JP2016016452A - Insert member - Google Patents

Insert member Download PDF

Info

Publication number
JP2016016452A
JP2016016452A JP2014143361A JP2014143361A JP2016016452A JP 2016016452 A JP2016016452 A JP 2016016452A JP 2014143361 A JP2014143361 A JP 2014143361A JP 2014143361 A JP2014143361 A JP 2014143361A JP 2016016452 A JP2016016452 A JP 2016016452A
Authority
JP
Japan
Prior art keywords
shape
recess
insert member
size
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014143361A
Other languages
Japanese (ja)
Other versions
JP6248837B2 (en
Inventor
山下 修
Osamu Yamashita
修 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014143361A priority Critical patent/JP6248837B2/en
Publication of JP2016016452A publication Critical patent/JP2016016452A/en
Application granted granted Critical
Publication of JP6248837B2 publication Critical patent/JP6248837B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an insert member which can maintain rigid fixed states of both members even if the insert member is placed in a high-temperature atmosphere, related to the insert member in which different kinds of the members which are different in thermal expansion coefficients are assembled to each other in a normal temperature atmosphere.SOLUTION: An insert member 10 comprises a first member 1 which is relatively small in a thermal expansion coefficient, and has recess 11, and a second member 2 which is relatively large in a thermal expansion coefficient, and has a protrusion 21. The protrusion 21 is pressure-inserted into the recess 11. When a shape, a size and a position of the protrusion 21 with respect to a shape and a size of the recess 11 at a normal temperature are regulated as relative physical amounts of the protrusion at a normal temperature, and a shape, a size and a position of the protrusion 21 with respect to a shape and a size of the recess 11 at a high temperature to which the insert member 10 is exposed are regulated as relative physical amounts of the protrusion at a high temperature, the recess 11 is composed of continuation including the relative physical amounts of the protrusion at the normal temperature, and the relative physical amounts of the protrusion at the high temperature.SELECTED DRAWING: Figure 4

Description

本発明は熱膨張率の相対的に異なる一方の部材に対して他方の部材を組み付けてなるインサート部材に関するものである。   The present invention relates to an insert member formed by assembling the other member to one member having a relatively different coefficient of thermal expansion.

鍛造等の塑性加工や金属粉末の成形固化といった加工においては、成形型やダイス、パンチ等の工具鋼が一般に用いられている。たとえば希土類磁石の製造に当たり、ナノサイズやマイクロサイズの磁性粉末を焼結して焼結体を製作する際に工具鋼が用いられ、さらに、この焼結体に対して磁気的異方性を付与する熱間塑性加工をおこなう際にも工具鋼が用いられる。   In processing such as plastic processing such as forging and molding and solidification of metal powder, tool steel such as a mold, a die, and a punch is generally used. For example, when manufacturing rare earth magnets, tool steel is used to sinter nano-sized and micro-sized magnetic powders to produce sintered bodies, and magnetic anisotropy is imparted to these sintered bodies. Tool steel is also used when performing hot plastic working.

工具鋼は一般に鉄鋼材料から形成されているが、たとえばこの形成材料を鉄鋼からセラミックスに置き換えることができれば、工具鋼の摩耗を可及的に抑制することができ、工具鋼の寿命を大幅に延ばすことができる。   Tool steel is generally formed of steel material. For example, if this material can be replaced from steel to ceramics, the wear of the tool steel can be suppressed as much as possible, and the life of the tool steel is greatly extended. be able to.

しかしながら、鉄鋼に比してセラミックスは高価であることから、工具鋼の全部をセラミックスに置換するのではなくて、一部のみをセラミックスで置換するのが好ましい。そして、このようにセラミックスによる一部置換を実現するには、セラミックス素材の部材と鉄鋼素材の部材をインサート加工等し、インサート部材からなる工具鋼とするのがよい。   However, since ceramics are more expensive than steel, it is preferable not to replace all of the tool steel with ceramics but to replace only part of them with ceramics. In order to achieve partial replacement with ceramics in this way, it is preferable to insert a ceramic material member and a steel material member into a tool steel made of an insert member.

このようにセラミックス素材の部材と鉄鋼素材の部材からなるインサート部材にて工具鋼を形成する場合、一般には、一方の部材に設けられた凹部に対して他方の部材に設けられた凸部を常温雰囲気下で圧入する加工がおこなわれる。   In this way, when tool steel is formed with an insert member made of a ceramic material member and a steel material member, in general, a convex portion provided on the other member is placed at room temperature with respect to a concave portion provided on one member. Processing to press fit under atmosphere.

ところで、セラミックス素材の部材と鉄鋼素材の部材は相互に熱膨張率が異なることから、このインサート部材からなる工具鋼を高温雰囲気下で使用すると、双方の部材の熱膨張率の相違によって双方を繋ぐ凹部と凸部の大きさや形状が変化し、圧入代が変化する結果、場合によっては圧入固定状態を維持できずに工具鋼が分解もしくは破損する恐れがある。   By the way, since the ceramic material member and the steel material member have different coefficients of thermal expansion, when tool steel made of this insert member is used in a high-temperature atmosphere, the two members are connected by the difference in the coefficient of thermal expansion of both members. As a result of changes in the size and shape of the concave and convex portions and the press-fitting allowance, the press-fit fixed state cannot be maintained in some cases, and the tool steel may be decomposed or broken.

ここで、特許文献1には、インサート本体に砥石チップを結合してなる工具インサートに関し、インサート本体に対して砥石チップを圧入等によって不可逆的に塑性変形させ、このことによって生じる機械的応力にて保持するようにした工具インサートが開示されている。   Here, Patent Document 1 relates to a tool insert in which a grindstone tip is coupled to an insert body, and the grindstone chip is irreversibly plastically deformed by press-fitting or the like with respect to the insert body. A tool insert adapted to be held is disclosed.

この工具インサートによれば、ろう付けによる工具製作の際の費用等の問題を解消できるとしている。しかしながら、相互に熱膨張率の異なるインサート本体と砥石チップに関し、高温時にこの熱膨張率の相違に起因した圧入代の変化によって圧入固定状態が維持できなくなるといった上記課題を解消できるものではない。   According to this tool insert, it is said that problems such as costs for tool production by brazing can be solved. However, regarding the insert body and the grindstone chip having different thermal expansion coefficients from each other, the above-described problem that the press-fit state cannot be maintained due to a change in press-fitting allowance due to the difference in the thermal expansion coefficient at high temperatures cannot be solved.

特開2010−264586号公報JP 2010-264586 A

本発明は上記する問題に鑑みてなされたものであり、相互に熱膨張率の異なる異種部材同士が常温雰囲気下で組み付けられてなるインサート部材に関し、このインサート部材が高温雰囲気下に置かれた場合でも双方の部材の強固な固定状態を維持することのできるインサート部材を提供することを目的とする。   The present invention has been made in view of the above problems, and relates to an insert member in which different types of members having different thermal expansion coefficients are assembled in a normal temperature atmosphere. When the insert member is placed in a high temperature atmosphere. However, it aims at providing the insert member which can maintain the firm fixed state of both members.

前記目的を達成すべく、本発明によるインサート部材は、熱膨張率が相対的に異なる第一部材と第二部材からなり、該第一部材と第二部材の一方に凹部が備えてあり、他方に凸部が備えてあり、該凹部に該凸部が圧入されてなるインサート部材であって、常温時における凹部の形状および大きさに対する凸部の形状、大きさおよび位置を、常温時における凸部の相対的な物理量と規定し、インサート部材が晒される高温時における凹部の形状および大きさに対する凸部の形状、大きさおよび位置を、高温時における凸部の相対的な物理量と規定した場合、前記凹部は、前記常温時における凸部の相対的な物理量と前記高温時における凸部の相対的な物理量が含まれる連続した溝となっているものである。   In order to achieve the above object, an insert member according to the present invention comprises a first member and a second member having relatively different coefficients of thermal expansion, wherein one of the first member and the second member has a recess, and the other The insert member is formed by press-fitting the convex portion into the concave portion, and the shape, size, and position of the convex portion with respect to the shape and size of the concave portion at room temperature are determined according to the convexity at normal temperature. When the shape, size, and position of the convex part relative to the shape and size of the concave part at high temperatures to which the insert member is exposed are defined as the relative physical quantity of the convex parts at high temperature The concave portion is a continuous groove including the relative physical quantity of the convex portion at the normal temperature and the relative physical quantity of the convex portion at the high temperature.

本発明のインサート部材は、熱膨張率の相違する二種の部材同士をそれぞれの凹部と凸部を嵌合させて繋いだものにおいて、凹部に対する凸部の常温時と高温時の相対的な形状、大きさおよび位置を予め特定しておき、それぞれの温度の際の凸部の大きさや形状等を包含する凹部を形成しておくことにより、常温時と高温時で双方の部材の固定状態を維持できるものである。   In the insert member of the present invention, two members having different coefficients of thermal expansion are connected to each other by fitting the respective concave portions and convex portions, and the relative shapes of the convex portions with respect to the concave portions at normal temperature and high temperature By specifying the size and position in advance and forming a recess that includes the size and shape of the protrusion at each temperature, the fixed state of both members at normal temperature and high temperature can be obtained. It can be maintained.

ここで、「高温時」とは、インサート部材が晒される温度範囲における高い方の温度を意味しており、設計温度によって高温時の温度は変化するものであり、たとえば300℃、600℃等に設定される。   Here, “high temperature” means the higher temperature in the temperature range to which the insert member is exposed, and the temperature at the high temperature varies depending on the design temperature, for example, 300 ° C., 600 ° C., etc. Is set.

また、本明細書において「物理量」とは既述するように、凹部の形状および大きさに対する凸部の形状、大きさおよび位置のことを意味しており、凹部に対して凸部が圧入される常温時の物理量と設計上の高温時の物理量がある。   In addition, as described above, “physical quantity” in this specification means the shape, size, and position of the convex portion relative to the shape and size of the concave portion, and the convex portion is press-fitted into the concave portion. There is a physical quantity at normal temperature and a physical quantity at design high temperature.

さらにここで、「形状」や「寸法」とは、主として凹部や凸部の平面的な寸法や形状を意味しているが、たとえば凹部の深さや凸部の高さなど、高さ方向の寸法や形状も含まれることは勿論のことである。   Further, here, “shape” and “dimension” mainly mean a planar dimension or shape of a concave portion or a convex portion. For example, a dimension in the height direction such as the depth of the concave portion or the height of the convex portion. Of course, shapes and shapes are also included.

ここで、第一部材の熱膨張率が相対的に小さな実施の形態、逆に第一部材の熱膨張率が相対的に大きな実施の形態のいずれであってもよく、前者の形態では第一部材がセラミックスから形成され、第二部材が金属から形成されている形態を挙げることができ、後者の形態では、第一部材が金属から形成され、第二部材がセラミックスから形成されている形態を挙げることができる。   Here, either the embodiment in which the coefficient of thermal expansion of the first member is relatively small or the embodiment in which the coefficient of thermal expansion of the first member is relatively large may be used. The member is made of ceramics, and the second member is made of metal. In the latter form, the first member is made of metal, and the second member is made of ceramics. Can be mentioned.

また、第一部材、第二部材のいずれか一方が凹部を有し、他方が凸部を有することから、第一部材の熱膨張率が相対的に小さな実施の形態においてはさらに、この第一部材が凹部を有し、第二部材が凸部を有する形態の他に、第一部材が凸部を有し、第二部材が凹部を有する形態がある。同様に、第一部材の熱膨張率が相対的に大きな実施の形態においても、第一部材が凹部を有する形態、第一部材が凸部を有する形態がある。   In addition, since one of the first member and the second member has a concave portion and the other has a convex portion, in the embodiment in which the coefficient of thermal expansion of the first member is relatively small, the first member In addition to a mode in which the member has a concave portion and the second member has a convex portion, there is a mode in which the first member has a convex portion and the second member has a concave portion. Similarly, in the embodiment in which the coefficient of thermal expansion of the first member is relatively large, there is a form in which the first member has a concave portion and a form in which the first member has a convex portion.

たとえば、第一部材が第二部材に比して熱膨張率が相対的に小さく、第二部材の具備する凸部が圧入される凹部を具備している形態を例示すると、常温雰囲気から高温雰囲気に温度変化した際に、凹部に対して凸部の熱変形量は大きく、凹部に対して凸部の変形後の寸法は相対的に大きくなり、形状も大きな形状になる。また、常温時と高温時で凸部の位置(たとえば中心位置)も変化し得る。そこで、常温雰囲気下において、所定の平面寸法および形状を有し、常温雰囲気下での第二部材における凸部の絶対位置に対して、設計上の高温時における凸部の平面寸法および形状と、第二部材における凸部の絶対位置を特定しておく。   For example, when the first member has a relatively small coefficient of thermal expansion as compared with the second member and the concave portion into which the convex portion included in the second member is press-fitted is illustrated, from a normal temperature atmosphere to a high temperature atmosphere When the temperature is changed, the amount of thermal deformation of the convex portion is larger than that of the concave portion, the dimension of the convex portion after the deformation is relatively large with respect to the concave portion, and the shape becomes large. Further, the position of the convex portion (for example, the center position) can be changed between the normal temperature and the high temperature. Therefore, in a normal temperature atmosphere, it has a predetermined planar size and shape, and with respect to the absolute position of the convex portion in the second member in the normal temperature atmosphere, the planar size and shape of the convex portion at the design high temperature, The absolute position of the convex part in the second member is specified in advance.

同様に、常温雰囲気から高温雰囲気に温度変化した際に、第一部材も第二部材と同程度には変化しないものの、当初の形状や寸法が変化することから、変形後の凹部の形状および寸法を特定しておく。   Similarly, when the temperature changes from the normal temperature atmosphere to the high temperature atmosphere, the first member does not change to the same extent as the second member, but the initial shape and dimensions change. Is specified.

そして、凹部の形状および寸法に関しては、常温時および高温時の2つの温度状態における凹部に対する凸部の相対的な物理量を特定し、この2つの物理量を包含する連続した溝から凹部を構成するものである。すなわち、2つの温度状態における凸部の相対的な物理量を結ぶ奇跡を凹部が包含するものである。   Regarding the shape and dimensions of the recess, the relative physical quantity of the projection with respect to the recess in two temperature states at normal temperature and high temperature is specified, and the recess is constituted by continuous grooves including these two physical quantities. It is. That is, the concave portion includes a miracle that connects the relative physical quantities of the convex portion in two temperature states.

このような凹部をたとえば相対的に熱膨張率が小さな第一部材に形成しておくことで、常温雰囲気と高温雰囲気の間で温度変化した場合でも、凹部においては、凸部が圧入される圧入代を常に確保することができ、温度変化によっても強固な圧入固定状態を維持することができる。   By forming such a recess in the first member having a relatively small coefficient of thermal expansion, for example, even when the temperature changes between a normal temperature atmosphere and a high temperature atmosphere, the recess is press-fitted so that the projection is press-fitted. The allowance can always be secured, and a strong press-fitted and fixed state can be maintained even with temperature changes.

なお、対応する凹部と凸部の組み合わせは多様であり、第一部材と第二部材のいずれか一方に凹部が一つずつあり、他方に凸部が一つずつある形態や、凹部と凸部がそれぞれ二つ以上ある形態などが挙げられる。
また、前記第一部材がセラミックスから形成され、前記第二部材が金属から形成されている実施の形態を挙げることができる。
In addition, there are various combinations of corresponding concave portions and convex portions, and one of the first member and the second member has one concave portion and the other has one convex portion, or the concave portion and the convex portion. The form with two or more of each is mentioned.
An embodiment in which the first member is made of ceramics and the second member is made of metal can be mentioned.

たとえば、従来の希土類磁石の製造においては、磁粉を焼結して焼結体を製作する場合や焼結体を熱間塑性加工して異方性磁石を製作する場合に用いられるパンチは金属製のパンチであった。このパンチは、材料を直接押圧するプレート部材と押込み部材とから構成されている。このパンチのうち、たとえばプレート部材をセラミックス製の第一部材とし、押込み部材を金属製の第二部材とし、圧入によって双方を組み付けて製作することにより、パンチの耐摩耗性を向上させることができ、パンチの長寿命化を図ることができる。また、パンチの全体をセラミックスに置き換えるのではなくて、その一部のみをセラミックスに置き換えることから、パンチの製作コストが大幅に高騰することもない。   For example, in the manufacture of conventional rare earth magnets, punches used for producing sintered bodies by sintering magnetic powder or for producing anisotropic magnets by hot plastic working of sintered bodies are made of metal. It was a punch. This punch is comprised from the plate member and pressing member which press a material directly. Of these punches, for example, the plate member can be a ceramic first member, the pushing member can be a metal second member, and both can be assembled by press fitting to improve the wear resistance of the punch. The life of the punch can be extended. Further, since the entire punch is not replaced with ceramics, but only a part thereof is replaced with ceramics, the manufacturing cost of the punch does not increase significantly.

以上の説明から理解できるように、本発明のインサート部材によれば、熱膨張率の相違する二種の部材同士をそれぞれの凹部と凸部を嵌合させて繋いでなる構成において、常温時と高温時における凸部の相対的な形状、大きさおよび位置が含まれる連続した溝から凹部が形成されていることにより、常温時から高温時にかけて双方の部材の強固な固定状態を維持することができる。   As can be understood from the above description, according to the insert member of the present invention, in a configuration in which two members having different coefficients of thermal expansion are connected to each other by fitting the respective concave portions and convex portions, By forming the recesses from continuous grooves that include the relative shape, size and position of the projections at high temperatures, it is possible to maintain a firm fixed state of both members from room temperature to high temperatures. it can.

本発明のインサート部材の実施の形態であるパンチの斜視図である。It is a perspective view of the punch which is embodiment of the insert member of this invention. (a)はパンチを構成する押込み部材の正面図であり、(b)は図2aのb−b矢視図である。(A) is a front view of the pushing member which comprises a punch, (b) is a bb arrow line view of FIG. 2a. (a)はパンチを構成するプレート部材の平面図であり、(b)は図3aのb−b矢視図である。(A) is a top view of the plate member which comprises a punch, (b) is a bb arrow line view of FIG. 3a. 凹部の設計方法を説明した図であって、(a)はプレート部材の平面図であり、(b)は図4aのb−b矢視図である。It is a figure explaining the design method of a recessed part, Comprising: (a) is a top view of a plate member, (b) is a bb arrow line view of FIG. 4a. 凸部と凹部の他の形態を示した模式図である。It is the schematic diagram which showed the other form of the convex part and the recessed part.

以下、図面を参照して本発明のインサート部材の実施の形態を説明する。なお、図示例の凸部の断面形状は円形であるが、楕円形、多角形等、他の断面形状の凸部であってもよいことは勿論のことである。また、図示例は、第一部材が相対的に熱膨張率が小さくて凹部を具備し、第二部材が相対的に熱膨張率が大きくて凹部に圧入される凸部を具備する形態を示しているが、図示例以外にも、熱膨張率の小さな第一部材が凸部を具備している形態(第二部材が凹部を具備)や、第一部材が相対的に熱膨張率が大きくて凹部を具備している形態(第二部材は熱膨張率が小さくて凸部を具備)、第一部材が相対的に熱膨張率が大きくて凸部を具備している形態(第二部材は熱膨張率が小さくて凹部を具備)などであってもよいことは勿論のことである。   Embodiments of the insert member of the present invention will be described below with reference to the drawings. In addition, although the cross-sectional shape of the convex part of the example of illustration is circular, it is needless to say that the convex part of other cross-sectional shapes, such as an ellipse and a polygon, may be sufficient. In the illustrated example, the first member has a relatively low coefficient of thermal expansion and has a recess, and the second member has a relatively large coefficient of thermal expansion and has a protrusion that is press-fitted into the recess. However, in addition to the illustrated example, the first member having a small coefficient of thermal expansion has a convex portion (the second member has a concave portion), and the first member has a relatively large coefficient of thermal expansion. The second member has a small thermal expansion coefficient and has a convex portion, and the first member has a relatively large thermal expansion coefficient and has a convex portion (second member). Of course, the coefficient of thermal expansion may be small and a recess may be provided.

(インサート部材の実施の形態)
図1は本発明のインサート部材の実施の形態であるパンチの斜視図であり、図2aはパンチを構成する押込み部材の正面図であり、図2bは図2aのb−b矢視図であり、図3aはパンチを構成するプレート部材の平面図であり、図3bは図3aのb−b矢視図である。さらに、図4は凹部の設計方法を説明した図であって、図4aはプレート部材の平面図であり、図4bは図4aのb−b矢視図である。
(Embodiment of insert member)
1 is a perspective view of a punch as an embodiment of an insert member of the present invention, FIG. 2a is a front view of a pushing member constituting the punch, and FIG. 2b is a view taken along the line bb in FIG. 2a. 3a is a plan view of a plate member constituting the punch, and FIG. 3b is a view taken along the line bb of FIG. 3a. Further, FIG. 4 is a view for explaining a method of designing a recess, FIG. 4a is a plan view of a plate member, and FIG. 4b is a view taken along the line bb in FIG. 4a.

図1で示すインサート部材10は、第一部材であるプレート部材1に設けられた不図示の凹部に対し、第二部材である押込み部材2に設けられた不図示の凸部が圧入されてその全体が構成されている。   The insert member 10 shown in FIG. 1 is press-fitted with a convex portion (not shown) provided on the pushing member 2 (second member) to a concave portion (not shown) provided on the plate member 1 (first member). The whole is configured.

プレート部材1はセラミックスから形成されており、押込み部材2は鉄鋼等の金属から形成されており、押込み部材2に比してプレート部材1は熱膨張率が相対的に小さくなっている。   The plate member 1 is made of ceramics, and the pushing member 2 is made of a metal such as steel. The plate member 1 has a coefficient of thermal expansion relatively smaller than that of the pushing member 2.

図2で示すように、押込み部材2の下面2aには左右に2つの断面形状が円形の凸部21があり、これら2つの凸部21が、図3で示すプレート部材1の上面1aの左右に設けられた凹部11に圧入される。   As shown in FIG. 2, the lower surface 2a of the pushing member 2 has two convex portions 21 having a circular cross section on the left and right, and these two convex portions 21 are located on the left and right sides of the upper surface 1a of the plate member 1 shown in FIG. Is press-fitted into the recess 11 provided in the.

図3で示す凹部11は、プレート部材1の左右端側に大きな円形を収容できる輪郭を有し、プレート部材1の中央側に相対的に小さな円形を収容できる輪郭を有し、さらにこれら左右の輪郭を直線で繋いだ輪郭を呈している。   The concave portion 11 shown in FIG. 3 has a contour capable of accommodating a large circle on the left and right end sides of the plate member 1, and has a contour capable of accommodating a relatively small circle on the center side of the plate member 1. It presents a contour that connects the contours with straight lines.

そこで、このプレート部材1に設けられる凹部11の形状や寸法の設定方法を図4を参照して説明する。
まず、プレート部材1の上面1aに、常温時の凸部21aの平面寸法および形状を中心点P1を中心に投影し、同様に、設計上想定される高温時の凸部21bの平面寸法および形状を投影する(中心点P2)。すなわち、常温時から高温時(最高温度が300℃の場合は300℃の温度雰囲気下)に温度変化することで、凸部21はその大きさも形状も変化し(図4のY方向)、さらには、その中心位置も変化(移動)する(同Y方向)。
A method for setting the shape and dimensions of the recess 11 provided in the plate member 1 will be described with reference to FIG.
First, on the upper surface 1a of the plate member 1, the planar size and shape of the convex portion 21a at normal temperature are projected around the center point P1, and similarly, the planar size and shape of the convex portion 21b at high temperature assumed in design are used. Is projected (center point P2). That is, when the temperature changes from room temperature to high temperature (when the maximum temperature is 300 ° C., in a temperature atmosphere of 300 ° C.), the size and shape of the convex portion 21 change (Y direction in FIG. 4). The center position also changes (moves) (in the same Y direction).

投影された凸部21a、21bの外側輪郭を結ぶようにして左右斜め方向に延びる2本の直線を引き、凸部21a、21bの外側輪郭を含む第一設計段階での凹部11’を製作する。   Two straight lines extending diagonally in the left-right direction are drawn so as to connect the outer contours of the projected convex portions 21a and 21b, and the concave portion 11 ′ in the first design stage including the outer contours of the convex portions 21a and 21b is manufactured. .

次に、この凹部11’に基づいて、凹部11’よりも寸法が小さく、相似形状の第二設計段階での凹部11’’を製作する。すなわち、この凹部11’’は、最終的に決定される凹部11自身も熱変形することに鑑み、凹部11’に単に圧入代を加味して最終的な凹部の輪郭を決定するのではなくて、熱変形後の凹部が所望の圧入代を確保するように、たとえば所定の補正係数を乗じて凹部11’を相似形状で大きさの小さな凹部11’’を設定する。   Next, based on the recess 11 ′, a recess 11 ″ having a size smaller than the recess 11 ′ and having a similar shape in the second design stage is manufactured. In other words, in consideration of the fact that the finally determined recess 11 itself is also thermally deformed, the recess 11 ″ is not determined by simply adding a press-fitting allowance to the recess 11 ′. The recessed portion 11 ′ having a similar shape and a small size is set by multiplying a predetermined correction coefficient, for example, so that the recessed portion after thermal deformation secures a desired press-fitting allowance.

第二設計段階での凹部11’’に対し、この凹部11’’を常温時の形状および寸法と規定した上で、この凹部11’’が高温時に温度変化した際の第三設計段階での凹部11’’’を製作する。   In contrast to the concave portion 11 ″ at the second design stage, the concave portion 11 ″ is defined as the shape and dimensions at normal temperature, and then the temperature at the concave portion 11 ″ changes at the high temperature. Recess 11 '' 'is produced.

最終的に決定される凹部11の形状および寸法は、常温時と高温時の凸部21a、21bの大きさや形状、位置に加えて、圧入代を加味して、それぞれの温度雰囲気における凸部21a,21bよりも凹部11の輪郭が内側にくるように設定されなければならない。   The shape and dimensions of the concave portion 11 finally determined are the convex portion 21a in each temperature atmosphere in consideration of the press-fitting allowance in addition to the size, shape and position of the convex portions 21a and 21b at normal temperature and high temperature. , 21b must be set so that the contour of the recess 11 is on the inner side.

第三設計段階での凹部11’’’の輪郭の外側に第一設計段階での凹部11’が存在するが、これら2つの凹部11’、11’’’の輪郭の間に、圧入代が加味されてなる凹部11を製作する。   There is a recess 11 ′ in the first design stage outside the contour of the recess 11 ′ ″ in the third design stage, but there is a press-fitting allowance between the contours of these two recesses 11 ′, 11 ′ ″. The recessed part 11 made into consideration is manufactured.

このようにして製作された凹部11は、常温時の凸部21aと高温時の凸部21bと、凸部21aから凸部21bへ熱変形する過程の凸部21を全て包含する軌跡(輪郭)を基準として、設定された僅かな圧入代の分だけ寸法が小さくされた形状および寸法の溝となっている。   The concave portion 11 manufactured in this way includes a convex portion 21a at a normal temperature, a convex portion 21b at a high temperature, and a locus (contour) including all the convex portions 21 in the process of thermal deformation from the convex portion 21a to the convex portion 21b. As a reference, the groove has a shape and a size that are reduced in size by a set amount of press-fitting allowance.

図1で示すパンチ10(インサート部材)によれば、たとえば材料を直接押圧するプレート部材1と押込み部材2とから構成されているものにおいて、プレート部材1をセラミックス製の第一部材とし、押込み部材2を金属製の第二部材とし、圧入によって双方を組み付けて製作することにより、従来の全体が金属製のパンチの場合に比して特にプレート部材1の耐摩耗性が大きく向上し、パンチの長寿命化を図ることができる。   According to the punch 10 (insert member) shown in FIG. 1, for example, a plate member 1 that directly presses a material and a pressing member 2, the plate member 1 is a ceramic first member, and the pressing member 2 is a metal second member, and both are assembled by press-fitting, so that the overall wear resistance of the plate member 1 is greatly improved as compared to the case of a conventional metal punch. Long life can be achieved.

また、パンチの全体をセラミックスに置き換えるのではなくて、その一部のみをセラミックスに置き換えることから、パンチの製作コストが大幅に高騰することもない。   Further, since the entire punch is not replaced with ceramics, but only a part thereof is replaced with ceramics, the manufacturing cost of the punch does not increase significantly.

さらに、熱膨張量の相対的に大きな凸部21が圧入される凹部11に関し、この凹部11の形状および寸法は、圧入加工の際の常温時と設計上の高温時の2つの温度状態における凹部11に対する凸部21の相対的な物理量(形状、大きさ、位置)を特定し、この2つの物理量を包含する連続した溝から凹部11が構成されている。したがって、常温雰囲気と高温雰囲気の間で温度変化した場合でも、凹部11においては、凸部21が圧入される圧入代を常に確保することができ、温度変化によっても強固な圧入固定状態を維持することができる。   Further, regarding the concave portion 11 into which the convex portion 21 having a relatively large thermal expansion amount is press-fitted, the shape and dimensions of the concave portion 11 are concave portions in two temperature states at normal temperature and high design temperature. The relative physical quantity (shape, size, position) of the convex part 21 with respect to 11 is specified, and the concave part 11 is constituted by a continuous groove including these two physical quantities. Therefore, even when the temperature changes between a normal temperature atmosphere and a high temperature atmosphere, the recess 11 can always secure a press-fitting allowance for press-fitting the convex portion 21 and maintain a strong press-fitted and fixed state even with a temperature change. be able to.

また、図5は、凸部と凹部の他の形態を示した模式図である。
同図で示すプレート部材1Aは、線対称で左右それぞれ4つの凹部11を備えたものである。
このプレート部材1Aに対しては、相手側の押込み部材の下面に対応する8つの凸部が存在している。
FIG. 5 is a schematic view showing another form of the convex portion and the concave portion.
The plate member 1A shown in the figure is line-symmetric and includes four concave portions 11 on the left and right sides.
For this plate member 1A, there are eight convex portions corresponding to the lower surface of the opposite pushing member.

8つの凸部の常温時から高温時の熱変形による軌跡を検証し(同図で示す例では、各凸部が常温時の凸部21aから高温時の凸部21bへ斜め方向に変形しながら移動する軌跡を描くことが検証されているとした)、この検証結果に応じて8つの凹部11をプレート部材1Aに加工する。   The locus of the eight convex portions due to thermal deformation at normal temperature to high temperature is verified (in the example shown in the figure, each convex portion is deformed in an oblique direction from the convex portion 21a at normal temperature to the convex portion 21b at high temperature. According to the verification result, the eight concave portions 11 are processed into the plate member 1A.

なお、凸部と凹部の基数は図示例以外にも多様な形態が存在するが、いずれの形態であっても、凸部の常温時から高温時の熱変形による軌跡を検証し、圧入代を加味して凹部の形状および寸法が決定される設計方法は同じである。   In addition, there are various forms other than the example shown in the figure for the radix of the convex part and the concave part, but in any form, the locus of the convex part due to thermal deformation from normal temperature to high temperature is verified, and the press fitting allowance is reduced. In addition, the design method for determining the shape and dimensions of the recesses is the same.

また、図示を省略するが、凹部を具備するプレート部材が金属製であり、凸部を具備する押込み部材がセラミックス製の場合は、図4で示す双方の相対的な変形量等が異なってくることから(凹部の熱変形量が凸部に比して相対的に大きくなる)、これらの相対的な物理量を加味して凹部の溝の形状や寸法が設定される。   Moreover, although illustration is abbreviate | omitted, when the plate member which comprises a recessed part is metal, and the pushing member which comprises a convex part is a ceramic, both relative deformation amount etc. which are shown in FIG. 4 differ. For this reason (the amount of thermal deformation of the concave portion is relatively larger than that of the convex portion), the shape and dimensions of the groove of the concave portion are set in consideration of these relative physical quantities.

以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.

1,1A…第一部材(プレート部材)、1a…上面、11…凹部、11’… 第一設計段階での凹部、11’’…第二設計段階での凹部、11’’’…第三設計段階での凹部、2…第二部材(押込み部材)、2a…下面、21…凸部、21a…常温時の凸部、21b…高温時の凸部、10…インサート部材(パンチ)   DESCRIPTION OF SYMBOLS 1,1A ... 1st member (plate member), 1a ... Upper surface, 11 ... Recessed part, 11 '... Recessed part in 1st design stage, 11' '... Recessed part in 2nd design stage, 11' '' ... 3rd Concave part in design stage, 2 ... second member (pushing member), 2a ... bottom surface, 21 ... convex part, 21a ... convex part at normal temperature, 21b ... convex part at high temperature, 10 ... insert member (punch)

Claims (6)

熱膨張率が相対的に異なる第一部材と第二部材からなり、該第一部材と第二部材の一方に凹部が備えてあり、他方に凸部が備えてあり、該凹部に該凸部が圧入されてなるインサート部材であって、
常温時における凹部の形状および大きさに対する凸部の形状、大きさおよび位置を、常温時における凸部の相対的な物理量と規定し、
インサート部材が晒される高温時における凹部の形状および大きさに対する凸部の形状、大きさおよび位置を、高温時における凸部の相対的な物理量と規定した場合、
前記凹部は、前記常温時における凸部の相対的な物理量と前記高温時における凸部の相対的な物理量が含まれる連続した溝であるインサート部材。
It consists of a first member and a second member that have relatively different coefficients of thermal expansion, one of the first member and the second member has a recess, the other has a projection, and the projection has a recess. Is an insert member formed by press-fitting,
The shape, size, and position of the convex portion with respect to the shape and size of the concave portion at normal temperature are defined as relative physical quantities of the convex portion at normal temperature,
When the shape, size and position of the convex portion with respect to the shape and size of the concave portion at high temperature to which the insert member is exposed are defined as the relative physical quantity of the convex portion at high temperature,
The said recessed part is an insert member which is a continuous groove | channel in which the relative physical quantity of the convex part in the said normal temperature and the relative physical quantity of the convex part in the said high temperature are contained.
前記第一部材の熱膨張率が相対的に小さい請求項1に記載のインサート部材。   The insert member according to claim 1, wherein the first member has a relatively low coefficient of thermal expansion. 前記第一部材がセラミックスから形成され、前記第二部材が金属から形成されている請求項2に記載のインサート部材。   The insert member according to claim 2, wherein the first member is made of ceramics and the second member is made of metal. 前記第一部材の熱膨張率が相対的に大きい請求項1に記載のインサート部材。   The insert member according to claim 1, wherein the first member has a relatively high coefficient of thermal expansion. 前記第一部材が金属から形成され、前記第二部材がセラミックスから形成されている請求項4に記載のインサート部材。   The insert member according to claim 4, wherein the first member is made of metal and the second member is made of ceramics. 対応する凹部および凸部の組み合わせが一つもしくは二つ以上である請求項1〜5のいずれかに記載のインサート部材。   The insert member according to any one of claims 1 to 5, wherein one or two or more combinations of corresponding recesses and protrusions are provided.
JP2014143361A 2014-07-11 2014-07-11 Insert member Active JP6248837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014143361A JP6248837B2 (en) 2014-07-11 2014-07-11 Insert member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014143361A JP6248837B2 (en) 2014-07-11 2014-07-11 Insert member

Publications (2)

Publication Number Publication Date
JP2016016452A true JP2016016452A (en) 2016-02-01
JP6248837B2 JP6248837B2 (en) 2017-12-20

Family

ID=55232107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014143361A Active JP6248837B2 (en) 2014-07-11 2014-07-11 Insert member

Country Status (1)

Country Link
JP (1) JP6248837B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61230822A (en) * 1985-04-04 1986-10-15 Babcock Hitachi Kk Fitting method of ceramic cylinder
JPS6339739A (en) * 1986-08-05 1988-02-20 Hitachi Metals Ltd Hot fitting method for si3n4-based ceramic
JPH01249670A (en) * 1988-03-30 1989-10-04 Toyota Motor Corp Method for bonding ceramic member and metallic member
JPH0489368A (en) * 1990-07-30 1992-03-23 Ngk Insulators Ltd Production of ceramics-metal coupled body
JP2006055870A (en) * 2004-08-18 2006-03-02 Honda Motor Co Ltd Structure for installing superplastic forming die on opening/closing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61230822A (en) * 1985-04-04 1986-10-15 Babcock Hitachi Kk Fitting method of ceramic cylinder
JPS6339739A (en) * 1986-08-05 1988-02-20 Hitachi Metals Ltd Hot fitting method for si3n4-based ceramic
JPH01249670A (en) * 1988-03-30 1989-10-04 Toyota Motor Corp Method for bonding ceramic member and metallic member
JPH0489368A (en) * 1990-07-30 1992-03-23 Ngk Insulators Ltd Production of ceramics-metal coupled body
JP2006055870A (en) * 2004-08-18 2006-03-02 Honda Motor Co Ltd Structure for installing superplastic forming die on opening/closing device

Also Published As

Publication number Publication date
JP6248837B2 (en) 2017-12-20

Similar Documents

Publication Publication Date Title
CN103207559B (en) Comprise the parts of ceramic component
US10413967B2 (en) Method for producing a sintered part with high radial precision, and set of parts comprising joining parts to be sintered
JP5913373B2 (en) Method of manufacturing mold part having channel for temperature control, and mold part manufactured by the method
JP5931104B2 (en) Bearing comprising first and second functional elements on two separate surfaces
JP2015093461A (en) Three-dimensional structure component
JPWO2007077880A1 (en) Manufacturing method of shaft member to which sintered parts are joined, and camshaft for internal combustion engine
CN107781293B (en) Dynamic pressure bearing, method of manufacturing the same, fluid dynamic pressure bearing device, motor, and molding die
JP6248837B2 (en) Insert member
CN103231022B (en) A kind of pump body cast precoated sand core core assembly structure
US11460067B2 (en) Washer and washer manufacturing method
JP6440057B2 (en) High frequency heating coil
JP5862927B2 (en) Green compact mold equipment for curved plate parts
JP7018494B2 (en) Molding mold, molding method
JP2005223969A (en) Variable reluctance resolver and its fabrication process and system
JP2012047304A (en) Oil seal of variable valve timing mechanism
JP6183689B2 (en) Powder mold
JP2017020597A (en) Manufacturing method of wave-type cage
JP5679360B2 (en) Mold for powder molding
JP2011153357A (en) Molding die, sizing die and method for producing sintered component using the same
JP2013018016A (en) Dimension compressing method and thickness increasing method by press
CN209414448U (en) A kind of multi-step automobile clutch powder metallurgy hub
JP2015231713A (en) Resin molded article manufacturing method and press die for resin molding
JP4722742B2 (en) Manufacturing method of sintered products
JP2007270747A (en) Camshaft
JPH0584538A (en) Manufacture of synchronizer ring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161221

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171106

R151 Written notification of patent or utility model registration

Ref document number: 6248837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151