WO2016157451A1 - Aluminum alloy fin material for heat exchanger having high strength and excellent brazability, method for manufacturing same, and heat exchanger - Google Patents

Aluminum alloy fin material for heat exchanger having high strength and excellent brazability, method for manufacturing same, and heat exchanger Download PDF

Info

Publication number
WO2016157451A1
WO2016157451A1 PCT/JP2015/060246 JP2015060246W WO2016157451A1 WO 2016157451 A1 WO2016157451 A1 WO 2016157451A1 JP 2015060246 W JP2015060246 W JP 2015060246W WO 2016157451 A1 WO2016157451 A1 WO 2016157451A1
Authority
WO
WIPO (PCT)
Prior art keywords
brazing
aluminum alloy
heat exchanger
alloy fin
fin material
Prior art date
Application number
PCT/JP2015/060246
Other languages
French (fr)
Japanese (ja)
Inventor
翔 石上
岩尾 祥平
Original Assignee
三菱アルミニウム株式会社
翔 石上
岩尾 祥平
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱アルミニウム株式会社, 翔 石上, 岩尾 祥平 filed Critical 三菱アルミニウム株式会社
Priority to PCT/JP2015/060246 priority Critical patent/WO2016157451A1/en
Publication of WO2016157451A1 publication Critical patent/WO2016157451A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Definitions

  • the present invention relates to an aluminum alloy fin material for a heat exchanger used in a heat exchanger, a manufacturing method thereof, and a heat exchanger.
  • Patent Document 1 proposes a method for increasing the strength of an aluminum material by rolling a molten aluminum alloy containing a specified amount of each component of Si, Mn, Zn, and Fe by a continuous casting rolling method.
  • the strength is increased by optimizing the dispersion state of the Al— (Mn, Fe) —Si intermetallic compound in the material after brazing heat treatment.
  • Patent Document 3 the material strength is improved by increasing the amount of Cu contained in the material, and the corrosion resistance is improved by optimizing the Zn content.
  • brazing in the case of grain refinement strengthening, the occurrence of brazing (erosion) through fine grain boundaries as a route causes fin material buckling in particular. Become. For this reason, since the material strengthening mechanism is limited, it is difficult to achieve both high strength and brazing.
  • the present invention has been made against the background of the above circumstances, and an object thereof is to provide an aluminum alloy fin material for a heat exchanger that has both high strength after brazing and brazing.
  • the mechanism by which the strength of the fin material is improved after brazing heat treatment in the Al—Mn—Si based alloy fin material is a submicron order Al— (Mn, Fe) —Si type or the like.
  • the dispersion strengthening of such intermetallic compounds is the main, and the dispersion state of the matrix such as the size and density of these fine intermetallic compounds has a great influence on the material strength.
  • the fine dispersion of the intermetallic compound delays recrystallization during brazing heat treatment, can coarsen the crystal grains after brazing, and can suppress brazing erosion to the fin material. .
  • the present inventors focused on the dispersion state of these intermetallic compounds, and studied a material preparation process that can coarsen the chemical components and the crystal grains after brazing, which can obtain a further effect of precipitation strengthening. As a result of studying to obtain a high-performance fin material satisfying high strength and further high brazing properties, the present invention has been completed.
  • the first form is Mn: 1.4 to 2.0%, Cu: 0.05 by mass ratio.
  • Si 0.6 to 1.4%
  • Fe 0.1 to 0.5%
  • Zn 1.0 to 3.0%
  • Zr 0.01 to 0.3%
  • the balance has an inevitable impurity and Al composition, the tensile strength after brazing heat treatment is 135 MPa or more, the 0.2% proof stress is 45 MPa or more, and the equivalent circle diameter is 3.0 ⁇ m or more in the material before brazing.
  • Al- (Mn, Fe) -Si system and Al- (Mn, Fe) having a crystallized product of less than 1.0 ⁇ 10 3 / mm 2 and an equivalent circle diameter of 0.01 to 0.10 ⁇ m ) is the second phase particles of systems present in total 1.0 ⁇ 10 4 cells / mm 2 or more and a circle equivalent diameter of 0.01 ⁇ 0.10 .mu.m Al-Zr-based second phase particles are characterized by the presence 1.0 ⁇ 10 cells / mm 2 or more.
  • the invention of the aluminum alloy fin material for heat exchanger having high strength and excellent brazing property in another form is characterized in that in the present invention of the above form, the average crystal grain size after brazing is 500 ⁇ m or more.
  • the invention of the aluminum alloy fin material for heat exchangers having high strength and excellent brazing property in another form is the invention of the above form, in which the 0.2% proof stress in the temperature rising process at 400 ° C. during the brazing heat treatment is 120 MPa. It is the above.
  • the heat exchanger of the present invention is characterized by having the aluminum alloy fin material for heat exchanger of the present invention.
  • the aluminum alloy fin material for heat exchangers having high strength and excellent brazing properties according to the present invention has a mass ratio of Mn: 1.4 to 2.0%, Cu: 0.05 to 0.20%, Si: 0 .6 to 1.4%, Fe: 0.1 to 0.5%, Zn: 1.0 to 3.0%, Zr: 0.01 to 0.3%, the balance being inevitable impurities and Al
  • a molten aluminum alloy having a composition is rapidly solidified by a continuous casting method at a cooling rate of 100 to 900 ° C./sec to continuously cast a slab having a thickness of 5 to 10 mm. After applying a rolling reduction of 60%, the first intermediate annealing was performed at 350 ° C.
  • the sheet thickness was 0.05 to 0.3 mm by the second cold rolling, and 2 at 250 ° C. to 500 ° C.
  • the second intermediate annealing After the second intermediate annealing, it is rolled to a thickness of 35 to 150 ⁇ m by final cold rolling. It is characterized in.
  • Mn is added to precipitate Al— (Mn, Fe) —Si intermetallic compounds and obtain strength after brazing by dispersion strengthening.
  • Mn content is less than 1.4%, the effect of dispersion strengthening by the Al— (Mn, Fe) —Si intermetallic compound is small, and the desired strength after brazing cannot be obtained.
  • the grain structure after brazing is miniaturized, and brazing erosion is likely to occur.
  • the Mn content exceeds 2.0%, the Al— (Mn, Fe) —Si-based coarse intermetallic compound increases, and the workability such as cutting workability during fin molding deteriorates. For the same reason, it is desirable to set the lower limit to 1.5% and the upper limit to 1.8%.
  • Cu 0.05-0.20%
  • Cu forms an intermetallic compound, and the strength is improved by dispersion strengthening and solid solution strengthening.
  • the Cu content is less than 0.05%, the influence on dispersion strengthening and solid solution strengthening is small, and the effect of improving the strength is small. In addition, the natural potential becomes unstable.
  • the Cu content exceeds 0.20%, the rolling property is lowered, the formability of the material is lowered, the solid solubility in the matrix is increased, and the corrosion resistance of the fin alone is lowered.
  • the lower limit is 0.08% and the upper limit is 0.17%.
  • Si 0.6-1.4% Si is contained in order to precipitate Al— (Mn, Fe) —Si intermetallic compounds and obtain strength after brazing by dispersion strengthening.
  • Si content is less than 0.6%, the effect of dispersion strengthening by the Al— (Mn, Fe) —Si intermetallic compound is small, and the desired strength after brazing cannot be obtained.
  • Si is contained in excess of 1.4%, the amount of Si solid solution increases, the solidus temperature (melting point) decreases, and remarkable brazing erosion tends to occur during brazing. For the same reason, it is desirable to set the lower limit to 0.8% and the upper limit to 1.2%.
  • Fe 0.1-0.5% Fe is contained for precipitating Al— (Mn, Fe) —Si and Al— (Mn, Fe) intermetallic compounds and obtaining strength after brazing by dispersion strengthening.
  • Fe content is less than 0.1%, the effect of dispersion strengthening by Al- (Mn, Fe) -Si and Al- (Mn, Fe) compounds is small, and the desired strength after brazing cannot be obtained.
  • it exceeds 0.5% and Fe is contained the crystallized product at the time of casting becomes coarse, and the productivity (rollability) decreases. For the same reason, it is desirable that the lower limit is 0.15% and the upper limit is 0.4%.
  • Zn 1.0-3.0%
  • Zn has an effect of lowering the potential of the aluminum alloy, and is contained in order to obtain a sacrificial anode effect.
  • Zn content is less than 1.0%, the potential is not sufficiently low, so that the desired sacrificial anode effect cannot be obtained, and the corrosion depth of the combined tube increases.
  • Zn is contained exceeding 3.0%, the pitting corrosion potential becomes excessively low, and the corrosion resistance of the fin alone is lowered. For the same reason, it is desirable to set the lower limit to 1.6% and the upper limit to 2.8%.
  • Zr has the effect of coarsening the recrystallized grain structure after the brazing heat treatment, and is contained in order to improve the brazing corrosion resistance. If the Zr content is less than 0.01%, the effect on the coarsening of the crystal grain structure is small and the brazing property is lowered. If the Zr content exceeds 0.3%, the Al—Zr intermetallic compound at the time of casting Is easy to coarsen and the workability is lowered. For the same reason, it is desirable to set the lower limit to 0.05% and the upper limit to 0.15%.
  • ⁇ 0.2% proof stress after brazing 45MPa or more 0.2% proof stress indicates the elastic limit of the material. If the 0.2% proof stress after brazing is low, it will cause fin breakage due to repeated vibration in the vehicle. Even if it does not reach, core deformation occurs due to plastic deformation that does not retain the original shape and deformation of a plurality of fins. If the 0.2% yield strength after brazing is 45 MPa or more, the above-mentioned influence can be reduced.
  • predetermined properties were satisfied by enhancing the effects of dispersion strengthening by precipitation of Al— (Mn, Fe) —Si intermetallic compound and solid solution strengthening by Cu element.
  • the crystallized material having an equivalent circle diameter of 3.0 ⁇ m or more in the material before brazing is less than 1.0 ⁇ 10 3 pieces / mm 2 , delays recrystallization during brazing, and crystal after brazing Brazeability is improved by making the grain structure coarse.
  • the present invention for example, by increasing the cooling rate at the time of solidification of the molten metal as in the continuous casting and rolling method, the coarsening of the crystallized product is suppressed and the predetermined dispersion state is satisfied.
  • second phase particles having an equivalent circle diameter of 0.01 to 0.10 ⁇ m are 1.0 ⁇ 10 4 in total. there pieces / mm 2 or more and a circle equivalent diameter of second phase particles of Al-Zr-based 0.01 ⁇ 0.10 .mu.m is 1.0 ⁇ 10 cells / mm 2 or more exists circle equivalent diameter of 0.01
  • the material strength is improved, and the recrystallization is delayed in order to suppress the transition to the recrystallization site and the accumulation of subgrain boundaries, so that the crystal grains after brazing are coarsened and the brazing property is improved.
  • Al- (Mn, Fe) -Si-based and Al- (Mn, Fe) -based second phase particles are present in a total number of less than 1.0 ⁇ 10 4 particles / mm 2 and are Al—Zr-based second phase. If the number of particles is less than 1.0 ⁇ 10 / mm 2 , the effect cannot be sufficiently obtained.
  • the present invention for example, by optimizing the intermediate annealing conditions after the first cold rolling at the time of material preparation, precipitation of intermetallic compounds in the material matrix was controlled, and a predetermined dispersion state was satisfied.
  • the average crystal grain size after brazing is 500 ⁇ m or more.
  • the average crystal grain size after brazing is fine, brazing erosion through the grain boundaries tends to occur during brazing and fin buckling occurs. It becomes easy. If the average crystal grain size after brazing is 500 ⁇ m or more, the above-mentioned influence can be reduced, which is desirable.
  • the present invention by adjusting the size and number density of the crystals and precipitates in the material matrix to an optimal range, the transition to the recrystallization site and the accumulation of subgrain boundaries during brazing heat treatment are suppressed, and recrystallization is performed. By delaying, the average grain size after brazing heat treatment was made coarse.
  • the 0.2% proof stress at 400 ° C is 120 MPa or more.
  • the 0.2% proof stress during the brazing heat treatment is greatly affected by the deformation behavior of the fins. If the material softens early in the temperature rise process during brazing heat treatment (for example, when it becomes 35% or less of the 0.2% proof stress value of the material), the fin is deformed by the subsequent heat load, Buckling is likely to occur.
  • a 0.2% proof stress at 120 ° C. or higher at 400 ° C. in the temperature raising process of the brazing heat treatment is desirable because the above-mentioned influence can be reduced. At this time, the rate of temperature increase from 150 ° C. to 400 ° C.
  • the temperature be in the range of 50 ° C. to 300 ° C./min.
  • the crystallites and precipitates in the material matrix have a predetermined size and number density, and, for example, as described above, by controlling the heating rate during the brazing heat treatment, the predetermined characteristics are obtained. Satisfied.
  • the continuous casting method can obtain high solid solubility after casting and contributes to the coarsening of crystal grains. A large amount of solute element can be added, which is advantageous for improving the strength after brazing.
  • the cooling rate is rapidly solidified at a cooling rate of 100 to 900 ° C./second. When the cooling rate is less than 100 ° C./second, the crystallized material becomes coarse, and cracks during casting are likely to occur. On the other hand, when the cooling rate exceeds 900 ° C./second, the solute element is solid-dissolved in supersaturation, and the subsequent rollability is significantly lowered.
  • Continuous casting thickness 5 to 10 mm thick slab
  • First cold rolling 20 to 60% rolling reduction (reason) After completion of casting, by adding rolling, it is possible to promote precipitation of dispersed particles in the material during the subsequent annealing process. High strength can be achieved. If the rolling reduction is less than 20%, the effect cannot be obtained sufficiently. If the rolling reduction exceeds 60%, cracks are prominent during rolling and a sound material cannot be obtained.
  • the first intermediate annealing is performed at 350 ° C. to 550 ° C. (Reason) If the first annealing temperature is less than 350 ° C., the aluminum alloy material does not recrystallize at the time of brazing, and subcrystals remain and brazing erosion occurs. On the other hand, if the temperature exceeds 550 ° C., the size of the dispersed particles precipitated in the material becomes coarse, so that the desired strength after brazing cannot be obtained and the self-corrosion resistance may be lowered.
  • the thickness is set to 0.05 to 0.3 mm by the second cold rolling. (Reason) If the sheet thickness is less than 0.05 mm in the second cold rolling, the rolling rate applied during the final cold rolling is reduced, and the final material strength is lowered. On the other hand, if it exceeds 0.3 mm, the strength of the final material becomes too high, making it difficult to form the material.
  • a second intermediate annealing is performed at 250 to 500 ° C.
  • the second annealing temperature is less than 250 ° C.
  • the aluminum alloy material does not recrystallize at the time of brazing, and subcrystals remain and braze erosion occurs.
  • the recrystallized grain size after brazing becomes too fine, and fin buckling due to brazing may occur.
  • Rolled to a thickness of 35 to 150 ⁇ m by final cold rolling. (Reason) When the final plate thickness is 35 ⁇ m or less, breakage tends to occur during material rolling, and stable rolling becomes difficult. On the other hand, if it exceeds 150 ⁇ m, it is not suitable for use as a fin material for heat exchangers, and molding becomes difficult.
  • high strength can be achieved by dispersion strengthening of Al—Mn—Si based particles and solid solution strengthening of Cu, and brazing based on the recrystallization behavior due to the dispersion state of intermetallic compounds inside the material.
  • the grain structure after the heat treatment is coarsened to improve the resistance to wax erosion.
  • the aluminum alloy used as the material of the aluminum alloy fin material has a mass ratio of Mn: 1.4 to 2.0%, Cu: 0.05 to 0.20%, Si: 0.00. 6 to 1.4%, Fe: 0.1 to 0.5%, Zn: 1.0 to 3.0%, Zr: 0.01 to 0.3%, the balance being an inevitable impurity and Al composition Is prepared so as to be obtained and used for the continuous casting and rolling method (CC method).
  • CC method continuous casting and rolling
  • the molten alloy is cooled at a cooling rate of 100 to 900 ° C./second to obtain an aluminum alloy slab having a thickness of 5 to 10 mm.
  • a twin roll method, a belt method, etc. can be selected suitably,
  • the method of a continuous casting rolling method is not limited to a specific thing.
  • the aluminum alloy sheet is cold rolled to a final thickness of 35 to 150 ⁇ m.
  • cold rolling a rolling reduction of 20 to 60% is applied in the first cold rolling.
  • the first intermediate annealing is performed at 350 ° C. to 550 ° C.
  • the thickness is 0.05 to 0.3 mm by the second cold rolling
  • the second intermediate annealing is performed at 250 ° C. to 500 ° C.
  • it is rolled to a thickness of 35 to 150 ⁇ m by final cold rolling.
  • the rolled aluminum alloy material of the present invention is processed into a fin material for a heat exchanger, and a heat exchanger is manufactured by brazing in combination with a tube or the like.
  • the heat exchanger can be suitably used for in-vehicle use.
  • a molten aluminum alloy having the chemical composition shown in Table 1 (the balance being Al and inevitable impurities) is rapidly solidified at a predetermined cooling rate shown in Table 2 by a continuous casting method to continuously form a thin slab having a thickness of 8 mm. Casted. The slab is wound on a roll, loaded with a rolling reduction ratio of 25% in the first cold rolling to a sheet thickness of 6 mm, and then subjected to the predetermined intermediate annealing and cold rolling shown in Table 2 to obtain the final rolling reduction ratio. A test material of 30% aluminum alloy plate material having a thickness of 60 ⁇ m was obtained. The obtained test materials were evaluated for the following items, and the results are shown in Table 2.
  • the manufactured heat exchanger was repeatedly subjected to a pressure test of 0.5 to 150 kPa, and the number of times until the member broke was measured.
  • the number of repetitions until the member breaks is 150,000 times or more: A: Less than 1 to 150,000 times: B: Less than 100,000 times: x
  • the evaluation results are shown in Table 2.
  • brazing heat treatment After assembling a corrugated test fin material on the brazing material surface of a 0.2 mm thick brazing sheet (JIS A7072 / 3003/4343), and applying a flux of 6.0 g / m 2 to this, A brazing heat treatment was performed. Note that brazing heat treatment is performed in a nitrogen gas atmosphere at a rate of temperature increase from room temperature to the target temperature of 15 minutes, held at 600 ° C. for 3 minutes, and then cooled at a cooling rate of 100 ° C./min. Was done.
  • the cross section of the brazing sheet and the fin joint is observed using an optical microscope, and the brazing resistance is evaluated by the brazing corrosion resistance of the test fin material.
  • when the maximum depth of brazing erosion generated on the specimen fin material is less than half of the plate thickness
  • when the maximum thickness is less than half of the plate thickness and less than the plate thickness
  • What has occurred is indicated by x.
  • a state in which a part of the test fin was missing due to wax erosion was expressed as buckling.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Continuous Casting (AREA)

Abstract

An aluminum alloy fin material for a heat exchanger, said aluminum alloy fin material having a composition comprising, in terms of mass ratio, 1.4-2.0% of Mn, 0.05-0.20% of Cu, 0.6-1.4% of Si, 0.1-0.5% of Fe, 1.0-3.0% of Zn, 0.01-0.3% of Zr and the balance consisting of inevitable impurities and Al, showing a tensile strength of 135 MPa or more and a 0.2% proof stress of 45 MPa or more after thermal brazing, and containing, in the material before brazing, less than 1.0×103 particles/mm2 of crystallized particles having a circle equivalent diameter of 3.0 μm or larger, 1.0×104 particles/mm2 or more in total of Al-(Mn,Fe)-Si-based and Al-(Mn,Fe)-based second phase particles having a circle equivalent diameter of 0.01-0.10 μm, and 1.0×10 particles/mm2 or more of Al-Zr-based second phase particles having a circle equivalent diameter of 0.01-0.10 μm.

Description

高強度で優れたろう付性を有する熱交換器用アルミニウム合金フィン材およびその製造方法ならびに熱交換器Aluminum alloy fin material for heat exchanger having high strength and excellent brazing property, method for producing the same, and heat exchanger
 この発明は、熱交換器に用いられる熱交換器用アルミニウム合金フィン材およびその製造方法ならびに熱交換器に関するものである。 The present invention relates to an aluminum alloy fin material for a heat exchanger used in a heat exchanger, a manufacturing method thereof, and a heat exchanger.
 近年、ラジエータやコンデンサなどの自動車熱交換器の軽量化や高性能化に伴い、部材として使用されるアルミニウム合金には従来よりも高い強度や耐食性などの特性が求められている(例えば、特許文献1、2、3参照)。
 特許文献1では、Si、Mn、Zn、Feの各成分を規定量含有したアルミニウム合金溶湯を、連続鋳造圧延法によって圧延することでアルミニウム材料の高強度化を図る方法が提案されている。
 特許文献2では、ろう付熱処理後の材料中のAl-(Mn、Fe)-Si系金属間化合物の分散状態を適正化することで高強度化を図っている。
 特許文献3では、材料中に含有されるCu量を増加させることで材料強度を向上させ、Zn含有量を最適化することで耐食性を向上させている。
In recent years, with the reduction in weight and performance of automobile heat exchangers such as radiators and condensers, aluminum alloys used as members are required to have characteristics such as higher strength and corrosion resistance than conventional ones (for example, patent documents). 1, 2, 3).
Patent Document 1 proposes a method for increasing the strength of an aluminum material by rolling a molten aluminum alloy containing a specified amount of each component of Si, Mn, Zn, and Fe by a continuous casting rolling method.
In Patent Document 2, the strength is increased by optimizing the dispersion state of the Al— (Mn, Fe) —Si intermetallic compound in the material after brazing heat treatment.
In Patent Document 3, the material strength is improved by increasing the amount of Cu contained in the material, and the corrosion resistance is improved by optimizing the Zn content.
特開2008-308761号公報JP 2008-307661 A 特開2012-126950号公報JP 2012-126950 A 特開2013-040367号公報JP 2013-040367 A
 しかし、近年のさらなる高性能化に際し、特にアルミニウム合金フィン材には、薄肉化の要求が高く、薄肉化した際にも形状を維持出来る様な材料が求められている。そのためには、ろう付後の高い材料強度とろう付時のろう流動によって浸食を受けない様な高いろう付性の両立が求められる。ここでアルミニウムの強化機構として、添加元素による「固溶強化」、熱処理によりごく微細な多数の硬質粒子を分散させる「析出強化」、結晶粒を微細化させる「結晶粒微細化強化」などが考えられ、これらを組み合わせて高強度化を図るのが一般的である。しかし、ろう付性に与える影響をみると、結晶粒微細化強化の場合、細かな結晶粒界を経路としたろう浸食(エロージョン)が発生することで、特にフィン材の座屈が発生しやすくなる。このため、材料の強化機構が限られることから、高強度、ろう付性を両立するのは難しい。 However, with the recent high performance, especially aluminum alloy fin materials, there is a high demand for thinning, and materials that can maintain the shape even when thinning are required. For this purpose, it is necessary to satisfy both high material strength after brazing and high brazing property so as not to be eroded by brazing flow during brazing. Here, as the strengthening mechanism of aluminum, “solid solution strengthening” by additive elements, “precipitation strengthening” in which a large number of hard particles are dispersed by heat treatment, and “crystal grain refinement strengthening” in which crystal grains are refined are considered. These are generally combined to increase the strength. However, looking at the effect on brazing, in the case of grain refinement strengthening, the occurrence of brazing (erosion) through fine grain boundaries as a route causes fin material buckling in particular. Become. For this reason, since the material strengthening mechanism is limited, it is difficult to achieve both high strength and brazing.
 本願発明は、上記事情を背景としてなされたものであり、ろう付後の高強度とろう付性を両立した熱交換器用アルミニウム合金フィン材を提供することを目的の一つとする。 The present invention has been made against the background of the above circumstances, and an object thereof is to provide an aluminum alloy fin material for a heat exchanger that has both high strength after brazing and brazing.
 本発明者の知見によれば、Al-Mn-Si系合金フィン材においてろう付熱処理後に、フィン材の強度が向上する機構はサブミクロンオーダーのAl-(Mn、Fe)-Si系などの微細な金属間化合物の分散強化が主であり、これら微細な金属間化合物のサイズや密度など、マトリクスの分散状態が材料強度に大きな影響を及ぼしている。また、金属間化合物が微細に分散することにより、ろう付熱処理時の再結晶が遅延し、ろう付後の結晶粒を粗大化することができ、フィン材へのろう浸食を抑制することができる。そこで、本発明者らは、これら金属間化合物の分散状態に着目して、より析出強化の効果が得られるような化学成分やろう付後の結晶粒を粗大化できるような材料作製工程の検討により、高強度と更には高いろう付性を満足する高性能フィン材を得るべく検討を進めた結果、本発明を完成するに至った。 According to the knowledge of the present inventor, the mechanism by which the strength of the fin material is improved after brazing heat treatment in the Al—Mn—Si based alloy fin material is a submicron order Al— (Mn, Fe) —Si type or the like. The dispersion strengthening of such intermetallic compounds is the main, and the dispersion state of the matrix such as the size and density of these fine intermetallic compounds has a great influence on the material strength. In addition, the fine dispersion of the intermetallic compound delays recrystallization during brazing heat treatment, can coarsen the crystal grains after brazing, and can suppress brazing erosion to the fin material. . Therefore, the present inventors focused on the dispersion state of these intermetallic compounds, and studied a material preparation process that can coarsen the chemical components and the crystal grains after brazing, which can obtain a further effect of precipitation strengthening. As a result of studying to obtain a high-performance fin material satisfying high strength and further high brazing properties, the present invention has been completed.
 すなわち、本発明の高強度で優れたろう付性を有する熱交換器用アルミニウム合金フィン材のうち、第1の形態は、質量比で、Mn:1.4~2.0%、Cu:0.05~0.20%、Si:0.6~1.4%、Fe:0.1~0.5%、Zn:1.0~3.0%、Zr:0.01~0.3%、残部は不可避的不純物とAlからなる組成を有し、ろう付熱処理後の引張強さ135MPa以上、0.2%耐力45MPa以上であり、ろう付前の材料中に円相当径が3.0μm以上の晶出物が1.0×10個/mm未満存在し、かつ、円相当径が0.01~0.10μmのAl-(Mn、Fe)-Si系およびAl-(Mn、Fe)系の第2相粒子が、合計で1.0×10個/mm以上存在し、かつ、円相当径が0.01~0.10μmのAl-Zr系の第2相粒子が1.0×10個/mm以上存在することを特徴とする。 That is, among the aluminum alloy fin materials for heat exchangers having high strength and excellent brazing properties according to the present invention, the first form is Mn: 1.4 to 2.0%, Cu: 0.05 by mass ratio. To 0.20%, Si: 0.6 to 1.4%, Fe: 0.1 to 0.5%, Zn: 1.0 to 3.0%, Zr: 0.01 to 0.3%, The balance has an inevitable impurity and Al composition, the tensile strength after brazing heat treatment is 135 MPa or more, the 0.2% proof stress is 45 MPa or more, and the equivalent circle diameter is 3.0 μm or more in the material before brazing. Al- (Mn, Fe) -Si system and Al- (Mn, Fe) having a crystallized product of less than 1.0 × 10 3 / mm 2 and an equivalent circle diameter of 0.01 to 0.10 μm ) is the second phase particles of systems present in total 1.0 × 10 4 cells / mm 2 or more and a circle equivalent diameter of 0.01 ~ 0.10 .mu.m Al-Zr-based second phase particles are characterized by the presence 1.0 × 10 cells / mm 2 or more.
 他の形態の高強度で優れたろう付性を有する熱交換器用アルミニウム合金フィン材の発明は、前記形態の本発明において、ろう付後の平均結晶粒径が500μm以上であることを特徴とする。 The invention of the aluminum alloy fin material for heat exchanger having high strength and excellent brazing property in another form is characterized in that in the present invention of the above form, the average crystal grain size after brazing is 500 μm or more.
 他の形態の高強度で優れたろう付性を有する熱交換器用アルミニウム合金フィン材の発明は、前記形態の本発明において、ろう付熱処理時の昇温過程400℃での0.2%耐力が120MPa以上であることを特徴とする。 The invention of the aluminum alloy fin material for heat exchangers having high strength and excellent brazing property in another form is the invention of the above form, in which the 0.2% proof stress in the temperature rising process at 400 ° C. during the brazing heat treatment is 120 MPa. It is the above.
 本発明の熱交換器は、本発明の熱交換器用アルミニウム合金フィン材を有することを特徴とする。 The heat exchanger of the present invention is characterized by having the aluminum alloy fin material for heat exchanger of the present invention.
 本発明の高強度で優れたろう付性を有する熱交換器用アルミニウム合金フィン材は、質量比で、Mn:1.4~2.0%、Cu:0.05~0.20%、Si:0.6~1.4%、Fe:0.1~0.5%、Zn:1.0~3.0%、Zr:0.01~0.3%、残部は不可避的不純物とAlからなる組成を有するアルミニウム合金の溶湯を連続鋳造法により、100~900℃/secの冷却速度で急速凝固させて厚さ5~10mmのスラブを連続的に鋳造し、1回目の冷間圧延で20~60%の圧下率を負荷した後、350℃~550℃で1回目の中間焼鈍を施し、さらに2回目の冷間圧延で板厚0.05~0.3mmとし、250℃~500℃で2回目の中間焼鈍を施した後、最終冷間圧延にて板厚35~150μmの厚さに圧延することを特徴とする。 The aluminum alloy fin material for heat exchangers having high strength and excellent brazing properties according to the present invention has a mass ratio of Mn: 1.4 to 2.0%, Cu: 0.05 to 0.20%, Si: 0 .6 to 1.4%, Fe: 0.1 to 0.5%, Zn: 1.0 to 3.0%, Zr: 0.01 to 0.3%, the balance being inevitable impurities and Al A molten aluminum alloy having a composition is rapidly solidified by a continuous casting method at a cooling rate of 100 to 900 ° C./sec to continuously cast a slab having a thickness of 5 to 10 mm. After applying a rolling reduction of 60%, the first intermediate annealing was performed at 350 ° C. to 550 ° C., and the sheet thickness was 0.05 to 0.3 mm by the second cold rolling, and 2 at 250 ° C. to 500 ° C. After the second intermediate annealing, it is rolled to a thickness of 35 to 150 μm by final cold rolling. It is characterized in.
 以下に、本発明で規定する内容について説明する。なお、組成における成分量はいずれも質量%で示される。 The contents defined in the present invention will be described below. In addition, all the component amounts in a composition are shown by the mass%.
・Mn:1.4~2.0%
 MnはAl-(Mn、Fe)-Si系金属間化合物を析出させ、分散強化によるろう付後の強度を得るために含有させる。ただし、Mn含有量が1.4%未満であると、Al-(Mn、Fe)-Si系金属間化合物による分散強化の効果が小さく、所望のろう付後強度が得られない。また、ろう付け後の結晶粒組織が微細化しており、ろう浸食が起こりやすくなっている。一方、Mn含有量が2.0%を超えると、Al-(Mn、Fe)-Si系の粗大な金属間化合物が増加し、フィン成形時の切断加工性などの加工性が低下する。なお、同様の理由で下限を1.5%、上限を1.8%とするのが望ましい。
・ Mn: 1.4-2.0%
Mn is added to precipitate Al— (Mn, Fe) —Si intermetallic compounds and obtain strength after brazing by dispersion strengthening. However, if the Mn content is less than 1.4%, the effect of dispersion strengthening by the Al— (Mn, Fe) —Si intermetallic compound is small, and the desired strength after brazing cannot be obtained. In addition, the grain structure after brazing is miniaturized, and brazing erosion is likely to occur. On the other hand, if the Mn content exceeds 2.0%, the Al— (Mn, Fe) —Si-based coarse intermetallic compound increases, and the workability such as cutting workability during fin molding deteriorates. For the same reason, it is desirable to set the lower limit to 1.5% and the upper limit to 1.8%.
・Cu:0.05~0.20%
 Cuは金属間化合物を形成し、分散強化および固溶強化により強度が向上する。ただし、Cu含有量が0.05%未満であると、分散強化および固溶強化への影響が小さく、強度が向上する効果が小さい。また、自然電位が不安定化する。一方、Cu含有量が0.20%を超えると、圧延性の低下、素材の成形性が低下し、さらにマトリクス中への固溶度が増加し、フィン単体の耐食性が低下する。なお、同様の理由で下限を0.08%、上限を0.17%とするのが望ましい。
Cu: 0.05-0.20%
Cu forms an intermetallic compound, and the strength is improved by dispersion strengthening and solid solution strengthening. However, if the Cu content is less than 0.05%, the influence on dispersion strengthening and solid solution strengthening is small, and the effect of improving the strength is small. In addition, the natural potential becomes unstable. On the other hand, if the Cu content exceeds 0.20%, the rolling property is lowered, the formability of the material is lowered, the solid solubility in the matrix is increased, and the corrosion resistance of the fin alone is lowered. For the same reason, it is desirable that the lower limit is 0.08% and the upper limit is 0.17%.
・Si:0.6~1.4%
 Siは、Al-(Mn、Fe)-Si系金属間化合物を析出させ、分散強化によるろう付後の強度を得るために含有される。ただし、0.6%未満のSi含有では、Al-(Mn、Fe)-Si系金属間化合物による分散強化の効果が小さく、所望のろう付後強度が得られない。一方、1.4%を超えてSiを含有すると、Si固溶量が大きくなり、固相線温度(融点)が低下し、ろう付時に著しいろう浸食が生じやすくなる。なお、同様の理由で下限を0.8%、上限を1.2%とするのが望ましい。
・ Si: 0.6-1.4%
Si is contained in order to precipitate Al— (Mn, Fe) —Si intermetallic compounds and obtain strength after brazing by dispersion strengthening. However, when Si content is less than 0.6%, the effect of dispersion strengthening by the Al— (Mn, Fe) —Si intermetallic compound is small, and the desired strength after brazing cannot be obtained. On the other hand, when Si is contained in excess of 1.4%, the amount of Si solid solution increases, the solidus temperature (melting point) decreases, and remarkable brazing erosion tends to occur during brazing. For the same reason, it is desirable to set the lower limit to 0.8% and the upper limit to 1.2%.
・Fe:0.1~0.5%
 Feは、Al-(Mn、Fe)-Si系およびAl-(Mn、Fe)系金属間化合物を析出させ、分散強化によるろう付後の強度を得るために含有される。ただし、0.1%未満のFe含有では、Al-(Mn、Fe)-Si系およびAl-(Mn、Fe)系化合物による分散強化の効果が小さく、所望のろう付後強度が得られない。一方、0.5%を超えてFeを含有すると鋳造時の晶出物が粗大化し、製造性(圧延性)が低下する。なお、同様の理由で下限を0.15%、上限を0.4%とするのが望ましい。
・ Fe: 0.1-0.5%
Fe is contained for precipitating Al— (Mn, Fe) —Si and Al— (Mn, Fe) intermetallic compounds and obtaining strength after brazing by dispersion strengthening. However, if Fe content is less than 0.1%, the effect of dispersion strengthening by Al- (Mn, Fe) -Si and Al- (Mn, Fe) compounds is small, and the desired strength after brazing cannot be obtained. . On the other hand, if it exceeds 0.5% and Fe is contained, the crystallized product at the time of casting becomes coarse, and the productivity (rollability) decreases. For the same reason, it is desirable that the lower limit is 0.15% and the upper limit is 0.4%.
・Zn:1.0~3.0%
 Znは、アルミニウム合金の電位を卑にする作用があり、犠牲陽極効果を得るために含有させる。ただし、1.0%未満のZn含有では、電位が十分に卑とならないため、所望の犠牲陽極効果が得られず、組合わされるチューブの腐食深さが大きくなる。一方、3.0%を超えてZnを含有すると孔食電位が過剰に卑となり、フィン単体の耐食性が低下する。なお、同様の理由で下限を1.6%、上限を2.8%とするのが望ましい。
Zn: 1.0-3.0%
Zn has an effect of lowering the potential of the aluminum alloy, and is contained in order to obtain a sacrificial anode effect. However, if Zn content is less than 1.0%, the potential is not sufficiently low, so that the desired sacrificial anode effect cannot be obtained, and the corrosion depth of the combined tube increases. On the other hand, when Zn is contained exceeding 3.0%, the pitting corrosion potential becomes excessively low, and the corrosion resistance of the fin alone is lowered. For the same reason, it is desirable to set the lower limit to 1.6% and the upper limit to 2.8%.
・Zr:0.01~0.3%
Zrは、ろう付熱処理後の再結晶粒組織を粗大化させる作用があり、耐ろう浸食性を向上させるために含有させる。0.01%未満のZr含有では、結晶粒組織の粗大化に及ぼす効果が小さくろう付け性が低下し、0.3%を超えてZrを含有すると、鋳造時のAl-Zr系金属間化合物が粗大化しやすく、加工性が低下する。なお、同様の理由で下限を0.05%、上限を0.15%とするのが望ましい。
・ Zr: 0.01-0.3%
Zr has the effect of coarsening the recrystallized grain structure after the brazing heat treatment, and is contained in order to improve the brazing corrosion resistance. If the Zr content is less than 0.01%, the effect on the coarsening of the crystal grain structure is small and the brazing property is lowered. If the Zr content exceeds 0.3%, the Al—Zr intermetallic compound at the time of casting Is easy to coarsen and the workability is lowered. For the same reason, it is desirable to set the lower limit to 0.05% and the upper limit to 0.15%.
・ろう付後の引張強さ135MPa以上
 部材の薄肉化に伴い、材料の高強度化が求められており、フィン材のろう付後強度が低いと車載時に熱交換器に負荷される繰返しの振動や冷却水の膨張、圧縮によりフィン破断が生じやすくなる。このような破断部ではフィンによるチューブの膨張、圧縮を抑制する効果が得られず、チューブは太鼓状に膨張して、早期の破断つまり内部冷却水の洩れにつながる。ろう付後の引張強さが135MPa以上であれば、市場でのフィン破断を軽減することができる。本発明では合金成分の最適化検討により、Al-(Mn、Fe)-Si系金属間化合物の析出による分散強化、Cu元素による固溶強化の効果を高めることで所定の特性を満足した。
・ Tensile strength after brazing: 135 MPa or more As materials become thinner, higher strength of materials is required. If the strength of fin material after brazing is low, repeated vibration is applied to the heat exchanger when mounted on the vehicle. In addition, the fins are easily broken by expansion and compression of the cooling water. In such a broken portion, the effect of suppressing the expansion and compression of the tube by the fin cannot be obtained, and the tube expands like a drum, leading to early breakage, that is, leakage of internal cooling water. If the tensile strength after brazing is 135 MPa or more, fin breakage in the market can be reduced. In the present invention, by examining the optimization of the alloy components, predetermined properties were satisfied by enhancing the effects of dispersion strengthening by precipitation of Al— (Mn, Fe) —Si intermetallic compound and solid solution strengthening by Cu element.
・ろう付後の0.2%耐力45MPa以上
 0.2%耐力は材料の弾性限度を示しており、ろう付後の0.2%耐力が低い場合、車載時の繰返し振動により、フィン破断に至らなくても、塑性変形を生じて原形を留めず、複数段のフィンが変形することでコア収縮が生じる。ろう付後の0.2%耐力が45MPa以上であれば、上記の影響を軽減することができる。本発明では合金成分の最適化検討により、Al-(Mn、Fe)-Si系金属間化合物の析出による分散強化、Cu元素による固溶強化の効果を高めることで所定の特性を満足した。
・ 0.2% proof stress after brazing 45MPa or more 0.2% proof stress indicates the elastic limit of the material. If the 0.2% proof stress after brazing is low, it will cause fin breakage due to repeated vibration in the vehicle. Even if it does not reach, core deformation occurs due to plastic deformation that does not retain the original shape and deformation of a plurality of fins. If the 0.2% yield strength after brazing is 45 MPa or more, the above-mentioned influence can be reduced. In the present invention, by examining the optimization of the alloy components, predetermined properties were satisfied by enhancing the effects of dispersion strengthening by precipitation of Al— (Mn, Fe) —Si intermetallic compound and solid solution strengthening by Cu element.
・ろう付前の材料中に円相当径が3.0μm以上の晶出物が1.0×10個/mm未満存在
 ろう付前の金属間化合物の分散状態は、主にろう付時の再結晶挙動に大きな影響を及ぼす。円相当径で3.0μm以上の粗大な晶出物の存在割合が、1.0×10個/mm超となると、それらが再結晶の核生成サイトとなることでろう付時に再結晶を促進する作用が大きくなり、結晶粒径が微細となることで、結晶粒組織に沿ったろう浸食が発生しやすくなり、ろう付性が低下する。そのため、ろう付前の材料中の円相当径が3.0μm以上の晶出物が1.0×10個/mm未満とし、ろう付時の再結晶を遅延させ、ろう付後の結晶粒組織を粗大とすることでろう付性を向上させる。本発明では、例えば、連続鋳造圧延法のように、溶湯凝固時の冷却速度を速くすることにより、晶出物の粗大化を抑制し、所定の分散状態を満足した。
・ There are less than 1.0 × 10 3 crystals / mm 2 of crystallized grains with an equivalent circle diameter of 3.0 μm or more in the material before brazing. The dispersion state of the intermetallic compound before brazing is mainly during brazing. This greatly affects the recrystallization behavior. If the proportion of coarse crystals with an equivalent circle diameter of 3.0 μm or more exceeds 1.0 × 10 3 pieces / mm 2 , they will be recrystallized during brazing by becoming nucleation sites for recrystallization. As the effect of promoting the increase is increased and the crystal grain size becomes fine, brazing erosion along the crystal grain structure is likely to occur, and the brazing property is lowered. Therefore, the crystallized material having an equivalent circle diameter of 3.0 μm or more in the material before brazing is less than 1.0 × 10 3 pieces / mm 2 , delays recrystallization during brazing, and crystal after brazing Brazeability is improved by making the grain structure coarse. In the present invention, for example, by increasing the cooling rate at the time of solidification of the molten metal as in the continuous casting and rolling method, the coarsening of the crystallized product is suppressed and the predetermined dispersion state is satisfied.
・円相当径が0.01~0.10μmのAl-(Mn、Fe)-Si系およびAl-(Mn、Fe)系の金属間化合物第2相粒子が、合計で1.0×10個/mm以上存在し、かつ、円相当径が0.01~0.10μmのAl-Zr系の第2相粒子が1.0×10個/mm以上存在
 円相当径が0.01~0.10μmの微細な第二相粒子(Al-Mn系、Al-Mn-Si系、Al-Mn-Fe-Si系、Al-Zr系)がマトリックス中に多数存在することで、析出強化により材料強度が向上し、また、再結晶サイトへの転移や亜粒界の集積を抑制するため再結晶が遅延して、ろう付後の結晶粒が粗大化し、ろう付性が向上する。Al-(Mn、Fe)-Si系およびAl-(Mn、Fe)系の第2相粒子存在数が、合計で1.0×10個/mm未満かつAl-Zr系の第2相粒子が1.0×10個/mm未満ではその効果が十分に得られない。本発明では、例えば、材料作製時の一回目の冷間圧延後の中間焼鈍条件を最適化することにより、材料マトリックス中の金属間化合物の析出を制御し、所定の分散状態を満足した。
-Al- (Mn, Fe) -Si-based and Al- (Mn, Fe) -based intermetallic compound second phase particles having an equivalent circle diameter of 0.01 to 0.10 μm are 1.0 × 10 4 in total. there pieces / mm 2 or more and a circle equivalent diameter of second phase particles of Al-Zr-based 0.01 ~ 0.10 .mu.m is 1.0 × 10 cells / mm 2 or more exists circle equivalent diameter of 0.01 Precipitation strengthening due to the presence of a large number of fine second-phase particles (Al-Mn, Al-Mn-Si, Al-Mn-Fe-Si, Al-Zr) in the matrix up to 0.10 μm As a result, the material strength is improved, and the recrystallization is delayed in order to suppress the transition to the recrystallization site and the accumulation of subgrain boundaries, so that the crystal grains after brazing are coarsened and the brazing property is improved. Al- (Mn, Fe) -Si-based and Al- (Mn, Fe) -based second phase particles are present in a total number of less than 1.0 × 10 4 particles / mm 2 and are Al—Zr-based second phase. If the number of particles is less than 1.0 × 10 / mm 2 , the effect cannot be sufficiently obtained. In the present invention, for example, by optimizing the intermediate annealing conditions after the first cold rolling at the time of material preparation, precipitation of intermetallic compounds in the material matrix was controlled, and a predetermined dispersion state was satisfied.
・ろう付後の平均結晶粒径が500μm以上
 ろう付後の平均結晶粒径が細かい場合、ろう付けに際し、結晶粒界を経路としたろう浸食(エロージョン)が起こりやすく、フィンの座屈が生じやすくなる。ろう付後の平均結晶粒径が500μm以上であれば、上記の影響を軽減することができるので望ましい。本発明では材料マトリックス中の晶出物および析出物のサイズや数密度を最適な範囲とすることにより、ろう付熱処理時の再結晶サイトへの転移や亜粒界の集積を抑制し、再結晶を遅延させることで、ろう付熱処理後の平均結晶粒径を粗大とした。
・ The average crystal grain size after brazing is 500 μm or more. When the average crystal grain size after brazing is fine, brazing erosion through the grain boundaries tends to occur during brazing and fin buckling occurs. It becomes easy. If the average crystal grain size after brazing is 500 μm or more, the above-mentioned influence can be reduced, which is desirable. In the present invention, by adjusting the size and number density of the crystals and precipitates in the material matrix to an optimal range, the transition to the recrystallization site and the accumulation of subgrain boundaries during brazing heat treatment are suppressed, and recrystallization is performed. By delaying, the average grain size after brazing heat treatment was made coarse.
・ろう付熱処理時の昇温過程400℃での0.2%耐力が120MPa以上
 ろう付熱処理が負荷されている最中での0.2%耐力はフィンの変形挙動に大きな影響を及ぼす。ろう付熱処理時の昇温過程にて早期に材料が軟化(例えば、素材での0.2%耐力値の35%以下となる時)した場合、その後の熱負荷によってフィンが変形し、フィンの座屈が生じやすくなる。ろう付熱処理の昇温過程400℃での0.2%耐力が120MPa以上であれば、上記の影響を軽減することができるので望ましい。このとき、ろう付時の150℃~400℃までの昇温速度は300℃/min以下とすることが望ましい。昇温速度が300℃/min超の場合、昇温中の再結晶が促進され、材料が早期に軟化してしまう。また、昇温速度が著しく遅い場合は熱交換器の生産性が低下するため、より好ましくは50℃~300℃/minの範囲となることが望ましい。本発明では材料マトリックス中の晶出物および析出物のサイズや数密度を最適な範囲とすることや例えば、前記のように、ろう付熱処理途中の昇温速度を制御することで所定の特性を満足した。
-Temperature rising process during brazing heat treatment The 0.2% proof stress at 400 ° C is 120 MPa or more. The 0.2% proof stress during the brazing heat treatment is greatly affected by the deformation behavior of the fins. If the material softens early in the temperature rise process during brazing heat treatment (for example, when it becomes 35% or less of the 0.2% proof stress value of the material), the fin is deformed by the subsequent heat load, Buckling is likely to occur. A 0.2% proof stress at 120 ° C. or higher at 400 ° C. in the temperature raising process of the brazing heat treatment is desirable because the above-mentioned influence can be reduced. At this time, the rate of temperature increase from 150 ° C. to 400 ° C. during brazing is desirably 300 ° C./min or less. When the rate of temperature rise exceeds 300 ° C./min, recrystallization during the temperature rise is promoted, and the material softens early. In addition, when the rate of temperature rise is extremely slow, the productivity of the heat exchanger decreases, so it is more preferable that the temperature be in the range of 50 ° C. to 300 ° C./min. In the present invention, the crystallites and precipitates in the material matrix have a predetermined size and number density, and, for example, as described above, by controlling the heating rate during the brazing heat treatment, the predetermined characteristics are obtained. Satisfied.
連続鋳造法
 連続鋳造法は、鋳造後に高い固溶度を得ることができ、結晶粒の粗大化に寄与する。溶質元素を多量に添加でき、ろう付後の強度向上に有利となる。
 ただし、冷却速度は、100~900℃/秒の冷却速度で急速凝固させる。冷却速度が100℃/秒未満であると、晶出物が粗大化することで鋳造時の割れが発生しやすくなる。一方、冷却速度が900℃/秒を超えると、溶質元素が過飽和に固溶することで、その後の圧延性が著しく低下する。
Continuous casting method The continuous casting method can obtain high solid solubility after casting and contributes to the coarsening of crystal grains. A large amount of solute element can be added, which is advantageous for improving the strength after brazing.
However, the cooling rate is rapidly solidified at a cooling rate of 100 to 900 ° C./second. When the cooling rate is less than 100 ° C./second, the crystallized material becomes coarse, and cracks during casting are likely to occur. On the other hand, when the cooling rate exceeds 900 ° C./second, the solute element is solid-dissolved in supersaturation, and the subsequent rollability is significantly lowered.
連続鋳造厚:5~10mm厚のスラブ
 厚さ5~10mmとすることで、鋳造時に十分な冷却速度と、その後の冷間圧延率を確保することができる。厚さ5mm未満では冷間圧延率が不足し、強度が確保できず、厚さ10mmを超えると鋳造時の冷却速度が低下する。
Continuous casting thickness: 5 to 10 mm thick slab By setting the thickness to 5 to 10 mm, it is possible to secure a sufficient cooling rate during casting and a subsequent cold rolling rate. If the thickness is less than 5 mm, the cold rolling rate is insufficient and the strength cannot be ensured. If the thickness exceeds 10 mm, the cooling rate during casting decreases.
1回目の冷間圧延:20~60%の圧下率
(理由)鋳造終了後、圧延を加えることにより、その後の焼鈍工程時の材料中への分散粒子の析出を促進させることができ、材料の高強度化を図ることができる。圧下率20%未満ではその効果が十分に得られず、圧下率60%超では圧延時にクラックの発生が顕著となり、健全な材料が得られない。
First cold rolling: 20 to 60% rolling reduction (reason) After completion of casting, by adding rolling, it is possible to promote precipitation of dispersed particles in the material during the subsequent annealing process. High strength can be achieved. If the rolling reduction is less than 20%, the effect cannot be obtained sufficiently. If the rolling reduction exceeds 60%, cracks are prominent during rolling and a sound material cannot be obtained.
1回目の冷間圧延後、350℃~550℃で1回目の中間焼鈍を施す。
(理由)1回目の焼鈍温度が350℃未満だと、ろう付時にアルミニウム合金材が再結晶せずに亜結晶が残存し、ろう浸食が発生してしまう。一方、550℃超では材料中に析出する分散粒子の大きさが粗大となることで、所望のろう付後強度が得られないとともに自己耐食性が低下するおそれがある。
After the first cold rolling, the first intermediate annealing is performed at 350 ° C. to 550 ° C.
(Reason) If the first annealing temperature is less than 350 ° C., the aluminum alloy material does not recrystallize at the time of brazing, and subcrystals remain and brazing erosion occurs. On the other hand, if the temperature exceeds 550 ° C., the size of the dispersed particles precipitated in the material becomes coarse, so that the desired strength after brazing cannot be obtained and the self-corrosion resistance may be lowered.
1回目の中間焼鈍後、2回目の冷間圧延で板厚0.05~0.3mmとする。
(理由)2回目の冷間圧延で板厚が0.05mm未満では最終冷間圧延時に負荷する圧延率が低くなり、最終的な材料強度が低下する。一方、0.3mm超では最終材の強度が高くなりすぎることで、材料の成形が困難となる。
After the first intermediate annealing, the thickness is set to 0.05 to 0.3 mm by the second cold rolling.
(Reason) If the sheet thickness is less than 0.05 mm in the second cold rolling, the rolling rate applied during the final cold rolling is reduced, and the final material strength is lowered. On the other hand, if it exceeds 0.3 mm, the strength of the final material becomes too high, making it difficult to form the material.
2回目の冷間圧延後、250℃~500℃で2回目の中間焼鈍を施す。
(理由)2回目の焼鈍温度が250℃未満だと、ろう付時にアルミニウム合金材が再結晶せずに亜結晶が残存し、ろう浸食が発生してしまう。一方、500℃超ではろう付後の再結晶粒径が微細になりすぎることで、ろう浸食によるフィン座屈が発生するおそれがある。
 最終冷間圧延にて板厚35~150μmの厚さに圧延する。
(理由)最終板厚が35μm以下では材料圧延時に破断が発生しやすくなり、安定的な圧延が困難となる。一方、150μm超では熱交換器用フィン材の用途に適さず、成形が困難となる。
After the second cold rolling, a second intermediate annealing is performed at 250 to 500 ° C.
(Reason) If the second annealing temperature is less than 250 ° C., the aluminum alloy material does not recrystallize at the time of brazing, and subcrystals remain and braze erosion occurs. On the other hand, if it exceeds 500 ° C., the recrystallized grain size after brazing becomes too fine, and fin buckling due to brazing may occur.
Rolled to a thickness of 35 to 150 μm by final cold rolling.
(Reason) When the final plate thickness is 35 μm or less, breakage tends to occur during material rolling, and stable rolling becomes difficult. On the other hand, if it exceeds 150 μm, it is not suitable for use as a fin material for heat exchangers, and molding becomes difficult.
 本発明によれば、Al-Mn-Si系粒子の分散強化およびCuの固溶強化により高強度化を図ることができ、材料内部の金属間化合物の分散状態による再結晶挙動に基づいてろう付熱処理後の結晶粒組織が粗大化させて耐ろう浸食性を向上させる。これにより、ろう付後の高強度とろう付性を両立した熱交換器用アルミニウム合金フィン材を得ることができる提供する。 According to the present invention, high strength can be achieved by dispersion strengthening of Al—Mn—Si based particles and solid solution strengthening of Cu, and brazing based on the recrystallization behavior due to the dispersion state of intermetallic compounds inside the material. The grain structure after the heat treatment is coarsened to improve the resistance to wax erosion. Thereby, the aluminum alloy fin material for heat exchangers having both high strength after brazing and brazing can be obtained.
 以下に、本発明の一実施形態を説明する。
 アルミニウム合金フィン材の材料となるアルミニウム合金は、本発明の成分範囲となる、質量比で、Mn:1.4~2.0%、Cu:0.05~0.20%、Si:0.6~1.4%、Fe:0.1~0.5%、Zn:1.0~3.0%、Zr:0.01~0.3%、残部は不可避的不純物とAlからなる組成が得られるように用意し、連続鋳造圧延法(CC方法)に供される。連続鋳造圧延では、合金溶湯を100~900℃/秒の冷却速度で冷却して厚さ5~10mmのアルミニウム合金スラブを得る。
 なお、連続鋳造圧延法としては、双ロール法、ベルト法等を適宜選択することができるが、本発明としては連続鋳造圧延法の方法が特定のものに限定されるものではない。
Hereinafter, an embodiment of the present invention will be described.
The aluminum alloy used as the material of the aluminum alloy fin material has a mass ratio of Mn: 1.4 to 2.0%, Cu: 0.05 to 0.20%, Si: 0.00. 6 to 1.4%, Fe: 0.1 to 0.5%, Zn: 1.0 to 3.0%, Zr: 0.01 to 0.3%, the balance being an inevitable impurity and Al composition Is prepared so as to be obtained and used for the continuous casting and rolling method (CC method). In continuous casting and rolling, the molten alloy is cooled at a cooling rate of 100 to 900 ° C./second to obtain an aluminum alloy slab having a thickness of 5 to 10 mm.
In addition, as a continuous casting rolling method, a twin roll method, a belt method, etc. can be selected suitably, However As this invention, the method of a continuous casting rolling method is not limited to a specific thing.
 前記アルミニウム合金板材は、冷間圧延で最終厚さ35~150μmとする。
 冷間圧延では、1回目の冷間圧延で20~60%の圧下率を負荷する。その後、350℃~550℃で1回目の中間焼鈍を施し、さらに2回目の冷間圧延で板厚0.05~0.3mmとし、250℃~500℃で2回目の中間焼鈍を施した後、最終冷間圧延にて板厚35~150μmの厚さに圧延する。
The aluminum alloy sheet is cold rolled to a final thickness of 35 to 150 μm.
In cold rolling, a rolling reduction of 20 to 60% is applied in the first cold rolling. After that, the first intermediate annealing is performed at 350 ° C. to 550 ° C., the thickness is 0.05 to 0.3 mm by the second cold rolling, and the second intermediate annealing is performed at 250 ° C. to 500 ° C. Then, it is rolled to a thickness of 35 to 150 μm by final cold rolling.
 本発明のアルミニウム合金圧延材は、熱交換器用フィン材に加工され、チューブなどと組み合わせてろう付けにより熱交換器を製造する。熱交換器は、車載用として好適に使用することができる。 The rolled aluminum alloy material of the present invention is processed into a fin material for a heat exchanger, and a heat exchanger is manufactured by brazing in combination with a tube or the like. The heat exchanger can be suitably used for in-vehicle use.
 以下、実施例を示して本発明のアルミニウム合金圧延材の製造方法について、更に詳しく説明するが、本発明はこの実施例に限定されるものではない。
 表1に記載の化学組成(残部がAlと不可避不純物)のアルミニウム合金の溶湯を、連続鋳造法により、表2に示す所定の冷却速度で急速凝固させて厚さ8mmの薄スラブを連続的に鋳造した。スラブはロールに巻き取った後、1回目の冷間圧延で25%の圧下率を負荷し、板厚6mmとし、その後、表2に示す所定の中間焼鈍、冷間圧延を経て、最終圧下率30%の板厚60μmのアルミニウム合金板材の供試材を得た。
 得られた供試材に対し、以下の項目について評価を行い、その結果を表2に示した。
EXAMPLES Hereinafter, although an Example is shown and it demonstrates in more detail about the manufacturing method of the aluminum alloy rolling material of this invention, this invention is not limited to this Example.
A molten aluminum alloy having the chemical composition shown in Table 1 (the balance being Al and inevitable impurities) is rapidly solidified at a predetermined cooling rate shown in Table 2 by a continuous casting method to continuously form a thin slab having a thickness of 8 mm. Casted. The slab is wound on a roll, loaded with a rolling reduction ratio of 25% in the first cold rolling to a sheet thickness of 6 mm, and then subjected to the predetermined intermediate annealing and cold rolling shown in Table 2 to obtain the final rolling reduction ratio. A test material of 30% aluminum alloy plate material having a thickness of 60 μm was obtained.
The obtained test materials were evaluated for the following items, and the results are shown in Table 2.
○引張試験
 供試材にろう付熱処理(窒素ガス雰囲気中で室温から600℃までの到達時間が15分となるような昇温速度で加熱し、600℃×3min保持後、100℃/minの冷却速度で冷却)を施した後、引張試験を行なうことにより、ろう付後の引張強さおよび0.2%耐力を測定した。供試材はJIS5号試験片(幅25mm×長さ60mm)とし、これを試験片として用い、引張試験機として島津製作所社製:AG-GI10kNを使用して、引張速度2mm/分で引張試験を行なった。
○ Tensile test Brazing heat treatment on the specimen (heated at a rate of temperature rise of 15 minutes from room temperature to 600 ° C. in a nitrogen gas atmosphere, kept at 600 ° C. × 3 min, then 100 ° C./min After cooling), the tensile strength after brazing and the 0.2% proof stress were measured by conducting a tensile test. The test material is a JIS No. 5 test piece (width 25 mm x length 60 mm), and this is used as a test piece. Using a tensile tester manufactured by Shimadzu Corporation: AG-GI10kN, a tensile test at a tensile rate of 2 mm / min. Was done.
○ろう付熱処理時の耐力
 供試材にろう付時の昇温過程を想定した熱処理(窒素ガス雰囲気中にて、150℃~400℃の温度範囲での昇温速度が100℃/minとなる条件にて加熱し、400℃に到達後、急冷)を施した後、引張試験を行なうことにより、ろう付熱処理時の昇温過程400℃での0.2%耐力を測定した。
○ Strength during brazing heat treatment Heat treatment assuming the temperature rising process during brazing of the test material (in a nitrogen gas atmosphere, the temperature rising rate in the temperature range from 150 ° C to 400 ° C is 100 ° C / min. The sample was heated under the conditions of 400 ° C. and then rapidly cooled), and then subjected to a tensile test to measure the 0.2% proof stress at 400 ° C. in the temperature rising process during the brazing heat treatment.
○結晶粒組織観察
 ろう付相当熱処理を施した供試材について、15%HCl:15%HNO:5%HFの各々を混合した水溶液を用いてサンプル表面をエッチングすることで結晶粒を露出させ、撮影された表面結晶粒組織写真を用いて、直線切断法により平均の結晶粒径を測定した。
○ Observation of crystal grain structure About the specimen subjected to heat treatment equivalent to brazing, the crystal grain is exposed by etching the sample surface using an aqueous solution in which each of 15% HCl: 15% HNO 3 : 5% HF is mixed. The average crystal grain size was measured by the linear cutting method using the photographed surface crystal grain structure photograph.
○晶出物および金属間化合物の分散状態
 ろう付け前の供試材の断面を20000倍×50視野でFE-SEM(Field Emission-Scanning Electron Microscope)にて観察を行なった。観察された粒子はEDS(エネルギー分散X線分光法)による分析で構成元素を特定し、観察により得られた画像を画像解析することで、供試材の晶出物および金属間化合物のサイズおよび個数密度(個/mm)を求めた。
 円相当径が3.0μm以上の晶出物の個数と、円相当径が0.01~0.10μmのAl-(Mn、Fe)-Si系およびAl-(Mn、Fe)系の第2相粒子の析出物個数と、円相当径が0.01~0.10μmのAl-Zr系の第2相粒子の析出物個数とを求めて表2に示した。
○ Dispersed state of crystallized substance and intermetallic compound The cross section of the specimen before brazing was observed with a FE-SEM (Field Emission-Scanning Electron Microscope) at 20000 × 50 field of view. The observed particles were identified by analysis by EDS (energy dispersive X-ray spectroscopy), and by analyzing the image obtained by observation, the size of the crystallized material of the test material and the intermetallic compound The number density (pieces / mm 2 ) was determined.
The number of crystallized substances having an equivalent circle diameter of 3.0 μm or more, and second Al— (Mn, Fe) —Si and Al— (Mn, Fe) series second crystals having an equivalent circle diameter of 0.01 to 0.10 μm. The number of phase particle precipitates and the number of Al—Zr-based second phase particles having an equivalent circle diameter of 0.01 to 0.10 μm were determined and shown in Table 2.
○コア強度
 板厚0.30mmのチューブ材用合金(JIS A7072/3003/4343)、板厚1.5mmのヘッダプレート用合金(JIS A7072/3003/4045)、板厚1.2mmのサイドサポート用合金(JIS A4045/3003)をそれぞれ成形し、コルゲート加工した供試フィン材と組み付け、6.0g/mのフラックスを塗布した後、ろう付熱処理を行なった。なお、ろう付熱処理は窒素ガス雰囲気中で室温から600℃までの到達時間が15分となるような昇温速度で加熱し、600℃×3min保持後、100℃/minの冷却速度で冷却を行なった。そして樹脂製のタンクと組み合わせることにより、ラジエータを作製した。作製した熱交換器に0.5⇔150kPaの繰り返し加圧試験を実施し、部材に破断が発生するまでの回数を測定した。部材破断までの繰り返し回数が15万回以上:◎、10~15万回未満:○、10万回未満:×で示した。評価結果は、表2に示した。
○ Core strength Alloy for tube material with a plate thickness of 0.30 mm (JIS A7072 / 3003/4343), Alloy for header plate with plate thickness of 1.5 mm (JIS A7072 / 3003/4045), Alloy for side support with plate thickness of 1.2 mm (JIS A4045 / 3003) was molded and assembled with a corrugated sample fin material, and a flux of 6.0 g / m 2 was applied, followed by brazing heat treatment. The brazing heat treatment is performed in a nitrogen gas atmosphere at a rate of temperature increase from room temperature to 600 ° C. so that the arrival time is 15 minutes. I did it. And the radiator was produced by combining with resin-made tanks. The manufactured heat exchanger was repeatedly subjected to a pressure test of 0.5 to 150 kPa, and the number of times until the member broke was measured. The number of repetitions until the member breaks is 150,000 times or more: A: Less than 1 to 150,000 times: B: Less than 100,000 times: x The evaluation results are shown in Table 2.
・ろう付性
 0.2mm厚のブレージングシート(JIS A7072/3003/4343)のろう材面に、コルゲート加工した供試フィン材を組み付け、これに6.0g/mのフラックスを塗布した後、ろう付熱処理を行なった。なお、ろう付熱処理は窒素ガス雰囲気中で、室温から目標温度までの到達時間が15分となるような昇温速度で加熱し、600℃×3min保持後、100℃/minの冷却速度で冷却を行なった。
 上記ろう付したサンプルをエポキシ樹脂に埋め込み、研磨を施した後、ブレージングシートとフィン接合部の断面を光学顕微鏡を用いて観察し、供試フィン材の耐ろう浸食性にてろう付性の評価を行なった。供試フィン材に発生したろう浸食の最大深さが板厚の半分以下である場合を◎、板厚の半分以上、板厚未満の場合を△、板厚以上ならびに供試フィンに座屈を生じているものを×で示した。この時、ろう浸食により供試フィンの一部が欠損している状態を座屈と表現した。
-Brazing property After assembling a corrugated test fin material on the brazing material surface of a 0.2 mm thick brazing sheet (JIS A7072 / 3003/4343), and applying a flux of 6.0 g / m 2 to this, A brazing heat treatment was performed. Note that brazing heat treatment is performed in a nitrogen gas atmosphere at a rate of temperature increase from room temperature to the target temperature of 15 minutes, held at 600 ° C. for 3 minutes, and then cooled at a cooling rate of 100 ° C./min. Was done.
After embedding the above brazed sample in an epoxy resin and polishing it, the cross section of the brazing sheet and the fin joint is observed using an optical microscope, and the brazing resistance is evaluated by the brazing corrosion resistance of the test fin material. Was done. ◎ when the maximum depth of brazing erosion generated on the specimen fin material is less than half of the plate thickness, △ when the maximum thickness is less than half of the plate thickness and less than the plate thickness, What has occurred is indicated by x. At this time, a state in which a part of the test fin was missing due to wax erosion was expressed as buckling.
○孔食電位
 アノード分極測定を実施し、供試材の孔食電位を測定した。アノード分極には飽和カロメル電極を用い、窒素ガスの吹き込みにより脱気した40℃の2.67%AlCl溶液中で電位掃引速度0.5mV/sで測定した。孔食電位が-780~-810mVの範囲にある場合を◎、-770~-820mVの範囲にある場合を○、それ以外の範囲となる場合を×で示した。
○ Pitting corrosion potential An anodic polarization measurement was carried out to measure the pitting corrosion potential of the specimen. A saturated calomel electrode was used for anodic polarization, and measurement was performed at a potential sweep rate of 0.5 mV / s in a 2.67% AlCl 3 solution at 40 ° C. deaerated by blowing nitrogen gas. A case where the pitting potential is in the range of -780 to -810 mV is indicated by ◎, a case where the pitting potential is in the range of -770 to -820 mV is indicated by ○, and a case where the pitting potential is in the other range is indicated by ×.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Claims (5)

  1.  質量比で、Mn:1.4~2.0%、Cu:0.05~0.20%、Si:0.6~1.4%、Fe:0.1~0.5%、Zn:1.0~3.0%、Zr:0.01~0.3%、残部は不可避的不純物とAlからなる組成を有し、ろう付熱処理後の引張強さ135MPa以上、0.2%耐力45MPa以上であり、ろう付前の材料中に円相当径が3.0μm以上の晶出物が1.0×10個/mm未満存在し、かつ、円相当径が0.01~0.10μmのAl-(Mn、Fe)-Si系およびAl-(Mn、Fe)系の第2相粒子が、合計で1.0×10個/mm以上存在し、かつ、円相当径が0.01~0.10μmのAl-Zr系の第2相粒子が1.0×10個/mm以上存在することを特徴とする、高強度で優れたろう付性を有する熱交換器用アルミニウム合金フィン材。 By mass ratio, Mn: 1.4 to 2.0%, Cu: 0.05 to 0.20%, Si: 0.6 to 1.4%, Fe: 0.1 to 0.5%, Zn: 1.0-3.0%, Zr: 0.01-0.3%, the balance is composed of inevitable impurities and Al, tensile strength after brazing heat treatment is 135 MPa or more, 0.2% proof stress and at 45MPa or more, the equivalent circle diameter in a pre-brazing material is more crystallized products 3.0μm exist than 1.0 × 10 3 cells / mm 2, and the circle equivalent diameter of from 0.01 to 0 10 μm Al— (Mn, Fe) —Si-based and Al— (Mn, Fe) -based second phase particles are present in a total of 1.0 × 10 4 particles / mm 2 or more, and the equivalent circle diameter there characterized by the presence second phase particles Al-Zr-based 0.01 ~ 0.10 .mu.m is 1.0 × 10 cells / mm 2 or more, excellent brazing properties with high strength Heat exchanger use aluminum alloy fin material for.
  2.  ろう付後の平均結晶粒径が500μm以上であることを特徴とする請求項1記載の高強度で優れたろう付性を有する熱交換器用アルミニウム合金フィン材。 The aluminum alloy fin material for a heat exchanger having high strength and excellent brazing properties according to claim 1, wherein the average crystal grain size after brazing is 500 µm or more.
  3.  ろう付熱処理時の昇温過程400℃での0.2%耐力が120MPa以上であることを特徴とする請求項1または2に記載の高強度で優れたろう付性を有する熱交換器用アルミニウム合金フィン材。 The aluminum alloy fin for a heat exchanger having high strength and excellent brazing properties according to claim 1 or 2, wherein a 0.2% yield strength at 400 ° C in a temperature raising process during brazing heat treatment is 120 MPa or more. Wood.
  4.  請求項1~3のいずれかに記載の熱交換器用アルミニウム合金フィン材を有する熱交換器。 A heat exchanger comprising the aluminum alloy fin material for a heat exchanger according to any one of claims 1 to 3.
  5.  質量比で、Mn:1.4~2.0%、Cu:0.05~0.20%、Si:0.6~1.4%、Fe:0.1~0.5%、Zn:1.0~3.0%、Zr:0.01~0.3%、残部は不可避的不純物とAlからなる組成を有するアルミニウム合金の溶湯を連続鋳造法により、100~900℃/秒の冷却速度で急速凝固させて厚さ5~10mmのスラブを連続的に鋳造してロールに巻き取った後、1回目の冷間圧延で20~60%の圧下率を負荷し、その後、350℃~550℃で1回目の中間焼鈍を施し、さらに2回目の冷間圧延で板厚0.05~0.3mmとし、250℃~500℃で2回目の中間焼鈍を施した後、最終冷間圧延にて板厚35~150μmの厚さに圧延することを特徴とする、高強度で優れたろう付性を有する熱交換器用アルミニウム合金フィン材の製造方法。 By mass ratio, Mn: 1.4 to 2.0%, Cu: 0.05 to 0.20%, Si: 0.6 to 1.4%, Fe: 0.1 to 0.5%, Zn: 1.0-3.0%, Zr: 0.01-0.3%, the balance is 100-900 ° C./second cooling by continuous casting of molten aluminum alloy having the composition of inevitable impurities and Al After rapid solidification at a speed and continuously casting a slab having a thickness of 5 to 10 mm and winding it on a roll, the first cold rolling is applied with a rolling reduction of 20 to 60%, and then 350 ° C. to The first intermediate annealing is performed at 550 ° C., the thickness is 0.05 to 0.3 mm by the second cold rolling, the second intermediate annealing is performed at 250 ° C. to 500 ° C., and then the final cold rolling is performed. Heat exchange with high strength and excellent brazing characteristics, characterized by rolling to a thickness of 35 to 150 μm Method for producing aluminum alloy fin material.
PCT/JP2015/060246 2015-03-31 2015-03-31 Aluminum alloy fin material for heat exchanger having high strength and excellent brazability, method for manufacturing same, and heat exchanger WO2016157451A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/060246 WO2016157451A1 (en) 2015-03-31 2015-03-31 Aluminum alloy fin material for heat exchanger having high strength and excellent brazability, method for manufacturing same, and heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/060246 WO2016157451A1 (en) 2015-03-31 2015-03-31 Aluminum alloy fin material for heat exchanger having high strength and excellent brazability, method for manufacturing same, and heat exchanger

Publications (1)

Publication Number Publication Date
WO2016157451A1 true WO2016157451A1 (en) 2016-10-06

Family

ID=57006937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060246 WO2016157451A1 (en) 2015-03-31 2015-03-31 Aluminum alloy fin material for heat exchanger having high strength and excellent brazability, method for manufacturing same, and heat exchanger

Country Status (1)

Country Link
WO (1) WO2016157451A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018178170A (en) * 2017-04-06 2018-11-15 三菱アルミニウム株式会社 Thin wall fin material excellent in erosion resistance, manufacturing method of thin wall fin material excellent in erosion resistance, and manufacturing method of heat exchanger
JP2021080543A (en) * 2019-11-22 2021-05-27 三菱アルミニウム株式会社 Aluminum alloy brazing sheet and method for manufacturing heat exchanger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161323A (en) * 2000-11-17 2002-06-04 Sumitomo Light Metal Ind Ltd Aluminum alloy fin-material for heat exchanger superior in formability and brazability
JP2006083437A (en) * 2004-09-16 2006-03-30 Mitsubishi Alum Co Ltd Thin-wall fin material for heat exchanger superior in formability, solderability and corrosion resistance, and manufacturing method therefor
JP2007031778A (en) * 2005-07-27 2007-02-08 Nippon Light Metal Co Ltd High strength aluminum alloy fin material and producing method therefor
JP2012126950A (en) * 2010-12-14 2012-07-05 Mitsubishi Alum Co Ltd Aluminum alloy fin material for heat exchanger and heat exchanger using the fin material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161323A (en) * 2000-11-17 2002-06-04 Sumitomo Light Metal Ind Ltd Aluminum alloy fin-material for heat exchanger superior in formability and brazability
JP2006083437A (en) * 2004-09-16 2006-03-30 Mitsubishi Alum Co Ltd Thin-wall fin material for heat exchanger superior in formability, solderability and corrosion resistance, and manufacturing method therefor
JP2007031778A (en) * 2005-07-27 2007-02-08 Nippon Light Metal Co Ltd High strength aluminum alloy fin material and producing method therefor
JP2012126950A (en) * 2010-12-14 2012-07-05 Mitsubishi Alum Co Ltd Aluminum alloy fin material for heat exchanger and heat exchanger using the fin material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018178170A (en) * 2017-04-06 2018-11-15 三菱アルミニウム株式会社 Thin wall fin material excellent in erosion resistance, manufacturing method of thin wall fin material excellent in erosion resistance, and manufacturing method of heat exchanger
JP2021080543A (en) * 2019-11-22 2021-05-27 三菱アルミニウム株式会社 Aluminum alloy brazing sheet and method for manufacturing heat exchanger
JP7517811B2 (en) 2019-11-22 2024-07-17 Maアルミニウム株式会社 Aluminum alloy brazing sheet and method for manufacturing heat exchanger

Similar Documents

Publication Publication Date Title
JP5049488B2 (en) Method for producing aluminum alloy brazing sheet
JP5188115B2 (en) High strength aluminum alloy brazing sheet
EP3029169B1 (en) Aluminum-alloy clad member and method for producing the same
JP6452626B2 (en) Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same
JP6557476B2 (en) Aluminum alloy fin material
JP5188116B2 (en) High strength aluminum alloy brazing sheet and method for producing the same
JP6247225B2 (en) Aluminum fin alloy and manufacturing method thereof
CN105734368B (en) Aluminum alloy fin material, method for producing same, and heat exchanger provided with same
EP3121301A1 (en) Cladded aluminium-alloy material and production method therefor, and heat exchanger using said cladded aluminium-alloy material and production method therefor
WO2018110320A1 (en) Aluminum alloy brazing sheet and method for manufacturing same
JP2012224923A (en) Plate fin material for heat exchanger and method of manufacturing the plate fin material, and the heat exchanger using the plate fin material and method of manufacturing the heat exchanger
JP2012067385A (en) Brazing sheet and method for producing the same
JP6617012B2 (en) Aluminum alloy fin material for heat exchangers excellent in strength, conductivity and brazing properties, and heat exchanger provided with the aluminum alloy fin materials for heat exchangers
US20040086417A1 (en) High conductivity bare aluminum finstock and related process
JP2005232507A (en) Aluminum alloy clad material for heat exchanger
JP6635652B2 (en) Fin material for heat exchanger and assembled body for heat exchanger
JP7152352B2 (en) Aluminum alloy fins and heat exchangers with excellent strength, formability, and corrosion resistance
WO2016157451A1 (en) Aluminum alloy fin material for heat exchanger having high strength and excellent brazability, method for manufacturing same, and heat exchanger
JP7207935B2 (en) Aluminum alloy fin material and heat exchanger
JP2018145447A (en) Aluminum alloy-made fin material for heat exchanger
CN111057910A (en) Aluminum alloy heat-dissipating component and heat exchanger
JP6665045B2 (en) Brazing member, clad material and automotive heat exchanger having excellent strength after brazing
JP6526404B2 (en) Aluminum alloy brazing sheet
JP5576662B2 (en) Aluminum alloy brazing sheet and method for producing aluminum alloy brazing sheet
JP6526434B2 (en) Aluminum alloy fin material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15887603

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15887603

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP