount of Mg added A material structure that does not cause a brazing defect even if it exceeds 0.5% has been proposed (see Patent Document 3). However, in this case, when brazing at a relatively high temperature exceeding 605 ° C., the core material is likely to undergo significant erosion along the grain boundary due to the low melting point (solidus temperature) of the core material. Although strength is obtained, there is a problem that cracks develop early along the eroded portion in the fatigue test and the fatigue life is reduced.

その他、ろう付け型の高強度化に関しては、心材に多量のMn、Cu、Siなどを添加するとともに、犠牲陽極材にもMn、Fe、Siを複合添加する手法が提案されているが(特許文献4参照)、一層の薄肉化の要求に対応するには強度が十分でなく、また、これらの元素の添加により、犠牲陽極材面のぬれ性が低下し、ろう付け欠陥を生じ易くなる。
特許第3772017号公報 特許第3217108号公報 特願2006−067038 特開2003−293064号公報
In addition, for increasing the strength of the brazing mold, a method has been proposed in which a large amount of Mn, Cu, Si, etc. is added to the core material, and Mn, Fe, Si is also added to the sacrificial anode material (patent) Reference 4), the strength is not sufficient to meet the demand for further thinning, and the addition of these elements reduces the wettability of the sacrificial anode material surface and tends to cause brazing defects.
Japanese Patent No. 37772017 Japanese Patent No. 3217108 Japanese Patent Application No. 2006-067038 JP 2003-293064 A

発明者らは、ろう付け型ラジエータ用チューブ材について、上記従来のチューブ材と同等以上の高強度を達成することができるとともに、高融点でかつ耐久性に優れ、犠牲陽極材面の面接合性についても優れた特性を得るために、クラッド材の強度、融点および耐久性と、クラッド材における心材と犠牲陽極材の組成とその組み合わせ、犠牲陽極材の組織性状との関係について試験、検討を重ねた結果、心材に比較的高濃度のMgを添加し、心材の他の成分元素であるSi、Cuの添加量を調整し、特に心材のCu濃度を制限して、心材の融点(固相線温度、示差熱分析における熱吸収開始温度)を高めることが、耐久性を向上させ、エロージョン、特に粒界に沿ったエロージョンを抑制するために効果的であることを見出すとともに、心材の熱吸収開始温度(MP)と心材のSi、Cu、Mg含有量との関係を特定することにより耐久性を向上させることができることを見出した。   The inventors of the present invention can achieve high strength equal to or higher than that of the above-mentioned conventional tube material for the brazing-type radiator tube material, and have a high melting point and excellent durability, and the surface joining property of the sacrificial anode material surface. In order to obtain excellent characteristics, the tests were conducted to examine the relationship between the strength, melting point and durability of the cladding material, the composition of the core material and sacrificial anode material in the cladding material, and their combination, and the structural properties of the sacrificial anode material. As a result, a relatively high concentration of Mg is added to the core material, the amount of addition of Si and Cu, which are other component elements of the core material, is adjusted, and in particular, the Cu concentration of the core material is limited, and the melting point of the core material (solidus line) It is found that increasing the temperature and the heat absorption start temperature in differential thermal analysis is effective for improving durability and suppressing erosion, particularly erosion along grain boundaries. It found that heat absorption onset temperature (MP) and heartwood Si, Cu, by specifying the relationship between the Mg content may be improved durability.

また、犠牲陽極材にSiを単独添加し、ろう付け加熱中に犠牲陽極材から心材へ拡散するSiと、心材から犠牲陽極材に拡散するMgが互いに反応することで犠牲陽極材と心材の界面にMgSiを微細析出させることにより高強度化、高耐久化を図ることができること、犠牲陽極材面のろう付け性向上には、犠牲陽極材表面の結晶粒の微細化が有効であることを見出した。 In addition, Si is added to the sacrificial anode material alone, and Si diffused from the sacrificial anode material to the core material during brazing heating and Mg diffused from the core material to the sacrificial anode material react with each other, thereby causing an interface between the sacrificial anode material and the core material. It is possible to increase the strength and durability by finely depositing Mg 2 Si on the surface, and to improve the brazing performance of the sacrificial anode material surface, it is effective to refine the crystal grains on the surface of the sacrificial anode material I found.

本発明は、上記の知見に基づいてなされたものであり、その目的は、高強度、高融点で、耐久性に優れ、且つ優れたろう付け性をそなえ、熱交換器、特に自動車用熱交換器のチューブ材、ヘッダープレート材、配管材の素材として好適に使用することができる熱交換器用アルミニウム合金クラッド材とその製造方法、および当該アルミニウム合金クラッド材を組み付け、ろう付け接合することにより製造されるアルミニウム合金製熱交換器を提供することにある。   The present invention has been made on the basis of the above knowledge, and the object thereof is a heat exchanger, particularly an automobile heat exchanger, having high strength, a high melting point, excellent durability, and excellent brazing properties. Aluminum alloy clad material for heat exchanger that can be suitably used as a material for tube materials, header plate materials, and piping materials, a method for producing the same, and the aluminum alloy clad material are assembled and brazed and joined. The object is to provide an aluminum alloy heat exchanger.

上記の目的を達成するための請求項1による耐久性に優れた高強度、高融点熱交換器用アルミニウム合金クラッド材は、心材が、Mn:0.8〜2.0%、Cu:0.25%未満、Si:0.5%以上1.0%未満、Mg:0.3〜0.6%、Ti:0.05〜0.35%を含有し、残部アルミニウムおよび不純物からなり、かつ、Cu、SiおよびMgの含有量が、下記(1)式において、熱吸収開始温度(MP)が605℃以上になるよう規制されたアルミニウム合金で構成され、犠牲陽極材が、Zn:2.5%を超え8%以下、Si:0.4〜1.5%を含有し、残部アルミニウムおよび不純物からなり、常温から400℃までの昇温速度を50℃/分とし、常温から595℃までの到達時間を30分以内とする条件で加熱した場合において、犠牲陽極材表面の平均結晶粒度が0.20mm以下であるアルミニウム合金から構成されることを特徴とする。
MP=650−28.6CSi−11.2CCu−26.6CMg ・・・(1)
Si:Si濃度(質量%)、CCu:Cu濃度(質量%)、CMg:Mg濃度(質量%)
The aluminum alloy clad material for high strength and high melting point heat exchanger excellent in durability according to claim 1 for achieving the above object has a core material of Mn: 0.8 to 2.0%, Cu: 0.25 %: Si: 0.5% or more and less than 1.0%, Mg: 0.3 to 0.6%, Ti: 0.05 to 0.35%, consisting of the balance aluminum and impurities, and The content of Cu, Si and Mg is composed of an aluminum alloy in which the heat absorption start temperature (MP) is regulated to be 605 ° C. or higher in the following formula (1), and the sacrificial anode material is Zn: 2.5 % And 8% or less, Si: 0.4 to 1.5%, consisting of the balance aluminum and impurities, the rate of temperature increase from room temperature to 400 ° C. is 50 ° C./min, and from room temperature to 595 ° C. When heated under conditions where the arrival time is within 30 minutes Te average grain size of the sacrificial anode material surface, characterized in that it is made of aluminum alloy is not more than 0.20 mm.
MP = 650-28.6C Si 11.2C Cu- 26.6C Mg (1)
C Si : Si concentration (mass%), C Cu : Cu concentration (mass%), C Mg : Mg concentration (mass%)

請求項2による耐久性に優れた高強度、高融点熱交換器用アルミニウム合金クラッド材は、請求項1において、前記心材の他方の面にAl−Si系ろう材がクラッドされていることを特徴とする。   The high strength, high melting point heat exchanger aluminum alloy clad material excellent in durability according to claim 2 is characterized in that, in claim 1, an Al-Si brazing material is clad on the other surface of the core material. To do.

請求項3による耐久性に優れた高強度、高融点熱交換器用アルミニウム合金クラッド材は、請求項1または2において、前記心材がさらに、Cr:0.01〜0.3%、Zr:0.01〜0.3%のうちの1種または2種を含有することを特徴とする。   The aluminum alloy clad material for high strength and high melting point heat exchanger excellent in durability according to claim 3 is characterized in that the core material further comprises Cr: 0.01 to 0.3%, Zr: 0.00. It contains 1 type or 2 types out of 01-0.3%, It is characterized by the above-mentioned.

請求項4による耐久性に優れた高強度、高融点熱交換器用アルミニウム合金クラッド材は、請求項1〜3のいずれかにおいて、前記心材がさらに、V:0.01〜0.3%、B:0.01〜0.3%のうちの1種または2種を含有することを特徴とする。   A high-strength, high-melting-point heat exchanger aluminum alloy clad material excellent in durability according to claim 4 is any one of claims 1 to 3, wherein the core material is further V: 0.01 to 0.3%, B : It contains 1 type or 2 types in 0.01-0.3%, It is characterized by the above-mentioned.

請求項5による耐久性に優れた高強度、高融点熱交換器用アルミニウム合金クラッド材は、請求項1〜4のいずれかにおいて、前記犠牲陽極材がさらに、In:0.05%以下、Sn:0.05以下、Mn:2.0%以下、Fe:1.5%以下、Ti:0.35%以下のうちの1種または2種以上を含有することを特徴とする。   The aluminum alloy clad material for high strength and high melting point heat exchanger excellent in durability according to claim 5 is the sacrificial anode material according to any one of claims 1 to 4, further comprising In: 0.05% or less, Sn: One or more of 0.05 or less, Mn: 2.0% or less, Fe: 1.5% or less, and Ti: 0.35% or less are contained.

請求項6による耐久性に優れた高強度、高融点熱交換器用アルミニウム合金クラッド材の製造方法は、前記犠牲陽極材がMn:0.1〜2.0%を含有する請求項5に記載のアルミニウム合金クラッド材を製造する方法において、犠牲陽極材用合金鋳塊の均質化処理を、(犠牲陽極材用鋳塊の固相線温度(℃)×0.7)℃以上の温度で行うことを特徴とする。   The manufacturing method of the aluminum alloy clad material for high strength and high melting point heat exchanger excellent in durability according to claim 6 is characterized in that the sacrificial anode material contains Mn: 0.1 to 2.0%. In the method for producing an aluminum alloy clad material, homogenization of the alloy ingot for sacrificial anode material is performed at a temperature equal to or higher than (solidus temperature of the sacrificial anode material ingot (° C.) × 0.7) ° C. It is characterized by.

請求項7による耐久性に優れた高強度、高融点熱交換器用アルミニウム合金クラッド材の製造方法は、前記犠牲陽極材のMn含有量が0.1%未満である請求項5に記載のアルミニウム合金クラッド材を製造する方法において、犠牲陽極材用合金鋳塊の均質化処理を、(犠牲陽極材用鋳塊の固相線温度(℃)×0.5)℃以下の温度で行うことを特徴とする。   The aluminum alloy clad material for a high strength, high melting point heat exchanger excellent in durability according to claim 7, wherein the sacrificial anode material has an Mn content of less than 0.1%. In the method for producing a clad material, the homogenization treatment of the alloy ingot for sacrificial anode material is performed at a temperature equal to or lower than (solidus temperature of the ingot for sacrificial anode material (° C.) × 0.5) ° C. And

請求項8によるアルミニウム合金製熱交換器は、請求項1〜5に記載のアルミニウム合金クラッド材、請求項6または7により製造されたアルミニウム合金クラッド材のいずれかを組み付け、ろう付け接合することにより製造されることを特徴とする。   An aluminum alloy heat exchanger according to claim 8 is obtained by assembling and brazing and joining one of the aluminum alloy clad material according to claims 1 to 5 and the aluminum alloy clad material produced according to claim 6 or 7. It is manufactured.

請求項9によるアルミニウム合金製熱交換器は、前記心材が0.4%を超えるMgを含有する請求項1〜5のいずれかに記載のアルミニウム合金クラッド材を組み付け、フッ化物系フラックスまたはセシウム系フラックスを5g/m以上塗布して不活性ガス雰囲気中でろう付け接合することにより製造されることを特徴とする。 The aluminum alloy heat exchanger according to claim 9 is assembled with the aluminum alloy clad material according to any one of claims 1 to 5, wherein the core material contains Mg exceeding 0.4%, and a fluoride-based flux or a cesium-based material. It is manufactured by applying a flux of 5 g / m 2 or more and brazing in an inert gas atmosphere.

本発明によれば、高強度、高融点で、耐久性に優れ、且つ優れたろう付け性をそなえ、熱交換器、特に自動車用熱交換器のチューブ材、ヘッダープレート材、配管材の素材として好適に使用することができる熱交換器用アルミニウム合金クラッド材とその製造方法、および当該アルミニウム合金クラッド材を組み付け、ろう付け接合することにより製造されるアルミニウム合金製熱交換器が提供される。   According to the present invention, it has high strength, a high melting point, excellent durability, and excellent brazing properties, and is suitable as a material for heat exchangers, particularly tube materials, header plate materials, and piping materials for automotive heat exchangers. The present invention provides an aluminum alloy clad material for a heat exchanger that can be used for the heat exchanger, a method for producing the same, and an aluminum alloy heat exchanger produced by assembling and brazing the aluminum alloy clad material.

本発明による耐久性に優れた高強度、高融点熱交換器用アルミニウム合金クラッド材における合金成分の意義および限定理由について説明する。
(心材)
Mn:Mnは、心材の強度を向上させるとともに、心材の電位を貴にして犠牲陽極材との電位差を大きくして耐食性を高めるよう機能する。好ましい含有範囲は0.8〜2.0%であり、0.8%未満ではその効果が小さく、2.0%を越えて含有すると、鋳造時に粗大な化合物が生成し、圧延加工性が害される結果健全な板材が得難い。Mnのさらに好ましい範囲は、1.0〜1.7%である。
The significance and reason for limitation of the alloy components in the aluminum alloy clad material for high strength and high melting point heat exchanger excellent in durability according to the present invention will be described.
(Heartwood)
Mn: Mn functions to improve the corrosion resistance by improving the strength of the core material and making the potential of the core material noble and increasing the potential difference from the sacrificial anode material. A preferable content range is 0.8 to 2.0%, and if the content is less than 0.8%, the effect is small. If the content exceeds 2.0%, a coarse compound is produced at the time of casting, and the rolling processability is impaired. As a result, it is difficult to obtain a sound plate material. A more preferable range of Mn is 1.0 to 1.7%.

Cu:Cuは、心材の強度を向上させるとともに、心材の電位を貴にし、犠牲陽極材のとの電位差を大きくして、防食効果を向上させるよう機能する。さらに、心材中のCuは加熱ろう付け時に犠牲陽極材中に拡散して、なだらかな濃度勾配を形成させる結果、心材側の電位は貴となり、犠牲陽極材の表面側の電位は卑となって犠牲陽極材中になだらかな電位分布が形成され、腐食形態を全面腐食型にする。Cuの好ましい含有量は0.25%未満とする。Cuが0.25%以上では、心材の融点が低下して、ろう付け時に粒界に沿ったエロージョンを生じ易くなる。Cuのさらに好ましい範囲は0.1〜0.2%である。   Cu: Cu functions to improve the anticorrosion effect by improving the strength of the core material, making the potential of the core material noble, and increasing the potential difference from the sacrificial anode material. Furthermore, Cu in the core material diffuses into the sacrificial anode material during brazing and forms a gentle concentration gradient. As a result, the potential on the core material side becomes noble and the potential on the surface side of the sacrificial anode material becomes base. A gentle potential distribution is formed in the sacrificial anode material, and the corrosion form is changed to a full corrosion type. The preferable content of Cu is less than 0.25%. When Cu is 0.25% or more, the melting point of the core material is lowered, and erosion along the grain boundary is likely to occur during brazing. A more preferable range of Cu is 0.1 to 0.2%.

Si:Siは、固溶硬化とMgとの化合物MgSiの微細析出硬化により、心材の強度を向上させる機能を有する。好ましい含有範囲は0.5〜1.0%であり、1.0%を超えて含有すると心材の融点が低下して、ろう付け時に粒界に沿ったエロージョンを生じ易くなる。Siのさらに好ましい範囲は0.6〜0.8%である。 Si: Si has a function of improving the strength of the core material by solid solution hardening and fine precipitation hardening of Mg 2 Si, a compound of Mg. A preferable content range is 0.5 to 1.0%. If the content exceeds 1.0%, the melting point of the core material is lowered, and erosion along the grain boundaries is likely to occur during brazing. A more preferable range of Si is 0.6 to 0.8%.

Mg:Mgは、固溶硬化とSiとの化合物MgSiの微細析出硬化により心材の強度を向上させる。好ましい含有範囲は0.3〜0.6%であり、0.3%未満では強度向上の効果が十分でなく、0.6%を越えて含有すると心材の融点が低下して、ろう付け時に粒界に沿ったエロージョンを生じ易くなる。Mgのさらに好ましい範囲は0.4〜0.5%である。 Mg: Mg improves the strength of the core material by solid solution hardening and fine precipitation hardening of the compound Mg 2 Si with Si. The preferable content range is 0.3 to 0.6%, and if it is less than 0.3%, the effect of improving the strength is not sufficient, and if it exceeds 0.6%, the melting point of the core material decreases, and during brazing Erosion along the grain boundary is likely to occur. A more preferable range of Mg is 0.4 to 0.5%.

Cu、SiおよびMg添加量の制限:Cu、SiおよびMgを添加量については、下記(1)式の心材の熱吸収開始温度MPが605℃以上、さらに好ましくは610℃以上になるように規制する。
MP=650−28.6CSi−11.2CCu−26.6CMg ・・・(1)
Si:Si濃度(質量%)、CCu:Cu濃度(質量%)、CMg:Mg濃度(質量%)
なお、心材の熱吸収開始温度MPは、JIS Z3198−1に規定されている方法を用いて測定する。すなわち、図7に示すように、示差熱分析(加熱速度:10℃/分)による心材合金の温度と熱エネルギー入力差との曲線において、曲線がベースラインから離れ始める温度Tを心材の熱吸収開始温度MPとする。
Restriction of Cu, Si and Mg addition amount: The addition amount of Cu, Si and Mg is regulated so that the heat absorption start temperature MP of the core material of the following formula (1) is 605 ° C. or higher, more preferably 610 ° C. or higher. To do.
MP = 650-28.6C Si 11.2C Cu- 26.6C Mg (1)
C Si : Si concentration (mass%), C Cu : Cu concentration (mass%), C Mg : Mg concentration (mass%)
The heat absorption start temperature MP of the core material is measured using a method defined in JIS Z3198-1. That is, as shown in FIG. 7, in the curve between the temperature of the core material alloy and the difference in thermal energy input according to differential thermal analysis (heating rate: 10 ° C./min), the temperature T 2 at which the curve starts to move away from the baseline is set as the heat of the core material. The absorption start temperature MP is assumed.

Ti:Tiは、心材の板厚方向に濃度の高い領域と低い領域とに分かれ、それらが交互に分布する層状となり、Ti濃度の低い領域が高い領域に比べ優先的に腐食することにより、腐食形態を層状にする効果を有し、それにより板厚方向への腐食の進行を妨げて材料の耐孔食性を向上させる。Tiの好ましい含有範囲は0.05〜0.35%であり、含有量が0.05%未満ではこの効果が少なく、0.35%を超えると鋳造が困難となり、また加工性が劣化して健全な材料の製造が困難となる。Tiのさらに好ましい範囲は0.1〜0.2%である。   Ti: Ti is divided into a high-concentration region and a low region in the thickness direction of the core material, and the layers are alternately distributed. Corrosion occurs by preferentially corroding the low-Ti concentration region over the high-concentration region. It has the effect of layering the form, thereby preventing the progress of corrosion in the thickness direction and improving the pitting corrosion resistance of the material. The preferable content range of Ti is 0.05 to 0.35%. If the content is less than 0.05%, this effect is small, and if it exceeds 0.35%, casting becomes difficult and workability deteriorates. It becomes difficult to produce sound materials. A more preferable range of Ti is 0.1 to 0.2%.

Cr、Zr、V、B:Cr、Zr、V、Bは、ろう付け加熱中の再結晶温度を高め、心材の結晶粒度を粗大化させることでろう付け加熱中のエロージョンを抑制する。これらの元素の好ましい含有範囲は、いずれも0.01〜0.3%であり、0.3%を超えて含有しても効果が飽和しそれ以上の改善効果が期待できない。CrとZrのさらに好ましい範囲は0.05〜0.2%である。   Cr, Zr, V, B: Cr, Zr, V, and B increase the recrystallization temperature during brazing heating, and suppress the erosion during brazing heating by coarsening the crystal grain size of the core material. The preferable content range of these elements is 0.01 to 0.3% in all cases, and even if the content exceeds 0.3%, the effect is saturated and no further improvement effect can be expected. A more preferable range of Cr and Zr is 0.05 to 0.2%.

(犠牲陽極材)
本発明においては、一層の高強度化・高耐久化を図るために、犠牲陽極材にはSiを単独添加し、ろう付け加熱中に犠牲陽極材から心材へ拡散するSiと、心材から犠牲陽極材に拡散するMgが互いに反応することで犠牲陽極材と心材の界面にMgSiを微細析出させることを特徴とする。この場合、犠牲陽極材にMnとFeを添加すると、Al−Mn−Si系やAl−Fe−Si系の化合物が形成され、犠牲陽極材から心材に拡散するSi量が低下し、犠牲陽極材と心材の界面に析出するMgSiの量が低下して、強度向上の効果が低下するものの、内面耐食性の向上には有効である。
(Sacrificial anode material)
In the present invention, in order to further increase the strength and durability, Si is added alone to the sacrificial anode material, Si diffuses from the sacrificial anode material to the core material during brazing heating, and the sacrificial anode from the core material. Mg diffused in the material reacts with each other, so that Mg 2 Si is finely precipitated at the interface between the sacrificial anode material and the core material. In this case, when Mn and Fe are added to the sacrificial anode material, an Al-Mn-Si-based or Al-Fe-Si-based compound is formed, and the amount of Si diffusing from the sacrificial anode material to the core material is reduced. Although the amount of Mg 2 Si precipitated at the interface between the core and the core decreases and the effect of improving the strength decreases, it is effective for improving the internal corrosion resistance.

Zn:Znは犠牲陽極材の電位を卑にし、心材に対する犠牲陽極効果を保持させる。その結果、心材の孔食やすき間腐食を防止する。Znの好ましい範囲は2.5%を超え8.0%以下である。本発明においては、心材のCu濃度を0.25%未満に制限しており、Zn濃度が2.5%以下の場合、心材と犠牲陽極材の電位差が不十分で、内面耐食性が低下する。8.0%を超えて含有すると犠牲陽極材の自己腐食性が増大する。Znのさらに好ましい範囲は3.0〜4.0%である。   Zn: Zn lowers the potential of the sacrificial anode material and maintains the sacrificial anode effect on the core material. As a result, pitting corrosion and crevice corrosion of the core material are prevented. The preferable range of Zn is more than 2.5% and 8.0% or less. In the present invention, the Cu concentration of the core material is limited to less than 0.25%, and when the Zn concentration is 2.5% or less, the potential difference between the core material and the sacrificial anode material is insufficient, and the internal corrosion resistance decreases. If the content exceeds 8.0%, the self-corrosion property of the sacrificial anode material increases. A more preferable range of Zn is 3.0 to 4.0%.

Si:Siは、ろう付け加熱中に犠牲陽極材から心材へ拡散するSiと、心材から犠牲陽極材に拡散するMgが互いに反応することで犠牲陽極材と心材の界面にMgSiを微細析出させ強度を向上させる。Siの好ましい含有範囲は0.4〜1.5%である。0.4%未満では強度向上の効果が十分でなく、1.5%を越えて含有すると犠材の融点が低下して、犠材が溶融してその厚さが低減するため、耐食性が低下する。Siのさらに好ましい範囲は0.5〜0.9%である。 Si: Si finely precipitates Mg 2 Si at the interface between the sacrificial anode material and the core material by reacting with each other Si that diffuses from the sacrificial anode material to the core material during brazing heating and Mg diffused from the core material to the sacrificial anode material To improve strength. A preferable content range of Si is 0.4 to 1.5%. If the content is less than 0.4%, the effect of improving the strength is not sufficient. If the content exceeds 1.5%, the melting point of the sacrificial material is lowered, and the sacrificial material is melted to reduce its thickness. To do. A more preferable range of Si is 0.5 to 0.9%.

In、Sn:InとSnは、微量の添加により犠牲陽極材の電位を卑にし、心材に対する犠牲陽極効果を確実にする。その結果、心材の孔食やすき間腐食を防止する。InとSnの好ましい範囲は、いずれも0.05%以下であり、0.05%を超えて含有すると犠牲陽極材の自己腐食性が増大する。InとSnのさらに好ましい範囲は0.01〜0.03%である。   In, Sn: In and Sn lower the potential of the sacrificial anode material by adding a small amount, and ensure the sacrificial anode effect on the core material. As a result, pitting corrosion and crevice corrosion of the core material are prevented. The preferable ranges of In and Sn are both 0.05% or less, and when the content exceeds 0.05%, the self-corrosion property of the sacrificial anode material increases. A more preferable range of In and Sn is 0.01 to 0.03%.

Mn:Mnは、Al−Mn系化合物が腐食の起点となり、孔食が分散化されることで耐食性が向上する。好ましい含有範囲は2.0%以下であり、2.0%を越えて含有すると、鋳造時に粗大な化合物が生成し、圧延加工性が害され結果健全な板材が得難い。Mnのさらに好ましい範囲は1.7%以下である。   Mn: As for Mn, the Al—Mn-based compound is a starting point of corrosion, and the corrosion resistance is improved by dispersing pitting corrosion. The preferable content range is 2.0% or less, and if it exceeds 2.0%, a coarse compound is produced at the time of casting, rolling workability is impaired, and it is difficult to obtain a sound plate material. A more preferable range of Mn is 1.7% or less.

Fe:Feは、Al−Fe系、Al−Fe−Si系、Al−Mn−Fe系やAl−Mn−Fe−Si系化合物が生成し、それらが腐食の起点となり、孔食が分散化されることで耐食性が向上する。好ましい範囲は1.5%以下であり、1.5%を越えて含有すると耐食性を低下させる。Feはさらに、Al−Fe系化合物が再結晶の核になるため、犠牲陽極材の結晶粒の微細化に有効である。Feのさらに好ましい範囲は0.2〜0.5%である。   Fe: Fe produces Al—Fe, Al—Fe—Si, Al—Mn—Fe, and Al—Mn—Fe—Si compounds, which serve as starting points for corrosion, and pitting corrosion is dispersed. Corrosion resistance is improved. The preferred range is 1.5% or less, and if it exceeds 1.5%, the corrosion resistance is lowered. Further, Fe is effective for refining the crystal grains of the sacrificial anode material because the Al—Fe-based compound serves as a nucleus for recrystallization. A more preferable range of Fe is 0.2 to 0.5%.

Ti:Tiは、犠牲陽極材の板厚方向に濃度の高い領域と低い領域とに分かれ、それらが交互に分布する層状となり、Ti濃度の低い領域が高い領域に比べ優先的に腐食することにより、腐食形態を層状にする効果を有し、それにより板厚方向への腐食の進行を妨げて材料の耐孔食性を向上させる。Tiの好ましい含有範囲は0.01〜0.35%であり、含有量が0.01%未満ではこの効果が少なく0.35%を越えると鋳造が困難となり、また加工性が劣化して健全な材料の製造が困難となる。Tiのさらに好ましい含有範囲は0.1〜0.2%である。   Ti: Ti is divided into a high-concentration region and a low region in the thickness direction of the sacrificial anode material, and the layers are alternately distributed, and the low-Ti concentration region corrodes preferentially compared to the high region. It has the effect of layering the corrosion form, thereby preventing the progress of corrosion in the plate thickness direction and improving the pitting corrosion resistance of the material. The preferable content range of Ti is 0.01 to 0.35%. If the content is less than 0.01%, this effect is small, and if it exceeds 0.35%, casting becomes difficult, and workability deteriorates and is healthy. Manufacturing of such a material becomes difficult. A more preferable content range of Ti is 0.1 to 0.2%.

結晶粒度0.20mm以下:ろう付け時、犠牲陽極材表面へろうがぬれ拡がる場合、結晶粒界が優先的にろうのぬれ拡がる経路になり、その後、ろうは結晶粒界から粒内方向へぬれ拡がる。従って、ろう付け加熱後の結晶粒度が小さい場合、ぬれ拡がる経路が多くなり、ろうは均一にぬれ拡がる。一方、結晶粒度が大きい場合ぬれ拡がる経路が少なく、ろうのぬれ拡がりは不均一になり、ぬれ性が低下する。ろうのぬれ性が良好である犠牲陽極材の結晶粒度は、ろう付け加熱に相当する加熱条件、すなわち、常温から400℃までの昇温速度を50℃/分とし、常温から595℃までの到達時間を30分以内とする条件で加熱した場合において0.20mm以下の範囲であることが好ましく、0.20mmを超えるとぬれ拡がり性は低下する。上記加熱後の結晶粒度のより好ましい範囲は0.04〜0.15mm、さらに好ましい範囲は0.40mm以上0.10mm未満である。   Grain size 0.20mm or less: When brazing the sacrificial anode material to the surface of the sacrificial anode material during brazing, the grain boundary becomes a preferential path for the wetting of the wax, and then the brazing wets from the grain boundary toward the in-grain direction. spread. Therefore, when the crystal grain size after brazing heating is small, there are many routes for wetting and spreading, and the brazing spreads uniformly. On the other hand, when the crystal grain size is large, there are few paths for wetting and spreading, the wetting and spreading of the wax becomes non-uniform, and the wettability decreases. The crystal grain size of the sacrificial anode material with good brazing wettability reaches the heating condition corresponding to brazing heating, that is, the heating rate from room temperature to 400 ° C is 50 ° C / min, and reaches from the normal temperature to 595 ° C. When heated under conditions where the time is within 30 minutes, it is preferably in the range of 0.20 mm or less, and when it exceeds 0.20 mm, the wetting and spreading properties decrease. A more preferable range of the crystal grain size after the heating is 0.04 to 0.15 mm, and a more preferable range is 0.40 mm or more and less than 0.10 mm.

犠牲陽極材において、上記の結晶粒度を得るためには、犠牲陽極材にMnを添加しない場合(Mn:0.1%未満)には、犠牲陽極材の鋳造後、犠牲陽極材の固相線温度(℃)×0.5以下の温度で均質化処理するのが有効であり、犠牲陽極材にMn:0.1〜2.0%を添加する場合には、犠牲陽極材の固相線温度(℃)×0.7以上の温度で均質化処理するのが有効である。   In the sacrificial anode material, in order to obtain the crystal grain size described above, when Mn is not added to the sacrificial anode material (Mn: less than 0.1%), after the sacrificial anode material is cast, the solid line of the sacrificial anode material It is effective to homogenize at a temperature (° C.) × 0.5 or less, and when adding Mn: 0.1 to 2.0% to the sacrificial anode material, the solid line of the sacrificial anode material It is effective to homogenize at a temperature (° C.) × 0.7 or higher.

(ろう材)
ろう材としては、通常用いられているAl−Si系合金、例えばSi:6〜13%を含むAl−Si合金が使用される。ラジエータなどを構成するために行われるろう付けが真空ろう付けの場合には、Al−Si−Mg系合金などが用いられる。本発明においては、これらのろう材用合金をAl−Si系合金と総称する。Al−Si系合金、Al−Si−Mg系合金には、必要に応じて、Bi:0.2%以下、Be:0.1%以下、Ca:1.0%以下、Li:1.0%以下、Sr:0.005〜0.1%、Fe:1.0%以下、Zn:5.0%以下、Cu:3%以下、0.03%以下のInやSnが1種または2種以上添加されていてもよい。
(Brazing material)
As the brazing material, a commonly used Al—Si alloy, for example, an Al—Si alloy containing Si: 6 to 13% is used. When the brazing performed to form a radiator or the like is vacuum brazing, an Al—Si—Mg alloy or the like is used. In the present invention, these brazing alloy are generically referred to as Al-Si alloys. For the Al—Si based alloy and Al—Si—Mg based alloy, Bi: 0.2% or less, Be: 0.1% or less, Ca: 1.0% or less, Li: 1.0, as necessary. % Or less, Sr: 0.005 to 0.1%, Fe: 1.0% or less, Zn: 5.0% or less, Cu: 3% or less, 0.03% or less, 1 type or 2 of In or Sn More than seeds may be added.

本発明においては、上記のとおり、心材にMgを添加し、かつ、心材の他の成分元素であるSiとCuの含有量の最適化を図り、さらに、犠牲陽極材にSiを単独添加して、犠牲陽極材と心材の界面にMgSiを微細析出させることにより、高強度、高融点、高耐久性を得るとともに、犠牲陽極材の結晶粒微細化により優れたろう付け性を達成したものである。 In the present invention, as described above, Mg is added to the core material, and the contents of Si and Cu, which are other component elements of the core material, are optimized, and Si is added to the sacrificial anode material alone. In addition to finely depositing Mg 2 Si at the interface between the sacrificial anode material and the core material, high strength, high melting point and high durability were obtained, and excellent brazing properties were achieved by refining the crystal grains of the sacrificial anode material. is there.

本発明によるアルミニウム合金クラッド材は、DC鋳造により心材用合金、犠牲陽極材用合金およびろう材用合金を造塊し、例えば、得られた鋳塊のうち、心材用合金と犠牲陽極用合金については均質化処理を行い、犠牲陽極材用合金およびろう材用合金を熱間圧延して所定の厚さとし、これらと心材用合金の鋳塊を組み合わせて熱間圧延してクラッド材とする。その後、クラッド材を冷間圧延、中間焼鈍、最終冷間圧延して所定厚さのアルミニウム合金クラッド材(例えばH14)とする。   The aluminum alloy clad material according to the present invention ingots the core material alloy, the sacrificial anode material alloy and the brazing material alloy by DC casting. For example, among the obtained ingots, the core material alloy and the sacrificial anode alloy Performs a homogenization treatment, hot-rolls the sacrificial anode material alloy and the brazing material alloy to a predetermined thickness, and combines them with the ingot of the core material alloy to perform hot rolling to obtain a clad material. Thereafter, the clad material is cold-rolled, intermediate-annealed, and finally cold-rolled to obtain an aluminum alloy clad material (for example, H14) having a predetermined thickness.

例えば、得られたアルミニウム合金クラッド材からラジエータやヒータコアをろう付け製造する場合には、図2〜3に示すように、アルミニウム合金クラッド材を曲げ加工してチューブ形状とし、ヘッダープレートに組み付け、不活性ガス雰囲気中でフッ化物フラックスを用いるろう付け、あるいは真空ろう付けを行う。フラックスを用いてろう付けを行う場合、アルミニウム合金クラッド材の心材に0.4%を超えるMgが添加されている材料では、ろう付け性が著しく低下するが、この場合でも、フラックスを5g/m以上塗布してろう付けすることにより、ろう付け欠陥の発生を抑制することができる。 For example, when a radiator or heater core is brazed and manufactured from the obtained aluminum alloy clad material, the aluminum alloy clad material is bent into a tube shape as shown in FIGS. Brazing using a fluoride flux or vacuum brazing is performed in an active gas atmosphere. When brazing is performed using a flux, the brazing performance is significantly reduced with a material in which Mg exceeding 0.4% is added to the core material of the aluminum alloy clad material. However, even in this case, the flux is 5 g / m. By applying and brazing two or more, the occurrence of brazing defects can be suppressed.

以下、本発明の実施例を比較例と対比して説明し、その効果を実証する。これらの実施例は、本発明の一実施態様を示すものであり、本発明はこれらに限定されるものではない。   Examples of the present invention will be described below in comparison with comparative examples to demonstrate the effects. These examples show one embodiment of the present invention, and the present invention is not limited to these examples.

実施例1
連続鋳造により表1に示す組成を有する心材用合金、表2に示す組成を有する犠牲陽極材用合金、および表3に示す組成を有するろう材用合金を造塊し、得られた鋳塊のうち、心材用合金と犠牲陽極材用合金について均質化処理を行い、犠牲陽極材用合金およびろう材用合金を熱間圧延して所定の厚さとし、これらと心材用合金の鋳塊とを組み合わせて熱間圧延し、クラッド材を得た。表1に示す心材の熱吸収開始温度MPは、前記(1)式による計算で求めた値である。なお、前記(1)式による熱吸収開始温度MPの計算値は前記JISによる測定値とよく一致することが確認されている。
Example 1
An ingot for the core material having the composition shown in Table 1, the alloy for the sacrificial anode material having the composition shown in Table 2, and the alloy for the brazing material having the composition shown in Table 3 by continuous casting. Of these, homogenization treatment is performed on the core alloy and the sacrificial anode alloy, and the sacrificial anode alloy and the brazing alloy are hot-rolled to a predetermined thickness, and these are combined with the core alloy ingot. And hot rolled to obtain a clad material. The heat absorption start temperature MP of the core material shown in Table 1 is a value obtained by calculation according to the equation (1). It has been confirmed that the calculated value of the heat absorption start temperature MP according to the equation (1) agrees well with the measured value according to the JIS.

ついで、クラッド材を冷間圧延、中間焼鈍、冷間圧延して厚さ0.20mmの板材(クラッド材、質別H14)を得た。クラッドの構成は、犠牲陽極材を0.030〜0.040mm、ろう材を0.030〜0.040mm、残りを心材とした。   Subsequently, the clad material was cold-rolled, intermediate-annealed, and cold-rolled to obtain a plate material (cladding material, grade H14) having a thickness of 0.20 mm. The structure of the clad was 0.030 to 0.040 mm for the sacrificial anode material, 0.030 to 0.040 mm for the brazing material, and the remainder was the core material.

得られたアルミニウム合金クラッド材を試験材として、以下の方法によって、犠牲陽極材の平均結晶粒度を測定し、犠牲陽極材表面のろうのぬれ拡がり性、ろう付け性、強度特性(引張強さ)、犠牲陽極材面の耐食性(内面耐食性)、耐久性(疲労寿命)を評価した。犠牲陽極材の平均結晶粒度の測定をろう付け後としたのは、ろう付け加熱中に生じた再結晶粒の粒径が、ろう付け完了時点においてもほとんど変化しないためである。結果を表4に示す。   Using the obtained aluminum alloy clad material as a test material, the average crystal grain size of the sacrificial anode material is measured by the following method, and the wetting spreadability, brazing property, and strength characteristics (tensile strength) of the sacrificial anode material surface The corrosion resistance (inner surface corrosion resistance) and durability (fatigue life) of the sacrificial anode material surface were evaluated. The reason for measuring the average grain size of the sacrificial anode material after brazing is that the grain size of recrystallized grains generated during brazing heating hardly changes even at the time of completion of brazing. The results are shown in Table 4.

Figure 0004832354
Figure 0004832354

Figure 0004832354
Figure 0004832354

Figure 0004832354
Figure 0004832354

(犠牲陽極材の平均結晶粒度測定)
クラッド板材のろう材面だけにフッ化物フラックスを塗布し、窒素ガス中、595℃(材料温度)で3分間加熱した。昇温は、常温から400℃までの昇温速度を50℃/分とし、常温から595℃までの到達時間を30分以内とする条件で加熱した。加熱後の試験材について、犠牲陽極材面(L−LT方向)をエメリー紙(1000〜2400)で数μm研磨して、バフ研磨で鏡面に仕上げた。さらに、純水500ml、フッ酸27ml(46%)、ホウ酸11gを混合した溶液中で、電圧25〜30Vで45〜60秒間電解した。その後、光学顕微鏡を用いて犠牲陽極材表面の偏光ミクロ組織を撮影し、比較法により結晶粒度を測定した。比較にはASTM(E112−61)の標準結晶粒度組織図を用いた。(標準結晶粒度組織図に示されているグレインサイズを平均結晶粒度の指標とした。)
(Measurement of average grain size of sacrificial anode material)
Fluoride flux was applied only to the brazing material surface of the clad plate, and heated in nitrogen gas at 595 ° C. (material temperature) for 3 minutes. The heating was performed under the condition that the temperature rising rate from room temperature to 400 ° C. was 50 ° C./min, and the arrival time from room temperature to 595 ° C. was within 30 minutes. About the test material after a heating, sacrificial anode material surface (L-LT direction) was ground | polished for several micrometers with emery paper (1000-2400), and was finished in the mirror surface by buffing. Furthermore, electrolysis was performed at a voltage of 25 to 30 V for 45 to 60 seconds in a solution in which 500 ml of pure water, 27 ml (46%) of hydrofluoric acid, and 11 g of boric acid were mixed. Thereafter, the polarization microstructure on the surface of the sacrificial anode material was photographed using an optical microscope, and the crystal grain size was measured by a comparative method. The standard grain size structure chart of ASTM (E112-61) was used for comparison. (The grain size shown in the standard grain size structure chart was used as an index of the average grain size.)

(犠牲陽極材面のろうのぬれ拡がり性の評価)
得られたクラッド板材を用いて、20mm×60mmの板を切り出し、シェーパ加工により端面(4面全て)を切削し15mm×55mmのサイズに仕上げた。この板をフラックスを塗布することなく、犠牲陽極材面を上にして炉内に水平に設置し、窒素ガス中、600℃(材料温度)で3分間加熱した。加熱後の犠牲陽極材面を光学顕微鏡を用いて16倍で撮影した写真(ネガポジ反転撮影)(図4)上からろう周り長さの平均値L(例えば、図4においては、L=(L1+L2)/2)を測定した。ろうのぬれ拡がり性の評価は、ろう周り長さの平均値Lが1.3mm以上を良好(○)、1.3mm未満を不良(×)とした。
(Evaluation of wettability and spreadability of the sacrificial anode material surface)
Using the obtained clad plate material, a 20 mm × 60 mm plate was cut out, and end surfaces (all four surfaces) were cut by a shaper process to finish a size of 15 mm × 55 mm. This plate was placed horizontally in the furnace with the sacrificial anode material face up without applying flux, and heated in nitrogen gas at 600 ° C. (material temperature) for 3 minutes. A photograph of the sacrificial anode material surface after heating taken at a magnification of 16 using an optical microscope (negative-positive reversal photography) (FIG. 4). The average value L of the wax circumference from the top (for example, L = (L1 + L2 in FIG. 4) ) / 2) was measured. In the evaluation of the wetting spreadability of the wax, the average value L of the wax circumference length was 1.3 mm or more as good (◯) and less than 1.3 mm as bad (×).

(ろう付け性の評価)
得られたクラッド材のろう材面だけにフッ化物系フラックスを5g/m塗布した後、A3003の厚さ1.0mmのベア材と図5に示すように組み合わせて間隙充填試験片を作成し、窒素ガス中、600℃(材料温度)で3分間加熱し、接合長さ(図6のFL)を測定し、接合長さが5mm以上を良好(○)、5mm未満を不良(×)とした。
(Evaluation of brazing)
After applying 5 g / m 2 of fluoride flux only to the brazing filler metal surface of the obtained clad material, a gap filling test piece was prepared by combining with A3003 1.0 mm thick bare material as shown in FIG. In a nitrogen gas, heat at 600 ° C. (material temperature) for 3 minutes, measure the joining length (FL in FIG. 6), and the joining length is 5 mm or more is good (◯), and less than 5 mm is bad (×). did.

(強度と耐食性の評価)
得られたクラッド材にフラックスを塗布することなく、窒素ガス中、595℃(材料温度)で3分間加熱し、その後、引張試験(JIS Z 2241)と内面の腐食試験を行った。強度に関しては、引張強さが200MPa以上を良好(〇)、200MPa未満を不良(×)とした。内面の腐食試験の方法は以下の方法で行い、腐食深さが0.10mm未満を良好(○)、0.10mm以上を不良(×)とした。
(内面腐食試験)
腐食液:Cl:300ppm、SO 2−:100ppm、Cu2+:10ppm
比液量:5mL/cm
シール:ろう材面と端面をシリコン樹脂でシールした。
方法:88℃で8hr加熱した後、冷却し25℃×16hr保持するサイクルを
6ヶ月間繰り返し試験した。なお、1ヶ月に1回の頻度で腐食液を交換した。
(Evaluation of strength and corrosion resistance)
The obtained clad material was heated in nitrogen gas at 595 ° C. (material temperature) for 3 minutes without applying flux, and then a tensile test (JIS Z 2241) and an inner surface corrosion test were performed. Regarding the strength, the tensile strength of 200 MPa or more was judged good (◯), and the tensile strength of less than 200 MPa was judged as poor (x). The inner surface corrosion test was carried out by the following method, where the corrosion depth was less than 0.10 mm as good (◯) and 0.10 mm or more as bad (x).
(Internal corrosion test)
Corrosion solution: Cl : 300 ppm, SO 4 2− : 100 ppm, Cu 2+ : 10 ppm
Specific liquid volume: 5 mL / cm 2
Seal: The brazing filler metal surface and the end surface were sealed with silicon resin.
Method: After heating at 88 ° C. for 8 hours, a cycle of cooling and holding at 25 ° C. × 16 hours was repeatedly tested for 6 months. The corrosive liquid was replaced once a month.

(耐久性の評価)
得られたクラッド板材にフラックスを塗布することなく、窒素ガス中、610℃(材料温度)で3分間加熱し、その後、以下の疲労試験を行い、破断時の繰返し数が10000回以上を良好(〇)、10000回未満を不良(×)とした。
(屈曲曲げ疲労試験)
ひずみ範囲:0.36
ひずみ比:−1
周波数:60cpm
(Durability evaluation)
Without applying a flux to the obtained clad plate material, it was heated in nitrogen gas at 610 ° C. (material temperature) for 3 minutes, and then the following fatigue test was performed. ◯) Less than 10,000 times was regarded as defective (x).
(Bending bending fatigue test)
Strain range: 0.36
Strain ratio: -1
Frequency: 60 cpm

Figure 0004832354
Figure 0004832354

表4にみられるように、本発明に従う試験材1〜25はいずれも、ろう付け性、犠牲陽極材面のろうのぬれ拡がり性に優れ、十分な強度を有し、良好な内面耐食性、優れた耐久性をそなえていた。   As can be seen from Table 4, all of the test materials 1 to 25 according to the present invention have excellent brazeability, brazing wettability of the sacrificial anode material surface, sufficient strength, good internal corrosion resistance, excellent It had high durability.

比較例1
連続鋳造により表5に示す組成を有する心材用合金、表6に示す組成を有する犠牲陽極材用合金を造塊し、得られた鋳塊について均質化処理を行い、犠牲陽極材用合金を熱間圧延して所定の厚さとし、犠牲陽極材用合金として当該犠牲陽極材用合金および実施例1で造塊後、所定厚さまで熱間圧延した犠牲陽極材用合金B1、B2、B3と、前記心材用合金および実施例1で造塊した心材用合金A1、A12の鋳塊と、実施例1で造塊後所定厚さまで熱間圧延したろう材用合金C1を組み合わせて熱間圧延し、クラッド材を得た。表5および表6において、本発明の条件を外れたものには下線を付した。
Comparative Example 1
An alloy for core material having the composition shown in Table 5 and an alloy for sacrificial anode material having the composition shown in Table 6 are ingoted by continuous casting, and the resulting ingot is homogenized to heat the alloy for sacrificial anode material. The alloy for sacrificial anode material as an alloy for sacrificial anode material and the alloy for sacrificial anode material B1, B2, B3 hot-rolled to a predetermined thickness after ingot formation in Example 1 as the alloy for sacrificial anode material, The alloy for core material and the ingots for core material A1 and A12 ingot in Example 1 and the alloy C1 for brazing material hot rolled to a predetermined thickness after ingot in Example 1 are hot-rolled and clad The material was obtained. In Table 5 and Table 6, those outside the conditions of the present invention are underlined.

ついで、クラッド材を冷間圧延、中間焼鈍、冷間圧延して厚さ0.20mmの板材(クラッド材、質別H14)を得た。クラッドの構成は、犠牲陽極材を0.030〜0.040mm、ろう材を0.030〜0.040mm、残りを心材とした。   Subsequently, the clad material was cold-rolled, intermediate-annealed, and cold-rolled to obtain a plate material (cladding material, grade H14) having a thickness of 0.20 mm. The structure of the clad was 0.030 to 0.040 mm for the sacrificial anode material, 0.030 to 0.040 mm for the brazing material, and the remainder was the core material.

得られたアルミニウム合金クラッド材を試験材として、実施例1と同じ方法によって、犠牲陽極材の平均結晶粒度を測定し、犠牲陽極材表面のろうのぬれ拡がり性、ろう付け性、強度特性(引張強さ)、犠牲陽極材面の耐食性(内面耐食性)、耐久性(疲労寿命)を評価した。結果を表7に示す。なお、試験材106のろう付け性の評価においては、フラックス塗布量を3g/m塗布とした。 Using the obtained aluminum alloy clad material as a test material, the average crystal grain size of the sacrificial anode material was measured by the same method as in Example 1, and the wetting spreadability, brazing property, and strength characteristics of the sacrificial anode material surface (tensile) Strength), corrosion resistance of the sacrificial anode material surface (internal corrosion resistance), and durability (fatigue life). The results are shown in Table 7. In the evaluation of the brazing property of the test material 106, the flux application amount was 3 g / m 2 .

Figure 0004832354
Figure 0004832354

Figure 0004832354
Figure 0004832354

Figure 0004832354
Figure 0004832354

表7に示すように、試験材101は熱吸収開始温度(融点)が605℃未満であるため、エロージョンが著しく、高強度であるにもかかわらず耐久性が低下した。試験材102は犠牲陽極材のSi含有量が少ないため、強度および耐久性が低下した。試験材103は犠牲陽極材のZn含有量が少ないため、耐食性が劣っている。   As shown in Table 7, since the test material 101 had a heat absorption start temperature (melting point) of less than 605 ° C., the erosion was remarkable and the durability was lowered despite the high strength. Since the test material 102 had a low Si content in the sacrificial anode material, its strength and durability were lowered. Since the test material 103 has a small Zn content in the sacrificial anode material, the corrosion resistance is poor.

試験材104は、犠牲陽極材がMnを含有しないもので、犠牲陽極材用合金鋳塊の均質化処理を、(犠牲陽極材の固相線温度(℃)×0.5)℃を超える温度で行ったため、犠牲陽極材の結晶粒度が大きくなり、犠牲陽極材表面のろうのぬれ拡がり性が低下した。犠牲陽極材がMn:1.2%を含有するもので、犠牲陽極材用合金鋳塊の均質化処理を、(犠牲陽極材の固相線温度(℃)×0.7)℃未満の温度で行ったため、犠牲陽極材の結晶粒度が大きくなり、犠牲陽極材表面のろうのぬれ拡がり性が低下した。試験材106は、心材のMg含有量が0.59%と0.4%を超えているものであり、フラックス塗布量が5g/m未満の3g/mであったため、ろう付け性が低下した。 The test material 104 is a material in which the sacrificial anode material does not contain Mn, and the homogenization treatment of the alloy ingot for the sacrificial anode material is performed at a temperature exceeding (solidus temperature of the sacrificial anode material (° C.) × 0.5) ° C. Therefore, the grain size of the sacrificial anode material was increased, and the wettability of the sacrificial anode material surface was reduced. The sacrificial anode material contains Mn: 1.2%, and the homogenization treatment of the alloy ingot for the sacrificial anode material is performed at a temperature lower than (solidus temperature of sacrificial anode material (° C.) × 0.7) ° C. Therefore, the grain size of the sacrificial anode material was increased, and the wettability of the sacrificial anode material surface was reduced. In the test material 106, the Mg content of the core material is 0.59% and exceeds 0.4%, and the flux coating amount is 3 g / m 2 less than 5 g / m 2 , so that the brazing property is high. Declined.

溶接型のチューブ形状を示す断面図である。It is sectional drawing which shows the tube shape of a welding type. ろう付け型のチューブ形状の実施例を示す断面図である。It is sectional drawing which shows the Example of a brazing-type tube shape. 高ろう付け型のチューブ形状の他の実施例を示す断面図である。It is sectional drawing which shows the other Example of the high brazing type tube shape. 犠牲陽極材面のろうのぬれ拡がり性評価におけるろうの周り長さを示す図である。It is a figure which shows the circumference | surroundings length of the wax in the wetting spreadability evaluation of the sacrificial anode material surface. ろう付け性の評価で用いる間隙充填試験片を示す図である。It is a figure which shows the gap filling test piece used by brazing property evaluation. 図5の間隙充填試験片の試験後のろうの充填長さFを示す図である。Is a diagram showing the brazing of the filling length F L after test of the gap filling specimens of FIG. 心材の熱吸収開始温度MPの測定方法を示す図である。It is a figure which shows the measuring method of the heat absorption start temperature MP of a core material.

Claims (9)

心材の一方の面に犠牲陽極材をクラッドしてなるアルミニウム合金クラッド材であって、心材が、Mn:0.8〜2.0%(質量%、以下同じ)、Cu:0.25%未満、Si:0.5%以上1.0%未満、Mg:0.3〜0.6%、Ti:0.05〜0.35%を含有し、残部アルミニウムおよび不純物からなり、かつ、Cu、SiおよびMgの含有量が、下記(1)式において、熱吸収開始温度(MP)が605℃以上になるよう規制されたアルミニウム合金で構成され、犠牲陽極材が、Zn:2.5%を超え8%以下、Si:0.4〜1.5%を含有し、残部アルミニウムおよび不純物からなり、常温から400℃までの昇温速度を50℃/分とし、常温から595℃までの到達時間を30分以内とする条件で加熱した場合において、犠牲陽極材表面の平均結晶粒度が0.20mm以下であるアルミニウム合金から構成されることを特徴とする耐久性に優れた高強度、高融点熱交換器用アルミニウム合金クラッド材。
MP=650−28.6CSi−11.2CCu−26.6CMg ・・・(1)
Si:Si濃度(質量%)、CCu:Cu濃度(質量%)、CMg:Mg濃度(質量%)
An aluminum alloy clad material obtained by cladding a sacrificial anode material on one surface of a core material, the core material being Mn: 0.8 to 2.0% (mass%, the same applies hereinafter), Cu: less than 0.25% Si: 0.5% or more and less than 1.0%, Mg: 0.3-0.6%, Ti: 0.05-0.35%, consisting of the balance aluminum and impurities, and Cu, The content of Si and Mg is composed of an aluminum alloy in which the heat absorption start temperature (MP) is regulated to be 605 ° C. or higher in the following formula (1), and the sacrificial anode material is Zn: 2.5% Exceeding 8% or less, Si: 0.4 to 1.5%, consisting of remaining aluminum and impurities, temperature rising rate from normal temperature to 400 ° C. is 50 ° C./min, reaching time from normal temperature to 595 ° C. In the case of heating under the condition of within 30 minutes High strength average grain size of the anode material surface and excellent durability, characterized in that it is made of aluminum alloy is less than 0.20 mm, high melting heat aluminum alloy clad material.
MP = 650-28.6C Si 11.2C Cu- 26.6C Mg (1)
C Si : Si concentration (mass%), C Cu : Cu concentration (mass%), C Mg : Mg concentration (mass%)
前記心材の他方の面にAl−Si系ろう材がクラッドされていることを特徴とする請求項1記載の耐久性に優れた高強度、高融点熱交換器用アルミニウム合金クラッド材。 2. The aluminum alloy clad material for high strength and high melting point heat exchanger according to claim 1, wherein the other surface of the core material is clad with an Al—Si brazing material. 前記心材がさらに、Cr:0.01〜0.3%、Zr:0.01〜0.3%のうちの1種または2種を含有することを特徴とする請求項1または2記載の耐久性に優れた高強度、高融点熱交換器用アルミニウム合金クラッド材。 The durability according to claim 1 or 2, wherein the core material further contains one or two of Cr: 0.01 to 0.3% and Zr: 0.01 to 0.3%. High strength, high melting point aluminum alloy clad material for heat exchangers. 前記心材がさらに、V:0.01〜0.3%、B:0.01〜0.3%のうちの1種または2種を含有することを特徴とする請求項1〜3のいずれかに記載の耐久性に優れた高強度、高融点熱交換器用アルミニウム合金クラッド材。 The core material further contains one or two of V: 0.01 to 0.3% and B: 0.01 to 0.3%. Aluminum alloy clad material for high strength, high melting point heat exchangers with excellent durability as described in 1. 前記犠牲陽極材がさらに、In:0.05%以下、Sn:0.05以下、Mn:2.0%以下、Fe:1.5%以下、Ti:0.35%以下のうちの1種または2種以上を含有することを特徴とする請求項1〜4のいずれかに記載の耐久性に優れた高強度、高融点熱交換器用アルミニウム合金クラッド材。 The sacrificial anode material further includes one of In: 0.05% or less, Sn: 0.05 or less, Mn: 2.0% or less, Fe: 1.5% or less, Ti: 0.35% or less. Or the aluminum alloy clad material for high-strength, high melting-point heat exchangers excellent in durability in any one of Claims 1-4 characterized by containing 2 or more types. 前記犠牲陽極材がMn:0.1〜2.0%を含有する請求項5に記載のアルミニウム合金クラッド材を製造する方法において、犠牲陽極材用合金鋳塊の均質化処理を、(犠牲陽極材用鋳塊の固相線温度(℃)×0.7)℃以上の温度で行うことを特徴とする耐久性に優れた高強度、高融点熱交換器用アルミニウム合金クラッド材の製造方法。 6. The method for producing an aluminum alloy clad material according to claim 5, wherein the sacrificial anode material contains Mn: 0.1 to 2.0%. A method for producing an aluminum alloy clad material for a high-strength, high-melting-point heat exchanger excellent in durability, characterized by being performed at a solidus temperature (° C.) × 0.7) ° C. or higher of the ingot for the material. 前記犠牲陽極材のMn含有量が0.1%未満である請求項5に記載のアルミニウム合金クラッド材を製造する方法において、犠牲陽極材用合金鋳塊の均質化処理を、(犠牲陽極材用鋳塊の固相線温度(℃)×0.5)℃以下の温度で行うことを特徴とする耐久性に優れた高強度、高融点熱交換器用アルミニウム合金クラッド材の製造方法。 The method for producing an aluminum alloy clad material according to claim 5, wherein the sacrificial anode material has a Mn content of less than 0.1%. A method for producing an aluminum alloy clad material for a high-strength, high-melting-point heat exchanger excellent in durability, characterized by being performed at a solidus temperature (° C.) × 0.5) ° C. or less of an ingot. 請求項1〜5に記載のアルミニウム合金クラッド材、請求項6または7により製造されたアルミニウム合金クラッド材のいずれかを組み付け、ろう付け接合することにより製造されるアルミニウム合金製熱交換器。 An aluminum alloy heat exchanger produced by assembling and brazing the aluminum alloy clad material according to any one of claims 1 to 5 and the aluminum alloy clad material produced according to claim 6 or 7. 前記心材が0.4%を超えるMgを含有する請求項1〜5のいずれかに記載のアルミニウム合金クラッド材を組み付け、フッ化物系フラックスまたはセシウム系フラックスを5g/m以上塗布して不活性ガス雰囲気中でろう付け接合することにより製造されるアルミニウム合金製熱交換器。 The aluminum alloy clad material according to any one of claims 1 to 5, wherein the core material contains Mg exceeding 0.4%, and is inactivated by applying a fluoride flux or a cesium flux at 5 g / m 2 or more. An aluminum alloy heat exchanger manufactured by brazing in a gas atmosphere.
JP2007105678A 2007-04-13 2007-04-13 Aluminum alloy clad material for high strength, high melting point heat exchanger excellent in durability, its manufacturing method, and aluminum alloy heat exchanger Expired - Fee Related JP4832354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007105678A JP4832354B2 (en) 2007-04-13 2007-04-13 Aluminum alloy clad material for high strength, high melting point heat exchanger excellent in durability, its manufacturing method, and aluminum alloy heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007105678A JP4832354B2 (en) 2007-04-13 2007-04-13 Aluminum alloy clad material for high strength, high melting point heat exchanger excellent in durability, its manufacturing method, and aluminum alloy heat exchanger

Publications (2)

Publication Number Publication Date
JP2008261026A JP2008261026A (en) 2008-10-30
JP4832354B2 true JP4832354B2 (en) 2011-12-07

Family

ID=39983721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007105678A Expired - Fee Related JP4832354B2 (en) 2007-04-13 2007-04-13 Aluminum alloy clad material for high strength, high melting point heat exchanger excellent in durability, its manufacturing method, and aluminum alloy heat exchanger

Country Status (1)

Country Link
JP (1) JP4832354B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5452027B2 (en) * 2009-01-23 2014-03-26 株式会社神戸製鋼所 Aluminum alloy laminate with excellent fatigue characteristics
JP5577616B2 (en) * 2009-04-06 2014-08-27 株式会社デンソー Heat exchanger tubes and heat exchangers
JP2011241448A (en) * 2010-05-18 2011-12-01 Furukawa-Sky Aluminum Corp Aluminum alloy clad material excellent in alkali resistance
US20160161199A1 (en) * 2013-07-29 2016-06-09 Uacj Corporation Aluminum-alloy clad member, method for producing same, and heat exchanger using aluminum-alloy clad member
US9976201B2 (en) 2014-01-07 2018-05-22 Uacj Corporation Aluminum-alloy clad material and production method therefor, and heat exchanger using said aluminum-alloy clad material and production method therefor
CN105814219B (en) * 2014-01-10 2018-09-11 株式会社Uacj Aluminium, Al alloy clad material and its manufacturing method and the heat exchanger and its manufacturing method for using the aluminium, Al alloy clad material
JP2016176112A (en) * 2015-03-20 2016-10-06 株式会社神戸製鋼所 Aluminum alloy brazing sheet
JP6868383B2 (en) * 2016-12-14 2021-05-12 株式会社Uacj Manufacturing method of aluminum alloy brazing sheet
JP6970841B2 (en) * 2016-12-14 2021-11-24 株式会社Uacj Aluminum alloy brazing sheet and its manufacturing method
JP7275336B1 (en) 2022-02-09 2023-05-17 株式会社Uacj Method for producing aluminum alloy material and aluminum alloy material
CN116334454B (en) * 2023-05-29 2023-12-05 苏州慧金新材料科技有限公司 Brazing heat-treatment-free die-casting aluminum alloy material and preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03134128A (en) * 1989-10-18 1991-06-07 Furukawa Alum Co Ltd Aluminum alloy-clad material for heat exchanger member
JPH05311303A (en) * 1992-05-08 1993-11-22 Mitsubishi Alum Co Ltd Tube material made of high strength al alloy for aluminum heat exchanger
JPH11229064A (en) * 1998-02-19 1999-08-24 Furukawa Electric Co Ltd:The Aluminum alloy sacrificial anode material for heat exchanger and high corrosion resistance aluminum alloy composite material for heat exchanger
JP4326907B2 (en) * 2003-10-23 2009-09-09 三菱アルミニウム株式会社 Manufacturing method of brazing sheet
JP4623729B2 (en) * 2005-09-27 2011-02-02 株式会社デンソー Aluminum alloy clad material and heat exchanger excellent in surface bonding by brazing of sacrificial anode material surface

Also Published As

Publication number Publication date
JP2008261026A (en) 2008-10-30

Similar Documents

Publication Publication Date Title
JP5057439B2 (en) Aluminum alloy clad material for high strength, high melting point heat exchanger excellent in durability, its manufacturing method, and aluminum alloy heat exchanger
JP4832354B2 (en) Aluminum alloy clad material for high strength, high melting point heat exchanger excellent in durability, its manufacturing method, and aluminum alloy heat exchanger
JP4993440B2 (en) High strength aluminum alloy clad material for heat exchangers with excellent brazeability
JP4702797B2 (en) Manufacturing method of aluminum alloy clad material excellent in surface bondability by brazing of sacrificial anode material surface
JP4916334B2 (en) Aluminum alloy clad material for heat exchangers with excellent strength and brazing
JP4623729B2 (en) Aluminum alloy clad material and heat exchanger excellent in surface bonding by brazing of sacrificial anode material surface
JP5893450B2 (en) Aluminum alloy brazing sheet for header of heat exchanger, method for producing the same, and method for producing heat exchanger
JP4916333B2 (en) Aluminum alloy clad material for heat exchangers with excellent strength and brazing
JP4448758B2 (en) Aluminum alloy clad material for heat exchangers with excellent brazing, corrosion resistance and hot rolling properties
JP4807826B2 (en) Aluminum alloy clad material with excellent surface bonding by brazing sacrificial anode material
JP3910506B2 (en) Aluminum alloy clad material and manufacturing method thereof
JP6154645B2 (en) Brazed joint structure
JP4220410B2 (en) Aluminum alloy clad material for heat exchanger
JP5836695B2 (en) Aluminum alloy fin material for heat exchangers with excellent strength and corrosion resistance after brazing
JP4993439B2 (en) High strength aluminum alloy clad material for heat exchangers with excellent brazeability
JP4030006B2 (en) Aluminum alloy clad material and manufacturing method thereof
JP5498213B2 (en) Aluminum alloy clad material for high-strength heat exchangers with excellent brazeability
JP2005232507A (en) Aluminum alloy clad material for heat exchanger
JP5632175B2 (en) Aluminum alloy clad material and heat exchanger for high-strength heat exchangers with excellent brazing properties
JP2004017116A (en) Aluminum alloy brazing sheet for brazed pipe making tubes, and its producing method
JP2012082459A (en) Aluminum alloy clad material
JP5498214B2 (en) Aluminum alloy clad material for high-strength heat exchangers with excellent brazeability
JP3876180B2 (en) Aluminum alloy three-layer clad material
JPH07179971A (en) Aluminum alloy brazing sheet bar for resistance welding
JP4263160B2 (en) Aluminum alloy clad material and heat exchanger tube and heat exchanger using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4832354

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees