JP5897625B2 - Plain bearing - Google Patents

Plain bearing Download PDF

Info

Publication number
JP5897625B2
JP5897625B2 JP2014051943A JP2014051943A JP5897625B2 JP 5897625 B2 JP5897625 B2 JP 5897625B2 JP 2014051943 A JP2014051943 A JP 2014051943A JP 2014051943 A JP2014051943 A JP 2014051943A JP 5897625 B2 JP5897625 B2 JP 5897625B2
Authority
JP
Japan
Prior art keywords
cured
circumferential
end surface
circumferential end
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014051943A
Other languages
Japanese (ja)
Other versions
JP2015175424A (en
Inventor
雄一 熊谷
雄一 熊谷
秋吉 今村
秋吉 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Metal Co Ltd
Original Assignee
Daido Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Metal Co Ltd filed Critical Daido Metal Co Ltd
Priority to JP2014051943A priority Critical patent/JP5897625B2/en
Priority to DE102015204085.2A priority patent/DE102015204085B4/en
Priority to US14/640,073 priority patent/US9587674B2/en
Priority to GB1503795.5A priority patent/GB2525965B/en
Publication of JP2015175424A publication Critical patent/JP2015175424A/en
Application granted granted Critical
Publication of JP5897625B2 publication Critical patent/JP5897625B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/046Brasses; Bushes; Linings divided or split, e.g. half-bearings or rolled sleeves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/12Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load
    • F16C17/22Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load with arrangements compensating for thermal expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/08Attachment of brasses, bushes or linings to the bearing housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/122Multilayer structures of sleeves, washers or liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2202/00Solid materials defined by their properties
    • F16C2202/02Mechanical properties
    • F16C2202/04Hardness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/62Low carbon steel, i.e. carbon content below 0.4 wt%
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C25/00Bearings for exclusively rotary movement adjustable for wear or play
    • F16C25/02Sliding-contact bearings
    • F16C25/04Sliding-contact bearings self-adjusting

Description

本発明は、円筒形状のすべり軸受に関する。   The present invention relates to a cylindrical slide bearing.

特許文献1(段落[0002]、[0003]、[0013]等参照)には、Fe合金裏金層と軸受合金層とからなる複層材料を、外径側がFe合金裏金層となるように円筒形状に成形されたすべり軸受が開示されている。軸受合金層の表面が相手軸を支承し、すべり軸受の強度は、主に、Fe合金裏金層に起因している。すべり軸受は、軸受ハウジングの軸受保持穴に圧入され、固定され、使用される。詳細には、すべり軸受は、その外径(外周長)が軸受ハウジングの軸受保持穴の内径(内周長)よりも僅かに大きくなされており、この寸法差は、締め代と呼ばれる。この締め代により、軸受ハウジングの軸受保持穴にすべり軸受が圧入されると、すべり軸受の内部に周方向および径方向の圧縮応力が発生し、すべり軸受が、軸受保持穴に固定される。   In Patent Document 1 (see paragraphs [0002], [0003], [0013], etc.), a multilayer material composed of an Fe alloy back metal layer and a bearing alloy layer is formed into a cylinder so that the outer diameter side is an Fe alloy back metal layer. A plain bearing formed into a shape is disclosed. The surface of the bearing alloy layer supports the mating shaft, and the strength of the slide bearing is mainly due to the Fe alloy back metal layer. A plain bearing is press-fitted into a bearing holding hole of a bearing housing, fixed, and used. Specifically, the slide bearing has an outer diameter (outer peripheral length) slightly larger than an inner diameter (inner peripheral length) of the bearing holding hole of the bearing housing, and this dimensional difference is called a tightening allowance. When the sliding bearing is press-fitted into the bearing holding hole of the bearing housing due to this tightening allowance, circumferential and radial compressive stress is generated inside the sliding bearing, and the sliding bearing is fixed to the bearing holding hole.

すべり軸受の周方向両端部の一般的な構成としては、突合せタイプとクリンチタイプがある。特許文献2(図1、図6等参照)には、突合せタイプのものが開示されている。すべり軸受の周方向両端面は、平坦面になっており、圧入前の自由状態では、周方向両端面の間には隙間がある。すべり軸受が軸受ハウジングの軸受保持穴に圧入されると、周方向両端面が当接する。   There are a butt type and a clinch type as a general configuration of both ends in the circumferential direction of the slide bearing. Patent Document 2 (see FIG. 1, FIG. 6, etc.) discloses a butt type. Both end surfaces in the circumferential direction of the slide bearing are flat surfaces, and there is a gap between both end surfaces in the circumferential direction in a free state before press-fitting. When the slide bearing is press-fitted into the bearing holding hole of the bearing housing, both end surfaces in the circumferential direction come into contact with each other.

特許文献3には、クリンチタイプのものが開示されている。円筒軸受は、円筒状に成形する前の展開した状態において、板状材料の長手方向両端に凸部と凹部とからなるクリンチを備えている。そして、この板状材料を円筒形状に成形すると同時に、凸部と凹部を相互に噛合連結させて、円筒軸受を製造する。   Patent Document 3 discloses a clinch type. The cylindrical bearing is provided with clinch composed of convex portions and concave portions at both ends in the longitudinal direction of the plate-like material in a developed state before being formed into a cylindrical shape. The plate-like material is molded into a cylindrical shape, and at the same time, the convex portion and the concave portion are engaged with each other to manufacture a cylindrical bearing.

また、一対の半割軸受を突き合わせて円筒形状となるすべり軸受において、半割軸受の周方向両端部あるいは一方の周方向端部に、凸部、穴、またはスリットを形成することにより、局部的に周方向端部の強度を低下させる提案がある(特許文献4〜6参照)。これらは、分割型軸受ハウジングのそれぞれの半円筒形の軸受保持穴に一対の半割軸受を組み付けた状態で、分割型軸受ハウジングをボルトで締結し一体化される。これらは、ボルトで締結する過程において、半割軸受の周方向端部を局部的に塑性変形させることにより、あるいは、周方向端部の弾性変形量を大きくすることにより、すべり軸受の内部に発生する周方向圧縮応力を小さくしようとするものである。   In addition, in a slide bearing that has a cylindrical shape by abutting a pair of half bearings, a protrusion, a hole, or a slit is formed locally at both circumferential ends or one circumferential end of the half bearing. There is a proposal to reduce the strength of the circumferential end (see Patent Documents 4 to 6). These are integrated by fastening the split bearing housing with bolts in a state where a pair of split bearings are assembled in the respective semi-cylindrical bearing holding holes of the split bearing housing. These are generated inside the sliding bearing by locally plastically deforming the circumferential end of the half bearing or by increasing the amount of elastic deformation of the circumferential end during the bolt fastening process. It is intended to reduce the circumferential compressive stress.

特開2009−228725号公報JP 2009-228725 A 特開2004−11898号公報JP 2004-11898 A 特開平6−264928号公報JP-A-6-264928 実開昭63−51923号公報Japanese Utility Model Publication No. 63-51923 特開平5−44729号公報Japanese Patent Application Laid-Open No. 5-44729 特開2005−90650号公報JP 2005-90650 A

特許文献2の突合せタイプ、および特許文献3のクリンチタイプのすべり軸受は、軸受ハウジングの軸受保持穴に圧入されると、周方向の圧縮力を受けて、周方向両端面同士が押し合い、一方の周方向端部あるいは両方の周方向端部(クリンチタイプの場合の凹凸の係合部では、主に凸部)が局部的に軸受の内径側へ変形し、この変形部が軸と接触し、すべり軸受が損傷する場合がある(図9参照)。また、特許文献4〜6の半割軸受の周方向端部の形状を特許文献1〜3のような円筒形状のすべり軸受に適用した場合、従来よりも周方向端部の軸受の内径側への変形量がさらに大きくなる。   When the butt type of Patent Document 2 and the clinch type of plain bearing of Patent Document 3 are press-fitted into the bearing holding hole of the bearing housing, both ends of the circumferential direction are pressed against each other by receiving a compressive force in the circumferential direction. The circumferential end portion or both circumferential end portions (mainly convex portions in the concave-convex engaging portion in the case of the clinch type) are locally deformed toward the inner diameter side of the bearing, and this deformed portion contacts the shaft, The slide bearing may be damaged (see FIG. 9). Moreover, when the shape of the circumferential direction edge part of the half bearing of patent documents 4-6 is applied to the cylindrical slide bearing like patent documents 1-3, it is to the inner diameter side of the bearing of a circumferential direction edge part conventionally. The amount of deformation is further increased.

そこで、本発明は、周方向端部の軸受内径側への変形を抑制したすべり軸受を提供することを目的とする。   Then, an object of this invention is to provide the slide bearing which suppressed the deformation | transformation to the bearing internal diameter side of the circumferential direction edge part.

上記課題を解決するため、本発明は、円筒形状のすべり軸受を提供し、
前記すべり軸受は、円筒形状の外径側にFe合金裏金層と、内径側に摺動層とを含み、
前記すべり軸受は、互いに対向する第1の周方向端面および第2の周方向端面を有し、
前記第1の周方向端面と前記第2の周方向端面との間には、自由状態時の第1の周方向隙間S1が存在しており、
前記第1の周方向端面には、第2の周方向端面に向かって突出する複数の硬化凸部が形成されており、
前記第2の周方向端面には、前記複数の硬化凸部に対応して複数の硬化凹部が形成されており、
前記硬化凸部の頂部の前記第1の周方向端面からの最大高さLK1と、対応する前記硬化凹部の底部の前記第2の周方向端面からの最大深さLK2との寸法関係が、LK1>LK2であり、
前記硬化凸部は、前記第1の周方向端面において、前記すべり軸受の軸線方向に幅HK1を有し、
前記硬化凹部は、前記第2の周方向端面において、前記軸線方向に幅HK2を有し、
前記硬化凸部の前記幅HK1と、対応する前記硬化凹部の前記幅HK2との寸法関係が、HK1<HK2である。
ここで、硬化凸部の最大高さLK1は、第1の周方向端面の平坦面を基準とし、硬化凸部の頂部までの、すべり軸受の外周面に沿った周長であり、硬化凹部の最大深さLK2は、第2の周方向端面の平坦面を基準とし、硬化凹部の底部(最深部)までの、すべり軸受の外周面(仮想面)に沿った周方向の長さである。
また、前記第1の周方向端面の前記硬化凸部およびその周辺には、前記Fe合金裏金層の硬さが、前記硬化凸部の頂部が最大で、前記すべり軸受の周方向中央部側へ向かって次第に減少するようにFe合金裏金層が硬化した第1の硬化領域KR1が形成されており、
前記第2の周方向端面の前記硬化凹部およびその周辺には、前記Fe合金裏金層の硬さが、前記硬化凹部の底部が最大で、前記すべり軸受の周方向中央部側へ向かって次第に減少するようにFe合金裏金層が硬化した第2の硬化領域KR2が形成されている。
ここで、「第1の周方向隙間S1」は、第1の周方向端面の平坦面と第2の周方向端面の平坦面との間の、すべり軸受の外周面側での周方向の長さである。
ここで、第1の硬化領域KR1は、Fe合金裏金層のマイクロビッカース硬度計で測定される硬さの値が、硬化凸部の頂部が最大で、すべり軸受の周方向中央部側へ向かって次第に減少する領域である。第1の硬化領域KR1は、すべり軸受の周方向中央部側のFe合金裏金層のマイクロビッカース硬度計で測定される硬さの値に対し、10%以上硬さの値が大きいことを満足する領域である。
ここで、第2の硬化領域KR2は、Fe合金裏金層のマイクロビッカース硬度計で測定される硬さの値が、硬化凹部の底部が最大で、すべり軸受の周方向中央部側へ向かって次第に減少する領域である。第2の硬化領域KR2は、すべり軸受の周方向中央部側のFe合金裏金層のマイクロビッカース硬度計で測定される硬さの値に対し、10%以上硬さの値が大きいことを満足する領域である。
ここで、硬化凸部の最大高さLK1は、第1の周方向端面の平坦面を基準とし、硬化凸部の頂部までの、すべり軸受の外周面に沿った周長である。
ここで、硬化凹部の最大深さLK2は、第2の周方向端面の平坦面を基準とし、硬化凹部の底部(最深部)までの、すべり軸受の外周面(仮想面)に沿った周方向の長さである。
In order to solve the above problems, the present invention provides a cylindrical slide bearing,
The slide bearing includes a Fe alloy back metal layer on the cylindrical outer diameter side and a sliding layer on the inner diameter side,
The sliding bearing has a first circumferential end surface and a second circumferential end surface facing each other,
Between the first circumferential end surface and the second circumferential end surface, there is a first circumferential gap S1 in a free state,
The first circumferential end face is formed with a plurality of curing protrusions projecting toward the second circumferential end face,
A plurality of curing recesses are formed on the second circumferential end face corresponding to the plurality of curing projections,
The dimensional relationship between the maximum height LK1 from the first circumferential end surface of the top portion of the curing convex portion and the maximum depth LK2 from the second circumferential end surface of the corresponding bottom portion of the curing concave portion is LK1. > LK2,
The cured convex portion has a width HK1 in the axial direction of the sliding bearing at the first circumferential end surface;
The curing recess has a width HK2 in the axial direction at the second circumferential end surface,
The dimensional relationship between the width HK1 of the cured convex portion and the width HK2 of the corresponding cured concave portion is HK1 <HK2.
Here, the maximum height LK1 of the hardened convex portion is a circumferential length along the outer peripheral surface of the slide bearing up to the top of the hardened convex portion with reference to the flat surface of the first circumferential end surface, The maximum depth LK2 is the length in the circumferential direction along the outer peripheral surface (virtual surface) of the plain bearing up to the bottom (deepest portion) of the hardened recess with reference to the flat surface of the second circumferential end surface.
In addition, the hardness of the Fe alloy back metal layer is maximum at the top of the hardened convex portion and the periphery of the hardened convex portion of the first circumferential end surface, and toward the central portion in the circumferential direction of the slide bearing. A first hardened region KR1 in which the Fe alloy back metal layer hardens so as to gradually decrease,
The hardness of the Fe alloy back metal layer at the hardened recess and its periphery on the second circumferential end surface is maximum at the bottom of the hardened recess and gradually decreases toward the circumferential center of the plain bearing. Thus, the second hardened region KR2 in which the Fe alloy backing metal layer is hardened is formed.
Here, the “first circumferential clearance S1” is the circumferential length between the flat surface of the first circumferential end surface and the flat surface of the second circumferential end surface on the outer peripheral surface side of the slide bearing. That's it.
Here, in the first hardening region KR1, the hardness value measured by the micro Vickers hardness meter of the Fe alloy back metal layer is the maximum at the top of the hardening convex portion, and toward the circumferential central portion side of the slide bearing. This is a region that gradually decreases. The first hardening region KR1 satisfies that the hardness value measured by the micro Vickers hardness meter of the Fe alloy back metal layer on the circumferential center side of the slide bearing is greater than 10%. It is an area.
Here, in the second hardening region KR2, the hardness value measured by the micro Vickers hardness meter of the Fe alloy backing metal layer is the maximum at the bottom of the hardening recess, and gradually toward the circumferential center of the slide bearing. This is a decreasing area. The second hardened region KR2 satisfies that the hardness value is larger by 10% or more than the hardness value measured by the micro Vickers hardness meter of the Fe alloy back metal layer on the circumferential center side of the slide bearing. It is an area.
Here, the maximum height LK1 of the hardened convex portion is a perimeter along the outer peripheral surface of the slide bearing up to the top of the hardened convex portion with reference to the flat surface of the first circumferential end surface.
Here, the maximum depth LK2 of the hardened recess is based on the flat surface of the second circumferential end surface, and the circumferential direction along the outer peripheral surface (virtual surface) of the plain bearing up to the bottom (deepest part) of the hardened recess Is the length of

本発明の別の実施形態では、前記第1の周方向端面には、複数の前記硬化凸部と平坦面とが形成され、前記硬化凸部と平坦面が、前記すべり軸受の軸線方向に交互に配置されており、前記軸線方向の両端部は平坦面となっている。   In another embodiment of the present invention, a plurality of the cured convex portions and flat surfaces are formed on the first circumferential end surface, and the cured convex portions and the flat surfaces are alternately arranged in the axial direction of the slide bearing. The both ends in the axial direction are flat surfaces.

また、本発明の別の実施形態では、前記第2の周方向端面には、複数の前記硬化凹部と平坦面とが形成され、前記硬化凹部と平坦面が、前記すべり軸受の軸線方向に交互に配置されており、前記軸線方向の両端部は平坦面となっている。   Further, in another embodiment of the present invention, a plurality of the cured recesses and flat surfaces are formed on the second circumferential end surface, and the cured recesses and the flat surfaces are alternately arranged in the axial direction of the slide bearing. The both ends in the axial direction are flat surfaces.

また、本発明の別の実施形態では、前記第1の周方向端面の平坦面、および、前記第2の周方向端面の平坦面が、前記すべり軸受の周方向に対して直交する方向に延在している。   In another embodiment of the present invention, the flat surface of the first circumferential end surface and the flat surface of the second circumferential end surface extend in a direction orthogonal to the circumferential direction of the slide bearing. Exist.

また、本発明の別の実施形態では、前記すべり軸受の軸線方向の幅は、周方向全長にわたって一定である。   Moreover, in another embodiment of this invention, the width | variety of the axial direction of the said slide bearing is constant over the circumferential direction full length.

また、本発明の別の実施形態では、前記硬化凸部の頂部の最大高さLK1は、前記幅HK1の中央部にあり、前記硬化凸部の高さは、前記頂部から前記硬化凸部の幅方向の両端部に向かって次第に減少する。   Further, in another embodiment of the present invention, the maximum height LK1 of the top of the cured convex portion is in the center of the width HK1, and the height of the cured convex portion is from the top to the height of the cured convex portion. It gradually decreases toward both ends in the width direction.

また、本発明の別の実施形態では、前記硬化凹部の底部の最大深さLK2は、前記幅HK2の中央部にあり、前記硬化凹部の深さは、前記底部から前記硬化凹部の幅方向の両端部に向かって次第に減少する。   Further, in another embodiment of the present invention, the maximum depth LK2 of the bottom of the cured recess is in the center of the width HK2, and the depth of the cured recess is from the bottom in the width direction of the cured recess. It gradually decreases toward both ends.

また、本発明の別の実施形態では、前記硬化凸部の前記最大高さLK1は、前記すべり軸受の外周長の0.3〜2%に相当する長さである。   In another embodiment of the present invention, the maximum height LK1 of the cured convex portion is a length corresponding to 0.3 to 2% of the outer peripheral length of the slide bearing.

また、本発明の別の実施形態では、前記複数の硬化凸部の前記最大高さLK1同士および前記幅HK1同士が、互いに等しく、前記複数の硬化凹部の前記最大高さLK2同士および前記幅HK2同士が、互いに等しい。   In another embodiment of the present invention, the maximum heights LK1 and the widths HK1 of the plurality of cured convex portions are equal to each other, and the maximum heights LK2 and the width HK2 of the plurality of cured concave portions are equal to each other. Are equal to each other.

また、本発明の別の実施形態では、前記第1の周方向端面と前記第2の周方向端面とが突き合わせられ、前記硬化凸部の前記頂部と前記硬化凹部の前記底部とが当接した状態において、前記第1の周方向端面と前記第2の周方向端面との間に、第2の周方向隙間S2が形成される。   Further, in another embodiment of the present invention, the first circumferential end surface and the second circumferential end surface are abutted, and the top portion of the curing convex portion and the bottom portion of the curing concave portion are in contact with each other. In the state, a second circumferential gap S2 is formed between the first circumferential end face and the second circumferential end face.

また、本発明の別の実施形態では、前記第2の周方向隙間S2は、前記すべり軸受の外周長の0.2〜1%に相当する長さである。   In another embodiment of the present invention, the second circumferential gap S2 has a length corresponding to 0.2 to 1% of the outer peripheral length of the sliding bearing.

また、本発明の別の実施形態では、前記複数の硬化凸部が、前記第1の周方向端面のみに形成されており、前記複数の硬化凹部が、前記第2の周方向端面のみに形成されている。   In another embodiment of the present invention, the plurality of cured convex portions are formed only on the first circumferential end surface, and the plurality of cured concave portions are formed only on the second circumferential end surface. Has been.

また、本発明の別の実施形態では、前記硬化凸部が、前記第2の周方向端面にも形成されており、前記硬化凹部が、前記第1の周方向端面にも形成されている。   In another embodiment of the present invention, the curing convex portion is also formed on the second circumferential end surface, and the curing concave portion is also formed on the first circumferential end surface.

また、本発明の別の実施形態では、前記第1の周方向端面の前記第1の硬化領域KR1が、前記硬化凸部の頂部から前記すべり軸受の周方向中央部側へ向かって、中心角度θ1が2°〜15°の範囲、より好ましくは、中心角度θ1が2°〜7.5°の範囲に形成されている。   Moreover, in another embodiment of the present invention, the first cured region KR1 of the first circumferential end surface is centered from the top of the cured convex portion toward the circumferential central portion of the slide bearing. θ1 is in the range of 2 ° to 15 °, more preferably, the center angle θ1 is in the range of 2 ° to 7.5 °.

また、本発明の別の実施形態では、前記第2の周方向端面の前記第2の硬化領域KR2が、前記硬化凹部の底部から前記すべり軸受の周方向中央部側へ向かって、中心角度θ2が2°〜15°の範囲、より好ましくは、中心角度θ2が2°〜7.5°の範囲に形成されている。   Further, in another embodiment of the present invention, the second cured region KR2 of the second circumferential end surface has a central angle θ2 from the bottom of the cured recess toward the circumferential center of the slide bearing. Is in the range of 2 ° to 15 °, more preferably the center angle θ2 is in the range of 2 ° to 7.5 °.

本発明のすべり軸受は、軸受ハウジングの軸受保持穴に圧入した状態では、すべり軸受の外径(周長)が小さくなるように弾性変形する。本発明のすべり軸受は、周方向端部に複数の硬化凸部および硬化凹部と硬化領域を有するため、周方向端部の領域を除くすべり軸受の円筒部の大部分を占める非硬化領域に対して弾性変形量が相対的に小さくなる。このため、すべり軸受の周方向両端部の一方、あるいは両方がすべり軸受の内径側に盛り上がるような変形が抑制される。したがって、すべり軸受の周方向端部が内径側に盛り上がり、軸と接触し損傷するということが起こり難い。   The sliding bearing of the present invention is elastically deformed so that the outer diameter (peripheral length) of the sliding bearing becomes small when it is press-fitted into the bearing holding hole of the bearing housing. Since the slide bearing of the present invention has a plurality of hardened convex portions and hardened concave portions and a hardened region at the circumferential end portion, the non-hardened region occupying most of the cylindrical portion of the slide bearing excluding the peripheral end region. Thus, the amount of elastic deformation becomes relatively small. For this reason, the deformation | transformation in which one or both of the circumferential direction both ends of a slide bearing rises to the internal diameter side of a slide bearing is suppressed. Therefore, it is unlikely that the end portion in the circumferential direction of the slide bearing swells toward the inner diameter side and comes into contact with the shaft and is damaged.

自由状態時の本発明の実施例1のすべり軸受を示す概略斜視図である。It is a schematic perspective view which shows the plain bearing of Example 1 of this invention at the time of a free state. 図1のすべり軸受の軸線方向から見た側面図である。It is the side view seen from the axial direction of the slide bearing of FIG. 図2の矢印Aの方向から見た図である。It is the figure seen from the direction of arrow A of FIG. 図3のB部の拡大図である。It is an enlarged view of the B section of FIG. 図3のB部の拡大図である。It is an enlarged view of the B section of FIG. 図5において、硬化凸部の頂部と硬化凹部の底部が接触した状態を示す図である。In FIG. 5, it is a figure which shows the state which the top part of the hardening convex part and the bottom part of the hardening recessed part contacted. ハウジングの軸受保持穴に圧入された本発明のすべり軸受を示す図である。It is a figure which shows the plain bearing of this invention press-fitted in the bearing holding hole of the housing. ハウジングの軸受保持穴に圧入された従来のすべり軸受を示す図である。It is a figure which shows the conventional slide bearing press-fitted in the bearing holding hole of the housing. 図8のC部の拡大図である。It is an enlarged view of the C section of FIG. 本発明を製造するための平板を示す図である。It is a figure which shows the flat plate for manufacturing this invention. 本発明の硬化凸部および硬化凹部を形成する方法を示す図である。It is a figure which shows the method of forming the hardening convex part and hardening concave part of this invention. 本発明の実施例2を示す図である。It is a figure which shows Example 2 of this invention. 本発明の実施例3を示す図である。It is a figure which shows Example 3 of this invention. 本発明の実施例4を示す図である。It is a figure which shows Example 4 of this invention. 本発明の実施例5を示す図である。It is a figure which shows Example 5 of this invention.

図1は、自由状態時の本発明の実施例1のすべり軸受10を示す。すべり軸受10は円筒形状であり、円筒形状の外径側にFe合金裏金層15と、内径側に摺動層16とを含む。摺動層16には、Al合金、Cu合金等の軸受合金や、摺動用樹脂組成物を用いることができる。また、Fe合金裏金層15の上に多孔質金属層を形成し、該多孔質金属層に樹脂組成物を被覆してもよい。Fe合金裏金層15としては、円筒形状に成形可能なFe合金を用いることができ、一例としては、低炭素鋼(炭素含有量が0.05〜0.25質量%のFe合金)やステンレス鋼を用いることができる。   FIG. 1 shows a plain bearing 10 according to a first embodiment of the present invention in a free state. The plain bearing 10 has a cylindrical shape, and includes an Fe alloy backing metal layer 15 on the cylindrical outer diameter side and a sliding layer 16 on the inner diameter side. For the sliding layer 16, a bearing alloy such as an Al alloy or a Cu alloy, or a sliding resin composition can be used. Alternatively, a porous metal layer may be formed on the Fe alloy backing metal layer 15 and the porous metal layer may be coated with a resin composition. As the Fe alloy backing metal layer 15, an Fe alloy that can be formed into a cylindrical shape can be used, and examples include low carbon steel (Fe alloy having a carbon content of 0.05 to 0.25 mass%) and stainless steel. Can be used.

すべり軸受は、2つの周方向端面11、12を有し、自由状態時には周方向両端面の間に第1の周方向隙間S1が形成される(図1〜図3)。第1の周方向隙間S1の寸法は、すべり軸受の仕様(外径寸法、軸受の壁厚(Fe合金層と摺動層を合わせた厚さ))により異なるが、例えば、外径が30mmであり、軸受壁厚が2.0mmであるとき、第1の周方向隙間S1は0.5〜1.0mm程度である。   The sliding bearing has two circumferential end faces 11 and 12, and a first circumferential clearance S1 is formed between the circumferential end faces in a free state (FIGS. 1 to 3). The dimension of the first circumferential clearance S1 differs depending on the specifications of the slide bearing (outer diameter, wall thickness of the bearing (the combined thickness of the Fe alloy layer and the sliding layer)). For example, the outer diameter is 30 mm. Yes, when the bearing wall thickness is 2.0 mm, the first circumferential clearance S1 is about 0.5 to 1.0 mm.

一方の周方向端面(第1の周方向端面11)には、もう一方の周方向端面(第2の周方向端面12)に向かって突出する複数の硬化凸部13が形成されており、第2の周方向端面12には、硬化凸部13と対をなす複数の硬化凹部14が形成されている。   One circumferential end face (first circumferential end face 11) is formed with a plurality of curing convex portions 13 projecting toward the other circumferential end face (second circumferential end face 12). A plurality of curing recesses 14 that are paired with the curing projections 13 are formed on the circumferential end face 12 of the second circumferential surface.

第1の周方向端面11について、硬化凸部13以外の部分は平坦面となっており、硬化凸部13と平坦面が、すべり軸受10の軸線方向に交互に配置されている。第1の周方向端面11の軸線方向の両端部は平坦面となっている。第1の周方向端面11の平坦面は、すべり軸受の周方向に対して直交する方向(軸線方向)に延在している。また、第1の周方向端面11の複数の平坦面は、仮想の同一平面上に延在している。   About the 1st circumferential direction end surface 11, parts other than the hardening convex part 13 are flat surfaces, and the hardening convex part 13 and the flat surface are alternately arrange | positioned in the axial direction of the slide bearing 10. As shown in FIG. Both end portions in the axial direction of the first circumferential end surface 11 are flat surfaces. The flat surface of the first circumferential end surface 11 extends in a direction (axial direction) orthogonal to the circumferential direction of the slide bearing. Moreover, the several flat surface of the 1st circumferential direction end surface 11 is extended on the virtual same plane.

第2の周方向端面12について、硬化凹部14以外の部分は平坦面となっており、硬化凹部14と平坦面が、すべり軸受10の軸線方向に交互に配置されている。第2の周方向端面12の軸線方向の両端部は平坦面となっている。第2の周方向端面12の平坦面は、すべり軸受の周方向に対して直交する方向(軸線方向)に延在している。また、第2の周方向端面12の複数の平坦面は、仮想の同一平面上に延在している。   About the 2nd circumferential direction end surface 12, parts other than the hardening recessed part 14 are flat surfaces, and the hardening recessed part 14 and a flat surface are alternately arrange | positioned in the axial direction of the slide bearing 10. As shown in FIG. Both end portions in the axial direction of the second circumferential end surface 12 are flat surfaces. The flat surface of the second circumferential end surface 12 extends in a direction (axial direction) orthogonal to the circumferential direction of the slide bearing. Moreover, the several flat surface of the 2nd circumferential direction end surface 12 is extended on the virtual same plane.

ここで、本発明の硬化凸部13および硬化凹部14を形成する方法について説明する(図10、図11)。Fe合金裏金層と摺動層とからなる複層材料をプレスし、図10に示す所定の大きさの短冊状の平板20を形成する。このとき、すべり軸受の第1の周方向端面となる平板の第1の側面21には所定の高さL0を有する複数の半円弧形状または半楕円弧形状の凸部23が形成される。すべり軸受の第2の周方向端面となる第2の側面22は、平坦面25に形成される。   Here, the method of forming the hardening convex part 13 and the hardening recessed part 14 of this invention is demonstrated (FIG. 10, FIG. 11). A multilayer material composed of an Fe alloy backing metal layer and a sliding layer is pressed to form a strip-shaped flat plate 20 having a predetermined size as shown in FIG. At this time, a plurality of semicircular arc-shaped or semi-elliptical arc-shaped convex portions 23 having a predetermined height L0 are formed on the first side surface 21 of the flat plate serving as the first circumferential end surface of the slide bearing. The second side surface 22 that is the second circumferential end surface of the slide bearing is formed on the flat surface 25.

平板20は、図示しない成形治具およびプレスにより、第1の側面21と第2の側面22が突き合わせられ、Fe合金裏金層が外径側となるように円筒形状に成形される。図11の左図は、平板が、ほぼ円筒形状に成形され、第1の側面21の凸部23と第2の側面22の平坦面25とが接した状態を示している。その後、ほぼ円筒形状となった平板を、図11の右図のように、円筒形状の内径および外径が拘束された状態で、凸部23と平坦面25とを周方向に圧縮する方向に外力Fでさらに押し付ける。第1の側面21の凸部23は塑性変形し、長さL0が減少する。同時に、第2の側面22の平坦面25も塑性変形し、凹部24が形成される。   The flat plate 20 is molded into a cylindrical shape by a molding jig and a press (not shown) so that the first side surface 21 and the second side surface 22 are abutted and the Fe alloy back metal layer is on the outer diameter side. The left view of FIG. 11 shows a state where the flat plate is formed in a substantially cylindrical shape, and the convex portion 23 of the first side surface 21 and the flat surface 25 of the second side surface 22 are in contact with each other. Thereafter, the flat plate having a substantially cylindrical shape is compressed in a direction in which the convex portion 23 and the flat surface 25 are compressed in the circumferential direction in a state where the inner and outer diameters of the cylindrical shape are constrained as shown in the right diagram of FIG. Further press with external force F. The convex part 23 of the 1st side surface 21 carries out plastic deformation, and length L0 reduces. At the same time, the flat surface 25 of the second side surface 22 is also plastically deformed to form the recess 24.

成形加工後の凸部が「硬化凸部」であり、凹部が「硬化凹部」である。硬化凸部および硬化凹部は、成形時の凸部と平坦面の押し合いにより、他部位(周方向端部を除く円筒部分)よりも局部的に塑性変形量が大きかった部分である。凸部および凹部の付近のFe合金裏金層の内部では、他部位に対して残留応力が高くなり、Fe合金裏金層の硬さが増す。より詳しくは、硬化凸部および硬化凹部の付近のFe合金裏金層の内部において、すべり軸受を周方向に圧縮する外力に対する変形抵抗が最大となるように残留応力が発生するようになる。   The convex part after molding is a “cured convex part”, and the concave part is a “cured concave part”. The cured convex portion and the cured concave portion are portions where the amount of plastic deformation is locally larger than other portions (cylindrical portions excluding the circumferential end portion) due to the pressing of the convex portion and the flat surface during molding. In the Fe alloy back metal layer in the vicinity of the convex part and the concave part, the residual stress increases with respect to other parts, and the hardness of the Fe alloy back metal layer increases. More specifically, residual stress is generated inside the Fe alloy back metal layer in the vicinity of the hardened convex part and the hardened concave part so that the deformation resistance against the external force compressing the slide bearing in the circumferential direction is maximized.

第1の周方向端面11の硬化凸部13の付近のFe合金裏金層には第1の硬化領域KR1が形成され、第2の周方向端面12の硬化凹部14の付近のFe合金裏金層には第2の硬化領域KR2が形成される(図4のハッチング部)。第1の硬化領域KR1および第2の硬化領域KR2におけるFe合金裏金層の硬さについて、図4を参照して説明する。図4は、外径側から見たすべり軸受の周方向端面の付近を平面的に示す図である。硬化凸部13の頂部、および硬化凹部14の底部の付近のFe合金裏金層の硬さが最大であり、該頂部および底部を起点として放射状に次第に硬さが減少している(図4のハッチング部の略円弧の外縁線側へ向かって硬さが減少している)。   A first hardened region KR1 is formed in the Fe alloy back metal layer in the vicinity of the hardened convex portion 13 of the first circumferential end face 11, and the Fe alloy back metal layer in the vicinity of the hardened concave portion 14 of the second circumferential end face 12 is formed. The second cured region KR2 is formed (hatched portion in FIG. 4). The hardness of the Fe alloy back metal layer in the first hardened region KR1 and the second hardened region KR2 will be described with reference to FIG. FIG. 4 is a plan view showing the vicinity of the circumferential end surface of the plain bearing as viewed from the outer diameter side. The hardness of the Fe alloy back metal layer in the vicinity of the top portion of the hardening convex portion 13 and the bottom portion of the hardening concave portion 14 is maximum, and the hardness gradually decreases radially from the top portion and the bottom portion (hatching in FIG. 4). The hardness decreases toward the outer edge of the arc of the part).

成形時の周方向の圧縮外力が除かれた時(自由状態時)には、すべり軸受の周方向両端面の間に第1の周方向隙間S1(一方の周方向端面の平坦面と他方の周方向端面の平坦面との間の隙間)が形成され、また、硬化凸部13の頂部と硬化凹部14の底部との間にも隙間が形成される(図4参照)。   When the circumferential compression external force at the time of molding is removed (in the free state), the first circumferential clearance S1 (the flat surface of one circumferential end surface and the other surface between the circumferential end surfaces of the slide bearing A gap is formed between the top of the circumferential end face and the bottom of the cured recess 14 (see FIG. 4).

ここで、第1の硬化領域KR1および第2の硬化領域KR2の形成範囲について説明を加える。上述のように、一方の周方向端部、および他方の周方向端部には、Fe合金裏金層が硬化した硬化領域が形成される。第1の硬化領域KR1は、Fe合金裏金層のマイクロビッカース硬度計による硬さの値が、硬化凸部の頂部が最大で、すべり軸受の周方向中央部側へ向かって次第に減少する領域である。第1の硬化領域KR1は、すべり軸受の周方向中央部側のFe合金裏金層のマイクロビッカース硬度計で測定される硬さの値に対し、10%以上硬さの値が大きいことを満足する領域である。   Here, the formation range of the first cured region KR1 and the second cured region KR2 will be described. As described above, a cured region in which the Fe alloy backing metal layer is cured is formed at one circumferential end and the other circumferential end. The first hardened region KR1 is a region in which the hardness value of the Fe alloy backing metal layer measured by the micro Vickers hardness meter is the maximum at the top of the hardened convex portion and gradually decreases toward the circumferential central portion of the slide bearing. . The first hardening region KR1 satisfies that the hardness value measured by the micro Vickers hardness meter of the Fe alloy back metal layer on the circumferential center side of the slide bearing is greater than 10%. It is an area.

Fe合金裏金層の硬さの値は、マイクロビッカース硬度計を用い、測定荷重200gの条件で測定された値である。測定は、硬化凸部の頂部および硬化凹部の底部の中央部位置ですべり軸受を周方向に切断した断面にて行う。   The hardness value of the Fe alloy backing metal layer is a value measured using a micro Vickers hardness tester under a measurement load of 200 g. The measurement is performed with a cross-section obtained by cutting the plain bearing in the circumferential direction at the center position of the top of the hardened convex part and the bottom of the hardened concave part.

「すべり軸受の周方向中央部側の硬さの値」は、硬化凸部および硬化凹部の形成による局部的なFe合金裏金層の硬さ上昇の影響を受けていない円筒部分(非硬化領域)のFe合金裏金層の硬さの値を意味する。例えば、すべり軸受の第1の周方向端面からすべり軸受の周方向中央部側へ向かって中心角度30°の部分、および、第2の周方向端面から周方向中央部側へ向かって中心角度30°の部分を除く円筒部分のFe合金裏金層の硬さを、中心角度10°毎に測定した値の平均値とすればよい。   “The hardness value of the central part in the circumferential direction of the slide bearing” is a cylindrical part that is not affected by the local increase in hardness of the Fe alloy backing metal layer due to the formation of the hardened convex part and the hardened concave part (non-hardened region). This means the hardness value of the Fe alloy back metal layer. For example, a portion having a central angle of 30 ° from the first circumferential end surface of the sliding bearing toward the circumferential central portion side of the sliding bearing, and a central angle 30 from the second circumferential end surface toward the circumferential central portion side. What is necessary is just to let the hardness of the Fe alloy back metal layer of the cylindrical part except the part of (degree) be the average value of the value measured for every central angle 10 degrees.

第1の硬化領域KR1の形成範囲を確認するために、「すべり軸受の周方向中央部側の硬さの値」の測定と同じ要領で、第1の硬化領域KR1のFe合金裏金層の硬さを測定する。硬化凸部の頂部側からすべり軸受の周方向中央部側へ向かって、所定の中心角度(例えば0.5°)毎に、Fe合金裏金層の硬さを測定すると、硬さの値は次第に小さくなっていき、「すべり軸受の周方向中央部側の硬さの値」となることが確認できる。本発明の第1の硬化領域KR1の形成範囲θ1は、硬化凸部の頂部位置を基準とし、すべり軸受の周方向中央部側へ向かって、「すべり軸受の周方向中央部側の硬さの値」に対し10%硬さが高い値となる位置までの中心角度で表される。この第1の硬化領域KR1の範囲θ1は、中心角度2°〜15°であればよく、より望ましくは2°〜7.5°である。   In order to confirm the formation range of the first hardened region KR1, the hardness of the Fe alloy back metal layer of the first hardened region KR1 is measured in the same manner as the measurement of the “value of the hardness at the center portion in the circumferential direction of the slide bearing”. Measure the thickness. When the hardness of the Fe alloy backing metal layer is measured at every predetermined central angle (for example, 0.5 °) from the top side of the hardened convex portion toward the circumferential central portion of the slide bearing, the hardness value gradually increases. It becomes small and it can confirm that it becomes "the hardness value of the circumferential direction center part side of a slide bearing". The formation range θ1 of the first hardened region KR1 of the present invention is based on the top position of the hardened convex portion, and toward the circumferential central portion side of the slide bearing. It is represented by the center angle to the position where the 10% hardness is a high value with respect to the “value”. The range θ1 of the first curing region KR1 may be a center angle of 2 ° to 15 °, and more preferably 2 ° to 7.5 °.

第2の硬化領域KR2の形成範囲は、第1の硬化領域KR1の形成範囲の確認方法と同じ要領で確認できる。第2の硬化領域KR2の形成範囲θ2は、硬化凹部の底部を基準とし、すべり軸受中央部側へ向かって、「すべり軸受の周方向中央部側の硬さの値」に対し10%硬さが高い値となる位置までの中心角度で表される。この第2の硬化領域KR2の範囲は、硬化凹部の底部からすべり軸受の周方向中央部側へ向かって、中心角度θ2が、2°〜15°であればよく、より望ましくは2°〜7.5°である。   The formation range of the second cured region KR2 can be confirmed in the same manner as the confirmation method of the formation range of the first cured region KR1. The formation range θ2 of the second hardened region KR2 is 10% hardness with respect to the “value of the hardness of the central portion in the circumferential direction of the slide bearing” toward the slide bearing central portion side with the bottom of the hardened recess as a reference. Is represented by the center angle to the position where the value becomes high. The range of the second hardening region KR2 may be that the central angle θ2 is 2 ° to 15 °, more preferably 2 ° to 7 °, from the bottom of the hardening concave portion toward the center in the circumferential direction of the slide bearing. .5 °.

実施例1のように複数の硬化凸部および硬化凹部のサイズ(長さ、幅)が同じ場合には、各硬化凸部および各硬化凹部に隣接する各第1の硬化領域KR1および各第2の硬化領域KR2の形成範囲は、ほぼ同じ中心角度の値となる。実施例とは異なり、複数の硬化凸部のうち一部の凸部、または、複数の硬化凹部のうちの一部の凹部のサイズが異なるようにした場合には、各硬化凸部または各硬化凹部に隣接する硬化領域の形成範囲が異なる場合もある。その場合には、一部の第1の硬化領域KR1の形成範囲θ1、および、一部の第2の硬化領域KR2の形成範囲θ2が、上記の中心角度の範囲を満足していればよい。   When the sizes (length, width) of the plurality of cured convex portions and the cured concave portions are the same as in the first embodiment, the first cured regions KR1 and the second second adjacent to the respective cured convex portions and the respective cured concave portions. The formation range of the hardened region KR2 has substantially the same center angle value. Unlike the embodiment, when the size of some of the plurality of cured convex portions or the size of some of the plurality of cured concave portions is different, each cured convex portion or each cured portion The formation range of the cured region adjacent to the recess may be different. In that case, the formation range θ1 of a part of the first cured region KR1 and the formation range θ2 of a part of the second cured region KR2 only need to satisfy the above range of the central angle.

硬化凸部13は、軸線方向に幅HK1を有し、幅の中央部において最大高さLK1を有する頂部を有する(図5参照)。硬化凸部13の高さは、頂部から硬化凸部13の幅方向の両端部に向かって次第に減少する。ここで、硬化凸部13の最大高さLK1は、第1の周方向端面11の平坦面を基準とし、すべり軸受の外周面に沿った、硬化凸部13の頂部までの周方向の長さである。ここで、幅HK1は、第1の周方向端面11における、すべり軸受の軸線方向の硬化凸部13の長さである。   Curing convex part 13 has width HK1 in the direction of an axis, and has a top part which has maximum height LK1 in the central part of the width (refer to Drawing 5). The height of the curing convex portion 13 gradually decreases from the top toward both ends of the curing convex portion 13 in the width direction. Here, the maximum height LK1 of the hardened convex portion 13 is the length in the circumferential direction to the top of the hardened convex portion 13 along the outer peripheral surface of the slide bearing with reference to the flat surface of the first circumferential end surface 11. It is. Here, the width HK1 is the length of the hardening convex portion 13 in the axial direction of the slide bearing on the first circumferential end face 11.

硬化凹部14は、軸線方向に幅HK2を有し、幅の中央部において最大深さLK2を有する底部を有する(図5参照)。硬化凹部14の深さは、底部から硬化凹部14の幅方向の両端部に向かって次第に減少する。ここで、硬化凹部14の最大深さLK2は、第2の周方向端面12の平坦面を基準とし、すべり軸受の外周面(仮想面)に沿った、硬化凹部14の底部までの周方向の長さである。ここで、幅HK2は、第2の周方向端面12における、すべり軸受の軸線方向の硬化凹部14の長さである。   The curing recess 14 has a width HK2 in the axial direction and a bottom having a maximum depth LK2 at the center of the width (see FIG. 5). The depth of the cured recess 14 gradually decreases from the bottom toward both ends of the cured recess 14 in the width direction. Here, the maximum depth LK2 of the cured recess 14 is based on the flat surface of the second circumferential end surface 12 and is in the circumferential direction to the bottom of the cured recess 14 along the outer peripheral surface (virtual surface) of the slide bearing. Length. Here, the width HK2 is the length of the hardening recess 14 in the axial direction of the slide bearing on the second circumferential end face 12.

なお、実施例1に示す図において、硬化凸部および硬化凹部の輪郭は、略円弧形状に図示されているが、曲線で形成されていればよい。   In addition, in the figure shown in Example 1, although the outline of a hardening convex part and a hardening recessed part is illustrated in the substantially circular arc shape, it should just be formed in the curve.

硬化凸部13の最大高さLK1と、対応する硬化凹部14の最大深さLK2との寸法関係は、LK1>LK2になっている。また、硬化凸部13の幅HK1と、対応する硬化凹部14の幅HK2との寸法関係は、HK1<HK2になっている。   The dimensional relationship between the maximum height LK1 of the curing convex portion 13 and the maximum depth LK2 of the corresponding curing concave portion 14 is LK1> LK2. Further, the dimensional relationship between the width HK1 of the cured convex portion 13 and the width HK2 of the corresponding cured concave portion 14 is HK1 <HK2.

実施例1では、複数の硬化凸部13の最大高さLK1同士および前記幅HK1同士が、互いに等しくなっている。また、複数の硬化凹部14の最大高さLK2同士および前記幅HK2同士が、互いに等しくなっている。ただし、本発明は実施例1に限定されず、複数の硬化凸部および硬化凹部は、本発明の構成が成立するのであれば、異なる寸法に設定することも可能である。また、硬化凸部の数、および硬化凹部の数を、それぞれ3つ以上にすることも可能である。   In Example 1, the maximum heights LK1 and the widths HK1 of the plurality of curing convex portions 13 are equal to each other. Further, the maximum heights LK2 and the widths HK2 of the plurality of cured recesses 14 are equal to each other. However, the present invention is not limited to the first embodiment, and the plurality of cured convex portions and the cured concave portions can be set to different dimensions as long as the configuration of the present invention is established. Moreover, it is also possible to make the number of hardening convex parts and the number of hardening recessed parts into three or more, respectively.

また、図6に示すように、第1の周方向端面11と第2の周方向端面12とが突き合わせられ、硬化凸部13の頂部と硬化凹部14の底部とが当接した状態において、第1の周方向端面11と第2の周方向端面12との間に、第2の周方向隙間S2が形成される。   In addition, as shown in FIG. 6, the first circumferential end surface 11 and the second circumferential end surface 12 are abutted, and the top of the cured convex portion 13 and the bottom of the cured concave portion 14 are in contact with each other. A second circumferential clearance S <b> 2 is formed between the first circumferential end surface 11 and the second circumferential end surface 12.

また、硬化凸部13の頂部と硬化凹部14の底部とが接触したとき、頂部と底部の接触部の両側(すべり軸受の軸線方向)には、隙間S3が形成されるようになる。   Moreover, when the top part of the hardening convex part 13 and the bottom part of the hardening recessed part 14 contact, the clearance gap S3 comes to be formed in the both sides (axial direction of a slide bearing) of the contact part of a top part and a bottom part.

例として、実施例1の寸法を示す。例えば、すべり軸受の外径が30mmであり、すべり軸受壁厚が2.0mmであり、そのうちFe合金裏金層の厚さが1.7mm、すべり軸受の軸線方向の幅が20mmである。この場合、硬化凸部の最大高さLK1が1.5mm、幅HK1が3mm、硬化凹部の最大深さLK2が1mm、幅HK2が4mm程度である。硬化凸部の頂部と硬化凹部の底部が接した時に、第1の周方向端面間の平坦面と他方の周方向端面の平坦面の間の第2の周方向隙間S2は、0.5mmである。   As an example, the dimensions of Example 1 are shown. For example, the outer diameter of the slide bearing is 30 mm, the thickness of the slide bearing wall is 2.0 mm, the thickness of the Fe alloy back metal layer is 1.7 mm, and the width of the slide bearing in the axial direction is 20 mm. In this case, the maximum height LK1 of the cured convex portion is 1.5 mm, the width HK1 is 3 mm, the maximum depth LK2 of the cured concave portion is 1 mm, and the width HK2 is about 4 mm. When the top portion of the curing convex portion and the bottom portion of the curing concave portion are in contact with each other, the second circumferential gap S2 between the flat surface between the first circumferential end surfaces and the flat surface of the other circumferential end surface is 0.5 mm. is there.

Fe合金裏金層は、炭素含有量が0.2質量%である一般的な低炭素鋼板を用いた。マイクロビッカース硬度計で測定された非硬化領域の硬さの値は、160mHvであり、硬化凸部の頂点部の硬さの値は240mHvであった。第1の硬化領域KR1の範囲θ1は7°であった。硬化凹部の底部の硬さの値は239mHvであり、第2の硬化領域KR2の範囲θ2は7°であった。   As the Fe alloy backing metal layer, a general low carbon steel plate having a carbon content of 0.2% by mass was used. The hardness value of the non-cured region measured with a micro Vickers hardness meter was 160 mHv, and the hardness value of the apex portion of the cured convex portion was 240 mHv. The range θ1 of the first cured region KR1 was 7 °. The hardness value of the bottom of the cured recess was 239 mHv, and the range θ2 of the second cured region KR2 was 7 °.

本発明は、実施例の寸法に限定されない。すべり軸受の仕様(主に外径、幅、壁厚等)により、硬化凸部および硬化凹部の寸法および数を変更することも可能である。例として、硬化凸部の最大高さLK1は、すべり軸受の外周長の0.3〜2%に相当する長さであることが好ましい。また、硬化凹部の最大深さLK2は、硬化凸部の最大高さLK1よりも少なくとも0.3mm以上小さくすることが好ましい。   The invention is not limited to the dimensions of the examples. Depending on the specifications of the slide bearing (mainly outer diameter, width, wall thickness, etc.), it is also possible to change the dimensions and number of the cured convex portions and the cured concave portions. As an example, it is preferable that the maximum height LK1 of the cured convex portion is a length corresponding to 0.3 to 2% of the outer peripheral length of the slide bearing. Further, it is preferable that the maximum depth LK2 of the cured concave portion is at least 0.3 mm or less than the maximum height LK1 of the cured convex portion.

さらに、硬化凸部の頂部と硬化凹部の底部が接した時の第1の周方向端面間の平坦面と他方の周方向端面の平坦面との間の第2の周方向隙間S2は、すべり軸受の外周長の0.2〜1%に相当する長さとすることが好ましい。   Further, the second circumferential gap S2 between the flat surface between the first circumferential end surfaces and the flat surface of the other circumferential end surface when the top of the cured convex portion and the bottom of the cured concave portion are in contact with each other is a slip. It is preferable to set the length corresponding to 0.2 to 1% of the outer peripheral length of the bearing.

硬化凸部の幅HK1は、1〜4mm程度であればよい。硬化凹部の幅HK2は、1.5〜5mm程度であればよい。硬化凸部の頂部は、他の硬化凸部の頂部に対し、すべり軸受の軸線方向に5〜10mm離れて形成されることが好ましい。換言すれば、硬化凸部の幅HK1の軸線方向中央位置は、他の硬化凸部の幅HK1の軸線方向中央位置に対し、すべり軸受の軸線方向に5〜10mm離れて形成されることが好ましい。なお、硬化凹部の底部同士(硬化凹部の幅HK2の軸線方向中央位置)の位置関係も同様である。また、硬化凸部の頂部(硬化凸部の幅HK1の軸線方向中央位置)は、すべり軸受の軸線方向の端部から3mm以上離れた位置となるように硬化凸部を形成することが好ましい。硬化凹部の底部とすべり軸受の軸線方向の端部との位置の関係も同様である。ただし、軸線方向の幅寸法が小さいすべり軸受に本発明を適用する場合、この寸法に限定されない。   The width HK1 of the curing convex portion may be about 1 to 4 mm. The width HK2 of the cured recess may be about 1.5 to 5 mm. It is preferable that the top part of the hardening convex part is formed 5 to 10 mm away from the top part of the other hardening convex part in the axial direction of the slide bearing. In other words, the center position in the axial direction of the width HK1 of the cured convex portion is preferably formed 5 to 10 mm away from the central position in the axial direction of the width HK1 of the other cured convex portion in the axial direction of the slide bearing. . The positional relationship between the bottoms of the curing recesses (the center position in the axial direction of the width HK2 of the curing recesses) is the same. Moreover, it is preferable to form a hardening convex part so that the top part (the axial direction center position of the width | variety HK1 of a hardening convex part) may be a position 3 mm or more away from the edge part of the axial direction of a slide bearing. The positional relationship between the bottom of the hardened recess and the axial end of the slide bearing is the same. However, when the present invention is applied to a slide bearing having a small axial width dimension, the present invention is not limited to this dimension.

次に、本発明の作用について説明する。比較のために、最初に、従来のすべり軸受について説明する。従来のすべり軸受は、軸受ハウジング30の軸受保持穴に圧入されると、すべり軸受は、周長が減少する方向の外力を受けて弾性変形する(図8参照)。すべり軸受のFe合金裏金層は、周方向の全長にわたって変形抵抗が同じである場合、すべり軸受は周方向のどの部位においても一様な弾性変形が起こる。図8において、両矢印の長さは、弾性変形量を表している。周方向端面同士が押し合う部分では、周方向端面間でのすべりや応力集中部が形成されやすいので、一方あるいは両方の周方向端面が軸受内径側へ変形する場合がある(図9参照)。   Next, the operation of the present invention will be described. For comparison, first, a conventional plain bearing will be described. When the conventional slide bearing is press-fitted into the bearing holding hole of the bearing housing 30, the slide bearing is elastically deformed by receiving an external force in a direction in which the circumferential length decreases (see FIG. 8). When the deformation resistance of the Fe alloy back metal layer of the slide bearing is the same over the entire length in the circumferential direction, the elastic bearing is uniformly elastically deformed at any part in the circumferential direction. In FIG. 8, the length of the double arrow represents the amount of elastic deformation. In the portion where the circumferential end faces are pressed against each other, slips and stress concentration portions are easily formed between the circumferential end faces, and one or both circumferential end faces may be deformed toward the bearing inner diameter side (see FIG. 9).

本発明に関して、
I(1):硬化凸部および硬化凹部を含む硬化領域が、予め、すべり軸受の周方向の圧縮外力によって形成されているため、硬化領域のFe合金裏金層の内部には、すべり軸受の周方向の圧縮外力に対して最大の変形抵抗を示す残留応力が発生している。
I(2):さらに、硬化領域が、すべり軸受の周方向両端部に局部的に形成されている。軸受の周方向両端部のFe合金裏金層の硬化領域の変形抵抗は、非硬化領域の変形抵抗に対して相対的に大きい。
Regarding the present invention,
I (1): Since the hardened region including the hardened convex portion and the hardened concave portion is formed in advance by the compressive external force in the circumferential direction of the slide bearing, the periphery of the slide bearing is placed inside the Fe alloy backing metal layer in the hardened region. Residual stress is generated that exhibits the maximum deformation resistance against the external compressive force.
I (2): Furthermore, the hardening region is locally formed at both ends in the circumferential direction of the slide bearing. The deformation resistance of the hardened region of the Fe alloy backing metal layer at both ends in the circumferential direction of the bearing is relatively large relative to the deformation resistance of the non-hardened region.

I(1)とI(2)に起因して、すべり軸受を軸受ハウジング30の軸受保持穴に圧入する時、図7に示すように、すべり軸受の円筒部分の大部分を占める非硬化領域の弾性変形量が大きくなることで、周方向両端部の硬化領域θ3の弾性変形量が小さくなる。図7において、両矢印の長さは、弾性変形量を表している。   Due to I (1) and I (2), when the slide bearing is press-fitted into the bearing holding hole of the bearing housing 30, as shown in FIG. 7, the non-hardened region occupying most of the cylindrical portion of the slide bearing. By increasing the amount of elastic deformation, the amount of elastic deformation of the hardening region θ3 at both ends in the circumferential direction decreases. In FIG. 7, the length of the double arrow represents the amount of elastic deformation.

II:次に、第2の周方向隙間S2の作用について説明する。圧入時、すべり軸受の周方向両端面は、硬化凸部の頂部と硬化凹部の底部でのみ接触しており、周方向両端面の平端面同士が接触しないようになるため、周方向端面の平坦面同士は押し合わない。あるいは、本発明は平坦面同士が接触してもよいが、この場合でも、接触による押し合いは、主に硬化凸部の頂部と硬化凹部の底部の接触部においてなされるので、平坦面同士の押し合う圧力は小さい。このため、周方向端面の平坦部は軸受内径側へ変形し難い。   II: Next, the operation of the second circumferential gap S2 will be described. At the time of press-fitting, both end surfaces in the circumferential direction of the plain bearing are in contact only at the top of the cured convex portion and the bottom portion of the cured concave portion, and the flat end surfaces of the circumferential end surfaces are not in contact with each other. The faces do not push each other. Alternatively, the flat surfaces may contact each other in the present invention, but even in this case, the pressing by contact is mainly performed at the contact portion between the top of the cured convex portion and the bottom of the cured concave portion. The fitting pressure is small. For this reason, the flat part of the end surface in the circumferential direction is not easily deformed toward the bearing inner diameter side.

周方向両端面の硬化凸部の頂点と硬化凹部の底部の接触部では、押し合う圧力は大きくなるが、硬化凸部の頂部、および硬化凹部の底部の近傍の端部も軸受内径側へ変形し難い。その理由は、前記したように、硬化凸部および硬化凹部を含む硬化領域は、Fe合金裏金層の内部には、すべり軸受の周方向の圧縮外力に対して最大の変形抵抗を示す残留応力が発生しているために変形が起き難くしてあるからである(前記I(1)の作用)。また、次に示すIIIの作用があるからである。   The pressing pressure increases at the contact point between the top of the hardened convex part on both end faces in the circumferential direction and the bottom part of the hardened concave part, but the top part of the hardened convex part and the end part near the bottom of the hardened concave part are also deformed to the bearing inner diameter side It is hard to do. The reason for this is that, as described above, in the hardened region including the hardened convex part and the hardened concave part, the residual stress that shows the maximum deformation resistance against the compressive external force in the circumferential direction of the slide bearing is present inside the Fe alloy backing metal layer. This is because it is difficult for deformation to occur (action of I (1) above). This is also because of the following action III.

III:硬化領域は、硬化凸部の頂部、硬化凹部の底部のFe合金裏金層の硬さ(変形抵抗)が最大であり、すべり軸受の周方向中央部側へ向かって次第に硬さ(変形抵抗)が減少するようになっている。詳しくは、図4に示すハッチング部分(硬化領域)に関して、硬化凸部の頂部、硬化凹部に底部を起点とし、ハッチング部分の輪郭線側へ向かって放射状に変形抵抗が減少するようになっている。   III: The hardened region has the highest hardness (deformation resistance) of the Fe alloy back metal layer at the top of the hardened convex part and the bottom of the hardened concave part, and gradually becomes harder (deformation resistance) toward the circumferential center part of the slide bearing. ) Has been reduced. Specifically, with respect to the hatched portion (cured region) shown in FIG. 4, the deformation resistance decreases radially from the top of the cured convex portion and the bottom of the cured concave portion toward the contour line side of the hatched portion. .

硬化凸部の頂部と硬化凹部の底部の接触部が押し合う圧力は、接触部からすべり軸受周方向中央部側に位置する硬化領域のFe合金裏金層の全体へ伝播していき、硬化領域の全体のFe合金裏金層が弾性変形することで緩和される。さらに、硬化領域は放射状に変形抵抗が減少するようになっているので、硬化領域においても、すべり軸受の周方向中央部側ほど弾性変形量が大きくなり、硬化凸部の頂部と硬化凹部の底部の接触部近傍の弾性変形量は極めて小さくなる。   The pressure at which the contact portion between the top of the hardened convex part and the bottom of the hardened concave part pushes propagates from the contact part to the whole of the Fe alloy backing metal layer in the hardened area located on the center side in the sliding bearing circumferential direction. The entire Fe alloy backing metal layer is relaxed by elastic deformation. Furthermore, since the deformation resistance is reduced radially in the hardened region, the amount of elastic deformation also increases toward the circumferential center of the slide bearing in the hardened region, and the top of the hardened convex portion and the bottom of the hardened concave portion. The amount of elastic deformation near the contact portion is extremely small.

なお、本発明とは異なり、硬化領域の全体でFe合金裏金層の硬さ(変形抵抗)が一定である場合には、硬化凸部の頂部と硬化凹部の底部の接触部近傍が極高圧状態となり塑性変形してしまうか、あるいは、弾性変形量が大きくなって軸受内径側へ盛り上がることは避けられない。   Unlike the present invention, when the hardness (deformation resistance) of the Fe alloy backing metal layer is constant in the entire hardened region, the vicinity of the contact portion between the top of the hardened convex portion and the bottom of the hardened concave portion is in an extremely high pressure state. Therefore, it is unavoidable that the plastic deformation occurs or the elastic deformation amount increases and rises toward the bearing inner diameter side.

IV:さらに、硬化凸部と硬化凹部の寸法、形状は整合していない。図6に示すように、硬化凸部の頂部と硬化凹部の底部の接触部の軸線方向両側(図6紙面において、接触部の左右)には、隙間S3が形成されている。前記した硬化凸部の頂部と硬化凹部の底部の接触部近傍の僅かな弾性変形は、この隙間S3側へ向かっても起こるので、軸受内径側への弾性変形は、さらに起き難くなっている。   IV: Furthermore, the size and shape of the cured convex portion and the cured concave portion are not matched. As shown in FIG. 6, gaps S <b> 3 are formed on both sides in the axial direction of the contact portion between the top portion of the cured convex portion and the bottom portion of the cured concave portion (on the left and right sides of the contact portion in FIG. 6). Since the slight elastic deformation in the vicinity of the contact portion between the top of the hardened convex portion and the bottom of the hardened concave portion also occurs toward the gap S3, the elastic deformation toward the bearing inner diameter side is further less likely to occur.

本発明とは異なり、硬化凸部と硬化凹部の寸法および形状が整合する場合には、硬化凸部と硬化凹部の側面同士が互いに拘束し合い、硬化凸部および硬化凹部の変形は、主に軸受内径側へ盛り上がるようにしか起こらなくなってしまう。また、両周方向端面の間の第2の周方向隙間S2が形成されないので、平坦面同士が接触し押し合うようになってしまう。   Unlike the present invention, when the size and shape of the cured convex portion and the cured concave portion are matched, the side surfaces of the cured convex portion and the cured concave portion are constrained to each other, and the deformation of the cured convex portion and the cured concave portion is mainly It only happens to swell to the inner diameter side of the bearing. Further, since the second circumferential gap S2 between the two circumferential end faces is not formed, the flat surfaces come into contact with each other and are pressed against each other.

図12に、実施例2を示す。実施例1とは異なり、硬化凸部の頂部および硬化凹部の底部に、平坦部41、42を形成することも可能である。   FIG. 12 shows a second embodiment. Unlike Example 1, it is also possible to form the flat parts 41 and 42 in the top part of a hardening convex part, and the bottom part of a hardening recessed part.

図13に、実施例3を示す。実施例1とは異なり、硬化凸部と硬化凹部の対を、周方向端面に3個形成している。硬化凸部と硬化凹部の対を、4個以上形成することも可能である。   FIG. 13 shows a third embodiment. Unlike Example 1, three pairs of cured convex portions and cured concave portions are formed on the circumferential end surface. It is also possible to form four or more pairs of cured convex portions and cured concave portions.

図14に、実施例4を示す。実施例1とは異なり、一方の周方向端面に硬化凸部と硬化凹部を形成し、他方の周方向端面に対応する硬化凹部と硬化凸部を形成することも可能である。   FIG. 14 shows a fourth embodiment. Unlike Example 1, it is also possible to form a cured convex portion and a cured concave portion on one circumferential end surface and to form a cured concave portion and a cured convex portion corresponding to the other circumferential end surface.

図15に、実施例5を示す。実施例1とは異なり、硬化凸部の軸線方向両端部と平坦面との間に微小凹部43を形成することも可能である。   FIG. 15 shows a fifth embodiment. Unlike Example 1, it is also possible to form the minute recessed part 43 between the axial direction both ends of a hardening convex part, and a flat surface.

なお、Fe合金裏金層の組成は、実施例で用いた炭素鋼に限定されない。他のFe合金を用いた場合であっても、硬化領域と非硬化領域のFe合金裏金層の硬さ(変形抵抗)の違いによる作用効果が得られる。   The composition of the Fe alloy back metal layer is not limited to the carbon steel used in the examples. Even when another Fe alloy is used, the effect by the difference in hardness (deformation resistance) of the Fe alloy back metal layer in the hardened region and the non-hardened region can be obtained.

すべり軸受の軸線方向両端部の外周面側や内周面側の角部(すなわち、すべり軸受の軸線方向端面と外周面や内周面との角部)に、面取を形成することも可能である。   It is also possible to form chamfers at the corners on the outer peripheral surface and inner peripheral surface of both ends of the slide bearing in the axial direction (that is, the corners between the axial end surface of the slide bearing and the outer peripheral surface and inner peripheral surface). It is.

すべり軸受の周方向両端面の平坦面部分のすべり軸受の内径側に面取を形成することも可能である。また、すべり軸受の硬化凸部または硬化凹部のすべり軸受の内径側の縁部にも面取を形成することも可能である。   It is also possible to form a chamfer on the inner diameter side of the slide bearing at the flat surface portions of both ends in the circumferential direction of the slide bearing. Further, it is possible to form a chamfer at the edge on the inner diameter side of the slide bearing of the hardened convex portion or the hardened concave portion of the slide bearing.

また、すべり軸受の内周面(摺動面)に油溝や油溜まり(リセス)を形成したり、すべり軸受の壁厚を貫通する油孔を形成することも可能である。また、油溝、油溜まり(リセス)、油孔等の形成に伴って、すべり軸受の非硬化領域の円筒部分のFe合金裏金層に局部的な硬さ上昇部があってもよい。   It is also possible to form an oil groove or oil reservoir (recess) on the inner peripheral surface (sliding surface) of the slide bearing, or to form an oil hole penetrating the wall thickness of the slide bearing. Further, with the formation of an oil groove, an oil reservoir (recess), an oil hole, etc., there may be a local hardness increasing portion in the Fe alloy back metal layer of the cylindrical portion of the non-hardened region of the slide bearing.

すべり軸受のFe合金層の表面には、防錆のため、Sn、Cu等の金属や樹脂等の被覆層が形成されてもよい。   A coating layer made of a metal such as Sn or Cu or a resin may be formed on the surface of the Fe alloy layer of the slide bearing for rust prevention.

段落0031〜0033および図10、図11において、硬化凸部および硬化凹部の形成方法について説明したが、この方法に限定されない。例えば、図10の示す平板の左側の周方向端面には、突起部と接触する位置に、予め、小さな凹部を形成してもよい。当然であるが、この凹部は、結果的に得られる硬化凹部のサイズよりも小さくしておく必要がある。   In paragraphs 0031 to 0033 and FIGS. 10 and 11, the method for forming the cured convex portion and the cured concave portion has been described, but the method is not limited to this method. For example, a small concave portion may be formed in advance on the left circumferential end face of the flat plate shown in FIG. Of course, this recess needs to be smaller than the size of the resulting cured recess.

本発明のすべり軸受は、軸受ハウジングの軸受保持穴に圧入された後に、摺動層の表面部に切削または研削加工を施すこともできる。   The slide bearing of the present invention can be subjected to cutting or grinding on the surface portion of the sliding layer after being press-fitted into the bearing holding hole of the bearing housing.

10 すべり軸受
11 第1の周方向端面
12 第2の周方向端面
13 硬化凸部
14 硬化凹部
15 Fe合金裏金層
16 摺動層
20 平板
21 第1の側面
22 第2の側面
23 凸部
24 凹部
25 平坦面
30 ハウジング
41 平坦部
42 平坦部
43 微小凹部
KR1 第1の硬化領域
KR2 第2の硬化領域
F 外力
LK1 硬化凸部の最大高さ
LK2 硬化凹部の最大深さ
HK1 硬化凸部の幅
HK2 硬化凹部の幅
L0 凸部長さ
S1 第1の周方向隙間
S2 第2の周方向隙間
S3 隙間
θ1 第1の硬化領域KR1の形成範囲
θ2 第2の硬化領域KR2の形成範囲
θ3 硬化領域の形成範囲
DESCRIPTION OF SYMBOLS 10 Slide bearing 11 1st circumferential direction end surface 12 2nd circumferential direction end surface 13 Hardening convex part 14 Hardening recessed part 15 Fe alloy back metal layer 16 Sliding layer 20 Flat plate 21 1st side surface 22 2nd side surface 23 Convex part 24 Recessed part 25 Flat surface 30 Housing 41 Flat portion 42 Flat portion 43 Minute concave portion KR1 First cured region KR2 Second cured region F External force LK1 Maximum height of cured convex portion LK2 Maximum depth of cured concave portion HK1 Width of cured convex portion HK2 Curing recess width L0 Convex portion length S1 First circumferential gap S2 Second circumferential gap S3 Gap θ1 First curing region KR1 formation range θ2 Second curing region KR2 formation range θ3 Curing region formation range

Claims (14)

円筒形状のすべり軸受であって、
前記すべり軸受は、円筒形状の外径側にFe合金裏金層と、内径側に摺動層とを含み、
前記すべり軸受は、互いに対向する第1の周方向端面および第2の周方向端面を有し、
前記第1の周方向端面と前記第2の周方向端面との間には、自由状態時の第1の周方向隙間S1が存在しており、
前記第1の周方向端面には、第2の周方向端面に向かって突出する複数の硬化凸部が形成されており、
前記第2の周方向端面には、前記複数の硬化凸部に対応して複数の硬化凹部が形成されており、
前記硬化凸部の頂部の最大高さLK1と、対応する前記硬化凹部の底部の最大深さLK2との寸法関係が、LK1>LK2であり、
前記硬化凸部は、前記第1の周方向端面において、前記すべり軸受の軸線方向に幅HK1を有し、前記硬化凹部は、前記第2の周方向端面において、前記軸線方向に幅HK2を有し、
前記硬化凸部の前記幅HK1と、対応する前記硬化凹部の前記幅HK2との寸法関係が、HK1<HK2であり、
前記第1の周方向端面の前記硬化凸部およびその周辺には、前記Fe合金裏金層の硬さが、前記硬化凸部の頂部が最大で、前記すべり軸受の周方向中央部側へ向かって次第に減少するようにFe合金裏金層が硬化した第1の硬化領域KR1が形成されており、
前記第2の周方向端面の前記硬化凹部およびその周辺には、前記Fe合金裏金層の硬さが、前記硬化凹部の底部が最大で、前記すべり軸受の周方向中央部側へ向かって次第に減少するようにFe合金裏金層が硬化した第2の硬化領域KR2が形成されている、すべり軸受。
Cylindrical plain bearing,
The slide bearing includes a Fe alloy back metal layer on the cylindrical outer diameter side and a sliding layer on the inner diameter side,
The sliding bearing has a first circumferential end surface and a second circumferential end surface facing each other,
Between the first circumferential end surface and the second circumferential end surface, there is a first circumferential gap S1 in a free state,
The first circumferential end face is formed with a plurality of curing protrusions projecting toward the second circumferential end face,
A plurality of curing recesses are formed on the second circumferential end face corresponding to the plurality of curing projections,
The dimensional relationship between the maximum height LK1 of the top portion of the cured convex portion and the maximum depth LK2 of the corresponding bottom portion of the cured concave portion is LK1> LK2.
The cured convex portion has a width HK1 in the axial direction of the sliding bearing at the first circumferential end surface, and the cured concave portion has a width HK2 in the axial direction at the second circumferential end surface. And
The dimensional relationship between the width HK1 of the cured convex portion and the width HK2 of the corresponding cured concave portion is HK1 <HK2.
The hardness of the Fe alloy back metal layer is the maximum at the top of the hardened convex portion and the periphery of the hardened convex portion of the first circumferential end surface toward the central portion in the circumferential direction of the slide bearing. A first hardened region KR1 in which the Fe alloy back metal layer hardens so as to gradually decrease is formed,
The hardness of the Fe alloy back metal layer at the hardened recess and its periphery on the second circumferential end surface is maximum at the bottom of the hardened recess and gradually decreases toward the circumferential center of the plain bearing. A plain bearing in which a second hardened region KR2 in which the Fe alloy backing metal layer is hardened is formed.
前記第1の周方向端面には、複数の前記硬化凸部と平坦面とが形成され、前記硬化凸部と平坦面が、前記すべり軸受の軸線方向に交互に配置されており、前記軸線方向の両端部は平坦面となっている、請求項1に記載のすべり軸受。   A plurality of the cured convex portions and flat surfaces are formed on the first circumferential end surface, and the cured convex portions and the flat surfaces are alternately arranged in the axial direction of the slide bearing, and the axial direction The sliding bearing according to claim 1, wherein both end portions of the bearing are flat surfaces. 前記第2の周方向端面には、複数の前記硬化凹部と平坦面とが形成され、前記硬化凹部と平坦面が、前記すべり軸受の軸線方向に交互に配置されており、前記軸線方向の両端部は平坦面となっている、請求項1または2に記載のすべり軸受。   A plurality of the cured recesses and flat surfaces are formed on the second circumferential end surface, and the cured recesses and flat surfaces are alternately arranged in the axial direction of the slide bearing, and both ends in the axial direction. The sliding bearing according to claim 1, wherein the portion is a flat surface. 前記第1の周方向端面の平坦面、および、前記第2の周方向端面の平坦面が、前記すべり軸受の周方向に対して直交する方向に延在している、請求項2または3に記載のすべり軸受。   The flat surface of the first circumferential end surface and the flat surface of the second circumferential end surface extend in a direction perpendicular to the circumferential direction of the slide bearing. The plain bearing described. 前記硬化凸部の頂部の最大高さLK1は、前記幅HK1の中央部にあり、前記硬化凸部の高さは、前記頂部から前記硬化凸部の幅方向の両端部に向かって次第に減少する、請求項1から4までのいずれか一項に記載のすべり軸受。   The maximum height LK1 of the top portion of the cured convex portion is at the center of the width HK1, and the height of the cured convex portion gradually decreases from the top portion toward both end portions in the width direction of the cured convex portion. The slide bearing according to any one of claims 1 to 4. 前記硬化凹部の底部の最大深さLK2は、前記幅HK2の中央部にあり、前記硬化凹部の深さは、前記底部から前記硬化凹部の幅方向の両端部に向かって次第に減少する、請求項1から5までのいずれか一項に記載のすべり軸受。   The maximum depth LK2 of the bottom of the hardened recess is in the center of the width HK2, and the depth of the hardened recess gradually decreases from the bottom toward both ends of the hardened recess in the width direction. The plain bearing as described in any one of 1-5. 前記硬化凸部の前記最大高さLK1は、前記すべり軸受の外周長の0.3〜2%に相当する長さである、請求項1から6までのいずれか一項に記載のすべり軸受。   The slide bearing according to any one of claims 1 to 6, wherein the maximum height LK1 of the hardened convex portion is a length corresponding to 0.3 to 2% of an outer peripheral length of the slide bearing. 前記複数の硬化凸部の前記最大高さLK1同士および前記幅HK1同士が、互いに等しく、前記複数の硬化凹部の前記最大高さLK2同士および前記幅HK2同士が、互いに等しい、請求項1から7までのいずれか一項に記載のすべり軸受。   The maximum heights LK1 and the widths HK1 of the plurality of cured convex portions are equal to each other, and the maximum heights LK2 and the widths HK2 of the plurality of cured concave portions are equal to each other. The plain bearing as described in any one of the above. 前記第1の周方向端面と前記第2の周方向端面とが突き合わせられ、前記硬化凸部の前記頂部と前記硬化凹部の前記底部とが当接した状態において、前記第1の周方向端面と前記第2の周方向端面との間に、第2の周方向隙間S2が形成される、請求項1から8までのいずれか一項に記載のすべり軸受。   In the state where the first circumferential end surface and the second circumferential end surface are abutted and the top portion of the curing convex portion and the bottom portion of the curing concave portion are in contact with each other, the first circumferential end surface The slide bearing according to any one of claims 1 to 8, wherein a second circumferential gap S2 is formed between the second circumferential end face and the second circumferential gap S2. 前記第2の周方向隙間S2は、前記すべり軸受の外周長の0.2〜1%に相当する長さである、請求項9に記載のすべり軸受。   The sliding bearing according to claim 9, wherein the second circumferential clearance S2 has a length corresponding to 0.2 to 1% of an outer peripheral length of the sliding bearing. 前記複数の硬化凸部が、前記第1の周方向端面のみに形成されており、前記複数の硬化凹部が、前記第2の周方向端面のみに形成されている、請求項1から10までのいずれか一項に記載のすべり軸受。   The plurality of curing convex portions are formed only on the first circumferential end surface, and the plurality of curing concave portions are formed only on the second circumferential end surface. The plain bearing as described in any one of Claims. 前記硬化凸部が、前記第2の周方向端面にも形成されており、前記硬化凹部が、前記第1の周方向端面にも形成されている、請求項1から10までのいずれか一項に記載のすべり軸受。   The said hardening convex part is formed also in the said 2nd circumferential direction end surface, The said hardening recessed part is formed also in the said 1st circumferential direction end surface, It is any one of Claim 1-10 The plain bearing described in 1. 前記第1の周方向端面の前記第1の硬化領域KR1が、前記硬化凸部の頂部から前記すべり軸受の周方向中央部側へ向かって、中心角度θ1が2°〜15°の範囲に形成されている、請求項1から12までのいずれか一項に記載のすべり軸受。   The first cured region KR1 of the first circumferential end surface is formed in a range of a central angle θ1 of 2 ° to 15 ° from the top of the cured convex portion toward the circumferential central portion of the slide bearing. The plain bearing according to claim 1, wherein the plain bearing is provided. 前記第2の周方向端面の前記第2の硬化領域KR2が、前記硬化凹部の底部から前記すべり軸受の周方向中央部側へ向かって、中心角度θ2が2°〜15°の範囲に形成されている、請求項1から13までのいずれか一項に記載のすべり軸受。   The second cured region KR2 of the second circumferential end surface is formed with a center angle θ2 in the range of 2 ° to 15 ° from the bottom of the cured recess toward the circumferential center of the slide bearing. The slide bearing according to any one of claims 1 to 13,
JP2014051943A 2014-03-14 2014-03-14 Plain bearing Active JP5897625B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014051943A JP5897625B2 (en) 2014-03-14 2014-03-14 Plain bearing
DE102015204085.2A DE102015204085B4 (en) 2014-03-14 2015-03-06 bearings
US14/640,073 US9587674B2 (en) 2014-03-14 2015-03-06 Sliding bearing
GB1503795.5A GB2525965B (en) 2014-03-14 2015-03-06 Sliding bearing having expansion gap with hardened convex and concave portions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014051943A JP5897625B2 (en) 2014-03-14 2014-03-14 Plain bearing

Publications (2)

Publication Number Publication Date
JP2015175424A JP2015175424A (en) 2015-10-05
JP5897625B2 true JP5897625B2 (en) 2016-03-30

Family

ID=52998485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014051943A Active JP5897625B2 (en) 2014-03-14 2014-03-14 Plain bearing

Country Status (4)

Country Link
US (1) US9587674B2 (en)
JP (1) JP5897625B2 (en)
DE (1) DE102015204085B4 (en)
GB (1) GB2525965B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105422626A (en) * 2015-12-17 2016-03-23 天津华北集团铜业有限公司 Flying shear copper sleeve convenient to dismount
JP2022552710A (en) * 2019-11-08 2022-12-19 サン-ゴバン パフォーマンス プラスティックス コーポレイション Split bearings, assemblies, and methods of making and using them

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2283918A (en) * 1940-05-02 1942-05-26 Cleveland Graphite Bronze Co Method of making bushings
DE934802C (en) * 1953-03-03 1955-11-03 Kloeckner Humboldt Deutz Ag Bearing loaded on one side
US2766084A (en) * 1953-07-29 1956-10-09 Fisher W Reuen Bearing
DE1157856B (en) * 1955-11-11 1963-11-21 Siemens Ag Heavy Duty Pin
US3238601A (en) * 1964-02-24 1966-03-08 Charles S White Bearing and method of making
DE2154303A1 (en) * 1971-11-02 1973-05-10 Vogelsang Hugo Fa CLAMPING ELEMENT, IN PARTICULAR CLAMPING SLEEVE OR CLAMPING SLEEVE
JPS6351923A (en) 1986-08-22 1988-03-05 Ngk Insulators Ltd Ceramic film structure for condensing and separating condensable gas component and its manufacture
JPS6351923U (en) 1986-09-20 1988-04-07
JPS63195415A (en) * 1987-02-05 1988-08-12 Daido Metal Kogyo Kk Male/female mating type bush bearing with at least two joints
JP3061397B2 (en) * 1990-05-07 2000-07-10 ヤマハ発動機株式会社 Lubricating device for engine connecting rod bearing
JPH0544729A (en) * 1991-08-16 1993-02-23 Taiho Kogyo Co Ltd Half sliding bearing
JPH06264928A (en) 1993-03-12 1994-09-20 Taiho Kogyo Co Ltd Cylindrical bearing and manufacture thereof
JP3307871B2 (en) * 1998-01-12 2002-07-24 大同メタル工業株式会社 Half thrust bearing
JP2002195261A (en) * 2000-12-26 2002-07-10 Hitachi Constr Mach Co Ltd Bush and manufacturing method of bush
JP4424580B2 (en) 2002-06-11 2010-03-03 オイレス工業株式会社 Bush bearing
JP2005090650A (en) 2003-09-18 2005-04-07 Isuzu Motors Ltd Bearing structure
US7252560B2 (en) 2005-10-27 2007-08-07 Adc Telecommunications, Inc. Crimped center conductor
JP2009228725A (en) 2008-03-21 2009-10-08 Daido Metal Co Ltd Sliding bearing
CN102037252B (en) * 2008-05-19 2013-06-26 株式会社捷太格特 Halved outer ring, halved rolling bearing using the same, and structure and method of mounting rolling bearing
DE102009060212A1 (en) * 2009-12-23 2011-06-30 KS Gleitlager GmbH, 68789 Rolled plain bearing element and flat material section and method for its production
CN103438098A (en) 2013-08-14 2013-12-11 苏州市东立机械有限公司 Shaft sleeve
CN203604431U (en) * 2013-12-16 2014-05-21 海安县恒益滑动轴承有限公司 Solid-lubricated self-centering semi-tile type sliding bearing
JP6022498B2 (en) * 2014-03-14 2016-11-09 大同メタル工業株式会社 Bearing device

Also Published As

Publication number Publication date
US9587674B2 (en) 2017-03-07
DE102015204085A1 (en) 2015-09-17
DE102015204085B4 (en) 2020-06-25
US20150260222A1 (en) 2015-09-17
GB2525965B (en) 2016-04-27
GB201503795D0 (en) 2015-04-22
JP2015175424A (en) 2015-10-05
GB2525965A (en) 2015-11-11

Similar Documents

Publication Publication Date Title
US8646181B2 (en) Shaft-hub component and method for manufacturing a component of this type
JP6022498B2 (en) Bearing device
US20140219590A1 (en) Radial foil bearing
JP4746155B1 (en) Method for manufacturing half-slide bearing and half-slide bearing
JP6223562B2 (en) Tolerance ring, assembly with tolerance ring, and method for splitting torque transmission
JPWO2007077880A1 (en) Manufacturing method of shaft member to which sintered parts are joined, and camshaft for internal combustion engine
EP2757280A1 (en) Disc-brake pad assembly
JP2014092178A (en) Slide bearing structure
JP2015075236A (en) Inner ring with undercut to improve tang flexibility
JP5897625B2 (en) Plain bearing
KR101355142B1 (en) Sliding member, semi-cylindrical sliding bearing using the same, and method of manufacturing the semi-cylindrical sliding bearing
JP6130862B2 (en) Method and tool for increasing the strength of a shaft, in particular a crankshaft
CN110892165B (en) Hub unit bearing, method for manufacturing hub unit bearing, automobile, and method for manufacturing automobile
US9879718B2 (en) Sliding bearing and method for manufacturing sliding bearing
KR101764727B1 (en) Bearing device and half bearing used for the same
JP5966554B2 (en) Waveform holder and manufacturing method thereof
JP2009195986A (en) Cylindrical shaft
KR100995436B1 (en) Rolling Manufacturing method of a beltpulley
CN109747126B (en) Injection unit for a molding machine and method for producing a plasticizing cylinder
JP4823208B2 (en) Manufacturing method of roller chain link plate
JP2007170562A (en) Shell type roller bearing for laminated connecting rod and connecting rod assembly
JP2005068945A (en) Grating and its production method
JP2007085493A (en) Shell type roller bearing for laminated connecting rod and connecting rod assembly
KR101924658B1 (en) Magnet assembly
JP2009014164A (en) Manufacturing method for flanged cylindrical member

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160302

R150 Certificate of patent or registration of utility model

Ref document number: 5897625

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250