JP6526404B2 - Aluminum alloy brazing sheet - Google Patents

Aluminum alloy brazing sheet Download PDF

Info

Publication number
JP6526404B2
JP6526404B2 JP2014227779A JP2014227779A JP6526404B2 JP 6526404 B2 JP6526404 B2 JP 6526404B2 JP 2014227779 A JP2014227779 A JP 2014227779A JP 2014227779 A JP2014227779 A JP 2014227779A JP 6526404 B2 JP6526404 B2 JP 6526404B2
Authority
JP
Japan
Prior art keywords
brazing
strength
sacrificial material
less
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014227779A
Other languages
Japanese (ja)
Other versions
JP2016089244A (en
Inventor
路英 吉野
路英 吉野
江戸 正和
正和 江戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Aluminum Co Ltd
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2014227779A priority Critical patent/JP6526404B2/en
Publication of JP2016089244A publication Critical patent/JP2016089244A/en
Application granted granted Critical
Publication of JP6526404B2 publication Critical patent/JP6526404B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

この発明は、熱交換器に好適に使用されるアルミニウム合金ブレージングシートに関するものである。   The present invention relates to an aluminum alloy brazing sheet suitably used for a heat exchanger.

燃費向上や省スペース化の観点から熱交換器は軽量化傾向にあり、そのため使用部材には薄肉高強度化が求められる。また、ラジエーターのプレートは近年、高耐久化(静的強度、動的強度:疲労強度)の要求が強い。このような要求に対して、従来材では耐久性が不足している。このため、成分添加量を調整したアルミニウム合金ブレージングシートが、いままでにもいくつか提案されている(例えば特許文献1、2参照)。   From the viewpoint of fuel efficiency improvement and space saving, the heat exchanger tends to be lighter, and therefore, the members to be used are required to be thinner and stronger. Also, in recent years, the plate of the radiator is strongly required to have high durability (static strength, dynamic strength: fatigue strength). In order to meet such requirements, conventional materials lack durability. For this reason, some aluminum alloy brazing sheets in which the component addition amount is adjusted have been proposed so far (see, for example, Patent Documents 1 and 2).

特開2011−202285号公報JP, 2011-202285, A 特開2012−82459号公報JP 2012-82459 A

また、通常、高強度化のためにとられる方策である芯材の添加元素量の単純増加では、製造上の問題から添加量に限界があることで高強度化が困難である。また、ある程度高強度化できたとしても素材の強度も同時に増加してしまうことで成形性が低下してしまう問題が生じている。
一方、芯材にMgを添加した場合には成形性を低下させずに高強度化が可能であるが、ろう付性が低下してしまう問題が生じている。
したがって、従来技術では、ろう付性を満足しつつ、高耐久性を得ること、さらには高成形性を得ることは困難である。
In addition, in the simple increase of the amount of additive elements of the core material, which is a measure usually taken for the enhancement of strength, it is difficult to achieve the enhancement of strength because there is a limit to the amount of addition due to a problem in manufacturing. In addition, even if the strength can be increased to a certain extent, the strength of the material is also increased at the same time, which causes a problem that the formability is reduced.
On the other hand, when Mg is added to the core material, although it is possible to increase the strength without reducing the formability, there is a problem that the brazing property is reduced.
Therefore, in the prior art, it is difficult to obtain high durability and to obtain high formability while satisfying the brazeability.

本発明は、上記事情を背景としてなされたものであり、成形性に優れているとともに、高い強度とろう付け性に優れたアルミニウム合金ブレージングシートを提供することを目的とする。   The present invention has been made on the background of the above-mentioned circumstances, and an object of the present invention is to provide an aluminum alloy brazing sheet which is excellent in formability and is excellent in high strength and brazing property.

そこで、ブレージングシート材の耐久性に及ぼす金属因子の影響を調査したところ、芯材の成分範囲を適正に調整したうえで、製品使用時の温度履歴を経た後の材料表面から所定の範囲までの硬度を高くするように調整し、かつ犠牲材中の粗大な第二相粒子を少なくすることで、耐久性に優れる材料が得られることが分かった。
さらに、素材の0.2%耐力を所定値以下、ろう付後および製品使用時の温度履歴を経た後の強度を所定値以上にすることで、十分な耐久性を有するうえに、成形性に優れた材料が得られることが分かり、本発明に至った。
Therefore, when the influence of the metal factor on the durability of the brazing sheet material was investigated, the component range of the core material was properly adjusted, and then from the surface of the material after passing through the temperature history at the time of using the product to the predetermined range. It was found that a material excellent in durability can be obtained by adjusting the hardness to be high and reducing the amount of coarse second phase particles in the sacrificial material.
In addition to having a sufficient durability, the 0.2% proof stress of the material is made equal to or less than a predetermined value, and the strength after passing a temperature history after brazing and after product use is made to be a predetermined value or more. It turned out that the outstanding material was obtained and came to the present invention.

すなわち、本発明のアルミニウム合金ブレージングシートのうち、第1の本発明は、 板厚0.7mm以上で使用され、芯材の片面に犠牲材が配置され、他の片面にろう材をクラッドしてなるAl合金クラッド材であって、
前記芯材が、質量%でMn:1.3〜2.0%、Si:0.7〜1.2%、Fe:0.1〜0.5%、Cu:0.7〜1.3%を含有し、残部がAlと不可避不純物からなり、前記犠牲材が、質量%でZn:3.0〜6.0%、Mg:0.5〜1.8%、Si:0.05〜0.5%を含有し、残部がAlと不可避不純物からなり、前記犠牲材のクラッド率が6〜20%の範囲にあり、前記Al合金クラッド材は、ろう付け前の0.2%耐力が80MPa以下、600℃×3分でのろう付相当熱処理後の引張強さが175MPa以上であり、前記ろう付相当熱処理後に90℃で7日間時効処理した後の前記犠牲材中に分布する2μm以上の第二相粒子の密度が2000個/mm2以下であり、さらに、前記ろう付相当熱処理後に90℃で7日間時効処理した後の前記犠牲材の材料表面から深さ150μmまでの平均硬度が100HV以上であることを特徴とする。
That is, among the aluminum alloy brazing sheets of the present invention, the first present invention is used with a plate thickness of 0.7 mm or more, a sacrificial material is disposed on one side of the core material, and a brazing material is clad on the other side. Al alloy clad material
The said core material is Mn: 1.3-2.0%, Si: 0.7-1.2%, Fe: 0.1-0.5%, Cu: 0.7-1.3 by mass%. %, The balance being composed of Al and unavoidable impurities, and the above-mentioned sacrificial material is, by mass%, Zn: 3.0 to 6.0%, Mg: 0.5 to 1.8%, Si: 0.05 to 0.05%. 0.5% is contained, the remainder is made of Al and unavoidable impurities, and the cladding ratio of the sacrificial material is in the range of 6 to 20%, and the Al alloy clad material has 0.2% proof stress before brazing 80 MPa or less, tensile strength after brazing equivalent heat treatment at 600 ° C. × 3 minutes is 175 MPa or more, 2 μm or more distributed in the sacrificial material after aging treatment at 90 ° C. for 7 days after the brazing equivalent heat treatment Density of the second phase particles is 2000 pcs / mm 2 or less, and further, after the heat treatment corresponding to the brazing, the heat treatment is performed at 90.degree. C. for 7 days. Average hardness to a depth of 150μm from the surface of the material of the sacrificial material after the aging treatment is equal to or not less than 100 HV.

の本発明のアルミニウム合金ブレージングシートは、前記第1本発明において、前記ろう付相当熱処理後に90℃×7日間時効処理した後の引張強さが200MPa以上であることを特徴とする。 Aluminum alloy brazing sheet of the second invention, in the first invention, tensile strength after 90 ° C. × 7 days aging treatment after corresponding heat treatment with the filtrate cormorants is characterized in that at least 200MPa .

第3の本発明のアルミニウム合金ブレージングシートは、前記第1または第2の本発明のいずれかにおいて、前記ろう材がAl−Si系合金またはAl−Si−Zn系合金からなり、前記ろう材が質量%で、Si:7.2〜10.0%を含有することを特徴とする。 In the aluminum alloy brazing sheet according to a third aspect of the present invention, in the first or second aspect of the present invention, the brazing material is made of an Al—Si alloy or an Al—Si—Zn alloy, and the brazing material is It is characterized by containing Si: 7.2-10.0% by mass%.

の本発明のアルミニウム合金ブレージングシートは、前記第1〜第の本発明のいずれかにおいて、前記ろう材がAl−Si−Zn系合金からなり、前記ろう材が質量%で、Zn:0.5〜3.0%を含有することを特徴とする。 Aluminum alloy brazing sheet of the fourth invention, in any one of the first to third invention, wherein the brazing material is made of Al-Si-Zn alloy, the brazing material in mass%, Zn: It is characterized by containing 0.5 to 3.0%.

以下に、本発明の限定理由について説明する。なお、組成中の成分含有量はいずれも質量%で示される。   The reasons for limitation of the present invention will be described below. The content of each component in the composition is indicated by mass%.

(芯材)
Mn:1.3〜2.0%
SiやFe等とAl−Mn−Si系、あるいはAl−(Mn、Fe)−Si系の金属間化合物(第2相粒子)を生成することでろう付後の強度を向上させる効果を有している。その含有量が1.3%未満では、その効果が十分発揮されず、2.0%を超えると、Al−(Mn、Fe)−Si系の巨大な金属間化合物が生成してアルミニウム合金板の製造性が大幅に低下する。そのため、Mn含有量は1.3%〜2.0%に定める。なお、同様の理由により、下限は1.4%、上限は1.8%とするのが望ましい。
(Core material)
Mn: 1.3 to 2.0%
Has the effect of improving the strength after brazing by forming intermetallic compounds (second phase particles) of Si, Fe, etc. and Al-Mn-Si, or Al- (Mn, Fe) -Si. ing. If the content is less than 1.3%, the effect is not sufficiently exhibited, and if it exceeds 2.0%, a huge intermetallic compound of Al- (Mn, Fe) -Si system is formed, and the aluminum alloy sheet The manufacturability of the Therefore, the Mn content is set to 1.3% to 2.0%. For the same reason, the lower limit is preferably 1.4% and the upper limit is 1.8%.

Si:0.7〜1.2%
Siは、Al−Mn−Si系、あるいはAl−(Mn、Fe)−Si系金属間化合物を析出させ、分散強化によるろう付後の強度を得るために含有させる。また、犠牲材から拡散したMgとMg−Si析出物を形成することで材料強度を高めることができるために含有させる。ただし、0.7%未満の含有では、分散強化の効果が小さく、所望のろう付後強度が得られない。一方、1.2%を超えて含有するとSiの固溶量が大きくなり、固相線温度(融点)が低下し、ろう付時に著しいろう侵食が生じやすくなる。なお、同様の理由で下限を0.8%、上限を1.1%とするのが望ましい。
Si: 0.7 to 1.2%
Si is contained to precipitate Al-Mn-Si-based or Al- (Mn, Fe) -Si-based intermetallic compounds and to obtain strength after brazing by dispersion strengthening. Moreover, it is contained in order to be able to improve material strength by forming Mg and Mg-Si precipitates diffused from the sacrificial material. However, if the content is less than 0.7%, the effect of dispersion strengthening is small, and the desired post-braze strength can not be obtained. On the other hand, if the content exceeds 1.2%, the solid solution amount of Si is increased, the solidus temperature (melting point) is lowered, and significant brazing is liable to occur at the time of brazing. For the same reason, it is desirable to set the lower limit to 0.8% and the upper limit to 1.1%.

Fe:0.10〜0.50%
Feの含有によって、Al−(Mn、Fe)−Si系化合物やAl−(Mn、Fe)系化合物による分散強化が得られ、ろう付後強度が向上する。
Feの含有量が0.10%未満であると鋳造時に割れが発生しやすくなり製造が困難になる。また、Feの含有量が0.50%を超えると、鋳造時に巨大な粗大化した晶出物(金属間化合物)が生成して材料製造が困難になる。なお、同様の理由で下限を0.2%、上限を0.40%とするのが望ましい。
Fe: 0.10 to 0.50%
By the inclusion of Fe, dispersion strengthening by an Al- (Mn, Fe) -Si compound or an Al- (Mn, Fe) compound is obtained, and the strength after brazing is improved.
If the content of Fe is less than 0.10%, cracking is likely to occur during casting, making production difficult. In addition, when the content of Fe exceeds 0.50%, a large coarsened crystallized product (intermetallic compound) is formed during casting, which makes it difficult to produce the material. For the same reason, it is preferable to set the lower limit to 0.2% and the upper limit to 0.40%.

Cu:0.7〜1.3%
Cuは、固溶強化によりろう付後強度を向上させるので含有させる。ただし、0.7%未満では、その作用が十分に得られない。一方、1.3%を超えて含有すると、素材の強度が高くなりすぎて成形性が低下する。Cu含有量を0.7〜1.3%とする。なお、同様の理由で下限を0.70%、上限を1.2%とするのが望ましい。
Cu: 0.7 to 1.3%
Cu is contained because it improves the strength after brazing by solid solution strengthening. However, if it is less than 0.7%, the effect can not be obtained sufficiently. On the other hand, if the content is more than 1.3%, the strength of the material becomes too high and the formability is reduced. The Cu content is 0.7 to 1.3%. For the same reason, it is desirable to set the lower limit to 0.70% and the upper limit to 1.2%.

(犠牲材)
犠牲材は、本発明では特に限定するものではないが、以下の成分を有するものが好適である。
Zn:3.0〜6.0%
ろう付熱処理後の室温あるいはラジエーター使用時の温度域に晒されることによってMg−Zn析出物を形成して犠牲材の硬さの増加、および材料強度を高める効果がある。それによって疲労強度を向上させる効果がある。しかし、Zn含有量が3.0%未満ではその効果が充分に発揮されず、6.0%を超えると犠牲材の融点が低下してろう付時に犠牲材が溶融してしまう。なお、同様の理由により、下限を3.3%、上限を6.0%とするのが望ましい。
(Sacrifice material)
The sacrificial material is not particularly limited in the present invention, but one having the following components is preferable.
Zn: 3.0 to 6.0%
By being exposed to room temperature after brazing heat treatment or a temperature range when using a radiator, Mg—Zn precipitates are formed to increase the hardness of the sacrificial material and to increase the material strength. This has the effect of improving the fatigue strength. However, if the Zn content is less than 3.0%, the effect is not sufficiently exhibited, and if it exceeds 6.0%, the melting point of the sacrificial material is lowered and the sacrificial material is melted at the time of brazing. For the same reason, it is desirable to set the lower limit to 3.3% and the upper limit to 6.0%.

Mg:0.5〜1.8%
MgはZnとMg−Zn析出物、あるいはSiとMg−Si析出物を形成することで犠牲材の硬さ、および材料強度を高める効果がある。それによって疲労強度を向上させる効果がある。しかし、Mg含有量が0.5%未満ではその効果が十分発揮されず、1.8%を超えると圧延が困難になる。なお、同様の理由により、下限を0.7%、上限を1.8%とするのが望ましい。
Mg: 0.5 to 1.8%
Mg has the effect of increasing the hardness of the sacrificial material and the material strength by forming Zn and Mg-Zn precipitates or Si and Mg-Si precipitates. This has the effect of improving the fatigue strength. However, if the Mg content is less than 0.5%, the effect is not sufficiently exhibited, and if it exceeds 1.8%, rolling becomes difficult. For the same reason, it is desirable to set the lower limit to 0.7% and the upper limit to 1.8%.

Si:0.05〜0.5%
SiはMgと微細なMg−Si化合物を形成することで材料の強度を向上させる効果がある。しかし、Si量が0.05%未満ではその効果が十分発揮されず、0.5%を超えると犠牲材の融点が低下してろう付時に犠牲材が溶融してしまう。なお、同様の理由により、下限を0.10%、上限を0.4%とするのが望ましい。
Si: 0.05 to 0.5%
Si has the effect of improving the strength of the material by forming a fine Mg-Si compound with Mg. However, if the Si content is less than 0.05%, the effect is not sufficiently exhibited, and if it exceeds 0.5%, the melting point of the sacrificial material is lowered, and the sacrificial material is melted at the time of brazing. For the same reason, it is preferable to set the lower limit to 0.10% and the upper limit to 0.4%.

不可避不純物
上記成分以外に、0.5%までのMn、0.5%までのFeなどの不可避不純物を含有することができる。例えば、Mnを上記含有量を超えて含有すると、粗大なAl−Mn−Si−Fe系やAl−Mn−Fe系化合物を生成しやすくなるため犠牲材中に存在する2μm以上の第二相粒子の数密度が増加して疲労強度が低下してしまう。
また、Feを上記含有量を超えて含有すると、同様に粗大なAl−Mn−Si−Fe系やAl−Mn−Fe系化合物、あるいはAl−Fe−Si系化合物を生成しやすくなるため犠牲材中に存在する2μm以上の第二相粒子の数密度が増加して疲労強度が低下してしまう。
Unavoidable Impurities In addition to the above components, Mn can contain up to 0.5% of Mn, and up to 0.5% of unavoidable impurities such as Fe. For example, if Mn is contained in excess of the above content, coarse Al-Mn-Si-Fe-based or Al-Mn-Fe-based compounds are easily formed, and thus, second phase particles of 2 μm or more present in the sacrificial material The number density of N increases and the fatigue strength decreases.
In addition, if Fe is contained in excess of the above content, it is easy to form coarse Al-Mn-Si-Fe, Al-Mn-Fe, or Al-Fe-Si compounds, too. The number density of the 2nd phase particle | grains of 2 micrometers or more which exist in it will increase, and a fatigue strength will fall.

(ろう材)
ろう材は、本発明では特に限定するものではなく、ろう付けに用いる一般的なろう材を用いることができるが、一例として、JIS4343合金、JIS4045合金、JIS4047合金、あるいは、これらの合金にZnを含有する合金、またはMg、Cu、Li等を含有する合金を用いることができる。
ろう材を構成するアルミニウム合金として、例示すると、Si:7.2〜10.0%を含むアルミニウム合金、更に、必要に応じて、Zn:0.5〜3.0%を含有する成分組成とすることができる。
(Brazy material)
The brazing material is not particularly limited in the present invention, and general brazing materials used for brazing can be used. For example, JIS 4343 alloy, JIS 4045 alloy, JIS 4047 alloy, or an alloy of these metals is used as Zn. The alloy which contains, or the alloy containing Mg, Cu, Li etc. can be used.
As an aluminum alloy constituting the brazing material, for example, an aluminum alloy containing 7.2 to 10.0% of Si, and, if necessary, a component composition containing 0.5 to 3.0% of Zn can do.

ろう付熱処理後に90℃で7日間時効処理した後の前記犠牲材中に分布する2μm以上の第二相粒子の密度が2000個/mm以下
2μmを超えるような粗大な第二相粒子は疲労亀裂の起点となりやすく、また、疲労亀裂が進展するのを助長する働きをする。粗大な第二相粒子が少ない場合、疲労強度が向上する。したがって、上記時効処理後の犠牲材中に分布する2μm以上の第二相粒子の密度を2000個/mm以下とする。なお、同様の理由で、上記密度は1600個/mm以下が望ましい。
上記第2相粒子の分散は、例えば、化学成分の適正化と製造条件(均質化処理)による適正化によって達成することができる。
Coarse second phase particles with a density of 2 2000m or more second phase particles distributed in the sacrificial material after aging for 7 days at 90 ° C after brazing heat treatment are 2000 pieces / mm 2 or less more than 2 mm It tends to be the origin of cracks and also works to promote the development of fatigue cracks. When there are few coarse second phase particles, fatigue strength is improved. Therefore, the density of the second phase particles of 2 μm or more distributed in the sacrificial material after the above-mentioned aging treatment is set to 2000 / mm 2 or less. For the same reason, the density is preferably 1600 pcs / mm 2 or less.
The dispersion of the second phase particles can be achieved, for example, by optimizing the chemical components and optimizing the production conditions (homogenization treatment).

(犠牲材の鋳造速度)
鋳造時の冷却速度が遅いと鋳造時に晶出した粗大な第二相粒子が粗大となりやすい。そのため、材料成分や均質化処理条件との兼ね合いで鋳造速度が遅いと好ましくない場合がある。このため、鋳造速度は、0.3℃/s以上が望ましい。
(犠牲材の均質化処理)
均質化処理を高温で負荷すると鋳造時に晶出した粗大な第二相粒子がさらに成長して大きくなりやすい。そのため、均質化処理は未実施、または500℃以下の低温とすることが望ましい。
(Casting speed of sacrificial material)
When the cooling rate at the time of casting is slow, coarse second phase particles crystallized at the time of casting tend to be coarse. Therefore, it may not be preferable if the casting speed is slow in view of the material components and the homogenization treatment conditions. Therefore, the casting speed is preferably 0.3 ° C./s or more.
(Homogenization treatment of the sacrificial material)
When the homogenization treatment is applied at high temperature, coarse second phase particles crystallized at the time of casting tend to further grow and become large. Therefore, it is desirable that the homogenization treatment is not performed or at a low temperature of 500 ° C. or less.

ろう付熱処理後に90℃で7日間時効処理した後の前記犠牲材の材料表面から深さ150μmまでの平均硬度が100HV(ビッカース硬さ)以上
ラジエーターのヘッダープレートには犠牲材側に引張応力が作用する曲げ疲労が生じて破壊する。この曲げ疲労のモードでは特に材料表面の強度(硬度)が高いと効果的に疲労強度を向上させることができる。150μmまでの平均硬度が100HV未満であると、強度が不足し、疲労強度が低下する。なお、同様に理由で、平均硬度を110HV以上とするのが望ましい。
上記平均硬度は、例えば、成分の適正化、均質化処理条件の調整等によって達成することができる。
The average hardness to a depth of 150 μm from the material surface of the sacrificial material after aging for 7 days at 90 ° C after brazing heat treatment is 100 HV (Vickers hardness) or more. A tensile stress acts on the sacrificial material side of the header plate of the radiator. Bending fatigue occurs and breaks. In this bending fatigue mode, particularly when the strength (hardness) of the material surface is high, the fatigue strength can be effectively improved. If the average hardness to 150 μm is less than 100 HV, the strength is insufficient and the fatigue strength is reduced. For the same reason, it is desirable to set the average hardness to 110 HV or more.
The average hardness can be achieved, for example, by optimizing the components, adjusting the homogenization treatment conditions, and the like.

ろう付け前の0.2%耐力が80MPa以下、ろう付熱処理後の引張強さが175MPa以上、ろう付熱処理後に90℃×7日間時効処理した後の引張強さが200MPa以上
(ろう付け前の0.2%耐力が80MPa以下)
ヘッダープレートは一般にプレス加工によって製品形状に成形される。したがって、素材(ろう付前)の耐力が高いとスプリングバック量が多くなり、所望の形状が得難くなり、成形性が低下する。したがって、ろう付前の耐力は所定値以下とするのが望ましい。ろう付け前の0.2%耐力が80MPaを超えると成形性が低下する。
(ろう付熱処理後の引張強さが175MPa以上、ろう付熱処理後に90℃×7日間時効処理した後の引張強さが200MPa以上)
一方、ろう付後ではヘッダープレートの強度が高くないと製品使用時の振動や内圧変動によって生じる応力によってプレートに破壊が生じて製品としての性能を維持しにくくなる。したがって、ろう付後の強度、および製品使用時の温度履歴を模擬した90℃×7日間時効処理した後の強度は所定値以上とするのが望ましい。上記引張り強さを下回ると製品の耐久強度が低下する。
上記強度は、例えば成分の適正化、均質化処理条件の調整等によって達成することができる。
0.2% proof stress before brazing 80MPa or less, tensile strength after brazing heat treatment 175MPa or more, tensile strength after aging treatment at 90 ° C for 7 days after brazing heat treatment 200MPa or more (before brazing 0.2% proof stress less than 80MPa)
The header plate is generally formed into a product shape by pressing. Therefore, when the proof stress of the material (before brazing) is high, the amount of spring back increases, and it becomes difficult to obtain a desired shape, and the formability is reduced. Therefore, it is desirable to set the proof stress before brazing to a predetermined value or less. If the 0.2% proof stress before brazing exceeds 80 MPa, the formability deteriorates.
(The tensile strength after brazing heat treatment is 175 MPa or more, and the tensile strength after aging treatment at 90 ° C x 7 days after brazing heat treatment is 200 MPa or more)
On the other hand, if the strength of the header plate is not high after brazing, the plate is broken due to stress caused by vibration or internal pressure fluctuation during product use, making it difficult to maintain product performance. Therefore, it is desirable that the strength after brazing and the strength after aging at 90 ° C. for 7 days simulating the temperature history at the time of using the product be equal to or greater than a predetermined value. If the tensile strength is less than the above, the durability of the product is reduced.
The strength can be achieved, for example, by optimizing the components, adjusting the homogenization treatment conditions, or the like.

犠牲材のクラッド率:6〜20%
本発明材は犠牲材の強度を芯材などよりも高めることで高強度、高疲労強度特性を得ている。したがって、これらの効果は板厚全体に対する犠牲材の割合が高いほど効果的に発揮される。換言すれば、犠牲材の割合が小さいとその効果が十分に発揮されない。そのため、犠牲材のクラッド率は6〜20%の範囲とするのが望ましい。クラッド率が6%未満であると、ろう付後および90℃×7日間時効後の強度低下、疲労強度の低下を招く。一方、クラッド率が20%を超えるとクラッド圧延が困難になる。
Clad rate of sacrificial material: 6 to 20%
The inventive material achieves high strength and high fatigue strength characteristics by enhancing the strength of the sacrificial material more than the core material and the like. Therefore, these effects are more effectively exhibited as the ratio of the sacrificial material to the entire plate thickness is higher. In other words, if the proportion of the sacrificial material is small, the effect is not sufficiently exerted. Therefore, it is desirable that the cladding ratio of the sacrificial material be in the range of 6 to 20%. If the cladding ratio is less than 6%, the strength decreases after brazing and after aging at 90 ° C. for 7 days, and the fatigue strength decreases. On the other hand, if the cladding ratio exceeds 20%, cladding rolling becomes difficult.

以上説明したように、本発明によれば、ろう付け後の強度に優れており、さらに耐食性に優れた特性が得られる効果がある。   As described above, according to the present invention, the strength after brazing is excellent, and there is an effect that the characteristic excellent in corrosion resistance can be obtained.

本実施形態では、本発明で規定する組成を有する、芯材用アルミニウム合金、犠牲材用アルミニウム合金、およびろう材用アルミニウム合金をそれぞれ個別に鋳造し、得られた鋳塊に必要に応じて均質化処理を施し、熱間圧延により芯材用アルミニウム合金と、犠牲材用アルミニウム合金と、ろう材用アルミニウム合金を3層構造とするクラッド材のアルミニウム合金板とする。   In this embodiment, an aluminum alloy for a core material, an aluminum alloy for a sacrificial material, and an aluminum alloy for a brazing material having the composition defined in the present invention are separately cast, and the obtained ingot is homogeneous as needed. A hot-rolled aluminum alloy sheet for a core material, an aluminum alloy for a sacrificial material, and an aluminum alloy for a brazing material are formed into a three-layer structure by hot rolling.

本実施形態では、犠牲材、芯材ともに所定の化学成分とし、かつ芯材の均質化処理を高温とすることで、高強度、高犠牲材層の硬度、高疲労強度を得ている。具体的には微細な析出物を生成しやすいZn、Mgを犠牲材に配置し、Siを芯材に配置して、それぞれ析出物が生成しやすい比率としている。さらに芯材の均質化処理を高温で負荷することで芯材中のSiの固溶度を増すことでより微細な析出物が生成しやすいようにしている。例えば、芯材の均質化処理は550℃〜605℃で4〜16時間加熱する条件を選択することができる。均質化処理条件が550℃未満または4時間未満であると、芯材中のSiの固溶度が低くなって、Mg−Si系析出物が生成されにくくなる。それによって犠牲材近傍の芯材の硬度が低下することで、表面から150μmの平均硬度がが低下しやすくなる。一方、605℃超または16時間超であると、結晶粒界などの低融点層が存在する領域が局部的に溶融してしまう恐れがある。
なお、犠牲材の鋳造速度は0.3℃/s以上とすることが望ましい。それによって、鋳造時に粗大な第二相粒子が晶出するのを防止することができる。
また、犠牲材の均質化処理は未実施、または500℃以下の低温とすることが好ましい。それによって、犠牲材中の第二相粒子が粗大化するのを防止し、犠牲材中に存在する2μm以上の第二相粒子の数密度を低くすることができる。
In the present embodiment, high strength, high hardness of the high sacrificial material layer, and high fatigue strength are obtained by making both the sacrificial material and the core material have predetermined chemical components and making the homogenization treatment of the core material a high temperature. Specifically, Zn and Mg, which easily generate fine precipitates, are disposed in a sacrificial material, and Si is arranged in a core material, and the ratio is such that precipitates are easily generated. Furthermore, by applying a homogenization treatment of the core material at a high temperature, it is possible to easily form finer precipitates by increasing the solid solution degree of Si in the core material. For example, the homogenization process of a core material can select the conditions heated at 550 degreeC-605 degreeC for 4 to 16 hours. When the homogenization treatment condition is less than 550 ° C. or less than 4 hours, the solid solution degree of Si in the core material is lowered, and it is difficult to form a Mg-Si based precipitate. As a result, the hardness of the core material in the vicinity of the sacrificial material decreases, and the average hardness of 150 μm from the surface tends to decrease. On the other hand, if the temperature is higher than 605 ° C. or 16 hours, a region where a low melting point layer such as a grain boundary exists may be locally melted.
The casting speed of the sacrificial material is preferably 0.3 ° C./s or more. Thereby, it is possible to prevent the crystallization of coarse second phase particles during casting.
In addition, it is preferable that the homogenization treatment of the sacrificial material is not performed or a low temperature of 500 ° C or less. Thereby, the second phase particles in the sacrificial material can be prevented from becoming coarse, and the number density of second phase particles of 2 μm or more present in the sacrificial material can be lowered.

この後、目的の板厚(0.7mm以上)になるように冷間圧延を施すことによりブレージングシートを得る。この際の犠牲材のクラッド率は、6〜20%が望ましく、ろう材のクラッド率は、通常は10%とする。
なお、本発明は上記工程に限定されるものではなく、例えば熱間圧延後の冷間圧延の途中に必要により中間焼鈍を施すこともできる。
After this, a brazing sheet is obtained by cold rolling to a target plate thickness (0.7 mm or more). The cladding ratio of the sacrificial material at this time is preferably 6 to 20%, and the cladding ratio of the brazing material is usually 10%.
In addition, this invention is not limited to the said process, For example, intermediate annealing can also be given to the middle of the cold rolling after hot rolling as needed.

上記ブレージングシートは、ろう付け前の0.2%耐力が80MPa以下、ろう付熱処理後の引張強さが175MPa以上、ろう付熱処理後に90℃×7日間時効処理した後の引張強さが200MPa以上を有することができる。
芯材の均質化処理温度の高低はろう付前の芯材中に分散する分散粒子のサイズや数密度に影響を及ぼす。均質化処理温度が低い場合、分散粒子が微細・高密度に分布するため素材の耐力が増加する。一方、均質化処理温度が高い場合、分散粒子が粗大かつ密度が粗く分布するため素材の耐力が低下する。
したがって、本発明では芯材の均質化処理温度を高温(例えば芯材の均質化処理温度を550℃以上とする)で実施することでろう付前の0.2%耐力を低減することができる。
また、芯材の均質化処理温度の高低はろう付後の芯材のSiの固溶度の影響を及ぼし、均質化処理温度が高い場合、芯材のSiの固溶度が増すため、ろう付熱処理後に90℃×7日間時効処理時にMg−Si析出物が形成されやすく、時効処理時に高強度となりやすい。したがって、本発明では芯材の均質化処理温度を高温(例えば芯材の均質化処理温度を550℃以上とする)で実施することでろう付熱処理後に90℃×7日間時効処理した後の引張強さが200MPa以上を有することができる。
The brazing sheet has a 0.2% proof stress before brazing of 80 MPa or less, a tensile strength of 175 MPa or more after brazing heat treatment, and a tensile strength of 200 MPa or more after aging treatment at 90 ° C. for 7 days after brazing heat treatment You can have
The high and low of the homogenization temperature of the core material affects the size and number density of dispersed particles dispersed in the core material before brazing. When the homogenization temperature is low, the dispersed particles are finely and densely distributed, and the yield strength of the material is increased. On the other hand, when the homogenization temperature is high, the dispersed particles are coarse and the density is roughly distributed, so that the yield strength of the material is lowered.
Therefore, in the present invention, the 0.2% proof stress before brazing can be reduced by carrying out the homogenization treatment temperature of the core material at a high temperature (for example, the homogenization treatment temperature of the core material is 550 ° C. or higher). .
In addition, the high and low of the homogenization temperature of the core material affects the solid solution degree of Si of the core material after brazing, and when the homogenization temperature is high, the solid solution degree of Si of the core material is increased. After the heat treatment, Mg-Si precipitates are likely to be formed at the time of aging treatment at 90 ° C. for 7 days, and the strength tends to be high at the time of aging treatment. Therefore, in the present invention, the core material is subjected to the homogenization treatment temperature at a high temperature (for example, the core material homogenization treatment temperature is set to 550 ° C. or higher), and tensile strength after aging treatment at 90 ° C. × 7 days after brazing heat treatment The strength can have 200 MPa or more.

<ろう付け処理とろう付け後の金属組織>
前記ブレージングシートを用いてろう付け処理を行う場合、580〜610℃前後の温度に加熱してろう材を溶融させ、所定の時間保持した後、冷却することでろう付けができる。一例として、ろう付け炉に搬入した後、窒素雰囲気中などの雰囲気において、所定の加熱速度でろう付け温度の600℃まで加熱後、3分程度ろう付け温度に保持し、その後、−100℃/分程度の冷却速度で300℃程度の温度域まで冷却した後、ファンなどを用いて空冷することで室温まで降温し、ろう付けを行うことができる。
<Brazing treatment and metal structure after brazing>
When brazing is performed using the brazing sheet, the brazing material can be melted by heating to a temperature of about 580 to 610 ° C., held for a predetermined time, and then cooled. As an example, after being carried into a brazing furnace, after heating to a brazing temperature of 600 ° C. at a predetermined heating rate in an atmosphere such as in a nitrogen atmosphere, the brazing temperature is maintained at about 3 minutes and then -100 ° C. / After cooling to a temperature range of about 300 ° C. at a cooling rate of about a minute, the temperature can be lowered to room temperature by performing air cooling using a fan or the like, and brazing can be performed.

本実施形態では、ろう付熱処理後に90℃で7日間時効処理した後の前記犠牲材中に分布する2μm以上の第二相粒子の密度が2000個/mm以下であり、さらに、ろう付熱処理後に90℃で7日間時効処理した後の前記犠牲材の材料表面から150μmまでの平均硬度が100HV以上となる特性が得られる。 In the present embodiment, the density of second-phase particles of 2 μm or more distributed in the sacrificial material after aging treatment at 90 ° C. for 7 days after brazing heat treatment is 2000 particles / mm 2 or less, and further brazing heat treatment The characteristics that the average hardness up to 150 μm from the material surface of the sacrificial material after aging for 7 days at 90 ° C. later is 100 HV or more are obtained.

以下に、本発明の実施例を比較例と比較して説明する。
表1〜表3に示す組成(残部がAlと不可避不純物)で芯材用合金、犠牲材用合金、ろう材合金を調整し、常法により鋳塊を製造する。犠牲材、および芯材には所定の条件で均質化処理を行う。
上記各合金を表4、5に示す組み合わせで、熱間圧延し、冷間圧延によって互いに重ね合わせて、芯材クラッド率55〜90%、犠牲材クラッド率5〜30%、ろう材クラッド率5〜15%で、板厚1.0mmのアルミニウム合金ブレージングシートを製造した。上記で作製した材料に350℃×5時間の最終焼鈍を施して供試材とした。
Hereinafter, examples of the present invention will be described in comparison with comparative examples.
An alloy for a core material, an alloy for a sacrificial material, and a brazing material alloy are prepared with the compositions shown in Tables 1 to 3 (the balance is Al and unavoidable impurities), and an ingot is produced by a conventional method. The sacrificial material and the core material are homogenized under predetermined conditions.
The above-mentioned alloys are hot-rolled in a combination shown in Tables 4 and 5, and are stacked on each other by cold-rolling. Core cladding ratio 55 to 90%, sacrificial cladding ratio 5 to 30%, brazing material cladding ratio 5 An aluminum alloy brazing sheet having a thickness of 1.0 mm was produced at an amount of 15%. The material produced above was subjected to final annealing at 350 ° C. for 5 hours to prepare a test material.

各評価項目の評価方法
表4、5に示す以下の各項目について評価を行い、評価結果を表4、5に示した。
○ろう付前の0.2%耐力の測定方法
作製した板材から圧延方向と平行にサンプルを切り出してJIS13号B形状の試験片を作製し、引張試験を実施し、引張強さを測定した。引張速度は3mm/minとした。
0.2%耐力が90MPa以上を×、80MPa超−90MPa未満を○、80MPa以下を○○と評価した。
Evaluation Method of Each Evaluation Item The following items shown in Tables 4 and 5 were evaluated, and the evaluation results are shown in Tables 4 and 5.
○ Measurement method of 0.2% proof stress before brazing A sample was cut out parallel to the rolling direction from the produced plate material, a test piece of JIS No. 13 B shape was produced, a tensile test was carried out, and tensile strength was measured. The tensile speed was 3 mm / min.
The 0.2% proof stress evaluated 90 MPa or more as x, more than 80 MPa and less than 90 MPa as ○, and 80 MPa or less as ○.

○ろう付後の引張強さ、90℃×7日時効後の引張強さ
ろう付後の引張強さは作製した板材をろう付相当熱処理したのち、圧延方向と平行にサンプルを切り出してJIS13号B形状の試験片を作製し、引張試験を実施して求めた。引張速度は3mm/minとした。ろう付相当熱処理は600℃×3minとした(以下同じ)。
ろう付後の引張強さは、170MPa未満を×、170−175MPa未満を○、175MPa以上を○○と評価した。
90℃×7日時効後の引張強さは作製した板材をろう付相当熱処理したのち、さらに90℃に加熱した電気炉にて7日間の時効処理をしてから圧延方向と平行にサンプルを切り出してJIS13号B形状の試験片を作製し、引張試験を実施して求めた。引張速度は3mm/minとした。
時効後の引張強さは、190MPa未満を×、190−200MPa未満を○、200MPa以上を○○と評価した。
○ Tensile strength after brazing, tensile strength after aging at 90 ° C × 7 days For tensile strength after brazing, the prepared plate is heat-treated equivalent to brazing, and then a sample is cut out in parallel with the rolling direction, JIS 13 A B-shaped test piece was produced and determined by conducting a tensile test. The tensile speed was 3 mm / min. The heat treatment equivalent to brazing was set to 600 ° C. × 3 min (the same applies hereinafter).
The tensile strength after brazing was evaluated as × for less than 170 MPa, ○ for less than 170-175 MPa, and ○ for 175 MPa or more.
The tensile strength after aging at 90 ° C for 7 days is obtained by heat-treating the prepared plate for equivalent heat treatment, then aging for 7 days in an electric furnace heated to 90 ° C, and then cutting out the sample parallel to the rolling direction A test piece having a shape of JIS No. 13 B was prepared, and a tensile test was performed to obtain it. The tensile speed was 3 mm / min.
The tensile strength after aging evaluated that less than 190 MPa as x, less than 190-200 MPa as ○, and 200 MPa or more as ○.

○90℃×7日間時効後の疲労強度
作製した板材をろう付相当熱処理したのち、さらに90℃に加熱した電気炉にて7日間の時効処理をしてから圧延方向と平行にサンプルを切り出して、通常の平面曲げ疲労試験を実施した。応力比はR=−1(両振り)とし、周波数は20Hzとした。
上記条件にて負荷応力を変量した試験を多数行い、応力−繰り返し数の線図(S−N線図)を採取する。S−N線図の繰り返し数10〜10回の領域について最小二乗法を用いて繰り返し数10回の応力を算出し、この応力を疲労強度と定義して評価する。
疲労強度は90MPa未満が×、90〜100MPa未満を○、100MPa以上を○○と評価した。
○ Fatigue strength after aging at 90 ° C for 7 days After heat treatment of the produced plate material for brazing equivalent, aging treatment is performed for 7 days in an electric furnace heated to 90 ° C, and then a sample is cut out parallel to the rolling direction , The usual plane bending fatigue test was carried out. The stress ratio was R = -1 (two-sided swing), and the frequency was 20 Hz.
A large number of tests in which the applied stress is varied under the above conditions are performed, and a stress-repetition number diagram (S-N diagram) is collected. A stress of several 10 7 repetitions is calculated using the least squares method for a region of 10 5 to 10 7 repetitions of the S-N diagram, and this stress is defined and evaluated as fatigue strength.
The fatigue strength was evaluated as less than 90 MPa as ×, less than 90 to 100 MPa as ○, and 100 MPa or more as ○.

○90℃×7日間時効後の犠牲材の硬度
作製した板材をろう付相当熱処理したのち、さらに90℃に加熱した電気炉にて7日間の時効処理をしてから硬さ測定用の小片を切り出し、樹脂埋めしたのち、圧延方向平行断面をエメリー研磨、バフ研磨によって鏡面仕上げした。このサンプルをマイクロビッカース硬さ試験機を用いて犠牲材表面からの硬さ分布を測定し、表面から150μm深さまでの平均硬度を求めた。硬さの測定条件は室温、荷重0.01kgf、荷重負荷時間15sの条件で実施した。
時効後の犠牲材の硬度は、100HV未満を×、100−110HV未満を○、110HV以上を○○と評価した。
○ Hardness of sacrificial material after aging at 90 ° C for 7 days After heat-treating the prepared plate for brazing equivalent, it is further aged for 7 days in an electric furnace heated to 90 ° C, and then pieces for hardness measurement are taken. After cutting out and filling with resin, the parallel cross section in the rolling direction was mirror finished by emery polishing and buff polishing. The hardness distribution from the surface of the sacrificial material was measured using this sample using a micro Vickers hardness tester, and the average hardness from the surface to a depth of 150 μm was determined. The hardness was measured at room temperature under a load of 0.01 kgf for 15 seconds.
The hardness of the sacrificial material after aging was evaluated as less than 100 HV as ×, less than 100-110 HV as ○, and 110 HV or more as ○.

○90℃×7日間時効後の犠牲材における2μm以上の第二相粒子の密度
作製した板材をろう付相当熱処理したのち、さらに90℃に加熱した電気炉にて7日間の時効処理をしてから小片を切り出し、樹脂埋めしたのち、圧延方向平行断面をエメリー研磨、バフ研磨、化学研磨によって鏡面仕上げした。さらに0.5%フッ酸水溶液によってエッチングし、光学顕微鏡によって写真撮影し、画像解析によって第二相粒子のサイズおよび密度を求めた。観察視野は7000μm程度とし、5視野について調査を実施した。2μm以上の第二相粒子の密度を表に示した。なお、観察視野が小さすぎる場合には、局所的に第二相粒子が少ない箇所があると材料全体の状態を把握できないため、上記のような広い範囲について解析を実施する必要がある。なお、90℃×7日間時効後のサンプルについて上記測定を実施するとしているが、ろう付後と時効後では本第二相粒子(2μm以上)の分布状態は変化しないため、ろう付後のサンプルについて同様の調査を実施しても差し支えない。
○ Density of second-phase particles of 2 μm or more in the sacrificial material after aging at 90 ° C for 7 days After heat treatment of the plate material prepared for brazing equivalent, aging treatment is performed for 7 days in an electric furnace heated to 90 ° C. After cutting out a small piece from the above and filling in the resin, the parallel cross section in the rolling direction was mirror-finished by emery polishing, buff polishing and chemical polishing. Further, it was etched with a 0.5% aqueous solution of hydrofluoric acid, photographed with an optical microscope, and the size and density of second phase particles were determined by image analysis. The observation field of view was about 7000 μm 2, and the investigation was conducted for five fields of view. The density of second phase particles of 2 μm or more is shown in the table. If the observation field of view is too small, it is not possible to grasp the state of the entire material if there is a local location where there are few second phase particles, so it is necessary to carry out analysis over such a wide range as described above. Although the above measurement is performed on a sample after aging at 90 ° C. for 7 days, the distribution state of the second phase particles (2 μm or more) does not change after brazing and after aging, so the sample after brazing Similar surveys may be conducted for

自己耐食性
作製した板材をろう付相当熱処理したのち、さらに90℃に加熱した電気炉にて7日間の時効処理をしてから耐食性評価用の小片を切り出し、犠牲材面および端部をマスキングしたのち、SWAAT試験(ASTMのG85−Aに準拠)に30日間供した。
試験後の試験体は、沸騰させたリン酸クロム酸混合溶液中に10min浸漬することで腐食生成物を除去して腐食状況(腐食深さ)を評価した。
最大腐食深さが100μmを超えるものを×、60超〜100μmのものを○、60μm以下のものを○○として評価した。
Self-Corrosion Resistance After heat-treating the prepared plate for equivalent heat treatment, it is subjected to aging treatment for 7 days in an electric furnace heated to 90 ° C, then small pieces for corrosion resistance evaluation are cut out, and the sacrificial material surface and end portions are masked. And SWAAT test (according to ASTM G85-A) for 30 days.
The test body after the test was subjected to 10 minutes immersion in a mixed solution of boiled phosphoric acid and chromic acid to remove a corrosion product to evaluate a corrosion state (corrosion depth).
The samples with a maximum corrosion depth exceeding 100 μm were evaluated as ×, those with over 60 to 100 μm as ○, and those with 60 μm or less as ○.

Figure 0006526404
Figure 0006526404

Figure 0006526404
Figure 0006526404

Figure 0006526404
Figure 0006526404

Figure 0006526404
Figure 0006526404

Figure 0006526404
Figure 0006526404

上記表4、5に示すように、犠牲材中の化合物の数が少ないと亀裂の起点が少なくなって疲労強度が向上する。また、犠牲材の硬度が高いと亀裂が発生しにくくなって疲労強度が向上する。
また、ろう付け前の材料の素材の0.2%耐力が低いと成形性が良い。
ろう付け後の引張強さ、時効後の引張強さが高いと製品仕様時の静的な負荷応力に対して高耐久となる。また、強度が高くかつ硬度が高いと疲労強度が高くなることが分かった。
As shown in the above Tables 4 and 5, when the number of compounds in the sacrificial material is small, the origin of cracks is reduced and the fatigue strength is improved. In addition, when the hardness of the sacrificial material is high, cracking is less likely to occur and fatigue strength is improved.
In addition, when the 0.2% proof stress of the material before brazing is low, the formability is good.
When the tensile strength after brazing and the tensile strength after aging are high, it becomes highly resistant to static load stress at the time of product specification. It was also found that the fatigue strength is high when the strength is high and the hardness is high.

Claims (4)

板厚0.7mm以上で使用され、芯材の片面に犠牲材が配置され、他の片面にろう材をクラッドしてなるAl合金クラッド材であって、
前記芯材が、質量%でMn:1.3〜2.0%、Si:0.7〜1.2%、Fe:0.1〜0.5%、Cu:0.7〜1.3%を含有し、残部がAlと不可避不純物からなり、前記犠牲材が、質量%でZn:3.0〜6.0%、Mg:0.5〜1.8%、Si:0.05〜0.5%を含有し、残部がAlと不可避不純物からなり、前記犠牲材のクラッド率が6〜20%の範囲にあり、前記Al合金クラッド材は、ろう付け前の0.2%耐力が80MPa以下、600℃×3分でのろう付相当熱処理後の引張強さが175MPa以上であり、前記ろう付相当熱処理後に90℃で7日間時効処理した後の前記犠牲材中に分布する2μm以上の第二相粒子の密度が2000個/mm以下であり、さらに、前記ろう付相当熱処理後に90℃で7日間時効処理した後の前記犠牲材の材料表面から深さ150μmまでの平均硬度が100HV以上であることを特徴とするアルミニウム合金ブレージングシート。
An Al alloy clad material which is used at a plate thickness of 0.7 mm or more, a sacrificial material is disposed on one side of a core material, and a brazing material is clad on the other side,
The said core material is Mn: 1.3-2.0%, Si: 0.7-1.2%, Fe: 0.1-0.5%, Cu: 0.7-1.3 by mass%. %, The balance being composed of Al and unavoidable impurities, and the above-mentioned sacrificial material is, by mass%, Zn: 3.0 to 6.0%, Mg: 0.5 to 1.8%, Si: 0.05 to 0.05%. 0.5% is contained, the remainder is made of Al and unavoidable impurities, and the cladding ratio of the sacrificial material is in the range of 6 to 20%, and the Al alloy clad material has 0.2% proof stress before brazing 80 MPa or less, tensile strength after brazing equivalent heat treatment at 600 ° C. × 3 minutes is 175 MPa or more, 2 μm or more distributed in the sacrificial material after aging treatment at 90 ° C. for 7 days after the brazing equivalent heat treatment the density of the two-phase particles 2,000 / mm 2 or less, further, 7 days at 90 ° C. after corresponding heat treatment with the brazing Aluminum alloy brazing sheet average hardness to a depth of 150μm from the surface of the material of the sacrificial material after the aging treatment is equal to or not less than 100 HV.
前記ろう付相当熱処理後に90℃×7日間時効処理した後の引張強さが200MPa以上であることを特徴とする請求項1記載のアルミニウム合金ブレージングシート。   The aluminum alloy brazing sheet according to claim 1, wherein the tensile strength after aging treated at 90 ° C for 7 days after the heat treatment corresponding to brazing is 200 MPa or more. 前記ろう材がAl−Si系合金またはAl−Si−Zn系合金からなり、前記ろう材が質量%で、Si:7.2〜10.0%を含有することを特徴とする請求項1または2に記載のアルミニウム合金ブレージングシート。   The brazing material is made of an Al-Si alloy or an Al-Si-Zn alloy, and the brazing material contains, by mass%, Si: 7.2 to 10.0%. The aluminum alloy brazing sheet as described in 2. 前記ろう材がAl−Si−Zn系合金からなり、前記ろう材が質量%で、Zn:0.5〜3.0%を含有することを特徴とする請求項1〜3のいずれか1項に記載のアルミニウム合金ブレージングシート。   The said brazing material consists of an Al-Si-Zn type alloy, The said brazing material contains Zn: 0.5-3.0% in mass%, The any one of the Claims 1-3 characterized by the above-mentioned. Aluminum alloy brazing sheet as described in.
JP2014227779A 2014-11-10 2014-11-10 Aluminum alloy brazing sheet Active JP6526404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014227779A JP6526404B2 (en) 2014-11-10 2014-11-10 Aluminum alloy brazing sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014227779A JP6526404B2 (en) 2014-11-10 2014-11-10 Aluminum alloy brazing sheet

Publications (2)

Publication Number Publication Date
JP2016089244A JP2016089244A (en) 2016-05-23
JP6526404B2 true JP6526404B2 (en) 2019-06-05

Family

ID=56018958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014227779A Active JP6526404B2 (en) 2014-11-10 2014-11-10 Aluminum alloy brazing sheet

Country Status (1)

Country Link
JP (1) JP6526404B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7207936B2 (en) * 2018-10-16 2023-01-18 Maアルミニウム株式会社 Aluminum alloy fin material and heat exchanger

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3337771B2 (en) * 1993-08-18 2002-10-21 古河電気工業株式会社 Aluminum alloy composite for heat exchanger
JP3217607B2 (en) * 1994-08-24 2001-10-09 古河電気工業株式会社 Aluminum alloy composite for heat exchanger with excellent fatigue strength and corrosion resistance
JP3772017B2 (en) * 1998-04-07 2006-05-10 住友軽金属工業株式会社 High strength and high corrosion resistance aluminum alloy clad material for heat exchanger
JP3326106B2 (en) * 1998-04-07 2002-09-17 住友軽金属工業株式会社 Aluminum alloy clad material for heat exchanger with excellent strength and corrosion resistance
JP2000087171A (en) * 1998-09-14 2000-03-28 Furukawa Electric Co Ltd:The Aluminum alloy composite material excellent in bending fatigue characteristic and corrosion resistance
JP5462705B2 (en) * 2010-05-18 2014-04-02 株式会社神戸製鋼所 Aluminum alloy brazing sheet
JP5702982B2 (en) * 2010-10-08 2015-04-15 三菱アルミニウム株式会社 Aluminum alloy clad material
JP5840941B2 (en) * 2011-12-20 2016-01-06 三菱アルミニウム株式会社 Brazing sheet

Also Published As

Publication number Publication date
JP2016089244A (en) 2016-05-23

Similar Documents

Publication Publication Date Title
US11408690B2 (en) Method for producing aluminum alloy clad material
EP3093356B1 (en) Cladded aluminium-alloy material and production method therefor, and heat exchanger using said cladded aluminium-alloy material and production method therefor
WO2009101896A1 (en) Aluminum alloy laminate
JP4285916B2 (en) Manufacturing method of aluminum alloy plate for structural use with high strength and high corrosion resistance
JP2019131890A (en) Strip having excellent corrosion resistance after blazing
JP5917786B2 (en) Aluminum alloy laminate with excellent fatigue characteristics
JP2020158885A (en) Aluminum alloy products and method of preparation
JP6557476B2 (en) Aluminum alloy fin material
US10518363B2 (en) Aluminum alloy brazing sheet having high strength, high corrosion resistance and high material elongation, and method of manufacturing heat exchanger
WO2015133011A1 (en) Structural aluminum alloy plate and process for producing same
EP3121301A1 (en) Cladded aluminium-alloy material and production method therefor, and heat exchanger using said cladded aluminium-alloy material and production method therefor
JP2009215643A (en) Aluminum alloy laminated plate excellent in fatigue characteristic
US10315277B2 (en) Aluminium alloy laminated plate
JP5739828B2 (en) Aluminum alloy laminate
WO2018110320A1 (en) Aluminum alloy brazing sheet and method for manufacturing same
JP4856368B2 (en) Aluminum alloy fin material with excellent formability
US20170182602A1 (en) Aluminum alloy laminate
JP6526404B2 (en) Aluminum alloy brazing sheet
JPH058087A (en) Production of high-strength aluminum brazing sheet
JP6526434B2 (en) Aluminum alloy fin material
JP7471499B1 (en) Aluminum alloy clad material
JP2002126894A (en) Brazing sheet excellent in antierosiveness
JP2018178170A (en) Thin wall fin material excellent in erosion resistance, manufacturing method of thin wall fin material excellent in erosion resistance, and manufacturing method of heat exchanger
WO2016157451A1 (en) Aluminum alloy fin material for heat exchanger having high strength and excellent brazability, method for manufacturing same, and heat exchanger
JP2019210512A (en) Aluminum alloy brazing sheet for heat exchanger, and manufacturing method of heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190508

R150 Certificate of patent or registration of utility model

Ref document number: 6526404

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250