JP7152352B2 - Aluminum alloy fins and heat exchangers with excellent strength, formability, and corrosion resistance - Google Patents

Aluminum alloy fins and heat exchangers with excellent strength, formability, and corrosion resistance Download PDF

Info

Publication number
JP7152352B2
JP7152352B2 JP2019082702A JP2019082702A JP7152352B2 JP 7152352 B2 JP7152352 B2 JP 7152352B2 JP 2019082702 A JP2019082702 A JP 2019082702A JP 2019082702 A JP2019082702 A JP 2019082702A JP 7152352 B2 JP7152352 B2 JP 7152352B2
Authority
JP
Japan
Prior art keywords
brazing
aluminum alloy
strength
fin material
formability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019082702A
Other languages
Japanese (ja)
Other versions
JP2020180320A (en
Inventor
茂紀 中西
祐介 今井
祥平 岩尾
道泰 山本
貴弘 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2019082702A priority Critical patent/JP7152352B2/en
Priority to PCT/JP2020/017695 priority patent/WO2020218511A1/en
Publication of JP2020180320A publication Critical patent/JP2020180320A/en
Application granted granted Critical
Publication of JP7152352B2 publication Critical patent/JP7152352B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

この発明は、強度、成形性、および耐食性に優れるアルミニウム合金フィン材および熱交換器に関するものである。 TECHNICAL FIELD The present invention relates to an aluminum alloy fin stock and a heat exchanger which are excellent in strength, formability and corrosion resistance.

自動車などに搭載される熱交換器は、軽量化に伴い、アルミニウム各部材の薄肉化が進められている。フィン材については薄肉化を達成するために素材の高強度化が必要となっている。しかし、フィン材が高強度化されるとコルゲート成形時、正しいフィン高さ、フィンピッチを持つフィンを製造することが困難となる。
また、熱交換器が車載される場合には、熱交換器の剛性を保つ必要があり、フィンが腐食して脱落することは熱交換器コア全体の剛性を損なうことになるので、実使用環境におけるフィン自体の耐食性も重要である。
As heat exchangers mounted on automobiles and the like are becoming lighter, the thickness of each aluminum member is being reduced. As for the fin material, it is necessary to increase the strength of the material in order to achieve thinning. However, when the strength of the fin material is increased, it becomes difficult to manufacture fins having the correct fin height and fin pitch during corrugation.
In addition, when a heat exchanger is mounted on a vehicle, it is necessary to maintain the rigidity of the heat exchanger. Corrosion resistance of the fin itself is also important.

例えば、特許文献1では、耐食性が良好で、ろう付前の抗張力が低く、ろう付後の抗張力が高く、かつ熱伝導性が良好な熱交換器用アルミニウム合金フィン材が提案されている。
特許文献2では、ろう付前の第2相粒子の密度に着目し、コルゲート成形性が良好であり、かつ、ろう付加熱後に優れた強度を有し、特に自動車用熱交換器のフィンとして好適に使用できるアルミニウム合金フィン材及びその製造方法が提案されている。
特許文献3では、成分設計によって、優れたろう付性と耐サグ性を有するアルミニウム合金フィン材およびその製造方法が提案されている。
特許文献4では、成分設計と強化機構の設計により、ろう付後の強度、ろう付性に優れるフィン材が提案されている。
For example, Patent Document 1 proposes an aluminum alloy fin material for a heat exchanger that has good corrosion resistance, low tensile strength before brazing, high tensile strength after brazing, and good thermal conductivity.
In Patent Document 2, focusing on the density of the second phase particles before brazing, it has good corrugation formability and excellent strength after brazing addition heat, and is particularly suitable for fins of heat exchangers for automobiles. An aluminum alloy fin material that can be used for fins and a method for producing the same have been proposed.
Patent Literature 3 proposes an aluminum alloy fin material having excellent brazeability and sag resistance through component design, and a method for producing the same.
Patent Literature 4 proposes a fin stock that is excellent in strength and brazeability after brazing by designing components and a reinforcing mechanism.

特開2012-211393号公報JP 2012-211393 A 特開2015-14034号公報JP 2015-14034 A 特開2015-218343号公報JP 2015-218343 A 特開2016-121393号公報JP 2016-121393 A

しかし、従来の方法によっても、成形性と強度、耐食性のバランスを良好にすることが難しく、成形性、ろう付後強度、耐食性の全てにおいて良好な特性を有するフィン材を得ることができていない。 However, even with conventional methods, it is difficult to achieve a good balance between formability, strength, and corrosion resistance, and it has not been possible to obtain a fin material having good properties in all of formability, strength after brazing, and corrosion resistance. .

本発明は、上記事情を背景としてなされたものであり、強度に優れたフィンでありながら、薄肉化が可能であり、フィン材の結晶組織を制御することによって、従来よりも成形性に優れ、かつ耐食性に優れるフィンを提供することを目的とする。 The present invention has been made against the background of the above circumstances, and is capable of being thinned while providing a fin having excellent strength. It is an object of the present invention to provide a fin which is excellent in corrosion resistance.

本発明は、合金組成の選択と適切な製造工程を選択することによって、所望の特性を有するアルミニウム合金製フィン材および熱交換器を得ることができる。
すなわち、本発明の強度、成形性、および耐食性に優れるアルミニウム合金フィン材の発明のうち、第1の形態は、質量%で、Mn:1.2~2.0%、Si:0.5~1.3%、Cu:0.05~0.13%、Fe:0.1~0.5%、Zn:0.5~3.0%を含有し、残部がAlと不可避不純物からなる組成を有するアルミニウム合金からなり、コルゲート成形前のフィン材表面で、円相当径で500μm以上の結晶粒が10~200個/cm存在し、その90%以上が幅方向よりも圧延方向に長い組織を有し、引張強さが200~250MPa、伸びが1.0~5.0%であり、600℃で3分間保持するろう付相当熱処理後に引張強さが140MPa以上で、中性塩水噴霧試験で16週間後の腐食減量が150mg/dm以下であることを特徴とする。
According to the present invention, an aluminum alloy fin material and a heat exchanger having desired properties can be obtained by selecting an alloy composition and an appropriate manufacturing process.
That is, among the inventions of the aluminum alloy fin material excellent in strength, formability, and corrosion resistance of the present invention, the first form has, in mass%, Mn: 1.2 to 2.0%, Si: 0.5 to 1.3%, Cu: 0.05 to 0.13%, Fe: 0.1 to 0.5%, Zn: 0.5 to 3.0%, the balance being Al and inevitable impurities. on the surface of the fin material before corrugating, there are 10 to 200 grains/ cm2 with an equivalent circle diameter of 500 μm or more, and 90% or more of them are longer in the rolling direction than in the width direction. , a tensile strength of 200 to 250 MPa, an elongation of 1.0 to 5.0%, and a tensile strength of 140 MPa or more after a heat treatment equivalent to brazing at 600 ° C. for 3 minutes, and a neutral salt spray test Corrosion weight loss after 16 weeks is 150 mg/dm 2 or less.

他の形態の強度、成形性、および耐食性に優れる熱交換器用アルミニウム合金フィン材の発明は、前記形態の発明において、前記アルミニウム合金が、さらに、質量%で、Ti:0.01~0.20%、Cr:0.01~0.20%、Mg:0.01~0.20%、Zr:0.01~0.20%のうち、1種または2種以上を含有することを特徴とする。 Another aspect of the invention of an aluminum alloy fin material for a heat exchanger that is excellent in strength, formability, and corrosion resistance is the invention of the aspect described above, wherein the aluminum alloy further comprises, in mass%, Ti: 0.01 to 0.20. %, Cr: 0.01 to 0.20%, Mg: 0.01 to 0.20%, and Zr: 0.01 to 0.20%. do.

他の形態の強度、成形性、および耐食性に優れる熱交換器用アルミニウム合金フィン材の発明は、前記形態の発明において、ろう付加熱前の固相線温度が615℃以上、前記ろう付相当熱処理後の電位が-800mV以上-730mV以下 vs Ag/AgClであることを特徴とする。 Another aspect of the invention of an aluminum alloy fin material for a heat exchanger that is excellent in strength, formability, and corrosion resistance is the invention of the aspect described above, wherein the solidus temperature before brazing addition heat is 615 ° C. or higher, and after the heat treatment equivalent to brazing is −800 mV or more and −730 mV or less vs Ag/AgCl.

他の形態の強度、成形性、および耐食性に優れる熱交換器用アルミニウム合金フィン材の発明は、前記形態の発明において、ろう付前における再結晶完了温度が450℃以下であり、
前記再結晶完了温度は、ろう付前に、昇温速度100℃/分で、300~550℃に到達直後に冷却し、常温で測定された耐力値が、前記ろう付相当熱処理後の耐力値に比べて+20%以内まで低下し始める温度であることを特徴とする。
Another aspect of the invention of an aluminum alloy fin material for a heat exchanger having excellent strength, formability, and corrosion resistance is the invention of the aspect described above, wherein the recrystallization completion temperature before brazing is 450°C or less ,
The recrystallization completion temperature is obtained by cooling immediately after reaching 300 to 550 ° C. at a temperature increase rate of 100 ° C./min before brazing, and the yield strength value measured at room temperature is the yield strength value after the heat treatment equivalent to brazing. It is characterized by a temperature that begins to decrease to within +20% compared to .

本発明の熱交換器のうち、第1の形態は、前記各形態のいずれかに記載の熱交換器用アルミニウム合金フィン材を備えることを特徴とする。 A first aspect of the heat exchanger of the present invention is characterized by including the aluminum alloy fin material for a heat exchanger according to any one of the above aspects.

以下に、本発明で規定する成分等の限定理由およびその作用について説明する。 The reasons for limiting the components and the like defined in the present invention and their effects will be described below.

・Mn:1.2~2.0質量%
MnはAl-Mn-Si系化合物を析出させ、分散強化によるろう付後の強度を得るために添加する。Mn含有量が1.2%未満では、Al-Mn-Si系金属間化合物による分散強化の効果が小さく、所望のろう付後強度を得られない。また、2.0%を超えて含有していると、鋳造時にAl-Mn系の巨大金属間化合物が晶出し、圧延時破断に至る懸念がある。また、マトリクスへの固溶度が大きくなり固相線温度(融点)が低下し、ろう付時にフィンが溶融してしまう場合があり好ましくない。これらの理由によりMn含有量を上記範囲に定める。なお、同様の理由で、Mn含有量は、下限を1.4%、上限を1.8%とするのが望ましい。
・Mn: 1.2 to 2.0% by mass
Mn precipitates an Al--Mn--Si compound and is added to obtain strength after brazing due to dispersion strengthening. If the Mn content is less than 1.2%, the effect of dispersion strengthening by the Al—Mn—Si intermetallic compound is small, and the desired strength after brazing cannot be obtained. On the other hand, if the content exceeds 2.0%, there is a concern that the Al—Mn-based giant intermetallic compound will crystallize during casting, leading to breakage during rolling. Moreover, the solid solubility in the matrix increases, the solidus temperature (melting point) decreases, and the fins may melt during brazing, which is not preferable. For these reasons, the Mn content is set within the above range. For the same reason, it is desirable that the Mn content has a lower limit of 1.4% and an upper limit of 1.8%.

・Si:0.5~1.3質量%
SiはAl-Mn-Si系の金属間化合物を析出させ、分散強化によってろう付後の強度を得るために添加する。Si含有量が0.5%未満では、Al-Mn-Si系金属間化合物による分散強化の効果が小さく、所望のろう付後強度が得られない。また、1.3%を超えて含有するとマトリクスへの固溶度が大きくなり、固相線温度(融点)が低下し、ろう付時にフィンが溶融してしまう場合があり好ましくない。これらの理由によりSi含有量を上記範囲に定める。なお、同様の理由で、Si含有量は、下限を0.7%、上限を1.2%とするのが望ましい。
・Si: 0.5 to 1.3% by mass
Si precipitates an Al--Mn--Si based intermetallic compound and is added in order to obtain strength after brazing by dispersion strengthening. If the Si content is less than 0.5%, the Al--Mn--Si based intermetallic compound has little dispersion strengthening effect, and the desired strength after brazing cannot be obtained. On the other hand, when the content exceeds 1.3%, the solid solubility in the matrix increases, the solidus temperature (melting point) decreases, and the fin may melt during brazing, which is not preferable. For these reasons, the Si content is set within the above range. For the same reason, it is desirable that the lower limit of the Si content is 0.7% and the upper limit is 1.2%.

・Cu:0.05~0.13質量%
CuはAlマトリクスへ固溶するか、Al-Cu系化合物を生成して存在する。Cu含有量が0.05%未満であると、固溶強化によるろう付後の強度への寄与が小さい。一方、0.13%を超えて含有すると、マトリクスよりも電位が貴なθ-CuAl安定相やθ’-CuAl準安定相が化合物として存在し、腐食の起点となり耐食性を低下させるため好ましくない。これらの理由によりCu含有量を上記範囲に定める。なお、同様の理由で、Cu含有量は、下限を0.07%、上限を0.12%とするのが望ましい。
・Cu: 0.05 to 0.13% by mass
Cu exists as a solid solution in the Al matrix or as an Al--Cu compound. If the Cu content is less than 0.05%, the contribution of solid solution strengthening to the strength after brazing is small. On the other hand, when the content exceeds 0.13%, the θ-CuAl 2 stable phase and the θ′-CuAl 2 metastable phase, which are nobler in potential than the matrix, are present as compounds, which become starting points for corrosion and lower the corrosion resistance, which is preferable. do not have. For these reasons, the Cu content is set within the above range. For the same reason, it is desirable that the lower limit of the Cu content is 0.07% and the upper limit is 0.12%.

・Fe:0.1~0.5質量%
Feは、Al-Fe系およびAl-Fe-Si系の金属間化合物を晶出、析出し、分散強化によるろう付後の強度を得るために添加する。0.1%未満の含有ではその効果が小さく、所望のろう付後強度が得られない。また高純度地金の使用に限定されるためコストアップとなるため好ましくない。一方、0.5%以上含有すると、Al-Fe、Al-Fe-Si化合物が腐食の起点として作用し、耐食性が低下するため好ましくない。これらの理由によりFe含有量を上記範囲に定める。なお、同様の理由で、Fe含有量は、下限を0.15%、上限を0.45%とするのが望ましい。
・ Fe: 0.1 to 0.5% by mass
Fe crystallizes and precipitates Al--Fe-based and Al--Fe--Si-based intermetallic compounds, and is added to obtain strength after brazing due to dispersion strengthening. If the content is less than 0.1%, the effect is small and the desired strength after brazing cannot be obtained. In addition, since the use of high-purity ingots is limited, the cost increases, which is not preferable. On the other hand, when the content is 0.5% or more, the Al--Fe and Al--Fe--Si compounds act as starting points for corrosion, which lowers the corrosion resistance, which is not preferable. For these reasons, the Fe content is set within the above range. For the same reason, it is desirable that the Fe content has a lower limit of 0.15% and an upper limit of 0.45%.

・Zn:0.5~3.0質量%
Znは、Alマトリクス中に固溶して電位を卑にさせる作用があり、フィンの犠牲陽極効果を得るために添加する。但し、0.5%未満の含有では電位を卑にさせる作用が小さく、所望の犠牲陽極効果を得られず組み合わされるチューブの侵食深さが大きくなる。一方、3.0%を超えて含有すると電位が過剰に卑となり、フィンの自己耐食性が低下するため好ましくない。これらの理由によりZn含有量を上記範囲に定める。なお、同様の理由で、Zn含有量は、下限を0.8%、上限を2.5%とするのが望ましい。
・Zn: 0.5 to 3.0% by mass
Zn has the effect of forming a solid solution in the Al matrix to make the potential base, and is added to obtain the sacrificial anode effect of the fin. However, if the content is less than 0.5%, the effect of making the potential less base is small, and the desired sacrificial anode effect cannot be obtained, resulting in a large erosion depth of the combined tube. On the other hand, if the content exceeds 3.0%, the potential becomes excessively base, and the self-corrosion resistance of the fin deteriorates, which is not preferable. For these reasons, the Zn content is set within the above range. For the same reason, it is desirable that the lower limit of the Zn content is 0.8% and the upper limit is 2.5%.

・Ti、Cr、Mg、Zr:0.01~0.20質量%
Ti、Cr、Mg、Zrは、アルミニウムと金属間化合物を形成し、分散強化および固溶強化により強度が向上するので、所望により1種以上を含有する。但し、それぞれの含有量が下限未満であると、分散強化および固溶強化への影響が小さく、強度が向上する効果が小さい。一方、Ti、Cr、Zrがそれぞれの上限を超えると鋳塊の鋳造時に巨大金属間化合物が晶出し、圧延時破断に至る懸念がある。また、Mgは、上限を超えるとろう付性が低下する。したがって、それぞれの含有量を上記範囲に定める。なお、同様の理由で、Ti、Cr、Mg、Zrは、下限0.03%、上限0.15%とするのが望ましい。
なお、これら元素を積極的に添加しない場合でも、それぞれを不純物として0.01%未満で含有しても良い。
・Ti, Cr, Mg, Zr: 0.01 to 0.20% by mass
Ti, Cr, Mg, and Zr form an intermetallic compound with aluminum and improve the strength by dispersion strengthening and solid solution strengthening, so one or more of them are contained if desired. However, when each content is less than the lower limit, the effect on dispersion strengthening and solid solution strengthening is small, and the effect of improving the strength is small. On the other hand, if Ti, Cr, and Zr exceed their respective upper limits, there is a concern that a giant intermetallic compound will crystallize during casting of the ingot, leading to breakage during rolling. Moreover, when Mg exceeds the upper limit, the brazeability deteriorates. Therefore, each content is defined in the above range. For the same reason, Ti, Cr, Mg, and Zr preferably have a lower limit of 0.03% and an upper limit of 0.15%.
Even when these elements are not actively added, they may be contained as impurities in an amount of less than 0.01%.

・コルゲート成形前のフィン材表面で、円相当径で500μm以上の結晶粒が10~200個/cm存在し、その90%以上が板幅方向よりも圧延方向に長い組織を有する。
コルゲート成形前のフィン材表面で、円相当径500μm以上の結晶粒が10個/cm以下の場合、面内で1つの結晶粒が大きいため、コルゲート成形時に各結晶が有する異方性の影響が大きく現れてしまい、成形後のフィンの山高さが不揃いとなるため好ましくない。一方、200個/cmを超える場合は、小さい結晶粒が多く存在するため、高速のコルゲート成形では、巻出し時に発生する張力の増加に伴い結晶粒界から一瞬で破断してしまうことがある。また、小さい結晶粒はろう付時の耐エロージョン性にも劣るため好ましくない。また、その90%以上が板幅方向よりも圧延方向に長い組織を有して、コルゲート成形の長手方向と一致させることで、コルゲート成形時の異方性影響を排除することができるため成形性の向上に寄与する効果がある。
上記規定は、連続鋳造圧延法、均質化処理、圧延率等の製造工程条件などにより達成することができる。
・On the surface of the fin material before corrugating, there are 10 to 200 crystal grains/cm 2 with an equivalent circle diameter of 500 μm or more, and 90% or more of them have a structure that is longer in the rolling direction than in the width direction.
If the number of crystal grains with an equivalent circle diameter of 500 μm or more is 10/cm 2 or less on the surface of the fin material before corrugating, the anisotropic effect of each crystal during corrugating is affected by the large size of each crystal grain in the plane. This is not preferable because the height of the crests of the fins after molding becomes uneven. On the other hand, if it exceeds 200/cm 2 , there are many small crystal grains, so in high-speed corrugation molding, the increase in tension generated during unwinding may cause instantaneous breakage from the grain boundaries. . Also, small crystal grains are not preferable because they are inferior in erosion resistance during brazing. In addition, 90% or more of them have a structure that is longer in the rolling direction than in the width direction, and by matching the longitudinal direction of corrugated molding, anisotropic effects during corrugated molding can be eliminated, resulting in formability. have the effect of contributing to the improvement of
The above specification can be achieved by the continuous casting and rolling method, homogenization treatment, manufacturing process conditions such as rolling reduction, and the like.

・引張強さが200~250MPa、伸びが1.0~5.0%
コルゲート成形前で、引張強さが200MPa未満の場合は、熱交換器組み付け時の荷重に対して変形してしまうため好ましくない。一方、250MPaを超える引張強さを有する場合は、高速のコルゲート成形に対して所望のフィン形状、フィン高さ、フィンピッチを得ることが困難となる。また、成形性を向上させるためには適度な伸びを有していることも重要であり、伸びが1.0%未満の場合は、コルゲート成形時の巻出しや成形時に破断することが多い。一方、伸びが5%を超える場合、フィンをルーバー加工する場合にバリの発生が多くなるため好ましくない。これらの理由により、コルゲート成形前における引張り強さおよび伸びを上記範囲に規定する。同様の理由により、引張強さは、下限を205MPa、上限を245MPaとするのが望ましく、伸びは、下限を1.5%、上限を4.0%とするのが望ましい。
上記規定は、圧延率等の製造工程条件などにより達成することができる。
・Tensile strength is 200-250MPa, elongation is 1.0-5.0%
If the tensile strength is less than 200 MPa before corrugating, it is not preferable because it deforms against the load during assembly of the heat exchanger. On the other hand, if the tensile strength exceeds 250 MPa, it becomes difficult to obtain the desired fin shape, fin height, and fin pitch for high-speed corrugating. It is also important to have an appropriate elongation in order to improve formability. If the elongation is less than 1.0%, breakage often occurs during unrolling or forming during corrugation. On the other hand, if the elongation exceeds 5%, it is not preferable because burrs are often generated when the fins are louvered. For these reasons, the tensile strength and elongation before corrugating are specified within the above ranges. For the same reason, it is desirable to set the lower limit to 205 MPa and the upper limit to 245 MPa for tensile strength, and the lower limit to 1.5% and the upper limit to 4.0% for elongation.
The above stipulations can be achieved by manufacturing process conditions such as rolling reduction.

・ろう付加熱後に引張強さが140MPa以上
熱交換器の軽量化に合わせてフィンも薄肉、高強度材が求められている。フィンのろう付後強度が低いと車載搭載時に熱交換器に負荷される繰返しの振動や冷却水の膨張、圧縮を抑制することができずチューブは太鼓状に膨張して早期の破断つまり内部冷却水の漏れにつながる。よって、フィン材の強度が必要であり、ろう付加熱後の引張強さを上記範囲に規定する。同様の理由により145MPa以上とするのが一層望ましい。
上記規定は、均質化処理条件、Al-Mn-Si化合物の数密度調整などにより達成することができる。Al-Mn-Si化合物の数密度調整は、均質化処理条件などにより行うことができる。
前記ろう付加熱後の引張強さは、600℃で3分間保持するろう付相当熱処理後に測定することができる。このろう付相当熱処理は、標準的なろう付を模して測定を行うためのものであり、本発明のアルミニウム合金フィン材のろう付条件を限定することを意図するものではない。
・Tensile strength of 140 MPa or more after additional brazing heat As heat exchangers become lighter, thin fins with high strength are required. If the strength of the fins after brazing is low, the repeated vibrations and expansion and compression of the cooling water that are applied to the heat exchanger when mounted on a vehicle cannot be suppressed, and the tubes expand in a drum-like shape, leading to premature breakage or internal cooling. lead to water leakage. Therefore, the strength of the fin material is required, and the tensile strength after brazing addition heat is defined within the above range. For the same reason, 145 MPa or more is more desirable.
The above definition can be achieved by adjusting the homogenization treatment conditions, adjusting the number density of Al--Mn--Si compounds, and the like. The adjustment of the number density of the Al--Mn--Si compound can be carried out by adjusting the homogenization treatment conditions.
The tensile strength after the brazing heat can be measured after a brazing-equivalent heat treatment held at 600° C. for 3 minutes. This brazing-equivalent heat treatment is for making measurements by simulating standard brazing, and is not intended to limit the brazing conditions for the aluminum alloy fin material of the present invention.

・ろう付加熱後の中性塩水噴霧試験で16週間後の腐食減量が150mg/dm以下
フィン材の自己耐食性を確保するため、JIS Z2371 (2015年)準拠の方法の中性塩水噴霧試験により測定したフィン材の16週間後の腐食減量が150mg/dm以下であることが望ましい。16週間後の腐食減量が150mg/dm以下であれば、実際の使用環境であってもフィン自体の腐食による性能劣化や部分的な脱落を抑制できるので、熱交換器としての特性を維持することができる。
上記規定は、Fe、Cu等の組成の成分設計により達成することができる。
・Corrosion weight loss after 16 weeks in a neutral salt spray test after brazing heat is 150 mg/dm 2 or less In order to ensure the self-corrosion resistance of the fin material, a neutral salt spray test in accordance with JIS Z2371 (2015) is used. It is desirable that the corrosion weight loss of the measured fin material after 16 weeks is 150 mg/dm 2 or less. If the corrosion weight loss after 16 weeks is 150 mg/dm 2 or less, it is possible to suppress performance deterioration and partial dropout due to corrosion of the fins themselves even in an actual usage environment, so the characteristics as a heat exchanger can be maintained. be able to.
The above definition can be achieved by designing the composition of Fe, Cu, and the like.

・固相線温度が615℃以上
フィン材の固相線温度は高いほどろう付が容易である。通常のろう付方法の場合、615℃以上あれば、フィンが溶融することなくろう付が可能であり、所望によりフィン材の固相線温度を規定する。固相線温度は成分の設計により設定することができる。
・The solidus temperature is 615°C or higher The higher the solidus temperature of the fin material, the easier it is to braze. In the case of a normal brazing method, if the temperature is 615° C. or higher, brazing can be performed without melting the fins, and the solidus temperature of the fin material is defined as desired. The solidus temperature can be set by component design.

・ろう付加熱後の電位が-800mV以上-730mV以下(vs Ag/AgCl)
フィン材の電位が-800mV未満の場合、接合される他部材(例えばチューブ、プレート材)に対して電位が過度に卑(低い)となるため、ガルバニック腐食によりフィンの腐食が加速してしまう。フィン材の電位が-730mV超の場合、接合される他部材を対象として、電位差を十分に得ることができず犠牲陽極効果が得られない。この場合、例えばチューブの腐食が加速してしまう。上記理由により、フィン材の電位は所望により上記範囲内とする。より好ましくは、-735mV以下である。
上記規定は、Cu、Zn等の組成の成分設計により達成することができる。
・Potential after brazing heat is -800 mV or more and -730 mV or less (vs Ag/AgCl)
If the potential of the fin material is less than −800 mV, the potential becomes excessively base (low) with respect to other members (eg, tubes and plate materials) to be joined, which accelerates corrosion of the fins due to galvanic corrosion. If the potential of the fin material exceeds −730 mV, a sufficient potential difference cannot be obtained for other members to be joined, and the sacrificial anode effect cannot be obtained. In this case, for example, tube corrosion is accelerated. For the above reason, the potential of the fin material is set within the above range as desired. More preferably, it is -735 mV or less.
The above definition can be achieved by designing the composition of Cu, Zn, and the like.

・ろう付加熱中、450℃までに再結晶が完了する
ろう付加熱中における再結晶温度範囲はフィンのろう付性に大きく影響する。一般的にろう付加熱は600℃付近の温度範囲で試されるが、再結晶完了温度が450℃を超える場合、再結晶時の組織変化とそれに伴う高温での強度低下が大きく、結果高温クリープの増大を伴いサグ性が大きく低下し、それに伴いろう付特性にも劣る。そこでろう付加熱時の再結晶温度範囲は450℃以下とするのが望ましい。なお、再結晶完了温度とは、ろう付加熱後に比べて耐力値が+20%以内まで低下し始める温度と定義する。
上記規定は、連続鋳造圧延法、均質化処理、圧延率等の製造工程条件などにより達成することができる。
・Recrystallization is completed by 450°C during brazing heat The recrystallization temperature range during brazing heat greatly affects the brazeability of the fin. Brazing heat is generally tested in the temperature range of around 600°C, but if the recrystallization completion temperature exceeds 450°C, structural changes during recrystallization and the resulting reduction in strength at high temperatures are large, resulting in high-temperature creep. As the sag increases, the sag property decreases greatly, and the brazing properties also deteriorate accordingly. Therefore, it is desirable that the recrystallization temperature range during brazing addition heat be 450° C. or less. The recrystallization completion temperature is defined as the temperature at which the yield strength value starts to decrease to within +20% of that after brazing heat.
The above specification can be achieved by the continuous casting and rolling method, homogenization treatment, manufacturing process conditions such as rolling reduction, and the like.

以上説明したように、本発明によれば、成形性に優れているとともに、ろう付後の強度、耐食性に優れたフィンおよび熱交換器を得ることができる。 As described above, according to the present invention, it is possible to obtain a fin and a heat exchanger that are excellent in formability, strength after brazing, and corrosion resistance.

本発明の一実施形態における熱交換器の一部を示す斜視図である。It is a perspective view showing a part of heat exchanger in one embodiment of the present invention.

以下、本発明の一実施形態について説明する。
本実施形態のアルミニウム合金フィン材は、双ロール鋳造機等の連続鋳造圧延(Continuous Casting:CC法)を用いて鋳造し、鋳造板を均質化処理、冷間圧延と途中の中間焼鈍の工程を経て製造することができる。
すなわち、質量%で、Mn:1.2~2.0%、Si:0.5~1.3%、Cu:0.05~0.13%、Fe:0.1~0.5%未満、Zn:0.5~3.0%を含有し、所望により、さらに、所望により、質量%で、Ti:0.01~0.20%、Cr:0.01~0.20%、Mg:0.01~0.20%、Zr:0.01~0.20%のうち、1種または2種以上を含有し、残部がAlと不可避不純物からなるアルミニウム合金の溶湯を作製し、常法によってアルミニウム合金の鋳造板を得る。
An embodiment of the present invention will be described below.
The aluminum alloy fin material of the present embodiment is cast using continuous casting (CC method) such as a twin roll casting machine, and the cast plate is subjected to homogenization, cold rolling, and intermediate annealing. It can be manufactured through
That is, in mass%, Mn: 1.2 to 2.0%, Si: 0.5 to 1.3%, Cu: 0.05 to 0.13%, Fe: 0.1 to less than 0.5% , Zn: 0.5 to 3.0%, optionally, further optionally, in mass%, Ti: 0.01 to 0.20%, Cr: 0.01 to 0.20%, Mg : 0.01 to 0.20%, Zr: 0.01 to 0.20%, containing one or more of 0.01 to 0.20%, with the balance being Al and inevitable impurities. Obtain an aluminum alloy cast plate by the method.

得られたアルミニウム合金の鋳塊あるいは鋳造板に対しては適切な条件で均質化処理を行う必要がある。均質化処理は、例えば、昇温速度を50℃/時、保持温度を400~500℃、保持時間を1~10時間、冷却速度を10~100℃/時とした熱処理条件によって行うことができる。これにより、Al-Mn-Si系の金属間化合物がマトリクスに均一に分散する状態を得られる。この系の化合物は分散強化によってろう付後の強度が向上する他、マトリクスに対しての電位差が小さいため耐食性の向上にも寄与する。 The obtained aluminum alloy ingot or cast plate must be homogenized under appropriate conditions. The homogenization treatment can be performed, for example, under the heat treatment conditions of a heating rate of 50° C./hour, a holding temperature of 400 to 500° C., a holding time of 1 to 10 hours, and a cooling rate of 10 to 100° C./hour. . As a result, the Al--Mn--Si based intermetallic compound can be uniformly dispersed in the matrix. Compounds of this type improve the strength after brazing by dispersion strengthening, and also contribute to the improvement of corrosion resistance because the potential difference with respect to the matrix is small.

その後、得られたアルミニウム合金に対して、冷間圧延を行う。冷間圧延の途中では、圧延率が60%以上となった後に中間焼鈍を行うことができる。中間焼鈍は、温度を200~350℃、保持時間を2~8時間として行い、中間焼鈍後に圧延率10~35%で冷間圧延を行うことで、質別H14のフィン材(供試材)となる。均質化処理、中間焼鈍、冷間圧延率を上記範囲に設定することで、ろう付前の引張強さ、伸びが本発明の狙い範囲内となり、コルゲート成形に優れる結晶組織の状態を得ることができる。なお、板厚は、35~80μmとすることができるが、本発明としてはこの厚さに限定されるものではない。
上記工程により、ろう付前、ろう付中、およびろう付後に所望する強度、とろう付前、ろう付後の結晶組織を持つ、熱交換器用のフィン材を得ることができる。
After that, cold rolling is performed on the obtained aluminum alloy. During cold rolling, intermediate annealing can be performed after the rolling reduction reaches 60% or more. Intermediate annealing is performed at a temperature of 200 to 350 ° C. and a holding time of 2 to 8 hours. becomes. By setting the homogenization treatment, intermediate annealing, and cold rolling rate within the above range, the tensile strength and elongation before brazing are within the target range of the present invention, and a crystal structure state excellent in corrugation can be obtained. can. The plate thickness can be 35 to 80 μm, but the present invention is not limited to this thickness.
Through the above steps, it is possible to obtain a heat exchanger fin material having desired strength before, during, and after brazing, and a crystal structure before and after brazing.

得られたフィン材は、成形性、強度、耐食性、およびろう付性に優れており、熱交換器用フィン材として好適である。 The obtained fin material is excellent in formability, strength, corrosion resistance, and brazeability, and is suitable as a fin material for heat exchangers.

また得られたフィン材は、コルゲート加工されるが、その際には良好な成形性によって、正しいフィン高さ、フィンピッチを有しているので、ヘッダー、チューブ、サイドプレート等の熱交換器用の部材と組み合わせたろう付接合性に優れている。
本発明としてはろう付の熱処理条件や方法(ろう付温度、雰囲気、フラックスの有無、ろう材の種類等)は特に限定されず、所望の方法によってろう付を行うことができるが、(例えば、室温から600℃まで平均昇温速度100℃/分で昇温し、600℃で3分保持後、100℃/分の降温速度で降温冷却する熱処理の条件のろう付相当加熱)、ろう付後のフィンは、強度と耐食性に優れるため、熱交換器としての高い性能に寄与する。
図1は、本実施形態のフィン4にチューブ3、ヘッダー2、サイドプレート5を組み付けてろう付により製造された熱交換器1を示している。
The obtained fin material is corrugated. At that time, it has a correct fin height and fin pitch due to good moldability, so it can be used for heat exchangers such as headers, tubes, and side plates. Excellent brazing jointability in combination with other materials.
In the present invention, the brazing heat treatment conditions and methods (brazing temperature, atmosphere, presence or absence of flux, type of brazing material, etc.) are not particularly limited, and brazing can be performed by a desired method. The temperature is raised from room temperature to 600 ° C. at an average temperature increase rate of 100 ° C./min, held at 600 ° C. for 3 minutes, and then cooled at a temperature decrease rate of 100 ° C./min. The fins have excellent strength and corrosion resistance, and thus contribute to high performance as a heat exchanger.
FIG. 1 shows a heat exchanger 1 manufactured by assembling tubes 3, headers 2, and side plates 5 to fins 4 of this embodiment and brazing them.

本実施形態によれば、成形性、強度、耐食性、およびろう付性に優れる熱交換器用アルミニウム合金フィン材および熱交換器を得ることができる。 According to this embodiment, it is possible to obtain an aluminum alloy fin material for a heat exchanger and a heat exchanger that are excellent in formability, strength, corrosion resistance, and brazeability.

以下に本発明の実施例について説明する。
表1に示す成分(残部Alと不可避不純物)となるように調整した溶湯からCC法を用いて連続鋳造圧延板を作製した。得られた鋳造板に対して、均質化処理を行い、その後、冷間圧延と途中工程で中間焼鈍を行った。中間焼鈍は、200~350℃で2~8時間で行い、H14調質で35~80μmのフィン材を作製した。
得られたフィン材に対して引張試験を行い、機械的性質(引張強さ、伸び)を確認した。次に、塩酸、フッ酸、硝酸の混合液にてサンプル表面をエッチングして結晶粒を露出させ、12mm(圧延方向と平行)×9mm(圧延方向と垂直=板幅方向)視野の表面写真を撮影した。各々の結晶組織について、圧延方向平行、垂直長さを画像処理により算出し、1cm当たりで円相当径500μm以上の結晶粒数と『圧延方向と平行>圧延方向と垂直となる結晶粒の割合%』を計算した。
固相線温度は、示差走査熱分析装置(Differential scanning calorimetry:DSC)を用いて、10℃/分の昇温速度で測定した。
次に、各板厚のフィンに対して予備試験による条件出し後にコルゲート成形を行い、コルゲートフィンを作製した。ランダムに測定した20箇所について、フィン高さとフィンピッチが狙い値に対して、±10%以内の差であった場合は◎、±20%であった場合は〇、それ以外を×とした。
Examples of the present invention are described below.
A continuously cast rolled sheet was produced from a molten metal adjusted to have the components shown in Table 1 (balance Al and inevitable impurities) using the CC method. The obtained cast plate was subjected to homogenization treatment, and then subjected to cold rolling and intermediate annealing in intermediate steps. Intermediate annealing was performed at 200 to 350° C. for 2 to 8 hours to produce a fin material of 35 to 80 μm with H14 refining.
A tensile test was performed on the obtained fin material to confirm mechanical properties (tensile strength, elongation). Next, the sample surface is etched with a mixed solution of hydrochloric acid, hydrofluoric acid, and nitric acid to expose the crystal grains, and a surface photograph of a 12 mm (parallel to the rolling direction) × 9 mm (perpendicular to the rolling direction = plate width direction) field of view is taken. I took a picture. For each crystal structure, the length parallel to the rolling direction and the length perpendicular to the rolling direction are calculated by image processing, and the number of crystal grains with a circle equivalent diameter of 500 μm or more per 1 cm 2 and the ratio of crystal grains that are “parallel to the rolling direction > perpendicular to the rolling direction” %” was calculated.
The solidus temperature was measured using a differential scanning calorimetry (DSC) at a heating rate of 10°C/min.
Next, corrugated fins were manufactured by carrying out corrugated molding after setting conditions by a preliminary test for fins of each plate thickness. For 20 randomly measured points, when the fin height and fin pitch were within ±10% of the target value, the difference was evaluated as ⊚, when the difference was within ±20%, and as x otherwise.

その後、コルゲート成形未実施の単板の状態で、昇温速度100℃/分で、300~550℃に到達直後に冷却した板について常温で引張試験を行い、ろう付加熱中の再結晶完了温度を測定した。
また、同様に単板の状態で、昇温速度100℃/分、600℃で3分保持、冷却速度100℃/分の条件でろう付熱処理を行い、ろう付後の機械的性質を確認した。
また、表面にフッ化物系フラックスを塗布した後、上記同様の条件でろう付熱処理した単板について、電位の測定と中性塩水噴霧試験を行い、16週間後の腐食減量を調査した。
After that, in the state of a veneer that has not been corrugated, a tensile test is performed at room temperature on the plate that has been cooled immediately after reaching 300 to 550 ° C. at a heating rate of 100 ° C./min, and the recrystallization completion temperature during brazing addition heat is determined. It was measured.
Similarly, in the state of a single plate, brazing heat treatment was performed under the conditions of a heating rate of 100 ° C./min, a holding at 600 ° C. for 3 minutes, and a cooling rate of 100 ° C./min, and the mechanical properties after brazing were confirmed. .
In addition, after coating the surface with a fluoride-based flux, the veneers subjected to brazing heat treatment under the same conditions as above were subjected to potential measurement and a neutral salt spray test, and the corrosion weight loss after 16 weeks was investigated.

ろう付相当熱処理を施したフィン材から電位測定用のサンプルを切り出し、サンプルを、50℃に加熱した5%NaOH溶液に30秒浸漬し、その後、30%HNO溶液中に60秒浸漬し、さらに、水道水、イオン交換水で洗浄し、乾燥させずにそのまま25℃の5%NaCl溶液(酢酸にてpH3に調整)に60分浸漬後の電位を測定した。参照電極には、銀‐塩化銀電極(Ag/AgCl)を使用した。 A sample for potential measurement is cut out from a fin material subjected to heat treatment equivalent to brazing, and the sample is immersed in a 5% NaOH solution heated to 50 ° C. for 30 seconds, and then immersed in a 30% HNO 3 solution for 60 seconds, Furthermore, it was washed with tap water and ion-exchanged water, and the potential was measured after being immersed in a 5% NaCl solution (adjusted to pH 3 with acetic acid) at 25° C. for 60 minutes without drying. A silver-silver chloride electrode (Ag/AgCl) was used as a reference electrode.

作製したフィン材をコルゲート成形し、他部材(ヘッダープレート、チューブ、サイドプレート)と組み合わせて型組み後、フラックスを塗布してろう付して縦50cm×横50cmの熱交換器を作製した。その後、熱交換器のフィンとチューブとの接合箇所を観察し、不良接合箇所の数を求め、良好なフィンの接合率として、(1-(不良接合箇所/全接合箇所))×100(%)を算出した。接合率90%以上を◎(良好な接合状態)、90%以下を×(接合不良)としてろう付性を評価した。 The produced fin material was corrugated, combined with other members (header plate, tube, side plate), assembled into a mold, flux was applied and brazed to produce a heat exchanger measuring 50 cm long and 50 cm wide. After that, the joints between the fins and tubes of the heat exchanger were observed, and the number of defective joints was obtained. ) was calculated. The brazeability was evaluated with a bonding rate of 90% or more as ⊚ (good bonding state) and a bonding rate of 90% or less as x (poor bonding).

Figure 0007152352000001
Figure 0007152352000001

Figure 0007152352000002
Figure 0007152352000002

発明材では、成形性、強度、耐食性に優れる結果が得られた。一方、比較例では、これらの特性のいずれかにおいて劣っていた。すなわち、
比較例1;ろう付後の引張強さが低い
比較例2;ろう付前の引張強さが高い、コルゲート成形性に劣る
比較例3;ろう付後の引張強さが低い
比較例4;固相線温度が低い
比較例5;ろう付後の引張強さが低い
比較例6;ろう付前の伸びが低い、コルゲート成形性に劣る
比較例7;耐食性に劣る
比較例8;電位が貴
比較例9;電位が卑、耐食性に劣る
比較例10;ろう付前の引張強さが高い、伸びが高い、コルゲート成形性に劣る
比較例11;圧延途中で破断
比較例12;耐食性に劣る
比較例13;耐食性に劣る
比較例14;円相当径500μm以上の結晶粒が少ない、コルゲート成形性に劣る
比較例15;圧延途中で破断
比較例16;ろう付前の伸びが低い、コルゲート成形性に劣る
比較例17;圧延途中で破断
比較例18;ろう付前の引張強さが高い、コルゲート成形性に劣る
比較例19;ろう付前の伸びが低い、コルゲート成形性に劣る
比較例20;円相当径500μm以上の結晶粒が多い、コルゲート成形性に劣る
比較例21;ろう付中の再結晶完了温度が高温、ろう付性に劣る
The inventive material was excellent in formability, strength and corrosion resistance. On the other hand, Comparative Examples were inferior in any of these properties. i.e.
Comparative Example 1; Low tensile strength after brazing Comparative Example 2; High tensile strength before brazing, inferior corrugate formability Comparative Example 3; Low tensile strength after brazing Comparative Example 4; Comparative Example 5 with low phase line temperature; Comparative Example 6 with low tensile strength after brazing; Low elongation before brazing, inferior corrugation formability Comparative Example 7; Example 9: Base potential, inferior corrosion resistance Comparative Example 10; High tensile strength before brazing, high elongation, inferior corrugate formability Comparative Example 11; Broken during rolling Comparative Example 12; 13; Poor corrosion resistance Comparative Example 14; Few crystal grains with an equivalent circle diameter of 500 μm or more, poor corrugation formability Comparative Example 15; Broken during rolling Comparative Example 16; Low elongation before brazing, poor corrugation formability Comparative Example 17: Broken during rolling Comparative Example 18: High tensile strength before brazing, inferior corrugation formability Comparative Example 19; Low elongation before brazing, inferior corrugation formability Comparative Example 20; Equivalent to a circle Comparative Example 21, which has many crystal grains with a diameter of 500 μm or more and is inferior in corrugation formability;

1 熱交換器
2 ヘッダー
3 チューブ
4 フィン
5 サイドプレート
1 heat exchanger 2 header 3 tube 4 fin 5 side plate

Claims (5)

質量%で、Mn:1.2~2.0%、Si:0.5~1.3%、Cu:0.05~0.13%、Fe:0.1~0.5%、Zn:0.5~3.0%を含有し、残部がAlと不可避不純物からなる組成を有するアルミニウム合金からなり、
コルゲート成形前のフィン材表面で、円相当径で500μm以上の結晶粒が10~200個/cm存在し、その90%以上が幅方向よりも圧延方向に長い組織を有し、引張強さが200~250MPa、伸びが1.0~5.0%であり、
600℃で3分間保持するろう付相当熱処理後の引張強さが140MPa以上で、中性塩水噴霧試験で16週間後の腐食減量が150mg/dm以下であることを特徴とする強度、成形性、および耐食性に優れるアルミニウム合金フィン材。
In mass %, Mn: 1.2 to 2.0%, Si: 0.5 to 1.3%, Cu: 0.05 to 0.13%, Fe: 0.1 to 0.5%, Zn: Made of an aluminum alloy having a composition containing 0.5 to 3.0% and the balance being Al and inevitable impurities,
On the surface of the fin material before corrugating, there are 10 to 200 crystal grains/cm 2 with an equivalent circle diameter of 500 μm or more, and 90% or more of them have a structure that is longer in the rolling direction than in the width direction, and have a tensile strength. is 200 to 250 MPa, and the elongation is 1.0 to 5.0%,
Strength and formability characterized by having a tensile strength of 140 MPa or more after a heat treatment equivalent to brazing at 600 ° C. for 3 minutes, and a corrosion weight loss of 150 mg / dm 2 or less after 16 weeks in a neutral salt spray test. , and aluminum alloy fin material with excellent corrosion resistance.
前記アルミニウム合金が、さらに、質量%で、Ti:0.01~0.20%、Cr:0.01~0.20%、Mg:0.01~0.20%、Zr:0.01~0.20%のうち、1種または2種以上を含有することを特徴とする請求項1に記載の強度、成形性、および耐食性に優れる熱交換器用アルミニウム合金フィン材。 The aluminum alloy further contains, in mass%, Ti: 0.01 to 0.20%, Cr: 0.01 to 0.20%, Mg: 0.01 to 0.20%, Zr: 0.01 to 2. The aluminum alloy fin material for a heat exchanger excellent in strength, formability and corrosion resistance according to claim 1, characterized by containing one or more of 0.20%. ろう付前の固相線温度が615℃以上、前記ろう付相当加熱処理後の電位が-800mV以上-730mV以下 vs Ag/AgClであることを特徴とする請求項1または2に記載の強度、成形性、および耐食性に優れる熱交換器用アルミニウム合金フィン材。 The strength according to claim 1 or 2, characterized in that the solidus temperature before brazing is 615 ° C. or higher, and the potential after the brazing equivalent heat treatment is −800 mV or more and −730 mV or less vs Ag/AgCl, Aluminum alloy fin material for heat exchangers with excellent formability and corrosion resistance. ろう付前における再結晶完了温度が450℃以下であり、
前記再結晶完了温度は、ろう付前に、昇温速度100℃/分で、300~550℃に到達直後に冷却し、常温で測定された耐力値が、前記ろう付相当熱処理後の耐力値に比べて+20%以内まで低下し始める温度であることを特徴とする請求項1~3のいずれか1項に記載の強度、成形性、および耐食性に優れる熱交換器用アルミニウム合金フィン材。
The recrystallization completion temperature before brazing is 450 ° C. or less ,
The recrystallization completion temperature is obtained by cooling immediately after reaching 300 to 550 ° C. at a temperature increase rate of 100 ° C./min before brazing, and the yield strength value measured at room temperature is the yield strength value after the heat treatment equivalent to brazing. The aluminum alloy fin material for heat exchangers excellent in strength, formability and corrosion resistance according to any one of claims 1 to 3, characterized in that the temperature starts to decrease to within +20% compared to .
請求項1~4のいずれか1項に記載の熱交換器用アルミニウム合金フィン材を備えることを特徴とする熱交換器。 A heat exchanger comprising the aluminum alloy fin material for a heat exchanger according to any one of claims 1 to 4.
JP2019082702A 2019-04-24 2019-04-24 Aluminum alloy fins and heat exchangers with excellent strength, formability, and corrosion resistance Active JP7152352B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019082702A JP7152352B2 (en) 2019-04-24 2019-04-24 Aluminum alloy fins and heat exchangers with excellent strength, formability, and corrosion resistance
PCT/JP2020/017695 WO2020218511A1 (en) 2019-04-24 2020-04-24 Aluminum alloy fin material for heat exchangers, and heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019082702A JP7152352B2 (en) 2019-04-24 2019-04-24 Aluminum alloy fins and heat exchangers with excellent strength, formability, and corrosion resistance

Publications (2)

Publication Number Publication Date
JP2020180320A JP2020180320A (en) 2020-11-05
JP7152352B2 true JP7152352B2 (en) 2022-10-12

Family

ID=72942179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019082702A Active JP7152352B2 (en) 2019-04-24 2019-04-24 Aluminum alloy fins and heat exchangers with excellent strength, formability, and corrosion resistance

Country Status (2)

Country Link
JP (1) JP7152352B2 (en)
WO (1) WO2020218511A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023018399A (en) * 2021-07-27 2023-02-08 Maアルミニウム株式会社 Aluminum alloy fin material and heat exchanger and method for producing aluminum alloy fin material
JP7319450B1 (en) 2022-12-19 2023-08-01 Maアルミニウム株式会社 Aluminum alloy rolled material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015218343A (en) 2014-05-14 2015-12-07 日本軽金属株式会社 Aluminum alloy fin material for heat exchanger excellent in brazability and sag resistance and manufacturing method therefor
JP2016121393A (en) 2014-12-24 2016-07-07 三菱アルミニウム株式会社 Aluminum alloy fin material for heat exchanger excellent in strength, conductivity and solderability, manufacturing method of aluminum alloy fin material for heat exchanger and heat exchanger having aluminum alloy fin for heat exchanger
US20170349980A1 (en) 2015-02-10 2017-12-07 Mitsubishi Aluminum Co., Ltd. Aluminum alloy fin material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5854954B2 (en) * 2012-08-30 2016-02-09 株式会社デンソー High-strength aluminum alloy fin material and manufacturing method thereof
JP7107690B2 (en) * 2018-01-31 2022-07-27 Maアルミニウム株式会社 Aluminum alloy fin material for heat exchangers and heat exchangers with excellent strength, electrical conductivity, corrosion resistance, and brazeability

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015218343A (en) 2014-05-14 2015-12-07 日本軽金属株式会社 Aluminum alloy fin material for heat exchanger excellent in brazability and sag resistance and manufacturing method therefor
JP2016121393A (en) 2014-12-24 2016-07-07 三菱アルミニウム株式会社 Aluminum alloy fin material for heat exchanger excellent in strength, conductivity and solderability, manufacturing method of aluminum alloy fin material for heat exchanger and heat exchanger having aluminum alloy fin for heat exchanger
US20170349980A1 (en) 2015-02-10 2017-12-07 Mitsubishi Aluminum Co., Ltd. Aluminum alloy fin material

Also Published As

Publication number Publication date
JP2020180320A (en) 2020-11-05
WO2020218511A1 (en) 2020-10-29

Similar Documents

Publication Publication Date Title
US9976201B2 (en) Aluminum-alloy clad material and production method therefor, and heat exchanger using said aluminum-alloy clad material and production method therefor
JP5049488B2 (en) Method for producing aluminum alloy brazing sheet
JP6006421B2 (en) Aluminum alloy clad material, method for producing the same, and heat exchanger using the aluminum alloy clad material
JP4623729B2 (en) Aluminum alloy clad material and heat exchanger excellent in surface bonding by brazing of sacrificial anode material surface
JP2007152421A (en) Aluminum alloy brazing sheet
JP2009024221A (en) Aluminum alloy brazing sheet having high-strength
JP5188116B2 (en) High strength aluminum alloy brazing sheet and method for producing the same
JP4807826B2 (en) Aluminum alloy clad material with excellent surface bonding by brazing sacrificial anode material
JP2002161323A (en) Aluminum alloy fin-material for heat exchanger superior in formability and brazability
JP3910506B2 (en) Aluminum alloy clad material and manufacturing method thereof
WO2019150822A1 (en) Aluminum alloy fin material for heat exchangers having excellent strength, conductivity, corrosion resistance and brazability, and heat exchanger
JP7152352B2 (en) Aluminum alloy fins and heat exchangers with excellent strength, formability, and corrosion resistance
JP2005232506A (en) Aluminum alloy clad material for heat exchanger
JP2012057183A (en) Aluminum alloy clad material and heat exchanging device using the same
CN108531787A (en) Heat exchanger aluminium alloy fin material
JP2004017116A (en) Aluminum alloy brazing sheet for brazed pipe making tubes, and its producing method
JP3345845B2 (en) Aluminum alloy brazing sheet strip for ERW processing
JP5782357B2 (en) Side support material and manufacturing method thereof
JP4352454B2 (en) Method for producing brazing sheet for heat exchanger excellent in strength and wax erosion resistance
JP6738666B2 (en) Aluminum alloy heat exchanger excellent in corrosion resistance in atmospheric environment and method of manufacturing aluminum alloy heat exchanger
WO2023063065A1 (en) Aluminum alloy clad material for heat exchanger
JP2005177828A (en) Method of producing brazing sheet excellent in strength and solder erosion resistance
JP2002155332A (en) Aluminum alloy fin material for heat exchanger having excellent formability and brazability
JPH11131167A (en) Thin aluminum alloy fin material excellent for forming and brazing, and its production
WO2016157451A1 (en) Aluminum alloy fin material for heat exchanger having high strength and excellent brazability, method for manufacturing same, and heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210611

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220929

R150 Certificate of patent or registration of utility model

Ref document number: 7152352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150