JPWO2007077880A1 - Manufacturing method of shaft member to which sintered parts are joined, and camshaft for internal combustion engine - Google Patents

Manufacturing method of shaft member to which sintered parts are joined, and camshaft for internal combustion engine Download PDF

Info

Publication number
JPWO2007077880A1
JPWO2007077880A1 JP2007552963A JP2007552963A JPWO2007077880A1 JP WO2007077880 A1 JPWO2007077880 A1 JP WO2007077880A1 JP 2007552963 A JP2007552963 A JP 2007552963A JP 2007552963 A JP2007552963 A JP 2007552963A JP WO2007077880 A1 JPWO2007077880 A1 JP WO2007077880A1
Authority
JP
Japan
Prior art keywords
shaft member
green compact
shaft
convex portion
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007552963A
Other languages
Japanese (ja)
Inventor
岳 桑原
岳 桑原
敦也 青木
敦也 青木
真洋 新澤
真洋 新澤
滝口 寛
寛 滝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Piston Ring Co Ltd
Original Assignee
Nippon Piston Ring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Piston Ring Co Ltd filed Critical Nippon Piston Ring Co Ltd
Publication of JPWO2007077880A1 publication Critical patent/JPWO2007077880A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P11/00Connecting or disconnecting metal parts or objects by metal-working techniques not otherwise provided for 
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P2700/00Indexing scheme relating to the articles being treated, e.g. manufactured, repaired, assembled, connected or other operations covered in the subgroups
    • B23P2700/02Camshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H53/00Cams ; Non-rotary cams; or cam-followers, e.g. rollers for gearing mechanisms
    • F16H53/02Single-track cams for single-revolution cycles; Camshafts with such cams
    • F16H53/025Single-track cams for single-revolution cycles; Camshafts with such cams characterised by their construction, e.g. assembling or manufacturing features

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Gears, Cams (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Powder Metallurgy (AREA)

Abstract

簡便で歩留まりがよく、かつ位置精度、角度精度が良好な、焼結部品が接合された軸部材の製造方法を提供すること。金属あるいは合金の粉末を圧縮成形することにより圧粉体を形成し、当該圧粉体を軸部材に組み付ける際に、軸部材の外周面に形成された凸部を利用し、当該凸部によって圧粉体の一部を削り取りながら、当該凸部を圧粉体に食い込ませることにより、前記圧粉体と軸部材とを組み付け、その後に焼結を行う。To provide a method for manufacturing a shaft member to which sintered parts are joined, which is simple, has a good yield, and has good positional accuracy and angular accuracy. When a green compact is formed by compression molding metal or alloy powder, and the green compact is assembled to the shaft member, the convex portion formed on the outer peripheral surface of the shaft member is used, and the green compact is pressed by the convex portion. The convex part and the shaft member are assembled by causing the convex part to bite into the green compact while scraping a part of the powder, and then sintering.

Description

本発明は、焼結部品が接合された軸部材の製造方法に関する。具体的には、例えば、いわゆる組立カムシャフトを製造する際に応用可能な製造方法に関する。   The present invention relates to a method for manufacturing a shaft member to which sintered parts are joined. Specifically, for example, the present invention relates to a manufacturing method applicable when manufacturing a so-called assembly camshaft.

例えば、自動車のエンジン等の内燃機関において用いられるカムシャフトは、金属あるいは合金の粉末をカムロブ形状に圧縮成形し、これを軸部材としてのシャフトに組み付け、その後焼結することにより、カムロブとシャフトを焼結拡散接合により一体化することにより製造されている。   For example, a camshaft used in an internal combustion engine such as an automobile engine is formed by compressing a metal or alloy powder into a cam lobe shape, assembling it into a shaft as a shaft member, and then sintering the cam lob and the shaft. It is manufactured by integrating by sintered diffusion bonding.

このような、いわゆる組立カムシャフトを製造するにあっては、焼結部品としてのカムロブを軸部材としてのシャフトの所定の位置に所定の角度で固定しつつ焼結を行う必要があり、従来から、この固定方法が種々開発されている。   In manufacturing such a so-called assembly camshaft, it is necessary to perform sintering while fixing a cam lobe as a sintered part to a predetermined position of a shaft as a shaft member at a predetermined angle. Various fixing methods have been developed.

例えば、特許文献1や特許文献2には、軸部材としてのシャフトの外周面に凹部(溝)を設け、他方、カムロブ側には、前記凹部に対応する凸部を設けることが開示されている。   For example, Patent Literature 1 and Patent Literature 2 disclose that a concave portion (groove) is provided on the outer peripheral surface of a shaft as a shaft member, and a convex portion corresponding to the concave portion is provided on the cam lobe side. .

また、特許文献3には、シャフトの外周面、およびカムロブの双方に凹部を設け、当該2つ凹部により形成される空隙部にピンを挿入することにより双方を固定することが開示されている。   Patent Document 3 discloses that a concave portion is provided on both the outer peripheral surface of the shaft and the cam lobe, and both are fixed by inserting a pin into a gap formed by the two concave portions.

さらに、特許文献4には、シャフトの外周面にポンチを押圧することにより突起部を形成し、この突起部を利用してカムロブとシャフトとを仮固定することが開示されている。
特開昭54−041266号公報 特開昭60−033302号公報 特開平08−210110号公報 特開平03−168305号公報
Further, Patent Document 4 discloses that a protrusion is formed by pressing a punch on the outer peripheral surface of the shaft, and the cam lobe and the shaft are temporarily fixed using the protrusion.
Japanese Patent Laid-Open No. 54-041266 Japanese Patent Laid-Open No. 60-033302 Japanese Patent Laid-Open No. 08-210110 Japanese Patent Laid-Open No. 03-168305

しかしながら、前記特許文献1および特許文献2に開示されている方法にあっては、本来のカムシャフトの機能には不要な凹部や凸部を形成する必要があり、設計自由度が低下することがあった。また、特にシャフトの外周面に軸方向に連続する凹部(つまり溝)を形成すると当該凹部が形成された部分とカムロブとの間には空隙が生じることが多く、強度的に問題が生じる場合もあった。   However, in the methods disclosed in Patent Document 1 and Patent Document 2, it is necessary to form concave portions and convex portions that are not necessary for the original function of the camshaft, and the degree of design freedom may be reduced. there were. In particular, when a concave portion (that is, a groove) continuous in the axial direction is formed on the outer peripheral surface of the shaft, a gap is often generated between the portion where the concave portion is formed and the cam lobe, which may cause a problem in strength. there were.

また、前記特許文献3に開示されている方法にあっても、前記特許文献1と同様、凹部を形成する必要があるため、設計自由度が低下したり、強度が低下したりする問題が生じ得る他、カムロブ、シャフトの他にピン部材が必要となるため、製造工程が煩雑となり、歩留まりが低下し、生産コストが嵩むことが考えられる。   Further, even in the method disclosed in Patent Document 3, as in Patent Document 1, it is necessary to form a recess, which causes a problem that the degree of freedom in design is reduced and the strength is reduced. In addition, since a pin member is necessary in addition to the cam lobe and the shaft, the manufacturing process becomes complicated, the yield decreases, and the production cost increases.

さらに、前記特許文献4に開示されている方法においては、カムロブとシャフトとの接合方法は溶接接合であり、本願発明の如く焼結拡散接合により接合することについては念頭にない発明である。ここで、特許文献4の内容を検討すると、当該文献には、ポンチにより形成される突起部はカムロブを挿入する際に、当該カムロブによって押し潰されて組成変形する旨が記載されている。この記載から判断すると、カムロブは、本発明の如く金属あるいは合金の粉末を圧縮成形した圧粉体ではないことが明らかであり、カムロブとシャフトとの硬度を考えると、カムロブの方が硬いことが明らかである。さらにまた、特許文献4の記載によれば、カムロブをカムシャフトに挿入した段階では、既に突起部は押し潰されて無くなっているため、この段階においてはもはやカムロブはシャフトに固定されていない、もしくは固定されていても微弱な固定であることとなる。この状況で、本発明の如く焼結工程を行った場合、カムロブが回転してしまい、所望の角度に精度良くカムロブを固定することは不可能であると考えられる。   Furthermore, in the method disclosed in Patent Document 4, the joining method of the cam lobe and the shaft is welding joining, and it is an invention that does not take into account joining by sintered diffusion joining as in the present invention. Here, when the contents of Patent Document 4 are examined, it is described that the protrusion formed by the punch is crushed by the cam lobe and deformed in composition when the cam lobe is inserted. Judging from this description, it is clear that the cam lobe is not a green compact obtained by compression molding a metal or alloy powder as in the present invention. Considering the hardness of the cam lobe and the shaft, the cam lobe is harder. it is obvious. Furthermore, according to the description of Patent Document 4, since the protrusion is already crushed and lost at the stage where the cam lobe is inserted into the camshaft, the cam lobe is no longer fixed to the shaft at this stage, or Even if it is fixed, it is weak. In this situation, when the sintering process is performed as in the present invention, the cam lobe rotates, and it is considered impossible to fix the cam lobe accurately at a desired angle.

本発明はこの様な問題点を解決するためになされたものであり、簡便で歩留まりがよく、かつ位置精度、角度精度が良好な、焼結部品が接合された軸部材の製造方法、および当該製造方法により製造された内燃機関用カムシャフトを提供することを主たる課題とする。   The present invention has been made to solve such problems, and is a method for manufacturing a shaft member joined with sintered parts, which is simple, has a good yield, and has good positional accuracy and angular accuracy. It is a main object to provide a camshaft for an internal combustion engine manufactured by a manufacturing method.

上記課題を解決するための本発明は、金属あるいは合金の粉末を圧縮成形することにより圧粉体を形成する圧粉体形成工程と、軸部材の外周面の所望の位置を、治具を用いて押圧することにより当該軸部材の外周面を変形せしめ、当該位置に高さ0.03〜0.25mmの凸部を形成する凸部形成工程と、軸部材の外周面に形成された凸部を利用し、当該凸部によって圧粉体の一部を削り取りながら、当該凸部を圧粉体に食い込ませることにより、前記圧粉体と軸部材とを組み付ける組み付け工程と、前記圧粉体を焼結することにより、圧粉体と軸部材とを焼結拡散接合により一体化する焼結工程と、からなることを特徴とする、焼結部品が接合された軸部材の製造方法である。   In order to solve the above problems, the present invention uses a jig to form a green compact by forming a green compact by compressing a metal or alloy powder, and a desired position on the outer peripheral surface of the shaft member The convex portion formed on the outer peripheral surface of the shaft member, and the outer peripheral surface of the shaft member is deformed by pressing to form a convex portion having a height of 0.03 to 0.25 mm at the position. The assembling step of assembling the green compact and the shaft member by causing the convex portion to bite into the green compact while scraping a part of the green compact with the convex, and the green compact. A method for producing a shaft member to which sintered parts are joined, comprising a sintering step in which the green compact and the shaft member are integrated by sintering diffusion bonding by sintering.

また、前記発明にあっては、前記組み付け工程終了後、前記焼結工程を行う前に、前記圧粉体と軸部材とを接着剤により仮止めする仮止め工程を行ってもよい。   Moreover, in the said invention, after the said assembly | attachment process is complete | finished, you may perform the temporary fix | stop process which temporarily fixes the said green compact and a shaft member with an adhesive agent before performing the said sintering process.

さらに、前記発明にあっては、前記焼結部品をカムロブまたはカムロブとジャーナルとし、軸部材をシャフトとすることもできる。   Further, in the invention, the sintered part may be a cam lobe or a cam lobe and a journal, and the shaft member may be a shaft.

さらにまた、上記課題を解決するための本発明は、軸部材の製造方法により形成されたことを特徴とする内燃機関用カムシャフトである。   Furthermore, the present invention for solving the above problems is a camshaft for an internal combustion engine formed by a method for manufacturing a shaft member.

本発明によれば、金属あるいは合金の粉末を用いて形成した圧粉体を軸部材に設置し、これを焼結することにより焼結拡散接合により一体化する、焼結部品が接合された軸部材の製造方法において、軸部材に圧粉体を設置する前の段階で、当該軸部材の表面に微細な凸部を形成し、これを利用して圧粉体と軸部材とを組み付け固定しているので、前記特許文献1や2のように、圧粉体(特許文献1や2においてはカムロブ)と軸部材(特許文献1や2においてはシャフト)の双方に加工を施す必要がなく、軸部材のみに加工を施せば足りるので、歩留まりを向上せしめることが可能となり、また設計上の自由度も向上せしめることができる。また、本発明の製造方法において行う軸部材に対する加工は、その表面に治具を押圧することにより微細な凸部を形成することのみであり、最終的には当該凸部は圧粉体との接合部分に隠れてしまうので、前記特許文献1や2のように、当該加工によって強度が低下する虞もない。   According to the present invention, a compact formed by using a metal or alloy powder is placed on a shaft member, and is sintered and integrated by sintering diffusion bonding. In the method for producing a member, before the green compact is placed on the shaft member, a fine convex portion is formed on the surface of the shaft member, and the green compact and the shaft member are assembled and fixed using this. Therefore, as in Patent Documents 1 and 2, there is no need to process both the green compact (cam lobe in Patent Documents 1 and 2) and the shaft member (shaft in Patent Documents 1 and 2). Since it is sufficient to process only the shaft member, the yield can be improved, and the degree of freedom in design can be improved. Further, the processing for the shaft member performed in the manufacturing method of the present invention is only to form a fine convex portion by pressing a jig on the surface, and finally the convex portion is formed of a green compact. Since it is hidden behind the joint, there is no possibility that the strength is reduced by the processing as in Patent Documents 1 and 2.

また、このような本願発明の製造方法にあっては、特許文献3に記載するようなピンに代表される別部材が不要であるため、コストダウンを図ることもできる。   Moreover, in such a manufacturing method of the present invention, a separate member typified by a pin as described in Patent Document 3 is unnecessary, so that the cost can be reduced.

さらに、本発明の製造方法にあっては、軸部材の外周面に形成される微細な凸部を圧粉体に食い込ませることにより軸部材と圧粉体とを組み付け固定しているので、特許文献4に記載されているように、組み付け後において圧粉体が軸方向にずれたり、周方向に回転したりする虞がなく、その結果、位置精度、角度精度を向上せしめることができる。   Furthermore, in the manufacturing method of the present invention, since the shaft member and the green compact are assembled and fixed by causing the fine projections formed on the outer peripheral surface of the shaft member to bite into the green compact, the patent As described in Document 4, there is no fear that the green compact is displaced in the axial direction or rotated in the circumferential direction after assembly, and as a result, the positional accuracy and the angular accuracy can be improved.

また、従来の方法において、シャフトに溝を形成し、カムロブに突起を形成して、嵌合、焼結する場合は、焼結時にカムロブのみが収縮するため、クリアランスが大きくなり角度づれが大きいのに対し、本発明では、シャフト側に凸部を形成しているため、焼結時のカムロブ(圧粉体)の収縮によりカムロブが凸部を抱き込む形となるため、角度精度が向上する。   In addition, in the conventional method, when a groove is formed on the shaft and a protrusion is formed on the cam lobe for fitting and sintering, only the cam lobe contracts during sintering, so the clearance increases and the angle is large. On the other hand, in the present invention, since the convex portion is formed on the shaft side, the cam lobe embraces the convex portion due to the shrinkage of the cam lobe (green compact) during sintering, so that the angular accuracy is improved.

本発明の製造方法の工程を示すフロー図である。It is a flowchart which shows the process of the manufacturing method of this invention. 本発明の製造方法における凸部形成工程を説明するための説明図であり、(a)は当該工程の手順を示す概略断面図であり、図2(b)は、凸部が形成されたシャフトの外周面の拡大断面図である。It is explanatory drawing for demonstrating the convex part formation process in the manufacturing method of this invention, (a) is a schematic sectional drawing which shows the procedure of the said process, FIG.2 (b) is the shaft in which the convex part was formed. It is an expanded sectional view of the outer peripheral surface. 本発明の製造方法における組み付け工程を説明するための説明図である。It is explanatory drawing for demonstrating the assembly | attachment process in the manufacturing method of this invention.

符号の説明Explanation of symbols

20…シャフト
21…治具
22…凸部
20 ... Shaft 21 ... Jig 22 ... Projection

以下に、本発明の製造方法について、図面を用いて具体的に説明する。   Below, the manufacturing method of this invention is concretely demonstrated using drawing.

図1は、本発明の製造方法の工程を示すフロー図である。   FIG. 1 is a flowchart showing the steps of the production method of the present invention.

なお、本発明はカムシャフトの製造方法に限定されることはなく、焼結部品と軸部材とを焼結拡散接合により一体化して形成する物品一般を製造する際に適用可能であるが、より具体的に説明するために、シャフトに別途製作したカムロブおよびジャーナル等の焼結部品を組み付けてなる、いわゆる組立カムシャフトを製造する場合を例に挙げ、以下では、焼結部品をカムロブとし、軸部材をシャフトとして説明する。   The present invention is not limited to the method of manufacturing the camshaft, and can be applied when manufacturing general articles formed by integrating sintered parts and shaft members by sintering diffusion bonding. In order to explain specifically, a case where a so-called assembly cam shaft is manufactured by assembling a sintered part such as a cam lob and a journal separately manufactured on the shaft is described as an example. The member will be described as a shaft.

図1に示すように、本発明の製造方法は、金属あるいは合金の粉末を圧縮成形することにより圧粉体を形成する圧粉体形成工程S1と、軸部材の外周面の所望の位置を、治具を用いて押圧することにより当該軸部材の外周面を変形せしめ、当該位置に微細な凸部を形成する凸部形成工程S2と、圧粉体と軸部材とを組み付ける組み付け工程S3と、前記圧粉体と軸部材とを接着剤により仮止めする仮止め工程S4と、前記圧粉体を焼結することにより、圧粉体と軸部材とを焼結拡散接合により一体化する焼結工程S5と、から構成されている。   As shown in FIG. 1, in the manufacturing method of the present invention, a green compact forming step S1 for forming a green compact by compressing a metal or alloy powder, and a desired position on the outer peripheral surface of the shaft member, Deformation of the outer peripheral surface of the shaft member by pressing using a jig, and forming a convex portion forming step S2 for forming a fine convex portion at the position; an assembly step S3 for assembling the green compact and the shaft member; Temporary fixing step S4 for temporarily fixing the green compact and the shaft member with an adhesive, and sintering for integrating the green compact and the shaft member by sintering diffusion bonding by sintering the green compact. Step S5.

以下に各工程について具体的に説明する。   Each step will be specifically described below.

(1)圧粉体形成工程
本発明の製造方法における圧粉体形成工程S1は、金属あるいは合金の粉末を材料とし、これを圧縮成形することにより圧粉体を形成することを目的としている。この圧粉体の形状については、特に限定されることはなく、最終成形品の形状等を考慮して、適宜設計すればよく、例えばカムシャフトを製造する場合には、当該圧粉体はカムロブの形状を呈することとなる。
(1) Green compact forming step The green compact forming step S1 in the production method of the present invention is intended to form a green compact by compressing and molding a metal or alloy powder. The shape of the green compact is not particularly limited, and may be appropriately designed in consideration of the shape of the final molded product. For example, when manufacturing a camshaft, the green compact is a cam lobe. The shape will be exhibited.

当該工程S1において用いる金属あるいは合金の粉末については、本発明は特に限定することはなく、従来公知のいかなる金属あるいは合金の粉末を用いることができるが、焼結による圧粉体の収縮率((圧粉体寸法−焼結体寸法)/圧粉体寸法×100)が4〜7%となるような、例えばステンレス系合金粉末を用いることが好ましい。   The metal or alloy powder used in the step S1 is not particularly limited, and any conventionally known metal or alloy powder can be used, but the shrinkage ratio ((( It is preferable to use, for example, a stainless alloy powder such that the green compact size−sintered body size) / green compact size × 100) is 4 to 7%.

当該工程S1において形成される圧粉体は、後で説明する組み付け工程S3において、軸部材(例えばシャフト)に形成された凸部が食い込むことになる、つまりある程度の負荷がかけられることになるため、当該組み付け工程S3において受ける負荷に耐え得る程度の硬度を有している必要がある。具体的には、440〜690MPa程度の圧力をかけて圧粉体を形成することが好ましく、圧粉体の相対密度は、70%以上とすることが好ましい。   The green compact formed in the step S1 is bitten by the convex portions formed on the shaft member (for example, the shaft) in an assembly step S3 described later, that is, a certain amount of load is applied. It is necessary to have a hardness that can withstand the load received in the assembly step S3. Specifically, the green compact is preferably formed by applying a pressure of about 440 to 690 MPa, and the relative density of the green compact is preferably 70% or more.

(2)凸部形成工程
本発明の製造方法における凸部形成工程S2は、軸部材の外周面の所望の位置を、治具を用いて押圧することにより当該軸部材の外周面を変形せしめ、当該位置に微細な凸部を形成することを目的とする。
(2) Convex part formation process Convex part formation process S2 in the manufacturing method of the present invention deforms the outer peripheral surface of the shaft member by pressing a desired position of the outer peripheral surface of the shaft member using a jig, It aims at forming a fine convex part in the said position.

図2は、凸部形成工程S2を説明するための説明図であり、(a)は当該工程の手順を示す概略断面図であり、図2(b)は、凸部が形成されたシャフトの外周面の拡大断面図である。   FIG. 2 is an explanatory view for explaining the convex portion forming step S2, (a) is a schematic sectional view showing the procedure of the step, and FIG. 2 (b) is a diagram of the shaft on which the convex portion is formed. It is an expanded sectional view of an outer peripheral surface.

図2(a)に示すように、当該工程においては、軸部材としてのシャフト20の外周面の所望の位置を、治具21を用いて押圧することが行われる。そして、当該工程の終了後においては、図2(b)に示すように、シャフト20の外周面は変形し、当該位置には微細な凸部22が形成される。   As shown to Fig.2 (a), in the said process, pressing the desired position of the outer peripheral surface of the shaft 20 as a shaft member using the jig | tool 21 is performed. Then, after the end of the process, as shown in FIG. 2B, the outer peripheral surface of the shaft 20 is deformed, and a fine convex portion 22 is formed at the position.

当該微細な凸部22は、後に説明する組み付け工程S3において、カムロブ形状の圧粉体とシャフト20との組み付けにおいて利用される。   The fine protrusions 22 are used in assembling the cam lobe-shaped green compact and the shaft 20 in an assembling step S3 described later.

当該微細な凸部22の高さhは、凸部22が後述する組み付け工程S3において、前述の圧粉体に食い込むことで圧粉体を固定できる程度であればよく、この目的を達成できる程度の高さであれば適宜設定することができる。しかしながら、必要以上に高くすることは、圧粉体の組み付けの際に障害となる虞があると同時に、組み付けの際に圧粉体に過度の負荷をかけて圧粉体を粉砕してしまう原因となる可能性があるため好ましくない。さらに凸部を必要以上に高くすることは、高荷重となるため、治具の寿命の低下、凸部形成荷重の増大、さらには組み付け時の圧入荷重増大による設備荷重の増大によって生産性の悪化を招き好ましくない。当該凸部の高さは、具体的には、0.03〜0.25mm程度が好ましい。特に好ましいのは、凸部を3箇所形成する場合には0.03〜0.2mm程度であり、凸部を2箇所形成する場合には0.05〜0.2mm程度であり、凸部を5箇所形成する場合には0.03〜0.1mm程度である。   The height h of the fine convex portion 22 may be such that the convex portion 22 can fix the green compact by biting into the above-described green compact in the assembly step S3 described later, and can achieve this purpose. The height can be set as appropriate. However, making it higher than necessary may cause an obstacle when assembling the green compact, and at the same time, causes excessive pressure on the green compact and causes the green compact to be crushed. Since it may become, it is not preferable. Increasing the height of the projection more than necessary increases the load, resulting in a decrease in the life of the jig, an increase in the load for forming the projection, and an increase in equipment load due to an increase in the press-fit load during assembly. Is undesirable. Specifically, the height of the convex portion is preferably about 0.03 to 0.25 mm. Particularly preferable is about 0.03 to 0.2 mm when three convex portions are formed, and about 0.05 to 0.2 mm when two convex portions are formed. When forming five places, it is about 0.03-0.1 mm.

一方で、微細な凸部22を形成するために必然的に形成される凹部23については、本発明の製造方法において利用されることはなく、従って、その形状(深さや大きさ)は特に限定されない。しかしながら、当該凹部23はできるだけ小さいことが好ましく、そのために治具21の先端形状等を工夫することが好ましい。   On the other hand, the concave portion 23 inevitably formed to form the fine convex portion 22 is not used in the manufacturing method of the present invention, and therefore its shape (depth and size) is particularly limited. Not. However, it is preferable that the concave portion 23 is as small as possible. Therefore, it is preferable to devise the tip shape of the jig 21 and the like.

本発明の方法において用いられる治具21については、前述した微細な凸部22を効率よく形成することが可能であれば特に限定されることはなく、適宜選択することが可能である。具体的には、例えば、その先端が円錐状となっていることが好ましく、その角度は40〜80°程度であることが好ましい。また、その円錐先端のR(曲率半径)は1mm以下であることが好ましく、特に好ましいのは0.05〜0.5mm程度である。円錐角度が40°未満だと治具21の寿命が短くなる虞があり、一方で80°より大きいと適当な凸部22を得ることが困難となる可能性があるからである。また、その先端のRが1mmより大きいと適当な凸部22を成形することが困難となり、また治具21を押圧するための圧力が大きくなってしまうからである。   The jig 21 used in the method of the present invention is not particularly limited as long as the fine protrusions 22 described above can be efficiently formed, and can be appropriately selected. Specifically, for example, the tip is preferably conical, and the angle is preferably about 40 to 80 °. The R (curvature radius) of the cone tip is preferably 1 mm or less, and particularly preferably about 0.05 to 0.5 mm. If the cone angle is less than 40 °, the life of the jig 21 may be shortened. On the other hand, if the cone angle is more than 80 °, it may be difficult to obtain an appropriate convex portion 22. Further, if the tip R is larger than 1 mm, it is difficult to form an appropriate convex portion 22 and the pressure for pressing the jig 21 becomes large.

また、当該治具21の硬度については、本発明の方法を実施するためには、軸部材としてのシャフトの硬度と同等かそれ以上であることが好ましく、例えば、超硬やハイス(高速度工具鋼)などを用いればよい。   Further, the hardness of the jig 21 is preferably equal to or higher than the hardness of the shaft as the shaft member in order to carry out the method of the present invention. Steel) or the like may be used.

一方で、例えばシャフトに代表される軸部材の硬度については、本発明の製造方法により製造される最終製品の用途や要求される性能に応じて適宜設定することが可能であるが、前述の通り、微細凸部22を形成し、形成された凸部22を利用して、これを圧粉体に食い込ませることが必要であるため、ある程度の硬度を有することが必要である。具体的には、例えばカムシャフト用のシャフトの場合には、その表面硬度は、HRB75〜105程度が好ましい。表面硬度がHRB75未満だと治具21を押圧しても所望の高さhを有する凸部22を形成することが困難となる場合があり、一方、表面硬度がHRB105より大きいと治具21の寿命が低下してしまうからである。このような硬度を有する材料としては、例えば、S45C、STKM13、さらには、SUJ2材料などを挙げることができる。   On the other hand, for example, the hardness of a shaft member typified by a shaft can be appropriately set according to the use and required performance of the final product manufactured by the manufacturing method of the present invention. It is necessary to have a certain degree of hardness because it is necessary to form the fine convex portion 22 and use the formed convex portion 22 to bite into the green compact. Specifically, for example, in the case of a shaft for a camshaft, the surface hardness is preferably about HRB 75 to 105. If the surface hardness is less than HRB 75, it may be difficult to form the convex portion 22 having the desired height h even if the jig 21 is pressed. This is because the service life is reduced. Examples of the material having such hardness include S45C, STKM13, and SUJ2 material.

また、当該工程S2において、治具21をシャフト20の表面へ押圧する際の圧力については、前記治具21の硬度やシャフト20の硬度などのバランスを考慮し、前述した所望の高さhを有する凸部22が形成できる程度に設定すればよく、特に限定されることはない。例えば、490〜2450N程度であることが好ましい。圧力が490Nより小さいと、凸部の高さhを所望の値にすることができないことがあり、一方で2450Nを超えると、不要な凹部23の深さが深くなり、シャフト20の肉厚如何によっては、シャフト全体が変形する虞があるからである。   In the step S2, the pressure when the jig 21 is pressed against the surface of the shaft 20 is set to the desired height h described above in consideration of the balance of the hardness of the jig 21 and the hardness of the shaft 20. What is necessary is just to set to the grade which can form the convex part 22 which has, and it does not specifically limit. For example, it is preferable that it is about 490-2450N. If the pressure is smaller than 490N, the height h of the convex portion may not be set to a desired value. On the other hand, if it exceeds 2450N, the depth of the unnecessary concave portion 23 becomes deeper, and the thickness of the shaft 20 depends on the thickness. This is because the entire shaft may be deformed depending on the case.

なお、当該工程S2においては、圧粉体1つに対して少なくとも1つ以上の凸部22を形成すればよく、形成する数は特に限定されなく、場合によっては5つ程度形成してもよい。例えば、組立カムシャフトの製造に本発明の方法を適用する場合にあって、カムロブ1つに対し、1つの凸部22を形成する場合にあっては、当該凸部22は、カムロブにおけるノーズ部分(最も肉厚な部分)に対応する位置(シャフトの周方向に対する角度)に設けることが好ましい。一方、カムロブ1つに対し、2つの凸部22を形成する場合にあっては、当該凸部22は、カムロブにおけるノーズ部分に対応する位置から、0〜+35°の位置と、0〜−35°の位置に設けることが好ましく、25±10°、−25±10°の位置がさらに好ましく、25±7°、−25±7°の位置が特に好ましい。3つの凸部を形成する場合にあっては、カムロブにおけるノーズ部分に対応する位置から、0〜+35°の位置と、0°の位置と、0〜−35°の位置に設けるか、若しくは、ノーズ部分に対応する位置から、0〜+35°の位置と、+180°の位置と、0〜−35°の位置に設けることが好ましい。さらに、4つの凸部を形成する場合にあっては、カムロブにおけるノーズ部分に対応する位置から、0〜+35°の位置と、0°の位置と、0〜−35°の位置と、+180°の位置に設けることが好ましい。さらに、5つの凸部を形成する場合にあっては、カムロブにおけるノーズ部分に対応する位置から、0〜+35°の位置と、0°の位置と、0〜−35°の位置と、+150°の位置と、−150°の位置に設けか、0〜+35°の位置と、180°の位置と、0〜−35°の位置と、+150°の位置と、−150°の位置に設けることが好ましい。   In the step S2, it is only necessary to form at least one convex portion 22 for one green compact, and the number to be formed is not particularly limited. Depending on the case, about five may be formed. . For example, when the method of the present invention is applied to the manufacture of an assembled camshaft and one convex portion 22 is formed for one cam lobe, the convex portion 22 is a nose portion in the cam lobe. It is preferably provided at a position corresponding to (the thickest part) (an angle with respect to the circumferential direction of the shaft). On the other hand, in the case where two convex portions 22 are formed for one cam lobe, the convex portion 22 has a position of 0 to + 35 ° and 0 to −35 from the position corresponding to the nose portion in the cam lobe. It is preferably provided at a position of 25 °, more preferably at a position of 25 ± 10 ° and −25 ± 10 °, and particularly preferably at a position of 25 ± 7 ° and −25 ± 7 °. In the case of forming three convex portions, from the position corresponding to the nose portion in the cam lobe, it is provided at a position of 0 to + 35 °, a position of 0 °, and a position of 0 to −35 °, or It is preferable to provide at a position of 0 to + 35 °, a position of + 180 °, and a position of 0 to −35 ° from the position corresponding to the nose portion. Further, in the case of forming four convex portions, from the position corresponding to the nose portion in the cam lobe, the position of 0 to + 35 °, the position of 0 °, the position of 0 to −35 °, and + 180 ° It is preferable to provide at the position. Further, in the case of forming five convex portions, from the position corresponding to the nose portion in the cam lobe, the position of 0 to + 35 °, the position of 0 °, the position of 0 to −35 °, and + 150 ° Or at a position of −150 °, or at a position of 0 to + 35 °, a position of 180 °, a position of 0 to −35 °, a position of + 150 °, and a position of −150 °. Is preferred.

なお、上記の凸部を形成する位置角度については、高い精度を必要としない。軸部材に形成する凸部の数と位置は、本発明の方法を組立カムシャフトの製造に適用する場合は、上述したような数と位置の組み合わせが好ましいが、焼結部品と軸部材とを焼結拡散接合により一体製造する際には、圧粉体の形状と強度を考慮して設ければよく、特に限定されることはない。   In addition, about the position angle which forms said convex part, a high precision is not required. When the method of the present invention is applied to the manufacture of the assembly camshaft, the number and position of the projections formed on the shaft member are preferably the combination of the number and position described above. When integrally manufacturing by sintering diffusion bonding, it may be provided in consideration of the shape and strength of the green compact, and is not particularly limited.

(3)組み付け工程
本発明の製造方法における組み付け工程S3は、軸部材の外周面に形成された凸部を利用し、当該凸部によって圧粉体の一部を削り取りながら、当該凸部を圧粉体に食い込ませることにより、前記圧粉体と軸部材とを組み付けることを目的とする。
(3) Assembling step The assembling step S3 in the manufacturing method of the present invention uses the convex portion formed on the outer peripheral surface of the shaft member, and presses the convex portion while scraping a part of the green compact with the convex portion. The object is to assemble the green compact and the shaft member by biting into the powder.

図3は、組み付け工程S3を説明するための説明図である。   FIG. 3 is an explanatory diagram for explaining the assembly step S3.

当該工程S3においては、図3(a)および(b)に示すように、前述の凸部形成工程S2により微細な凸部が形成されたシャフト20の一端から、カムロブ形状の圧粉体を挿入し、当該微細な凸部により、圧粉体に形成されているシャフト挿入用孔の内面を削り取りながら、当該凸部22を食い込ませることにより組み付けを行う。この時、圧粉体の弾性変形をともっているため圧粉体挿入後は挿入方向にも、これと逆方向にもずれることはない。   In the step S3, as shown in FIGS. 3A and 3B, a cam lobe-shaped green compact is inserted from one end of the shaft 20 on which the fine convex portions are formed by the convex portion forming step S2. Then, assembly is performed by biting the convex portion 22 while scraping the inner surface of the shaft insertion hole formed in the green compact with the fine convex portion. At this time, since the green compact is elastically deformed, there is no deviation in the insertion direction or in the opposite direction after the green compact is inserted.

このように、圧粉体(カムロブ)の一部を削り取りながら軸部材(シャフト)に形成された凸部を圧粉体に食い込ませることにより、従来に比べて精度よく圧粉体を軸部材に固定することができる。   In this way, the green compact can be used as a shaft member with higher accuracy than in the past by cutting the convex portion formed on the shaft member (shaft) into the green compact while scraping a part of the green compact (cam lobe). Can be fixed.

この場合において、圧粉体の幅方向(挿入方向)の厚さWの1/2程度まで凸部22を食い込ませることが好ましい。但し、圧粉体の幅方向の厚さWが20mmを超えるものについては、挿入量を10mm程度とすることが好ましい。   In this case, it is preferable that the convex portion 22 is bitten to about ½ of the thickness W in the width direction (insertion direction) of the green compact. However, when the thickness W in the width direction of the green compact exceeds 20 mm, the amount of insertion is preferably about 10 mm.

また、圧粉体(カムロブ)と軸部材(シャフト)とのクリアランス(間隙)については、前記凸部形成工程S2において軸部材外周面に形成される凸部22の高さhの大きさにより適宜設定可能であるが、例えば直径0.05〜0.2mm程度であることが好ましい。当該クリアランスが直径0.05mm未満であると圧粉体の挿入自体が困難となり歩留まりが低下する等の問題が生じる場合があり、一方、クリアランスが直径0.2mmより大きいと圧粉体に対する凸部22の食い込みが浅くなり、その分だけ固定が困難となるからである。同様の観点から、圧粉体に対し軸部材の凸部22が0.01mm以上食い込むように、クリアランスを設定することが好ましい。   Further, the clearance (gap) between the green compact (cam lobe) and the shaft member (shaft) is appropriately determined depending on the height h of the convex portion 22 formed on the outer peripheral surface of the shaft member in the convex portion forming step S2. For example, the diameter is preferably about 0.05 to 0.2 mm. If the clearance is less than 0.05 mm in diameter, it may be difficult to insert the green compact itself, resulting in problems such as a decrease in yield. This is because the biting of 22 becomes shallower and fixing becomes difficult accordingly. From the same viewpoint, it is preferable to set the clearance so that the convex portion 22 of the shaft member bites into the green compact by 0.01 mm or more.

図3(c)および(d)は、例えば、複数のカムロブをシャフトに固定する場合の組み付け工程S3の手順を示している。図示するように、複数のカムロブを固定する場合には、前述の凸部形成工程S2と、当該組み付け工程S3とを繰り返し行うことが好ましい。凸部形成工程S2を連続して行うと、シャフトの一端からカムロブを挿入するに際し、手前側に形成された凸部をカムロブが通過することとなり、この際にカムロブの一部を無用に削り取ってしまうこととなり、強度的に問題が生じる場合があるからである。   FIGS. 3C and 3D show the procedure of the assembling step S3 when a plurality of cam lobes are fixed to the shaft, for example. As shown in the drawing, when a plurality of cam lobes are fixed, it is preferable to repeat the above-described convex portion forming step S2 and the assembling step S3. When the convex portion forming step S2 is continuously performed, when the cam lobe is inserted from one end of the shaft, the cam lobe passes through the convex portion formed on the front side, and at this time, a part of the cam lobe is scraped unnecessarily. This is because there may be a problem in strength.

(4)仮止め工程
本発明の製造方法における仮止めS4は、前記組み付け工程S3により軸部材(シャフト)に組み付けられた圧粉体(カムロブ)を焼結工程前に仮止めすることを目的とする。
(4) Temporary fixing step The temporary fixing S4 in the manufacturing method of the present invention aims to temporarily fix the green compact (cam lobe) assembled to the shaft member (shaft) in the assembly step S3 before the sintering step. To do.

当該工程S4は、本発明の製造方法にあっては必須の工程ではないが、精度向上のためには行うことが好ましい。   The step S4 is not an essential step in the manufacturing method of the present invention, but is preferably performed for improving accuracy.

前記組み付け工程S3についての説明からも分かるように、本発明の方法においては、圧粉体の一部を軸部材に形成された凸部により削り取りながら取り付け工程が行われるため、圧粉体の挿入方向へのズレは生じにくい反面、圧粉体の挿入方向とは逆の方向(つまり圧粉体を戻す方向)への固定は、前記挿入方向のそれと比べて弱い場合が考えられる。但し、これは両者を比較した場合の話であり、圧粉体の弾性変形にともなって凸部が圧粉体に食い込んでいるので、挿入方向と逆方向であっても固定はされている。このような場合を考えた場合、より高い精度を望む場合には、当該仮止め工程を行うことが好ましい。   As can be seen from the description of the assembling step S3, in the method of the present invention, since the attaching step is performed while removing a part of the green compact with the convex portion formed on the shaft member, the green compact is inserted. While the displacement in the direction is difficult to occur, the fixing in the direction opposite to the direction in which the green compact is inserted (that is, the direction in which the green compact is returned) may be weaker than that in the insertion direction. However, this is a case where both are compared, and since the convex part bites into the green compact along with the elastic deformation of the green compact, it is fixed even in the direction opposite to the insertion direction. In consideration of such a case, it is preferable to perform the temporary fixing step when higher accuracy is desired.

当該工程S4の具体的手段については、本発明の方法は特に限定することはなく、従来から行われている組立カムシャフトの製造方法などにおいて用いられている種々の手段を任意に選択して用いることが可能である。例えば、接着剤を軸部材と圧粉体との接合部分に塗布してもよい。この場合に用いられる接着剤としては、アルファシアノアクリレート系が挙げられる。
(5)焼結工程
本発明の製造方法における焼結工程S5は、軸部材(シャフト)に組み付けられ、必要に応じて仮止めされた圧粉体(カムロブ)を焼結することにより、当該圧粉体と軸部材とを焼結拡散接合により一体化することを目的とする。
With respect to the specific means of the step S4, the method of the present invention is not particularly limited, and various means used in a conventional manufacturing method of an assembly camshaft and the like are arbitrarily selected and used. It is possible. For example, an adhesive may be applied to the joint portion between the shaft member and the green compact. Examples of the adhesive used in this case include alpha cyanoacrylate.
(5) Sintering Step The sintering step S5 in the production method of the present invention is performed by sintering the green compact (cam lobe) assembled to the shaft member (shaft) and temporarily fixed as necessary. It aims at integrating powder and a shaft member by sintering diffusion bonding.

当該工程S5にあっては、従来公知の焼結工程と同様であり、特に本発明の製造工程において限定されることはない。   In the said process S5, it is the same as that of a conventionally well-known sintering process, and it does not specifically limit in the manufacturing process of this invention.

具体的には、例えば、1100〜1200℃で焼結することが好ましく、その時間は、製造しようとする製品の大きさや用いる金属あるいは合金の粉末の種類などにより異なるが、おおよそ0.5〜2時間が好ましい。1200℃以上で焼結すると、変形が大きすぎたり、微小な「ふくれ」が発生してしまう場合があり好ましくない。   Specifically, for example, it is preferable to sinter at 1100 to 1200 ° C., and the time varies depending on the size of the product to be manufactured and the type of metal or alloy powder used, but is approximately 0.5 to 2 Time is preferred. Sintering at 1200 ° C. or higher is not preferable because the deformation may be too large or minute “blowing” may occur.

また、焼結工程における圧粉体の収縮率が4〜7%程度とすることが好ましく、収縮量がこれより少ない場合には拡散接合が不十分となる場合がある。   Moreover, it is preferable that the shrinkage ratio of the green compact in the sintering process is about 4 to 7%. If the shrinkage amount is smaller than this, diffusion bonding may be insufficient.

本発明の製造方法を実施例を用いてさらに具体的に説明する。   The production method of the present invention will be described more specifically with reference to examples.

(実施例1)
前記図1に示した本発明の製造方法により10本のカムシャフト(シャフト1本につきカムロブ1つ)を製造した。そのそれぞれをサンプルNo.1〜10とする。
Example 1
Ten camshafts (one cam lobe per shaft) were manufactured by the manufacturing method of the present invention shown in FIG. Each of them is designated as sample no. 1-10.

各サンプルのシャフトに形成されたそれぞれの凸部の位置と高さは、以下の表1に示す通りである。サンプルNo.1〜4は凸部の数が2つ、サンプルNo.5〜7は凸部の数が3つ、サンプルNo.8〜10は凸部の数が5つである。   The position and height of each convex portion formed on the shaft of each sample are as shown in Table 1 below. Sample No. 1 to 4 have two protrusions, sample no. Nos. 5 to 7 have three protrusions, sample Nos. 8 to 10 have five convex portions.

なお、合金の粉末としてはFe−8Cr−1.9Ni−2Mo−2.7Cを用い、シャフトはSTKM13材の冷間引き抜きパイプを用いた。   The alloy powder was Fe-8Cr-1.9Ni-2Mo-2.7C, and the shaft was a cold drawn pipe made of STKM13 material.

また、治具の先端部分の材質はダイヤモンドとし、その先端部分の形状は、円錐角度=60°、円錐先端のR=0.2mmの円錐形状とした。   The material of the tip portion of the jig was diamond, and the shape of the tip portion was a cone shape with a cone angle = 60 ° and a cone tip R = 0.2 mm.

製造したカムシャフトにおいて、仮止め工程終了後のカムロブのシャフト周方向における位置を0°とし、焼結工程終了後のカムロブの位置が、前記仮止め工程終了後のカムロブの位置(0°)から何度ずれているかをサンプル毎に測定した。なお、カムロブの挿入方向から見て時計回りをプラス(+)とし、反時計回りをマイナス(−)とする。   In the manufactured camshaft, the position of the cam lobe in the shaft circumferential direction after completion of the temporary fixing process is 0 °, and the position of the cam lobe after completion of the sintering process is from the position (0 °) of the cam lobe after completion of the temporary fixing process. The number of deviations was measured for each sample. The clockwise direction when viewed from the cam lobe insertion direction is positive (+), and the counterclockwise direction is negative (−).

その結果を以下の表1に示す。   The results are shown in Table 1 below.

(比較例1)
凸部の大きさが本発明の製造方法の範囲外である点以外は、前記実施例と同様の方法により2本のカムシャフトを製造した。それぞれをサンプルNo.11〜12とする。
(Comparative Example 1)
Two camshafts were manufactured by the same method as in the above example except that the size of the convex portion was outside the range of the manufacturing method of the present invention. Each of them is sample no. 11-12.

当該サンプルの測定結果を上記実施例と同様に以下の表1に示す。   The measurement results of the sample are shown in Table 1 below as in the above example.

(従来例1)
従来公知の組立カムシャフトの製造方法により3本のカムシャフト(シャフト1本につきカムロブ1つ)を製造した。そのそれぞれをサンプルNo.13〜15とする。
(Conventional example 1)
Three camshafts (one cam lobe per shaft) were manufactured by a conventionally known assembly camshaft manufacturing method. Each of them is designated as sample no. 13-15.

なお、合金の粉末、シャフト等の条件については前記実施例と同様にした。   The conditions for the alloy powder, the shaft, etc. were the same as in the previous examples.

また、従来公知の組立カムシャフトの製造方法とは、具体的には、シャフトの外周に軸方向に延びる溝を形成し、一方このシャフトに接合すべきカムロブの内周面には突起を形成し、突起と溝とを合致させてカムロブをシャフトに嵌合した後、焼結することによりシャフトにカムロブを接合させる方法である(前述の特許文献2の第1〜3図を参照)。   In addition, in the known method of manufacturing an assembled camshaft, specifically, a groove extending in the axial direction is formed on the outer periphery of the shaft, while a protrusion is formed on the inner peripheral surface of the cam lobe to be joined to the shaft. This is a method in which the cam lobe is joined to the shaft by matching the protrusion and the groove and fitting the cam lobe to the shaft, followed by sintering (see FIGS. 1 to 3 of the aforementioned Patent Document 2).

前記実施例1と同様の評価を行った結果を以下の表1に示す。   The results of the same evaluation as in Example 1 are shown in Table 1 below.

Figure 2007077880
Figure 2007077880

(実施例1、比較例1および従来例1の対比)
上記表1からも明らかなように、本発明の方法は、比較例、および従来例と比べ、前記仮止め工程終了後のカムロブの位置(0°)からのずれが小さく、非常に精度が高いことが分かった。
(Contrast of Example 1, Comparative Example 1 and Conventional Example 1)
As is clear from Table 1 above, the method of the present invention has a very high accuracy because the deviation from the cam lobe position (0 °) after completion of the temporary fixing process is small as compared with the comparative example and the conventional example. I understood that.

特に、凸部の高さを0.03とした実施例のサンプルNo.8と、凸部の高さを0.02とした比較例のサンプルNo.12を対比すると、ずれ角度が大きく変化しており、本発明の範囲に凸部の高さを決定することが有効であることが分かる。   In particular, the sample No. of the example in which the height of the convex portion is 0.03. 8 and a comparative sample No. 8 having a height of the convex part of 0.02. When comparing 12, the deviation angle is greatly changed, and it is understood that it is effective to determine the height of the convex portion within the scope of the present invention.

Claims (4)

金属あるいは合金の粉末を圧縮成形することにより圧粉体を形成する圧粉体形成工程と、
軸部材の外周面の所望の位置を、治具を用いて押圧することにより当該軸部材の外周面を変形せしめ、当該位置に高さ0.03〜0.25mmの凸部を形成する凸部形成工程と、
軸部材の外周面に形成された凸部を利用し、当該凸部によって圧粉体の一部を削り取りながら、当該凸部を圧粉体に食い込ませることにより、前記圧粉体と軸部材とを組み付ける組み付け工程と、
前記圧粉体を焼結することにより、圧粉体と軸部材とを焼結拡散接合により一体化する焼結工程と、
からなることを特徴とする、焼結部品が接合された軸部材の製造方法。
A green compact forming step of forming a green compact by compression molding metal or alloy powder;
A convex portion that deforms the outer peripheral surface of the shaft member by pressing a desired position of the outer peripheral surface of the shaft member using a jig, and forms a convex portion having a height of 0.03 to 0.25 mm at the position. Forming process;
Utilizing the convex portion formed on the outer peripheral surface of the shaft member, the green compact and the shaft member are formed by biting the convex portion into the green compact while scraping a part of the green compact with the convex portion. Assembly process to assemble,
Sintering the green compact to sinter the green compact and the shaft member by sintering diffusion bonding; and
The manufacturing method of the shaft member to which the sintered component was joined characterized by comprising.
前記組み付け工程終了後、前記焼結工程を行う前に、前記圧粉体と軸部材とを接着剤により仮止めする仮止め工程を行うことを特徴とする請求項1に記載の焼結部品が接合された軸部材の製造方法。   2. The sintered part according to claim 1, wherein a temporary fixing step of temporarily fixing the green compact and the shaft member with an adhesive is performed after the assembly step and before the sintering step. Manufacturing method of joined shaft member. 前記焼結部品がカムロブであり、軸部材がシャフトであることを特徴とする請求項1ないし請求項1または2に記載の焼結部品が接合された軸部材の製造方法。   The method for manufacturing a shaft member to which sintered parts are joined according to claim 1, wherein the sintered component is a cam lobe, and the shaft member is a shaft. 前記請求項1〜3の何れか一の請求項に記載の軸部材の製造方法により形成されたことを特徴とする内燃機関用カムシャフト。   A camshaft for an internal combustion engine, formed by the method for manufacturing a shaft member according to any one of claims 1 to 3.
JP2007552963A 2005-12-28 2006-12-27 Manufacturing method of shaft member to which sintered parts are joined, and camshaft for internal combustion engine Pending JPWO2007077880A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005378546 2005-12-28
JP2005378546 2005-12-28
PCT/JP2006/326084 WO2007077880A1 (en) 2005-12-28 2006-12-27 Method for manufacturing shaft member connected to a sintered part and internal combustion engine cam shaft

Publications (1)

Publication Number Publication Date
JPWO2007077880A1 true JPWO2007077880A1 (en) 2009-06-11

Family

ID=38228235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007552963A Pending JPWO2007077880A1 (en) 2005-12-28 2006-12-27 Manufacturing method of shaft member to which sintered parts are joined, and camshaft for internal combustion engine

Country Status (4)

Country Link
US (1) US20100224146A1 (en)
JP (1) JPWO2007077880A1 (en)
KR (1) KR20080066079A (en)
WO (1) WO2007077880A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010048225B4 (en) * 2010-10-12 2021-03-18 Neumayer Tekfor Engineering Gmbh Production of a functional shaft
DE102011050930A1 (en) * 2011-06-08 2012-12-13 Thyssenkrupp Presta Teccenter Ag Camshaft and method of making the camshaft
DE102011087049A1 (en) * 2011-11-24 2013-05-29 Mahle International Gmbh Method for joining components on a shaft
DE102012212627A1 (en) * 2012-07-18 2014-02-13 Mahle International Gmbh camshaft
DE102012017040A1 (en) * 2012-08-29 2014-03-27 Gkn Sinter Metals Holding Gmbh Method for producing a composite component and a composite component
CN104708006A (en) * 2013-12-11 2015-06-17 北京有色金属研究总院 Powder metallurgy compound cam and manufacturing method thereof
DE102014106924A1 (en) 2014-05-16 2015-11-19 Thyssenkrupp Presta Teccenter Ag Method of making a built camshaft
JP6094535B2 (en) * 2014-06-26 2017-03-15 株式会社デンソー Sintered diffusion bonding member manufacturing method and sintered diffusion bonding member manufacturing apparatus
CN105626176A (en) * 2014-11-05 2016-06-01 株式会社瑞进凸轮轴 Assembly method for assembling cam shaft
CN104668594A (en) * 2015-01-20 2015-06-03 无锡威孚奥特凯姆精密机械有限公司 Cam, longitudinal cutting lathe with same and chip breaking method
KR102371064B1 (en) 2016-12-14 2022-03-07 현대자동차주식회사 Method for manufacturing endpiece for cam shaft and the endpiece
DE102018121303A1 (en) * 2018-08-31 2020-03-05 Thyssenkrupp Ag Method of manufacturing a toothed camshaft, method of manufacturing a camshaft or a shaft and using a needle device

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3962772A (en) * 1974-09-04 1976-06-15 Michigan Powdered Metal Products, Inc. Shaft-supported composite high-strength machine element and method of making the same
JPS583902A (en) * 1981-07-01 1983-01-10 Toyota Motor Corp Manufacture of cam shaft
JPS6033302A (en) * 1983-08-03 1985-02-20 Nippon Piston Ring Co Ltd Preparation of cam shaft
JPS6070103A (en) * 1983-09-27 1985-04-20 Nippon Piston Ring Co Ltd Production of assembled cam shaft
JPS60172768A (en) * 1984-02-14 1985-09-06 Nippon Piston Ring Co Ltd Temporarily attaching structure for shaft assembly
JPS6330655A (en) * 1986-07-25 1988-02-09 Hitachi Ltd Manufacture of camshaft
JPH0610286B2 (en) * 1988-03-17 1994-02-09 日本ピストンリング株式会社 Camshaft manufacturing method
US5197351A (en) * 1989-02-28 1993-03-30 Viv Engineering Inc. Cam shaft and process for manufacturing the same
JPH0353009A (en) * 1989-07-19 1991-03-07 Mazda Motor Corp Manufacture of sintered cam shaft
DE69104016T3 (en) * 1990-11-19 1999-09-02 Nippon Piston Ring Co Ltd Machine element with at least one connecting part fastened with pressure on a shaft.
JP3163505B2 (en) * 1991-06-07 2001-05-08 日本ピストンリング株式会社 Mechanical element obtained by press-fitting a shaft into a fitting member and method for manufacturing the same
GB2277361B (en) * 1993-04-21 1995-11-08 T & N Technology Ltd Manufacture of camshafts
DE19520306C2 (en) * 1995-06-02 1998-05-20 Ford Werke Ag Composite camshaft, in particular for internal combustion engines
JP3115869B2 (en) * 1999-05-19 2000-12-11 道弘 横山 Method of manufacturing camshaft and mandrel used in this method
US6182361B1 (en) * 1999-05-20 2001-02-06 The Torrington Company Method for assembling a camshaft
JP3696476B2 (en) * 2000-03-27 2005-09-21 日本ピストンリング株式会社 Assembly camshaft shaft and method of manufacturing assembly camshaft
WO2002072306A1 (en) * 2001-03-12 2002-09-19 Karl Merz Method for assembling a camshaft

Also Published As

Publication number Publication date
WO2007077880A1 (en) 2007-07-12
KR20080066079A (en) 2008-07-15
US20100224146A1 (en) 2010-09-09

Similar Documents

Publication Publication Date Title
JPWO2007077880A1 (en) Manufacturing method of shaft member to which sintered parts are joined, and camshaft for internal combustion engine
JP3537646B2 (en) Manufacturing method of blank material for hose fitting and manufacturing method of hose fitting
KR101832582B1 (en) Method for manufacturing ribbon cage and ribbon cage
JPH02290637A (en) Manufacture of clutch with sintered friction lining or friction ring for brake
KR101533518B1 (en) Method for producing tooth profile component, and device for producing tooth profile component
US6579012B2 (en) Bearing ring
JP4869968B2 (en) Closed forging die and forging method
JP5966554B2 (en) Waveform holder and manufacturing method thereof
JP6984366B2 (en) Waveform cage for ball bearings
JP5157716B2 (en) Method for manufacturing universal joint yoke
JP5897625B2 (en) Plain bearing
JP2007177306A (en) Method for producing shaft member with sintered part jointed thereon
JP4217691B2 (en) Manufacturing method for cylindrical parts
JP2002081454A (en) Inner and outer ring of bearing, and assembling method thereof
JP2003094141A (en) Manufacturing method for hollow spline shaft
JP3666381B2 (en) Manufacturing method of tooth profile forging member
JP2006220233A (en) Installation ring and its manufacturing method
JP2000140976A (en) Production of parts
JP3058276U (en) Watch band
JP7376332B2 (en) How to join dissimilar metal parts
JP2021137857A (en) Dissimilar metal joining method
JP2006043729A (en) Prefabricated frame structure and method for manufacturing the same
JP2007085493A (en) Shell type roller bearing for laminated connecting rod and connecting rod assembly
JPH102343A (en) Yoke for universal coupling and manufacture thereof
JP2004351436A (en) Forming method and forming die