JP2013204105A - Plate material made of aluminum alloy - Google Patents

Plate material made of aluminum alloy Download PDF

Info

Publication number
JP2013204105A
JP2013204105A JP2012075654A JP2012075654A JP2013204105A JP 2013204105 A JP2013204105 A JP 2013204105A JP 2012075654 A JP2012075654 A JP 2012075654A JP 2012075654 A JP2012075654 A JP 2012075654A JP 2013204105 A JP2013204105 A JP 2013204105A
Authority
JP
Japan
Prior art keywords
plate material
aluminum alloy
core material
brazing
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012075654A
Other languages
Japanese (ja)
Other versions
JP5965183B2 (en
Inventor
Yusuke Imai
祐介 今井
Shu Kuroda
周 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2012075654A priority Critical patent/JP5965183B2/en
Publication of JP2013204105A publication Critical patent/JP2013204105A/en
Application granted granted Critical
Publication of JP5965183B2 publication Critical patent/JP5965183B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a plate material made of an aluminum alloy having formability to be easily worked into permissible dimensions and further having corrosion resistance, thereby making service life as a heater core, for example, longer.SOLUTION: A plate material made of an aluminum alloy is composed of: a core material including 1.0 to 2.0% Mn, 0.1 to 0.8% Si, 0.001 to 0.5% Fe and 0.001 to 0.1% Cu, and the balance Al with inevitable impurities; and a brazing filler metal including 6.0 to 12.0% Si and 1.0 to 5.0% Zn, and the balance Al with inevitable impurities. The average crystal grain size of the core material after final annealing is controlled to 50 to 400 μm.

Description

本発明は、自動車に搭載されるヒーターコア、その他の熱交換器に用いられるアルミニウム合金製プレート材に関する。   The present invention relates to an aluminum alloy plate material used for a heater core and other heat exchangers mounted on an automobile.

自動車に搭載される空気調和システムでは、暖房用の温風を作り出すのに、アルミニウム合金製の熱交換器であるヒーターコアが用いられている。典型的なヒーターコアは、熱媒体が通過するチューブと、熱媒体と熱交換を行うフィンと、から構成される。ヒーターコアの内部では、熱源で温められた熱媒体がチューブを通過する際に、フィンを介し周囲に放熱する。加熱された周囲の空気は、ファンを用いて、車室内に温風として送りこまれる。
熱源には主にエンジンの排熱が利用されてきたが、PTC(Positive Temperature Coefficient)ヒータを熱源として用いることが例えば、特許文献1に開示されている。特許文献1は、PTCヒータによって温められた熱媒体をヒーターコアに誘導し、車室内の温風源としている。
ヒーターコアのチューブの内部は、温められた熱媒体が通過するため、熱負荷により腐食環境下となる。そのため、ヒーターコアには耐食性が求められる。また、ヒーターコアは、板状の素材であるプレート材を所望するチューブ、フィンの形状に曲げ加工して得られるが、このプレート材には許容寸法内に容易に加工できる成形性(以下、単に成形性ということがある)が要求される。
In an air conditioning system mounted on an automobile, a heater core, which is a heat exchanger made of aluminum alloy, is used to generate warm air for heating. A typical heater core includes a tube through which a heat medium passes and fins that exchange heat with the heat medium. Inside the heater core, when the heat medium heated by the heat source passes through the tube, it radiates heat to the surroundings through the fins. The heated ambient air is sent as warm air into the passenger compartment using a fan.
For example, Patent Document 1 discloses that a PTC (Positive Temperature Coefficient) heater is used as a heat source. In Patent Document 1, a heat medium heated by a PTC heater is guided to a heater core and used as a hot air source in a passenger compartment.
Since the heated heat medium passes through the inside of the tube of the heater core, it becomes a corrosive environment due to heat load. For this reason, the heater core is required to have corrosion resistance. The heater core is obtained by bending a plate material, which is a plate-like material, into a desired tube or fin shape. Sometimes called formability).

特開2010−69947号公報JP 2010-69947 A

従来から熱交換器への使用実績のあるJIS A3003合金をヒーターコアに用いても、上述した腐食環境下では耐食性が不十分であり、早期に貫通孔が生じてしまう問題があった。
FeおよびCuの含有量を規制することにより、耐食性を改善することはできるが、組織が粗大となり、上述した成形性が得られないという問題点が生じる。
本発明は、このような技術的課題に基づいてなされたもので、耐食性を備えることでヒーターコアを含む熱交換器として高寿命化を図ることができるとともに、許容寸法内に容易に加工できる成形性を備えるアルミニウム合金製プレート材を提供することを目的とする。
Even when JIS A3003 alloy, which has been used for heat exchangers in the past, is used for the heater core, the corrosion resistance is insufficient under the above-mentioned corrosive environment, and there is a problem that through holes are formed at an early stage.
Although the corrosion resistance can be improved by regulating the contents of Fe and Cu, there is a problem that the structure becomes coarse and the above-described formability cannot be obtained.
The present invention has been made on the basis of such a technical problem. By providing corrosion resistance, a heat exchanger including a heater core can have a long service life, and can be easily processed within allowable dimensions. It aims at providing the plate material made from an aluminum alloy provided with property.

本発明のプレート材は、芯材と、芯材の片面あるいは両面に配置されるろう材と、をクラッドして形成される。
芯材は、質量%で、Mn:1.0〜2.0%、Si:0.1〜0.8%、Fe:0.001〜0.5%、Cu:0.001〜0.1%を含有し、残部がAlおよび不可避不純物からなる組成を有し、ろう材は、Si:6.0〜12.0%、Zn:1.0〜5.0%と残部がAlおよび不可避不純物からなる組成を有する。
本発明のプレートは、最終焼鈍後における芯材の平均結晶粒径を50〜400μmにする。
本発明のプレート材は、芯材の組成を上記、特にFeおよびCuの量を規制することで耐食性を確保する一方、平均結晶粒径を上記の範囲にすることで、許容寸法内に加工できるという成形性を備える。
The plate material of the present invention is formed by cladding a core material and a brazing material disposed on one or both sides of the core material.
The core material contains, in mass%, Mn: 1.0 to 2.0%, Si: 0.1 to 0.8%, Fe: 0.001 to 0.5%, Cu: 0.001 to 0.1%, and the balance consisting of Al and inevitable impurities. The brazing filler metal has a composition of Si: 6.0 to 12.0%, Zn: 1.0 to 5.0%, with the balance being Al and inevitable impurities.
In the plate of the present invention, the average crystal grain size of the core material after the final annealing is set to 50 to 400 μm.
The plate material of the present invention can be processed within the allowable dimensions by ensuring the corrosion resistance by regulating the composition of the core material, particularly the amount of Fe and Cu, while keeping the average crystal grain size within the above range. It has the formability.

芯材の平均結晶粒径を上記のように制御して、成形性を確保するために、プレート材を製造する工程の条件を特定することが推奨される。この工程としては、クラッド前に行われる均質化処理、最終焼鈍前の冷間圧延における圧下率(以下、最終圧下率ということがある)、および、最終焼鈍が掲げられる。
均質化処理については、芯材が、保持温度550〜630℃、保持時間3〜10hrの条件で施されていることが好ましい。
また、最終圧下率については20〜80%で施され、さらに、最終焼鈍については保持温度までの昇温速度を100〜10000℃/minとし、保持温度を300〜600℃とする条件下で施されていることが好ましい。
In order to ensure the moldability by controlling the average crystal grain size of the core material as described above, it is recommended to specify the process conditions for producing the plate material. Examples of this step include a homogenization treatment performed before cladding, a rolling reduction in cold rolling before final annealing (hereinafter, sometimes referred to as final rolling reduction), and final annealing.
For the homogenization treatment, the core material is preferably applied under conditions of a holding temperature of 550 to 630 ° C. and a holding time of 3 to 10 hours.
The final rolling reduction is performed at 20 to 80%, and the final annealing is performed under the condition that the temperature rising rate to the holding temperature is 100 to 10,000 ° C / min and the holding temperature is 300 to 600 ° C. It is preferable that

本発明において、最終焼鈍後における芯材の平均結晶粒径を50〜400μmにすることで、所定の成形性を確保できるが、成形に対してプレート材が等方的な性質を備えることが望ましい。
したがって本発明のプレート材は、最終焼鈍後の芯材が、圧延方向に沿った平均結晶粒径をAとし、圧延方向と直交する方向に沿った平均結晶粒径を粒径Bとすると、A/B≦10の関係を満足することが好ましい。
さらに、本発明のプレート材は、圧延方向、圧延方向となす角度が45°の方向および圧延方向と直交する方向の3つの方向に引張る引張試験を各々行い、3つの方向の中で、最も伸びの大きいものの伸びの値をCとし、最も伸びの小さいものの伸びの値をDとすると、((C-D)/C)×100≦50%の関係を満足することが好ましい。
In the present invention, the predetermined crystal formability can be ensured by setting the average crystal grain size of the core material after the final annealing to 50 to 400 μm, but it is desirable that the plate material has isotropic properties with respect to the molding. .
Therefore, the plate material of the present invention, when the core material after the final annealing, the average crystal grain size along the rolling direction is A, and the average crystal grain size along the direction orthogonal to the rolling direction is grain size B, A It is preferable to satisfy the relationship / B ≦ 10.
Further, the plate material of the present invention was subjected to tensile tests in each of three directions, ie, the rolling direction, the direction formed by the rolling direction at an angle of 45 °, and the direction perpendicular to the rolling direction. It is preferable that the relationship of ((CD) / C) × 100 ≦ 50% is satisfied, where C is the elongation value of the largest and D is the elongation value of the smallest elongation.

本発明のプレート材において、耐食性確保のために、芯材の粒界と粒内のCuの固溶度差が0.03%以下であることが好ましい。
なお、固溶度差であるから、粒界と粒内の何れの固溶度が高いかは問わないが、通常、粒界の固溶度の方が大きい。
In the plate material of the present invention, in order to ensure corrosion resistance, the solid solubility difference between the grain boundary of the core material and the Cu in the grain is preferably 0.03% or less.
In addition, since it is a solid solubility difference, it does not ask | require which solid solubility is higher in a grain boundary or a grain, but the solid solubility of a grain boundary is usually larger.

また、本発明のプレート材において、芯材へのエロージョンを抑制するために、上述した最終焼鈍を行なった後に、さらに300℃以下の焼鈍を施してもよい。   Further, in the plate material of the present invention, in order to suppress erosion to the core material, after the final annealing described above, annealing at 300 ° C. or lower may be further performed.

本発明によれば、許容寸法内に加工できる成形性を備え、さらに耐食性を備えることで例えばヒーターコアを作製するとその高寿命化を図ることが可能なアルミニウム合金製プレート材が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the plate material made from an aluminum alloy which can aim at the lifetime improvement is provided when the heater core is produced by providing the moldability which can be processed into an allowable dimension, and also having corrosion resistance.

以下、本発明のアルミニウム合金製プレート材を詳細に説明する。
(1)芯材の組成について
[Mn:1.0〜2.0%]
Mnは微細なAl-Mn-Fe系の金属間化合物としてマトリックス中に分散し、芯材の強度を高める効果がある。
しかし、Mn量が1.0%未満では生成されるAl-Mn-Fe系化合物が少ないため分散強化が不足し、ろう付け後に所望する芯材強度が得られない。一方、Mn量が2.0%を超えると生成されるAl-Mn-Fe系化合物が多くなりすぎるため分散強化が過度になり、芯材の強度が高くなりすぎて、本発明におけるプレート材の成形性が劣る。したがって、本発明の芯材のMn量は1.0〜2.0%とする。なお、同様の理由から下限を1.2%、上限を1.8%とすることが望ましく、さらには下限を1.4%、上限を1.6%とすることがより望ましい。
Hereinafter, the aluminum alloy plate material of the present invention will be described in detail.
(1) About composition of core material [Mn: 1.0-2.0%]
Mn is dispersed in the matrix as a fine Al-Mn-Fe intermetallic compound, and has the effect of increasing the strength of the core material.
However, if the amount of Mn is less than 1.0%, the amount of Al—Mn—Fe compound produced is small, so that dispersion strengthening is insufficient, and the desired core material strength cannot be obtained after brazing. On the other hand, if the amount of Mn exceeds 2.0%, too much Al-Mn-Fe compound is produced, so dispersion dispersion becomes excessive, the core material strength becomes too high, and the formability of the plate material in the present invention Is inferior. Therefore, the Mn content of the core material of the present invention is set to 1.0 to 2.0%. For the same reason, it is desirable to set the lower limit to 1.2% and the upper limit to 1.8%, and it is more desirable to set the lower limit to 1.4% and the upper limit to 1.6%.

[Si:0.1〜0.8%]
Siは微細なAl-Mn-Si系の金属間化合物としてマトリックス中に分散し、芯材の強度を高める効果がある。しかし、Si量が0.1%未満では生成するAl-Mn-Si系化合物が少ないため、分散強化が不足し、ろう付け後に所望する芯材強度が得られない。一方、Si量が0.8%を超えると生成されるAl-Mn-Si系化合物が多くなりすぎるため分散強化が過度になり、芯材の強度が高くなりすぎて、プレート材の成形性が不十分になる。したがって、本発明の芯材のSi量は0.1〜0.8%とする。なお、同様の理由から下限を0.2%、上限を0.7%とすることが望ましく、さらには下限を0.3%、上限を0.6%とすることがより望ましい。
[Si: 0.1-0.8%]
Si is dispersed as a fine Al-Mn-Si intermetallic compound in the matrix, and has the effect of increasing the strength of the core material. However, when the Si content is less than 0.1%, the amount of Al—Mn—Si compound produced is small, so that dispersion strengthening is insufficient, and the desired core material strength cannot be obtained after brazing. On the other hand, if the amount of Si exceeds 0.8%, too much Al-Mn-Si compound is produced, resulting in excessive dispersion strengthening, too high strength of the core material, and insufficient formability of the plate material. become. Therefore, the Si content of the core material of the present invention is 0.1 to 0.8%. For the same reason, it is desirable to set the lower limit to 0.2% and the upper limit to 0.7%, and more preferably to set the lower limit to 0.3% and the upper limit to 0.6%.

[Fe:0.001〜0.5%]
Feは、芯材強度を高める効果がある。しかし、Fe量が0.001%未満では、再結晶の遅延により亜結晶領域が拡大し、ろう付時のエロ―ジョンが顕著となる。一方、Fe量が0.5%を超えるとカソードとして作用するAl-Fe系化合物が増加し、耐食性が低下する。したがって、本発明の芯材のFe量は0.001〜0.5%とする。なお、同様の理由から下限を0.05%、上限を0.4%とすることが望ましく、さらには下限を0.08%、上限を0.2%とすることがより望ましい。
[Fe: 0.001 to 0.5%]
Fe has the effect of increasing the core material strength. However, if the amount of Fe is less than 0.001%, the subcrystalline region expands due to the delay in recrystallization, and erosion during brazing becomes significant. On the other hand, if the amount of Fe exceeds 0.5%, the Al—Fe-based compound acting as a cathode increases and the corrosion resistance decreases. Therefore, the Fe content of the core material of the present invention is set to 0.001 to 0.5%. For the same reason, it is desirable to set the lower limit to 0.05% and the upper limit to 0.4%, and it is more desirable to set the lower limit to 0.08% and the upper limit to 0.2%.

[Cu:0.001〜0.1%]
Cuはマトリックス中に固溶し、芯材の強度を高め、また、芯材の電位を貴としてろう材との電位差が大きくなるため、耐食性を向上させる効果がある。しかし、Cu量が0.001%未満では、再結晶の遅延により亜結晶領域が拡大し、ろう付時のエロ―ジョンが顕著となる。一方、Cu量が0.1%を超えると結晶粒界にAl-Cu系化合物が析出し、結晶粒界と結晶粒内とで電位差が大きくなり、粒界腐食が生じる。したがって、本発明の芯材のCu量は0.001〜0.1%とする。なお、同様の理由から下限を0.01%、上限を0.08%とすることが望ましく、さらには下限を0.03%、上限を0.06%とすることがより望ましい。
[Cu: 0.001 to 0.1%]
Cu dissolves in the matrix to increase the strength of the core material, and since the potential difference between the core material and the brazing material is increased, the corrosion resistance is improved. However, if the amount of Cu is less than 0.001%, the subcrystalline region expands due to the delay of recrystallization, and erosion during brazing becomes remarkable. On the other hand, when the Cu content exceeds 0.1%, an Al—Cu-based compound is precipitated at the crystal grain boundary, the potential difference between the crystal grain boundary and the crystal grain becomes large, and intergranular corrosion occurs. Therefore, the Cu content of the core material of the present invention is set to 0.001 to 0.1%. For the same reason, it is desirable that the lower limit is 0.01% and the upper limit is 0.08%, and it is more desirable that the lower limit be 0.03% and the upper limit be 0.06%.

(2)ろう材の組成について
[Si:6.0〜12.0%]
Siは、ろう付け性を向上させる効果がある。しかし、Si量が6.0%未満ではろう付け熱処理時に溶融するろうの量が少なく、十分なろう付け性が得られない。一方、Si量が12.0%を超えるとろう付け熱処理時に溶融するろうの量が多くなりすぎて、所望するフィレットサイズに制御できなくなる。したがって、本発明のろう材のSi量は6.0〜12.0%とする。なお、同様の理由から下限を7.0%、上限を11.0%とすることが望ましく、さらには下限を8.0%、上限を10.0%とすることがより望ましい。
(2) About composition of brazing material [Si: 6.0 to 12.0%]
Si has the effect of improving brazing properties. However, if the Si amount is less than 6.0%, the amount of the solder that melts during the brazing heat treatment is small, and sufficient brazing properties cannot be obtained. On the other hand, if the amount of Si exceeds 12.0%, the amount of the solder that melts during the brazing heat treatment becomes too large, and the desired fillet size cannot be controlled. Therefore, the Si content of the brazing material of the present invention is set to 6.0 to 12.0%. For the same reason, it is desirable to set the lower limit to 7.0% and the upper limit to 11.0%, and more preferably to set the lower limit to 8.0% and the upper limit to 10.0%.

[Zn:1.0〜5.0%]
Znは電位を卑にする作用があり、ろう材に添加した場合、耐食性に有効な電位勾配ができることで、芯材の耐食性を向上させ、腐食減量を低減する効果がある。しかし、Zn量が1.0%未満ではろう材の電位が貴になり、芯材との電位差が小さくなることで、十分な犠牲陽極効果が作用しなくなる。一方、Zn量が5.0%を超えるとろう材の電位が卑になり、芯材との電位差が大きくなることで、ろう材の腐食速度が速くなり、ろう材が早期に腐食消失する。したがって、本発明のろう材のZn量は1.0〜5.0%とする。なお、同様の理由から下限を1.5%、上限を4.5%とすることが望ましく、さらには下限を2.0%、上限を4.0%とすることがより望ましい。
[Zn: 1.0-5.0%]
Zn has the effect of lowering the electric potential, and when added to the brazing material, it has an effect of improving the corrosion resistance of the core material and reducing the corrosion weight loss by forming a potential gradient effective for corrosion resistance. However, if the Zn content is less than 1.0%, the potential of the brazing material becomes noble and the potential difference from the core material becomes small, so that the sufficient sacrificial anode effect does not work. On the other hand, when the Zn content exceeds 5.0%, the potential of the brazing material becomes base, and the potential difference from the core material increases, so that the corrosion rate of the brazing material increases, and the brazing material corrodes early. Therefore, the Zn content of the brazing material of the present invention is set to 1.0 to 5.0%. For the same reason, it is desirable that the lower limit is 1.5% and the upper limit is 4.5%, and it is more desirable that the lower limit is 2.0% and the upper limit is 4.0%.

(3)芯材の平均結晶粒径について
本発明において、最終焼鈍後の芯材における平均結晶粒径を400μm以下にすることで、プレート材の成形性を確保する。しかし、この平均結晶粒径が50μm未満では、ろう付時に粒界へのエロ―ジョンが顕著になり、溶融ろうが不足し、ろう付け性が低下する。したがって、本発明の平均結晶粒径は50〜400μmとする。なお、同様の理由から下限を100μm、上限を350μmとすることが望ましく、さらには下限を150μm、上限を250μmとすることがより望ましい。なお、ここでいうプレート材の成形性とは、後述する実施例で述べるように、プレス成形で許容寸法内に成形できるか否かを基準にする。以下も同様である。
(3) About average crystal grain diameter of core material In this invention, the moldability of a plate material is ensured by making the average crystal grain diameter in the core material after final annealing into 400 micrometers or less. However, if the average crystal grain size is less than 50 μm, erosion to the grain boundary becomes remarkable at the time of brazing, melting brazing is insufficient, and brazing performance is lowered. Therefore, the average crystal grain size of the present invention is 50 to 400 μm. For the same reason, it is desirable to set the lower limit to 100 μm and the upper limit to 350 μm, and it is more desirable to set the lower limit to 150 μm and the upper limit to 250 μm. Here, the formability of the plate material is based on whether or not the plate material can be formed within the allowable dimensions by press forming, as will be described later in Examples. The same applies to the following.

(4)均質化処理の条件について
本発明のプレート材は、鋳造、均質化処理、熱間圧延(クラッド)、冷間圧延、中間焼鈍、最終冷間圧延及び最終焼鈍という一連の工程を経て製造されるが、均質化処理の条件は、(3)で説明した平均結晶粒径に影響を与える。つまり、保持温度を550℃未満で行うと、芯材の組織が粗大化し、成形性が劣る、つまり許容寸法内での成形が容易でなくなる。一方、保持温度が630℃を超えると均質化処理の対象である鋳塊が溶融するおそれがあるとともに、エネルギを無駄に消費しコストを上昇させることになりかねない。
また、均質化処理における保持時間が3hr未満では、鋳塊を十分に均熱することができないので、均質化の目的を果たすことができず、当該材料内の特性差が大きくなってしまう。一方、保持時間が10hrに達すると均質化の目的は十分に果たされるし、それを超える保持はコストの上昇を招く。
以上に基づいて、本発明における芯材の均質化処理は、保持温度を550〜630℃、保持時間を3〜10hrで行うことが本発明では推奨される。また、ろう材の均質化処理は、芯材と同じ条件または芯材とは異なる条件によって行うことができる。なお、保持温度及び保持時間は、処理される鋳塊のサイズに応じて適宜調整されるべきである。
(4) Conditions for homogenization treatment The plate material of the present invention is manufactured through a series of steps of casting, homogenization treatment, hot rolling (cladding), cold rolling, intermediate annealing, final cold rolling, and final annealing. However, the conditions for the homogenization treatment affect the average crystal grain size described in (3). In other words, if the holding temperature is less than 550 ° C., the core structure becomes coarse and the moldability is inferior, that is, it becomes difficult to mold within the allowable dimensions. On the other hand, if the holding temperature exceeds 630 ° C., the ingot to be homogenized may be melted, and energy may be wasted and the cost may be increased.
In addition, if the holding time in the homogenization treatment is less than 3 hours, the ingot cannot be soaked sufficiently, so that the purpose of homogenization cannot be achieved, and the characteristic difference in the material becomes large. On the other hand, when the holding time reaches 10 hours, the purpose of homogenization is sufficiently fulfilled, and holding exceeding it causes an increase in cost.
Based on the above, it is recommended in the present invention that the homogenization treatment of the core material in the present invention is performed at a holding temperature of 550 to 630 ° C. and a holding time of 3 to 10 hours. Moreover, the homogenization treatment of the brazing material can be performed under the same conditions as the core material or different conditions from the core material. The holding temperature and holding time should be adjusted as appropriate according to the size of the ingot to be processed.

(5)最終圧下率について
最終圧下率も、(3)で説明した平均結晶粒径に影響を与える。
つまり、最終圧下率が20%未満では最終焼鈍後の芯材の組織が粗大化し、プレート材の成形性が劣る傾向にある。また、80%を超えるとプレート材の強度が高くなりすぎるため、プレート材の成形性が劣る傾向にある。したがって、本発明における最終圧下率は20〜80%とすることが推奨される。同様の理由から下限を30%、上限を70%とすることが望ましく、さらには下限を40%、上限を60%とすることがより望ましい。
なお、最終圧下率とは、上述した一連の工程の中で、中間焼鈍と最終焼鈍の間に行なわれる最終冷間圧延における圧下率をいう。
(5) Final rolling reduction The final rolling reduction also affects the average grain size described in (3).
That is, when the final rolling reduction is less than 20%, the structure of the core material after the final annealing becomes coarse and the formability of the plate material tends to be inferior. On the other hand, if it exceeds 80%, the strength of the plate material becomes too high, and the formability of the plate material tends to be inferior. Therefore, it is recommended that the final rolling reduction in the present invention is 20 to 80%. For the same reason, it is desirable to set the lower limit to 30% and the upper limit to 70%, and it is more desirable to set the lower limit to 40% and the upper limit to 60%.
The final reduction ratio refers to the reduction ratio in the final cold rolling performed between the intermediate annealing and the final annealing in the series of steps described above.

(6)最終焼鈍の条件について
最終焼鈍の条件、特に昇温速度は(3)で説明した平均結晶粒径に影響を与える。
つまり、最終焼鈍の昇温速度が速くなると芯材の結晶粒微細化に効果があるが、100℃/min未満では、焼鈍後の芯材の組織が粗大化し、プレート材の成形性が劣る傾向にある。また、昇温速度が10000℃/minを超えると、結晶粒微細化の効果が飽和する。
一方で、最終焼鈍の保持温度は、プレート材の強度に影響を与え、保持温度が300℃未満の場合、焼鈍後のプレート材の強度が高くなりすぎるため、成形性が劣る傾向にあり、保持温度が600℃を超えると、プレート材が局部的に溶融する恐れがある。
したがって、本発明の最終焼鈍における昇温速度は100〜10000℃/minとし、保持温度は300〜600℃にすることが推奨される。
本発明は、以上の最終焼鈍後に、さらに300℃以下の保持温度でプレート材に焼鈍(追加焼鈍)を実施してもよい。亜結晶を低減、または消失させることで、ろう付け時に起こる芯材のエロージョンを抑制することができる。ただし、200℃より温度が低いと、焼鈍の効果が不十分になる。したがって、追加焼鈍の保持温度は、200〜300℃とすることが望ましく、さらには220〜280℃とすることがより望ましい。
(6) Final annealing conditions The final annealing conditions, particularly the rate of temperature increase, affect the average crystal grain size described in (3).
In other words, if the temperature increase rate of the final annealing is increased, it will be effective in refining the crystal grains of the core material. It is in. On the other hand, when the rate of temperature rise exceeds 10,000 ° C./min, the effect of crystal grain refinement is saturated.
On the other hand, the holding temperature of the final annealing affects the strength of the plate material, and when the holding temperature is less than 300 ° C, the strength of the plate material after annealing becomes too high, so the formability tends to be inferior and held. If the temperature exceeds 600 ° C, the plate material may be locally melted.
Therefore, it is recommended that the temperature increase rate in the final annealing of the present invention is 100 to 10,000 ° C./min and the holding temperature is 300 to 600 ° C.
In the present invention, after the final annealing described above, the plate material may be further annealed (additional annealing) at a holding temperature of 300 ° C. or lower. By reducing or eliminating the sub-crystal, erosion of the core material that occurs during brazing can be suppressed. However, if the temperature is lower than 200 ° C., the effect of annealing becomes insufficient. Therefore, the holding temperature for the additional annealing is desirably 200 to 300 ° C, and more desirably 220 to 280 ° C.

(7)結晶粒の異方性について
本発明のプレート材が、等方的な性質を備えることが成形性に対して望ましいことは前述の通りである。この等方性の尺度として、本発明は最終焼鈍後の平均結晶粒を用いる。
つまり、最終焼鈍後、芯材の結晶粒を観察し、圧延方向に沿った平均結晶粒径をA、圧延方向に直交する方向に沿った平均結晶粒径をBとすると、下記式(1)の関係を満たす場合に結晶粒の異方性が小さく、成形性、つまり許容寸法内での成形を確保する上で好ましい。
A/B≦10 (1)
(7) Regarding crystal grain anisotropy As described above, it is desirable for the formability that the plate material of the present invention has an isotropic property. As a measure of this isotropic property, the present invention uses the average grain size after the final annealing.
That is, after the final annealing, the core crystal grains are observed, and the average crystal grain size along the rolling direction is A, and the average crystal grain size along the direction orthogonal to the rolling direction is B. When satisfying this relationship, the anisotropy of the crystal grains is small, which is preferable for securing moldability, that is, molding within an allowable dimension.
A / B ≦ 10 (1)

(8)プレート材の異方性について
プレート材に引張試験を行って評価される異方性もまた上述した等方性の尺度として用いられる。この引張試験による評価は以下のようにして行われる。なおここでいうプレート材は、最終焼鈍後のものである。
プレート材に異なる3つの方向(条件)で引張試験を行う。3つの方向とは、圧延方向(0°)、圧延方向となす角が45°の方向(45°)、および圧延方向に直交する方向(90°)である。この3条件で引張試験を行い、最も伸びが大きい条件の伸びの値をC、最も伸びが小さい条件の伸びの値をDとすると、下記式(2)の関係を満たす場合、プレート材の異方性が小さく、成形性を確保する上で好ましい。
((C-D)/C)×100≦50(%) (2)
(8) Anisotropy of plate material Anisotropy evaluated by conducting a tensile test on the plate material is also used as a measure of the above-mentioned isotropic property. Evaluation by this tensile test is performed as follows. In addition, the plate material here is a thing after the last annealing.
Tensile tests are performed on the plate material in three different directions (conditions). The three directions are a rolling direction (0 °), a direction having an angle of 45 ° with the rolling direction (45 °), and a direction perpendicular to the rolling direction (90 °). When the tensile test is conducted under these three conditions and the elongation value under the condition of the largest elongation is C and the elongation value under the condition of the smallest elongation is D, if the relationship of the following formula (2) is satisfied, The directivity is small, which is preferable for securing moldability.
((CD) / C) × 100 ≦ 50 (%) (2)

(9)粒界と粒内のCuの固溶度の差について
本発明のプレート材において、芯材の粒界と粒内におけるCuの固溶度が耐食性に影響を与える。つまり、粒界と粒内におけるCuの固溶度の差が低いほど粒界腐食が生じにくくなるので、本発明では当該固溶度の差を0.03%以下にすることが望ましい。さらに望ましい当該固溶度の差は0.02%以下である。なお、固溶度であるから、化合物を形成している分のCuを除いている。
(9) About the difference in solid solubility of Cu in grain boundaries and grains In the plate material of the present invention, the solid solubility of Cu in grain boundaries and grains of the core material affects the corrosion resistance. That is, the lower the difference in the solid solubility of Cu in the grain boundary and in the grain, the less likely the intergranular corrosion occurs. Therefore, in the present invention, the difference in the solid solubility is preferably 0.03% or less. A more desirable difference in solid solubility is 0.02% or less. In addition, since it is a solid solubility, Cu of the part which forms the compound is removed.

(10)その他の条件について
本発明のプレート材において、上記以外に好ましい条件を以下に示しておく。ただし、これらは本発明を限定するものでない。
本発明のプレート材は、板厚が0.2〜2.0mmであることが望ましい。0.2mm未満だと、強度が不十分となり、ヒーターコアをはじめとする熱交換器としての耐久性が低下する。一方、板厚が2.0mmを超えると、成形性を確保することが難しくなる場合がある。
また、本発明のプレート材は、ろう材のクラッド率が5〜20%であることが望ましい。クラッド率が5%未満だと、ろう付熱処理時に溶融するろうの量が少なく、十分なろう付性が得られない。一方、クラッド率が20%を超えると、ろう付熱処理時に溶融ろうの量が多くなりすぎて、ろう付けされる相手材、例えばフィン材が著しいろう侵食を受ける。
さらに、本発明のプレート材は、冷間による曲げ加工が施されるものであり、質別がO材(JIS H0001)であることが前提となる。
(10) Other conditions In the plate material of the present invention, preferable conditions other than the above are shown below. However, these do not limit the present invention.
The plate material of the present invention preferably has a plate thickness of 0.2 to 2.0 mm. If it is less than 0.2 mm, the strength is insufficient, and the durability as a heat exchanger such as a heater core is lowered. On the other hand, if the plate thickness exceeds 2.0 mm, it may be difficult to ensure formability.
In the plate material of the present invention, the clad rate of the brazing material is desirably 5 to 20%. If the clad rate is less than 5%, the amount of solder that melts during the brazing heat treatment is small, and sufficient brazing properties cannot be obtained. On the other hand, if the clad rate exceeds 20%, the amount of the brazing filler metal becomes too large during the brazing heat treatment, and the brazing material, for example, the fin material, undergoes significant brazing corrosion.
Furthermore, the plate material of the present invention is subjected to a cold bending process, and it is premised that the material is O material (JIS H0001).

[実施例]
以上説明した本発明のプレート材の効果を確認するために行った具体例を説明する。
[材料の製造工程]
半連続鋳造により芯材およびろう材に用いるアルミニウム合金を鋳造した。なお、各合金の化学組成は表1に示した通りである。なお、表1の成分以外は、Al及び不可避的不純物である。また、Cuの固溶度については、後述の通りである。
得られた芯材用のアルミニウム合金(芯材用合金)及びろう材用のアルミニウム合金(ろう材用合金)は、いずれも均質化処理を行った。均質化処理の条件は表1に示した通りである。
均質化処理後、芯材用合金にろう材用合金を組み合わせて熱間圧延し、クラッド材とした。このクラッド材を所定の厚さまで冷間圧延を行った後、中間焼鈍を400℃で3hr行った。なお、中間焼鈍について、上記は一例であり、温度:200〜400℃、保持時間:1〜6hrの範囲から選択することができる。
さらに、表1に示される最終圧下率で最終冷間圧延を行なうことにより、芯材の片面または両面にろう材のクラッド率が10%になるようにしてクラッド材を作製し、さらに最終焼鈍を施してプレート材(調質O材,試料)を得た。最終焼鈍は、表1に示される昇温速度、保持温度で行った。一部の試料については、最終焼鈍の後に上述した追加焼鈍を行なった。なお、試料の板厚は、芯材が0.800mm、ろう材が0.100mmである。ただし、これも一例であり、板厚は0.2〜2.0mmの範囲で変更可能である。
[Example]
The specific example performed in order to confirm the effect of the plate material of this invention demonstrated above is demonstrated.
[Material manufacturing process]
Aluminum alloys used for the core and brazing material were cast by semi-continuous casting. The chemical composition of each alloy is as shown in Table 1. In addition, other than the components in Table 1, Al and inevitable impurities. The solid solubility of Cu is as described later.
The obtained aluminum alloy for core material (alloy for core material) and aluminum alloy for brazing material (alloy for brazing material) were both subjected to homogenization treatment. The conditions for the homogenization treatment are as shown in Table 1.
After homogenization, the core alloy was combined with the brazing alloy and hot rolled to obtain a clad material. The clad material was cold-rolled to a predetermined thickness, and then subjected to intermediate annealing at 400 ° C. for 3 hours. In addition, about the intermediate annealing, the above is an example and can be selected from the range of temperature: 200 to 400 ° C. and holding time: 1 to 6 hours.
Furthermore, by performing the final cold rolling at the final reduction shown in Table 1, a clad material is produced so that the clad rate of the brazing material is 10% on one side or both sides of the core material, and the final annealing is further performed. The plate material (tempered O material, sample) was obtained. The final annealing was performed at the rate of temperature rise and the holding temperature shown in Table 1. Some samples were subjected to the additional annealing described above after the final annealing. The thickness of the sample is 0.800 mm for the core material and 0.100 mm for the brazing material. However, this is also an example, and the plate thickness can be changed within a range of 0.2 to 2.0 mm.

[結晶粒径測定]
最終焼鈍後に、芯材の平均結晶粒径を測定した。平均結晶粒径は、試料の一定面積内の結晶粒の個数を数えて、当該結晶粒の平均面積を求め、その値から平均結晶粒径を算出した(表1)。
一方、結晶粒の異方性を調べる際の結晶粒の粒径(平均結晶粒径A,B)は、交線法を用いて求めた。具体的には、芯材の組織画像上で、圧延方向に平行な一定長さの線分が横切る粒界の数を求め、さらに線分の長さを粒界の数で割った値を平均結晶粒径Aとした。同様にして、圧延方向と直交する方向の線分について求めた値を平均結晶粒径Bとした。
[Crystal grain size measurement]
After the final annealing, the average crystal grain size of the core material was measured. For the average crystal grain size, the number of crystal grains within a certain area of the sample was counted to determine the average area of the crystal grains, and the average crystal grain size was calculated from the value (Table 1).
On the other hand, the grain size (average grain size A, B) when examining the anisotropy of the grain was determined by using the intersection method. Specifically, on the structure image of the core material, the number of grain boundaries crossed by a line segment of a certain length parallel to the rolling direction is obtained, and the value obtained by dividing the length of the line segment by the number of grain boundaries is averaged. The crystal grain size was A. Similarly, the value obtained for the line segment in the direction perpendicular to the rolling direction was defined as the average crystal grain size B.

[Cu固溶度]
Cuの固溶度については、EPMA(Electron Probe Microanalyser)による定量分析において、Cu化合物を構成しているCuを粒界及び粒内に固溶しているCuと区別することで測定した。表1には、こうして求めた粒界および粒内のCu固溶度と、粒界と粒内のCu固溶度の差とをそれぞれ示した。
[Cu solid solubility]
The solid solubility of Cu was measured by distinguishing Cu constituting a Cu compound from Cu solid-dissolved in grain boundaries and grains in a quantitative analysis by EPMA (Electron Probe Microanalyser). Table 1 shows the Cu solid solubility within the grain boundaries and grains thus obtained, and the difference in Cu solid solubility within the grain boundaries and grains.

[強度]
ろう付け相当の熱処理(600℃、3hr)を行う前・後の各試料からJIS H 4000に基づいて作製した試験片を用いて引張強さ(ろう付け前、ろう付け後,圧延方向)を測定した。その結果を表2に示す。
また、ろう付け相当の上記熱処理を行った試験片を用いて、圧延方向(0°)、圧延方向となす角が45°方向(45°)および圧延方向と直交方向する方向(90°)の3つの方向に引張試験を行った。その結果から各条件における伸びを算出し、上述した式(2)の結果(伸び異方性)とともに表2に示した。なお、表1には、各々、伸び0°、伸び45°、伸び90°と表記している。
[Strength]
Measurement of tensile strength (before brazing, after brazing, rolling direction) using specimens prepared based on JIS H 4000 from before and after heat treatment equivalent to brazing (600 ° C, 3 hr) did. The results are shown in Table 2.
In addition, using the test piece subjected to the above heat treatment equivalent to brazing, the rolling direction (0 °), the angle formed with the rolling direction is 45 ° direction (45 °) and the direction perpendicular to the rolling direction (90 °). Tensile tests were conducted in three directions. The elongation under each condition was calculated from the results, and the results are shown in Table 2 together with the result of formula (2) (elongation anisotropy). In Table 1, the elongation is 0 °, the elongation is 45 °, and the elongation is 90 °.

[成形性評価]
成形性は、作成試料が許容寸法内の寸法で成形できているか否かを、以下の条件によるエリクセン試験(JIS Z 2247)によって評価した。
[試料サイズ] : 90mm長× 90mm幅
[ポンチ] : 外径20mmφ球面
[しわ押さえ力] : 10kN
[評価] : エリクセン値(破断するまでの高さ)
エリクセン値<7.5mm :×
エリクセン値=7.5〜7.9mm :△
エリクセン値>7.9mm :○
[Formability evaluation]
The moldability was evaluated by an Erichsen test (JIS Z 2247) under the following conditions to determine whether or not the prepared sample could be molded within the allowable dimensions.
[Sample size]: 90 mm long × 90 mm width [Punch]: 20 mmφ outer diameter spherical surface [Wrinkle holding force]: 10 kN
[Evaluation]: Erichsen value (height to break)
Eriksen value <7.5mm: ×
Eriksen value = 7.5 to 7.9mm: △
Erichsen value> 7.9mm: ○

[フィレットのサイズ評価]
ろう付け性の確認のために、以下の要領でフィレットサイズの測定を行った。
波型状に加工(コルゲート加工)したフィン材(JIS A3003)と最終焼鈍後のプレート材(試料)をろう付けした後、フィン材とプレート材の接合部のフィレットサイズを断面観察することにより評価した。適正なフィレットサイズに対する測定されたフィレットサイズの比率が、適正フィレットサイズの±30%以内のものを「○」、それ以外を「×」とした。
[Fillet size evaluation]
In order to confirm the brazing property, the fillet size was measured as follows.
After brazing the corrugated fin material (JIS A3003) and the final annealed plate material (sample), evaluation is performed by observing the fillet size at the joint between the fin material and the plate material by cross-sectional observation did. When the ratio of the measured fillet size to the proper fillet size was within ± 30% of the proper fillet size, “◯” was given, and the others were “X”.

[ろう侵食性評価]
作製した試料にろう付け相当の熱処理(600℃、3hr)を施した後、試料の断面観察を行い、芯材とろう材の界面から、ろう材が芯材に向けて侵食している距離を求め、ろう侵食性の評価を行った。その結果を表2に示す。
[Evaluation of wax erosion]
After heat treatment equivalent to brazing (600 ° C, 3 hours) to the prepared sample, observe the cross section of the sample and determine the distance at which the brazing material erodes from the interface between the core material and the brazing material. Obtained and evaluated for wax erosion. The results are shown in Table 2.

[腐食試験]
波型状に加工(コルゲート加工)したフィン材とプレート材をろう付けにより接合して、ミニコア(インナーフィンを内部に有するチューブ)を作製した。
このミニコアの内部に試験水を2000hrだけ通水(循環)させることで、ミニコアの内部の腐食試験を行った。2000hr経過後、腐食生成物を除去し、腐食状況を断面観察し、下記の式(3)より最大腐食深さ(%)を算出した。その結果を表2に示す。なお、試験水の組成は、Cl-:195ppm、SO4 2-:60ppm、Cu2+:1ppm、Fe3+:30ppmとし、温度は60℃とした。
(プレート材の板厚(mm)−最大腐食深さ(mm))/プレート材の板厚(mm) ×100 (%) …(3)
[Corrosion test]
A fin material processed into a corrugated shape (corrugated) and a plate material were joined by brazing to produce a mini-core (a tube having an inner fin inside).
The corrosion test inside the mini-core was conducted by passing (circulating) the test water through the mini-core for 2000 hours. After 2000 hours, the corrosion products were removed, the corrosion state was observed in cross-section, and the maximum corrosion depth (%) was calculated from the following equation (3). The results are shown in Table 2. The composition of the test water was Cl : 195 ppm, SO 4 2− : 60 ppm, Cu 2+ : 1 ppm, Fe 3+ : 30 ppm, and the temperature was 60 ° C.
(Plate thickness (mm)-maximum corrosion depth (mm)) / plate thickness (mm) x 100 (%) ... (3)

Figure 2013204105
Figure 2013204105

Figure 2013204105
Figure 2013204105

Claims (8)

芯材と、芯材の片面あるいは両面に配置されるろう材と、がクラッドされたプレート材であって、質量%で、
Mn:1.0〜2.0%、Si:0.1〜0.8%、Fe:0.001〜0.5%、Cu:0.001%〜0.1%を含有し、残部がAlおよび不可避不純物の組成を有する芯材と、
Si:6.0〜12.0%、Zn:1.0〜5.0%と残部がAlおよび不可避不純物の組成を有するろう材と、からなり、
前記クラッド材の最終焼鈍後、芯材の平均結晶粒径が50〜400μmであることを特徴とするアルミニウム合金製プレート材。
Plate material in which the core material and the brazing material disposed on one or both sides of the core material are clad, and in mass%,
Mn: 1.0 to 2.0%, Si: 0.1 to 0.8%, Fe: 0.001 to 0.5%, Cu: 0.001% to 0.1%, with the balance having a composition of Al and inevitable impurities,
Si: 6.0-12.0%, Zn: 1.0-5.0% and the balance consisting of a brazing material having the composition of Al and inevitable impurities,
An aluminum alloy plate material wherein the core material has an average crystal grain size of 50 to 400 μm after the final annealing of the clad material.
前記芯材が、保持温度550〜630℃、保持時間3〜10hrの均質化処理が施されている、
請求項1に記載のアルミニウム合金製プレート材。
The core material is subjected to a homogenization treatment at a holding temperature of 550 to 630 ° C. and a holding time of 3 to 10 hours,
The aluminum alloy plate material according to claim 1.
最終圧下率が20〜80%の範囲で最終冷間圧延がなされている、
請求項1または2に記載のアルミニウム合金製プレート材。
The final cold rolling is performed in the range of 20 to 80% of the final rolling reduction,
The aluminum alloy plate material according to claim 1 or 2.
前記最終焼鈍は、昇温速度が100〜10000℃/min、保持温度が300〜600℃の条件で施されている、
請求項1〜3のいずれか一項に記載したアルミニウム合金製プレート材。
The final annealing is performed under the conditions of a heating rate of 100 to 10,000 ° C./min and a holding temperature of 300 to 600 ° C.,
The aluminum alloy plate material according to any one of claims 1 to 3.
前記クラッド材の前記最終焼鈍後の前記芯材は、
圧延方向に沿った平均結晶粒径をAとし、圧延方向と直交する方向に沿った平均結晶粒径をBとすると、下記式(1)を満足する、
請求項1〜4のいずれか一項に記載のアルミニウム合金製プレート材。
A/B≦10 (1)
The core material after the final annealing of the clad material,
When the average crystal grain size along the rolling direction is A and the average crystal grain size along the direction orthogonal to the rolling direction is B, the following formula (1) is satisfied.
The aluminum alloy plate material according to any one of claims 1 to 4.
A / B ≦ 10 (1)
前記最終焼鈍後に、圧延方向、圧延方向となす角が45°の方向、および、圧延方向に直交する方向の3つの方向に引張る引張試験を各々行い、最も伸びの大きいものの伸びの値をCとし、最も伸びの小さいものの伸びの値をDとすると、下記式(2)を満足する、
請求項1〜5のいずれか一項に記載のアルミニウム合金製プレート材。
((C-D)/C)×100≦50% (2)
After the final annealing, a tensile test was conducted in each of three directions, a rolling direction, a 45 ° angle with the rolling direction, and a direction perpendicular to the rolling direction, and the elongation value of the largest elongation was C. When the elongation value of the smallest elongation is D, the following equation (2) is satisfied.
The plate material made from aluminum alloy as described in any one of Claims 1-5.
((CD) / C) × 100 ≦ 50% (2)
前記芯材の粒界と粒内のCuの固溶度の差が、0.03%以下である、
請求項1〜6のいずれか一項に記載のアルミニウム合金製プレート材。
The difference in solid solubility between the grain boundary of the core material and the Cu in the grain is 0.03% or less,
The aluminum alloy plate material according to any one of claims 1 to 6.
最終焼鈍後のクラッド材が、更に300℃以下の追加焼鈍が施されている、
請求項1〜7のいずれか一項に記載のアルミニウム合金製プレート材。
The cladding material after the final annealing is further subjected to additional annealing below 300 ° C.
The aluminum alloy plate material according to any one of claims 1 to 7.
JP2012075654A 2012-03-29 2012-03-29 Aluminum alloy plate Active JP5965183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012075654A JP5965183B2 (en) 2012-03-29 2012-03-29 Aluminum alloy plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012075654A JP5965183B2 (en) 2012-03-29 2012-03-29 Aluminum alloy plate

Publications (2)

Publication Number Publication Date
JP2013204105A true JP2013204105A (en) 2013-10-07
JP5965183B2 JP5965183B2 (en) 2016-08-03

Family

ID=49523530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012075654A Active JP5965183B2 (en) 2012-03-29 2012-03-29 Aluminum alloy plate

Country Status (1)

Country Link
JP (1) JP5965183B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016017222A (en) * 2014-07-10 2016-02-01 三菱アルミニウム株式会社 Aluminum alloy clad material and heat exchanger

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63195240A (en) * 1987-02-10 1988-08-12 Furukawa Alum Co Ltd Al brazing sheet
JPH11241136A (en) * 1998-02-25 1999-09-07 Furukawa Electric Co Ltd:The High corrosion resistant aluminum alloy, clad material thereof, and its production
JP2003138356A (en) * 2001-10-31 2003-05-14 Mitsubishi Alum Co Ltd Method for manufacturing high-strength aluminum-alloy brazing sheet for heat exchanger, having excellent brazability, formability and erosion resistance
JP2005125365A (en) * 2003-10-23 2005-05-19 Mitsubishi Alum Co Ltd Brazing sheet manufacturing method
JP2011006784A (en) * 2009-05-27 2011-01-13 Kobe Steel Ltd Aluminum alloy brazing sheet for heat exchanger and aluminum alloy brazed object for heat exchanger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63195240A (en) * 1987-02-10 1988-08-12 Furukawa Alum Co Ltd Al brazing sheet
JPH11241136A (en) * 1998-02-25 1999-09-07 Furukawa Electric Co Ltd:The High corrosion resistant aluminum alloy, clad material thereof, and its production
JP2003138356A (en) * 2001-10-31 2003-05-14 Mitsubishi Alum Co Ltd Method for manufacturing high-strength aluminum-alloy brazing sheet for heat exchanger, having excellent brazability, formability and erosion resistance
JP2005125365A (en) * 2003-10-23 2005-05-19 Mitsubishi Alum Co Ltd Brazing sheet manufacturing method
JP2011006784A (en) * 2009-05-27 2011-01-13 Kobe Steel Ltd Aluminum alloy brazing sheet for heat exchanger and aluminum alloy brazed object for heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016017222A (en) * 2014-07-10 2016-02-01 三菱アルミニウム株式会社 Aluminum alloy clad material and heat exchanger

Also Published As

Publication number Publication date
JP5965183B2 (en) 2016-08-03

Similar Documents

Publication Publication Date Title
US11933553B2 (en) Aluminum alloy for heat exchanger fins
US8932728B2 (en) Aluminum-alloy clad sheet
JP5917786B2 (en) Aluminum alloy laminate with excellent fatigue characteristics
WO2009101896A1 (en) Aluminum alloy laminate
JP5186185B2 (en) High-strength aluminum alloy material for automobile heat exchanger fins excellent in formability and erosion resistance used for fin material for high-strength automobile heat exchangers manufactured by brazing, and method for producing the same
JP5913853B2 (en) Aluminum alloy brazing sheet and method for producing the same
JP5944088B2 (en) Aluminum alloy laminate with excellent fatigue characteristics
JP6219770B2 (en) Aluminum alloy laminate
JP5836695B2 (en) Aluminum alloy fin material for heat exchangers with excellent strength and corrosion resistance after brazing
EP3030685B1 (en) High strength aluminum alloy fin stock for heat exchanger
JP5739828B2 (en) Aluminum alloy laminate
JP5653233B2 (en) Aluminum alloy for microporous hollow material with excellent extrudability and intergranular corrosion resistance and method for producing the same
JP6317608B2 (en) Aluminum alloy laminate
JP4996909B2 (en) Aluminum alloy brazing sheet and method for producing the same
WO2018110320A1 (en) Aluminum alloy brazing sheet and method for manufacturing same
JP5965183B2 (en) Aluminum alloy plate
JP2007146264A (en) Aluminum alloy fin material
JP6526404B2 (en) Aluminum alloy brazing sheet
WO2024048723A1 (en) Aluminum alloy brazing sheet
JP2018178170A (en) Thin wall fin material excellent in erosion resistance, manufacturing method of thin wall fin material excellent in erosion resistance, and manufacturing method of heat exchanger
JP2011020128A (en) Aluminum alloy-made brazed structure for heat exchanger excellent in high-temperature durability, and method for manufacturing the same
JP2022135345A (en) Aluminum alloy-clad material for heat exchangers and heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160701

R150 Certificate of patent or registration of utility model

Ref document number: 5965183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250