JP2017020597A - Manufacturing method of wave-type cage - Google Patents

Manufacturing method of wave-type cage Download PDF

Info

Publication number
JP2017020597A
JP2017020597A JP2015139916A JP2015139916A JP2017020597A JP 2017020597 A JP2017020597 A JP 2017020597A JP 2015139916 A JP2015139916 A JP 2015139916A JP 2015139916 A JP2015139916 A JP 2015139916A JP 2017020597 A JP2017020597 A JP 2017020597A
Authority
JP
Japan
Prior art keywords
press
ball
fiber
balls
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015139916A
Other languages
Japanese (ja)
Inventor
智哉 西田
Tomoya Nishida
智哉 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2015139916A priority Critical patent/JP2017020597A/en
Publication of JP2017020597A publication Critical patent/JP2017020597A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method for inexpensively manufacturing a wave-type cage which is formed of a fiber-reinforced thermoplastic resin, light in weight and excellent in rigidity and stiffness by the smallest number of processes and part items without causing problems such as the lowering of the rigidity and the progress of wear.SOLUTION: By press-molding fiber-reinforced thermoplastic resin-made annular plate materials 5, 6 by using balls as a part of a press mold in a state that the balls 4 are arranged between an inner ring 2 and an outer ring 3 of a ball bear 1, a pair of annular bodies 13, 20 which correspond to contours of substantially-half spherical portions of the balls, and have pockets 11, 18 having clearances α, β between the balls and themselves are manufactured, and both the annular bodies which sandwich the balls therebetween are integrated to each other by the thermal fusion of connecting parts 12, 19 which connect the adjacent pockets, thus forming a wave-type cage 21.SELECTED DRAWING: Figure 3

Description

本発明は、波型保持器の製造方法に関するものである。   The present invention relates to a method for manufacturing a corrugated cage.

転がり軸受の軽量化を図るため、従来は金属製であった保持器を、強度と剛性が高くしかも軽量な繊維強化樹脂、特に繊維強化熱可塑性樹脂によって形成することが検討されている。
繊維強化熱可塑性樹脂としては、特に長繊維状で連続した炭素繊維等を高充填したものが、上記強度および剛性に優れるため好適に使用される。
In order to reduce the weight of a rolling bearing, it has been studied to form a cage, which has been conventionally made of metal, using a fiber reinforced resin, particularly a fiber reinforced thermoplastic resin, which has high strength and rigidity and is lightweight.
As the fiber reinforced thermoplastic resin, a long fiber-like continuous carbon fiber or the like, which is highly filled, is preferably used because of its excellent strength and rigidity.

例えば特許文献1では、上記繊維強化熱可塑性樹脂によって形成した環状の基体に、従来の金属製のものと同様に、切削加工(もみ抜き加工)によってポケットを形成して、いわゆるもみ抜き保持器を製造することが提案されている。
しかし上記の構成では、ポケットを形成するための切削加工時に、加工面すなわちポケットの内面に繊維が露出したり切断されたりすることで、強度の低下や、あるいは摩耗が促進されることが懸念される。
For example, in Patent Document 1, a so-called machined cage is formed by forming a pocket on a ring-shaped substrate formed of the above-described fiber-reinforced thermoplastic resin by a cutting process (a machined process) like a conventional metal substrate. Proposed to manufacture.
However, in the above-described configuration, there is a concern that the fiber may be exposed or cut on the processed surface, that is, the inner surface of the pocket during the cutting process for forming the pocket, thereby reducing the strength or promoting wear. The

特許文献2、3では、玉の略半球分の外形に対応した複数のポケットを有する一対の、波型保持器のもとになる環状体を、繊維強化熱可塑性樹脂によって形成し、かかる一対の環状体を、隣り合うポケット間を繋ぐ結合部同士でリベット止めして波型保持器を製造することが記載されている。
しかし上記の構成では、環状体にリベットを挿通する穴を形成するための穴あけ加工をする必要があるため、依然として繊維の露出や切断と、それに伴う、特に結合部の強度低下等の問題を生じてしまう。またリベットを要する分、部品点数や重量が増加するとともに、穴あけとリベット止めが必要で製造工程が煩雑になるという問題もある。
In Patent Documents 2 and 3, a pair of annular bodies having a plurality of pockets corresponding to the outer shape of the approximate hemisphere of a ball are formed of fiber-reinforced thermoplastic resin, and the pair of such It describes that a corrugated cage is manufactured by riveting an annular body at a connecting portion connecting adjacent pockets.
However, in the above configuration, since it is necessary to perform a drilling process for forming a hole through which the rivet is inserted into the annular body, problems such as fiber exposure and cutting, and particularly a decrease in strength of the joint portion, etc. still occur. End up. In addition, the number of parts and the weight increase due to the need for rivets, and there are problems that the manufacturing process becomes complicated because drilling and riveting are required.

特許文献4では、波型保持器のもとになる環状体の上記結合部に係合爪と係合孔を一体に成形し、一対の環状体を、上記係合爪と係合孔の係合によって一体化させて波型保持器を製造することが記載されている。
ところが上記の環状体は構造が複雑である上、係合爪と係合孔の係合の精度を確保するために高い寸法精度が要求される。
In Patent Document 4, an engaging claw and an engaging hole are integrally formed in the coupling portion of the annular body that is the basis of the corrugated cage, and a pair of annular bodies are connected to the engaging claw and the engaging hole. It is described that the corrugated cage is manufactured by integrating the two together.
However, the above-described annular body has a complicated structure and requires high dimensional accuracy in order to ensure the accuracy of engagement between the engagement claw and the engagement hole.

したがって上記環状体は、繊維強化熱可塑性樹脂の射出成形によって製造しなければならないが、長繊維状で連続した繊維を含む繊維強化熱可塑性樹脂は基本的に射出成形できない上、射出成形可能な繊維を含む繊維強化熱可塑性樹脂であっても、射出成形性を考慮すると繊維の充填量は限られるため、波型保持器に十分な強度と剛性を付与できないという問題がある。   Therefore, the annular body must be manufactured by injection molding of a fiber reinforced thermoplastic resin. However, a fiber reinforced thermoplastic resin containing continuous fibers in a long fiber shape cannot basically be injection molded, and a fiber that can be injection molded. Even if it is a fiber reinforced thermoplastic resin containing, since the filling amount of the fiber is limited in consideration of injection moldability, there is a problem that sufficient strength and rigidity cannot be imparted to the corrugated cage.

その上、射出成形用の複雑な金型を、波型保持器の形状および寸法ごとに個別に用意する必要があるため、当該波型保持器の製造コストが嵩むという問題もある。   In addition, since a complicated mold for injection molding needs to be prepared for each shape and size of the wave cage, there is a problem that the manufacturing cost of the wave cage is increased.

特開2006−207642号公報JP 2006-207642 A 特開平4−236820号公報JP-A-4-236820 特開2003−343567号公報JP 2003-343567 A 特開2007−78029号公報JP 2007-78029 A

本発明の目的は、繊維強化熱可塑性樹脂からなり、軽量でしかも強度や剛性に優れた波型保持器を、強度低下や摩耗の促進等の問題を生じることなしに、できるだけ少ない工程および部品点数で、コスト安価に製造するための製造方法を提供することにある。   The object of the present invention is to make a corrugated cage made of a fiber-reinforced thermoplastic resin, which is lightweight and has excellent strength and rigidity, with as few processes and parts as possible without causing problems such as strength reduction and accelerated wear. Then, it is providing the manufacturing method for manufacturing at low cost.

請求項1に記載の発明は、玉軸受(1)の内輪(2)と外輪(3)の間に玉(4)を装着した状態で、繊維強化熱可塑性樹脂製の環状の板材(5)(6)を、前記玉をプレス型の一部として用いてプレス成形することにより、前記玉の略半球分の外形に対応し、なおかつ前記玉との間にクリアランス(α)(β)を有する複数のポケット(11)(18)を備えた一対の、波型保持器のもとになる環状体(13)(20)を作製する工程(第一工程)、および
前記一対の環状体を、間に前記玉を挟んだ状態で、隣り合う前記ポケット間を繋ぐ結合部(12)(19)同士の熱溶着によって一体化させる工程(第二工程)、
を含む波型保持器の製造方法である。
The invention according to claim 1 is an annular plate (5) made of fiber-reinforced thermoplastic resin in a state in which balls (4) are mounted between the inner ring (2) and the outer ring (3) of the ball bearing (1). (6) is press-molded using the ball as a part of a press die, so that it corresponds to the outer shape of the hemisphere of the ball and has clearance (α) (β) between the balls. A step (first step) of producing a pair of annular bodies (13) and (20) that are the basis of a corrugated cage having a plurality of pockets (11) and (18), and the pair of annular bodies, A step (second step) of integrating the joints (12) and (19) connecting the adjacent pockets in a state in which the balls are sandwiched therebetween (second step),
It is a manufacturing method of the wave type | mold retainer containing this.

請求項2に記載の発明は、前記一対の環状体のうちの一方をプレス成形によって作製し、引き続いて他方の環状体をプレス成形によって作製しながら、先に作製した環状体と、前記結合部同士の熱溶着によって一体化させる請求項1に記載の波型保持器の製造方法である。
請求項3に記載の発明は、前記一対の環状体のうち少なくとも一方をプレス成形によって作製する際のプレス量を、前記ポケットと前記玉との間に設けられるクリアランス(α)分を加えた寸法に設定する請求項1または2に記載の波型保持器の製造方法である。
The invention according to claim 2 is that the one of the pair of annular bodies is manufactured by press molding and the other annular body is subsequently manufactured by press molding, while the previously manufactured annular body and the coupling portion It is a manufacturing method of the corrugated cage of Claim 1 made to integrate by heat welding of each other.
The invention according to claim 3 is a dimension in which the amount of press when producing at least one of the pair of annular bodies by press molding is added with a clearance (α) provided between the pocket and the ball. It is a manufacturing method of the corrugated cage of Claim 1 or 2 set to.

請求項4に記載の発明は、前記プレス成形時のポケットの開口寸法を、前記ポケットと前記玉との間に設けられるクリアランス(β)分を加えた寸法に設定する請求項1ないし3のいずれか1項に記載の波型保持器の製造方法である。
請求項5に記載の発明は、前記繊維強化熱可塑性樹脂は、長繊維状の繊維を不連続状に充填してなる請求項1ないし4のいずれか1項に記載の波型保持器の製造方法である。
According to a fourth aspect of the present invention, the opening dimension of the pocket at the time of press molding is set to a dimension obtained by adding a clearance (β) provided between the pocket and the ball. A method for manufacturing the corrugated cage according to claim 1.
The invention according to claim 5 is the production of the corrugated cage according to any one of claims 1 to 4, wherein the fiber reinforced thermoplastic resin is formed by filling long fibers in a discontinuous manner. Is the method.

請求項1に記載の発明によれば、第一工程において、玉軸受の内輪と外輪の間に装着した玉をプレス型の一部として用いたプレス成形によって、波型保持器のもとになる一対の環状体を作製しており、上記環状体のもとになる繊維強化熱可塑性樹脂には、射出成形のような制限を受けることなく、任意の繊維長の繊維を、任意の割合で高充填できる。
また、上記のように実際に保持する玉をプレス型の一部として用いてプレス成形することにより、ポケットの寸法精度を、射出成形と同等またはそれ以上に向上できる。
According to the first aspect of the present invention, in the first step, a wave cage is obtained by press molding using a ball mounted between an inner ring and an outer ring of a ball bearing as a part of the press mold. A pair of annular bodies is manufactured, and the fiber reinforced thermoplastic resin that is the basis of the annular body is made of fibers with an arbitrary fiber length at an arbitrary ratio without being restricted by injection molding. Can be filled.
Further, by performing press molding using the ball actually held as a part of the press die as described above, the dimensional accuracy of the pocket can be improved to be equal to or higher than that of injection molding.

また環状の板材の直径と厚みのみ所定値に設定するだけで、所定の形状および寸法を有する波型保持器のもとになる環状体を作製できるため、射出成型のように、高価な金型を波型保持器の形状および寸法に応じて個別に用意する必要もない。
しかも請求項1に記載の発明によれば、第二工程において、作製した一対の環状体の、隣り合うポケット間を繋ぐ結合部を互いに熱溶着させて一対の環状体を一体化させるだけで、強度低下や摩耗の促進等を生じる原因となる繊維の露出や切断を伴う切削加工や穴あけ加工、あるいは工程数、部品点数および重量の増加を伴うリベット止め等を必要とせずに波型保持器を製造できる。
In addition, it is possible to produce an annular body that is the basis of a corrugated cage having a predetermined shape and dimensions simply by setting the diameter and thickness of the annular plate material to predetermined values. There is also no need to prepare each separately according to the shape and dimensions of the corrugated cage.
Moreover, according to the invention described in claim 1, in the second step, by simply heat-bonding the joints connecting the adjacent pockets of the pair of annular bodies produced to each other and integrating the pair of annular bodies, The corrugated cage can be used without the need for cutting or drilling with fiber exposure or cutting, which can cause strength reduction or accelerated wear, or riveting with increased number of steps, parts and weight. Can be manufactured.

また、リベット止めのための穴あけ加工をする場合に比べて、波型保持器の特に結合部を高強度化できる上、繊維を高充填できることと相まって、当該波型保持器の長寿命化を図ることができる。
したがって請求項1に記載の発明によれば、繊維強化熱可塑性樹脂からなり、軽量でしかも強度や剛性に優れた波型保持器を、強度低下や摩耗の促進等の問題を生じることなしに、できるだけ少ない工程および部品点数で、コスト安価に製造することが可能となる。
Compared with drilling for riveting, it is possible to increase the strength of the corrugated cage, in particular, to increase the strength of the corrugated cage, and to increase the life of the corrugated cage, coupled with the fact that the fiber can be highly filled. be able to.
Therefore, according to the first aspect of the present invention, a wave cage made of a fiber reinforced thermoplastic resin, which is lightweight and excellent in strength and rigidity, without causing problems such as strength reduction and accelerated wear, It is possible to manufacture at low cost with as few steps and parts as possible.

請求項2に記載の発明によれば、上記第一および第二工程を連続的に実施できるため、例えばあらかじめ作製した環状体を組み付ける工程等を省略して、波型保持器の生産性をさらに向上できる。
またそれぞれのポケットを、個々の玉ごとに1対1で個別に、プレス成形によって形成できるため、各ポケットの寸法精度をより一層向上できる。
According to the invention described in claim 2, since the first and second steps can be carried out continuously, for example, the step of assembling a previously produced annular body is omitted, and the productivity of the corrugated cage is further increased. It can be improved.
Moreover, since each pocket can be individually formed by press molding on a one-to-one basis for each individual ball, the dimensional accuracy of each pocket can be further improved.

請求項3に記載の発明によれば、一対の環状体のうち少なくとも一方をプレス成形する際のプレス量を、クリアランス分を加えた寸法に設定することにより、ポケットと玉の間にクリアランスを形成する工程等を別に設けることなく、プレス成形と同時にクリアランスも形成できるため、工程数をさらに削減して、波型保持器の生産性を向上できる。
またクリアランス量を、プレス成形時のプレス量によって機械的に正確に調整でき、ポケットの寸法精度をさらに向上できる。
According to the third aspect of the present invention, the clearance is formed between the pocket and the ball by setting the pressing amount when pressing at least one of the pair of annular bodies to a dimension including the clearance. Since the clearance can be formed at the same time as the press molding without providing a separate process or the like, the number of processes can be further reduced and the productivity of the corrugated cage can be improved.
Further, the clearance amount can be mechanically accurately adjusted by the press amount at the time of press molding, and the pocket dimensional accuracy can be further improved.

請求項4に記載の発明によれば、プレス成形時のポケットの開口寸法を、ポケットと玉との間に設けられるクリアランス分を加えた寸法に設定することにより、やはりポケットと玉の間にクリアランスを形成する工程等を別に設けることなく、プレス成形と同時にクリアランスも形成できるため、工程数をさらに削減して、波型保持器の生産性を向上できる。   According to the invention described in claim 4, the clearance between the pocket and the ball is also set by setting the opening size of the pocket at the time of press molding to a size added with the clearance provided between the pocket and the ball. Since the clearance can be formed at the same time as the press molding without providing a separate process or the like, the number of processes can be further reduced and the productivity of the corrugated cage can be improved.

またクリアランス量を、プレス成形に使用するプレス型の寸法によって機械的に正確に調整でき、ポケットの寸法精度をさらに向上できる。
環状体のもとになる環状の板材は、例えば繊維強化熱可塑性樹脂をシート状に成形したプリプレグを、所定の板材の厚みとなるように複数枚積層して熱プレス等で一体化させたのち、環状に打ち抜く等して作製される。
Further, the clearance amount can be mechanically accurately adjusted according to the size of the press die used for press molding, and the dimensional accuracy of the pocket can be further improved.
The annular plate that is the base of the annular body is obtained by, for example, laminating a plurality of prepregs formed from a fiber-reinforced thermoplastic resin into a sheet shape and integrating them with a hot press or the like so as to have a predetermined plate thickness. It is produced by punching in an annular shape.

この際、請求項5に記載の発明によれば、長繊維状の繊維を不連続状に充填させた繊維強化熱可塑性樹脂を用いることにより、従来の、長繊維状で連続した炭素繊維等を高充填したものでは得られない良好な加工性を確保できる。
そのため、上記シート状の成形や熱プレスによる一体化、あるいは作製した板材をプレス成形して環状体を作製する際等の加工性、成形性を大幅に向上できる。また、環状に打ち抜いた際に繊維が切断されたり断面に露出したりするのを極力抑制することもできる。
In this case, according to the invention described in claim 5, by using a fiber reinforced thermoplastic resin in which long fibers are discontinuously filled, conventional carbon fibers and the like that are continuous in long fibers can be obtained. Good workability that cannot be obtained with a highly filled material can be secured.
Therefore, the workability and formability can be greatly improved, for example, when the sheet is molded or integrated by hot pressing, or when the produced plate material is press-molded to produce an annular body. Moreover, it can also suppress as much as possible that a fiber is cut | disconnected or exposed to a cross section when it pierce | punches circularly.

本発明の製造方法の、実施の形態の一例において製造する波型保持器のもとになる板材と、当該波型保持器を組み込む玉軸受の外観を示す斜視図である。It is a perspective view which shows the external appearance of the ball bearing which incorporates the board | plate material used as the base of the waveform holder manufactured in the example of embodiment of the manufacturing method of this invention, and the said waveform holder. 図(a)〜図(c)は、上記例の製造方法のうち第一工程の各段階を示す断面図である。Figures (a) to (c) are cross-sectional views showing each stage of the first step in the manufacturing method of the above example. 図(a)〜(c)は、上記例の製造方法のうち第一工程の続きの段階から第二工程を示す断面図である。FIGS. (A) to (c) are cross-sectional views showing the second process from the stage following the first process in the manufacturing method of the above example.

図1を参照して、この例の製造方法では、玉軸受1の、内輪2と外輪3との間に装着された複数個(図では9個)の玉4を、上記両輪2、3間において、図では上下から挟んで保持する波型保持器のもとになる一対の環状の板材5、6を用意する。
板材5、6は、プレス成形および熱溶着が可能な種々の繊維強化熱可塑性樹脂によって形成できる。
Referring to FIG. 1, in the manufacturing method of this example, a plurality (9 in the figure) of balls 4 mounted between an inner ring 2 and an outer ring 3 of a ball bearing 1 are placed between the two wheels 2 and 3. In the figure, a pair of annular plate members 5 and 6 are prepared, which are the basis of a corrugated cage that is sandwiched from above and below.
The plate members 5 and 6 can be formed of various fiber-reinforced thermoplastic resins that can be press-molded and heat-welded.

特に先述したように、長繊維状の繊維を熱可塑性樹脂中に不連続状かつランダムに充填してなる繊維強化熱可塑性樹脂が好適に使用される。
熱可塑性樹脂としては、例えばポリアミド樹脂、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、非晶ポリアリレート(PAR)、ポリサルフォン(PSF)、ポリエーテルサルフォン(PES)、ポリイミド、ポリエーテルイミド(PEI)、液晶ポリマー(LCP)、フッ素樹脂等のエンジニアリングプラスチックないしはスーパーエンジニアリングプラスチック等の1種または2種以上が挙げられる。
In particular, as described above, a fiber-reinforced thermoplastic resin obtained by filling a long fiber into a thermoplastic resin in a discontinuous and random manner is preferably used.
Examples of the thermoplastic resin include polyamide resin, polyphenylene sulfide (PPS), polyether ether ketone (PEEK), amorphous polyarylate (PAR), polysulfone (PSF), polyether sulfone (PES), polyimide, and polyetherimide. (PEI), liquid crystal polymer (LCP), 1 type, or 2 or more types of engineering plastics, such as a fluororesin, or super engineering plastics are mentioned.

また繊維としては炭素繊維が好ましい。
炭素繊維は、例えばガラス繊維等に比べて熱伝導率が高いため、回転時の昇温防止効果に優れており、グリースの劣化を抑制して玉軸受の長寿命化を図ることができる。
炭素繊維としては、特に生産性や環境保全の観点からポリアクリロニトリル(PAN)系の炭素繊維が好ましい。
The fiber is preferably carbon fiber.
Carbon fiber has a higher thermal conductivity than, for example, glass fiber, and so has an excellent temperature rise prevention effect during rotation, and can suppress the deterioration of grease and extend the life of the ball bearing.
As the carbon fiber, polyacrylonitrile (PAN) type carbon fiber is particularly preferable from the viewpoint of productivity and environmental protection.

熱可塑性樹脂中に不連続状に充填する繊維の繊維長は5mm以上であるのが好ましく、40mm以下であるのが好ましい。
繊維長がこの範囲未満では、長繊維状とすることによる良好な補強効果が十分に得られないおそれがある。一方、繊維長が上記の範囲を超える場合には、例えば繊維強化熱可塑性樹脂をシート状に成形してプリプレグを形成したり、板材5、6をプレス成形して環状体を作製したりする際の加工性、成形性が低下するおそれがある。
The fiber length of the fibers that are discontinuously filled in the thermoplastic resin is preferably 5 mm or more, and preferably 40 mm or less.
When the fiber length is less than this range, there is a possibility that a good reinforcing effect due to the long fiber shape cannot be obtained sufficiently. On the other hand, when the fiber length exceeds the above range, for example, when a fiber-reinforced thermoplastic resin is formed into a sheet shape to form a prepreg, or when plate members 5 and 6 are press-molded to produce an annular body There is a possibility that the workability and moldability of the resin may be lowered.

また上記繊維長の繊維を熱可塑性樹脂中に不連続に充てんする際の充填量は30質量%以上であるのが好ましく、60質量%以下であるのが好ましい。
充填量がこの範囲未満では、十分な補強効果が得られないおそれがある。一方、充填量が上記範囲を超える場合には、例えば繊維強化熱可塑性樹脂をシート状に成形してプリプレグを形成したり、板材5、6をプレス成形して環状体を作製したりする際の加工性、成形性が低下するおそれがある。
The filling amount when the fibers having the above-mentioned fiber length are discontinuously packed in the thermoplastic resin is preferably 30% by mass or more, and preferably 60% by mass or less.
If the filling amount is less than this range, a sufficient reinforcing effect may not be obtained. On the other hand, when the filling amount exceeds the above range, for example, a fiber reinforced thermoplastic resin is formed into a sheet shape to form a prepreg, or the plate members 5 and 6 are press molded to produce an annular body. There is a possibility that workability and formability may be reduced.

図1、図2(a)を参照して、この例では玉軸受1の内輪2と外輪3の間に玉4を装着した状態で、まず上側の板材5を、上記玉4をプレス型の一部として用いてプレス成形する。
プレス成形には、上記玉4とともに環状のプレス型9を用いる。
プレス型9は、図2(a)において下面に、上記玉4の外形と個数に応じて周方向に等間隔に所定の個数(図の例の場合は9個)配列された凹部7と、隣り合う凹部7間から下方へ突設された凸部8とを有している。
With reference to FIGS. 1 and 2 (a), in this example, with the balls 4 mounted between the inner ring 2 and the outer ring 3 of the ball bearing 1, first, the upper plate material 5 and the balls 4 are pressed. Used as a part and press-molded.
For press molding, an annular press die 9 is used together with the balls 4.
The press die 9 has, as shown in FIG. 2 (a), recesses 7 arranged on the lower surface at a predetermined number (9 in the case of the figure) arranged at equal intervals in the circumferential direction according to the outer shape and number of the balls 4. And a convex portion 8 projecting downward from between the adjacent concave portions 7.

各凹部7の内面は、玉4の略半球分の外形に、板材5の厚み分を加えた曲面に形成されている。
また各凸部8の先端面10はそれぞれ、図2(c)に示すプレス成形が完了した時点において、各玉4の中心Pを含む平面と平行で、かつ互いに同一平面となる平面状に形成されている。
The inner surface of each recess 7 is formed into a curved surface obtained by adding the thickness of the plate material 5 to the outer shape of a substantially hemispherical shape of the ball 4.
Further, the tip surface 10 of each convex portion 8 is formed in a planar shape parallel to the plane including the center P of each ball 4 and the same plane when the press molding shown in FIG. 2C is completed. Has been.

プレス型9は、プレス成形に際し、例えば図示しない加熱コイル等からの加熱によって、繊維強化熱可塑性樹脂の軟化温度以上に加熱された状態とされる。
図2(a)(b)を参照して、プレス型9と玉4との間に板材5を挟んだ状態で、上記プレス型9の凹部7に玉4を合わせながら、両図中に白矢印で示すように凸部8を玉4間に押し込んでゆくと、上記板材5が、上記凹部7および凸部8と、玉4の外形とに沿って波型にプレス成形される。
The press die 9 is heated to a temperature higher than the softening temperature of the fiber-reinforced thermoplastic resin by, for example, heating from a heating coil (not shown) during press molding.
Referring to FIGS. 2 (a) and 2 (b), while the plate material 5 is sandwiched between the press die 9 and the ball 4, the ball 4 is aligned with the concave portion 7 of the press die 9 and white in both figures. When the convex portion 8 is pushed between the balls 4 as indicated by the arrows, the plate material 5 is press-molded into a corrugated shape along the concave portions 7 and the convex portions 8 and the outer shape of the balls 4.

そして図2(c)を参照して、板材5の両面が凹部7の内面と玉4の外面に隙間なく接するまでプレス型9を押し込むと、上記玉4の略半球分の外形に対応する複数のポケット11を備えるとともに、隣り合うポケット11間を繋ぐ結合部12が、先述したプレス型9の凸部8の先端面10に対応した平板状とされた環状体13がプレス成形される。
なおこの際、この例ではプレス型9のプレス量を、玉4の半球分にさらにクリアランスα分を加えた寸法に設定するとともに、上記プレス型9の凹部7の開口寸法に基づいて設定されるポケット11の開口寸法を、玉4の両側にそれぞれクリアランスβ分を加えた寸法に設定しており、それによってポケット11には、玉4との間に上記クリアランスα、βが設けられている。
Then, referring to FIG. 2 (c), when the press die 9 is pushed in until the both surfaces of the plate 5 are in contact with the inner surface of the recess 7 and the outer surface of the ball 4 without a gap, a plurality of outer shapes corresponding to the approximate hemispherical shape of the ball 4 are obtained. The annular body 13 having a flat plate shape corresponding to the tip surface 10 of the convex portion 8 of the press die 9 described above is press-molded.
In this case, in this example, the press amount of the press die 9 is set to a size obtained by adding the clearance α to the hemisphere of the ball 4 and is set based on the opening size of the concave portion 7 of the press die 9. The opening dimension of the pocket 11 is set to a dimension obtained by adding clearance β to both sides of the ball 4, whereby the clearances α and β are provided between the pocket 11 and the ball 4.

図3(a)を参照して、この例では環状体13のプレス成形に引き続いて、当該環状体13、およびプレス型9をプレス成形完了時の状態に維持しながら、下側の板材6を、同様に玉4をプレス型の一部として用いてプレス成形する。
プレス成形には、上記玉4とともに環状のプレス型14を用いる。
プレス型14は、プレス型9と同様に構成される。すなわちプレス型14は、図において上面に、上記玉4の外形と個数に応じて周方向に等間隔に所定の個数配列された凹部15と、隣り合う凹部15間から上方へ突設された凸部16とを有している。
Referring to FIG. 3 (a), in this example, following the press forming of the annular body 13, the lower plate member 6 is moved while maintaining the annular body 13 and the press die 9 in the state at the time of completion of the press forming. Similarly, the ball 4 is press-molded as a part of the press die.
In the press molding, an annular press die 14 is used together with the balls 4.
The press die 14 is configured similarly to the press die 9. That is, the press die 14 has, on the upper surface in the drawing, a predetermined number of concave portions 15 arranged at equal intervals in the circumferential direction according to the outer shape and the number of the balls 4 and convex portions protruding upward from between the adjacent concave portions 15. Part 16.

各凹部15の内面は、玉4の略半球分の外形に、板材6の厚み分を加えた曲面に形成されている。
また各凸部16の先端面17はそれぞれ、図3(c)に示すプレス成形が完了した時点において、各玉4の中心Pを含む平面と平行で、かつ互いに同一平面となる平面状に形成されている。
The inner surface of each recess 15 is formed into a curved surface obtained by adding the thickness of the plate material 6 to the outer shape of the substantially hemisphere of the ball 4.
Further, the front end surface 17 of each convex portion 16 is formed in a planar shape parallel to the plane including the center P of each ball 4 and the same plane when the press molding shown in FIG. 3C is completed. Has been.

プレス型14は、プレス成形に際し、やはり図示しない加熱コイル等からの加熱によって、繊維強化熱可塑性樹脂の軟化温度以上に加熱された状態とされる。
図3(a)(b)を参照して、プレス型14と玉4との間に板材6を挟んだ状態で、上記プレス型14の凹部15に玉4を合わせながら、両図中に黒矢印で示すように凸部16を玉4間に押し込んでゆくと、上記板材6が、上記凹部15および凸部16と、玉4の外形とに沿って波型にプレス成形される。
During press molding, the press die 14 is heated to a temperature higher than the softening temperature of the fiber-reinforced thermoplastic resin by heating from a heating coil (not shown).
Referring to FIGS. 3 (a) and 3 (b), in a state where the plate material 6 is sandwiched between the press die 14 and the ball 4, the ball 4 is aligned with the concave portion 15 of the press die 14 and black in both drawings. When the convex portion 16 is pushed between the balls 4 as indicated by arrows, the plate 6 is pressed into a corrugated shape along the concave portions 15 and the convex portions 16 and the outer shape of the balls 4.

そして図3(c)を参照して、板材6の両面が凹部15の内面と玉4の外面に隙間なく接するまでプレス型14を押し込むと、上記玉4の略半球分の外形に対応する複数のポケット18を備えるとともに、隣り合うポケット18間を繋ぐ結合部19が、先述したプレス型14の凸部16の先端面17に対応した平板状とされた環状体20がプレス成形される。   Referring to FIG. 3C, when the press die 14 is pushed in until the both sides of the plate 6 are in contact with the inner surface of the recess 15 and the outer surface of the ball 4 without a gap, a plurality of shapes corresponding to the outer shape of the ball 4 substantially hemispherical The annular body 20 having a flat plate shape corresponding to the tip surface 17 of the convex portion 16 of the press die 14 described above is press-molded.

それとともにこの例では、プレス成形された環状体20の結合部19が、先にプレス成形された環状体13の結合部12に熱溶着される。
すなわち両結合部12、19が、プレス型9、14の凸部8、16の先端面10、17間に挟まれた状態で、両プレス型9、14のプレス圧と熱によって互いに熱溶着される。
そしてこの熱溶着によって一対の環状体13、20が一体化されて、波型保持器21が製造される。
At the same time, in this example, the joint portion 19 of the press-formed annular body 20 is thermally welded to the joint portion 12 of the annular body 13 previously press-formed.
That is, in a state where both the coupling parts 12 and 19 are sandwiched between the front end surfaces 10 and 17 of the convex parts 8 and 16 of the press dies 9 and 14, they are heat-welded to each other by the press pressure and heat of the press dies 9 and 14. The
And by this heat welding, a pair of annular bodies 13 and 20 are integrated, and the waveform retainer 21 is manufactured.

また環状体20をプレス成形する際に、この例ではプレス型14のプレス量を、やはり玉4の半球分にさらにクリアランスα分を加えた寸法に設定するとともに、上記プレス型14の凹部15の開口寸法に基づいて設定されるポケット18の開口寸法を、玉4の両側にそれぞれクリアランスβ分を加えた寸法に設定しており、それによってポケット18には、玉4との間に上記クリアランスα、βが設けられている。   Further, when the annular body 20 is press-molded, in this example, the press amount of the press die 14 is set to a dimension in which the clearance α is added to the hemisphere of the ball 4 and the recess 15 of the press die 14 is formed. The opening dimension of the pocket 18 set based on the opening dimension is set to a dimension obtained by adding clearance β to both sides of the ball 4, whereby the clearance α between the ball 4 and the pocket 4 is set. , Β are provided.

このあとプレス型9、14を開くと、玉4が波型保持器21によって保持された玉軸受1が完成する。
環状体13、20に設定するクリアランスα、βは、波型保持器21を組み込む玉軸受1の型番等に応じて、例えば140μm〜320μm程度の範囲内で、当該型番ごとに設定された所定値にすればよい。
Thereafter, when the press dies 9 and 14 are opened, the ball bearing 1 in which the balls 4 are held by the corrugated cage 21 is completed.
The clearances α and β set in the annular bodies 13 and 20 are predetermined values set for each model number within a range of about 140 μm to 320 μm, for example, depending on the model number of the ball bearing 1 incorporating the wave cage 21. You can do it.

なおクリアランスα、βは、環状体13、20の結合部12、19の溶着条件(プレス圧、温度)、溶着面積等を制御することによって微調整が可能である。
なお本発明の構成は、以上で説明した図の例のものには限定されない。
例えば繊維強化熱可塑性樹脂としては、従来同様に、長繊維状で連続した繊維を充てんしたものを用いてもよいし、短繊維状の繊維を高充填したものを用いてもよい。
The clearances α and β can be finely adjusted by controlling the welding conditions (press pressure, temperature), the welding area, and the like of the coupling portions 12 and 19 of the annular bodies 13 and 20.
Note that the configuration of the present invention is not limited to the example illustrated in the above description.
For example, as the fiber-reinforced thermoplastic resin, a long fiber-like continuous fiber filled or a short fiber-like highly filled fiber may be used as in the prior art.

プレス量の調整によるクリアランスの形成は、環状体13、20のポケット11、18のうちの一方のみで行ってもよい。その場合は、例えばクリアランスαの2倍をプレス量に加えてプレス成形をすればよい。
環状体13、20は個別に、玉4をプレス型の一部として用いてプレス成形し、それをあとから組み合わせて互いに熱溶着して波型保持器21を製造するようにしてもよい。
The clearance may be formed by adjusting the press amount only in one of the pockets 11 and 18 of the annular bodies 13 and 20. In that case, for example, press molding may be performed by adding twice the clearance α to the press amount.
The annular bodies 13 and 20 may be individually press-molded using the balls 4 as a part of a press mold, and then combined to be thermally welded together to manufacture the corrugated cage 21.

ポケット11、18のクリアランスα、βは、例えば玉4と板材5、6との間にスペーサを挟んだ状態で、それぞれの環状体13、20をプレス成形したのち、スペーサを除去して形成するようにしてもよい。
また、例えば繊維強化熱可塑性樹脂の収縮を計算し、プレス成形の条件等を調整することで、当該収縮のみによって所定のクリアランスα、βを形成するようにしてもよい。
The clearances α and β of the pockets 11 and 18 are formed, for example, by pressing the respective annular bodies 13 and 20 with the spacers sandwiched between the balls 4 and the plate members 5 and 6 and then removing the spacers. You may do it.
Further, for example, the predetermined clearances α and β may be formed only by the shrinkage by calculating the shrinkage of the fiber reinforced thermoplastic resin and adjusting the press molding condition.

その他、本発明の要旨を変更しない範囲で種々の変更を施すことができる。   In addition, various changes can be made without departing from the scope of the present invention.

1:玉軸受、2:内輪、3:外輪、4:玉、5、6:板材、7、15:凹部、8、16:凸部、9、14:プレス型、10、17:先端面、11、18:ポケット、12、19:結合部、13、20:環状体、21:波型保持器、P:中心、α、β:クリアランス   1: ball bearing, 2: inner ring, 3: outer ring, 4: ball, 5, 6: plate material, 7, 15: concave portion, 8, 16: convex portion, 9, 14: press die, 10, 17: tip surface, 11, 18: pocket, 12, 19: coupling portion, 13, 20: annular body, 21: corrugated cage, P: center, α, β: clearance

Claims (5)

玉軸受の内輪と外輪の間に玉を装着した状態で、繊維強化熱可塑性樹脂製の環状の板材を、前記玉をプレス型の一部として用いてプレス成形することにより、前記玉の略半球分の外形に対応し、なおかつ前記玉との間にクリアランスを有する複数のポケットを備えた一対の、波型保持器のもとになる環状体を作製する工程、および
前記一対の環状体を、間に前記玉を挟んだ状態で、隣り合う前記ポケット間を繋ぐ結合部同士の熱溶着によって一体化させる工程、
を含む波型保持器の製造方法。
An annular plate made of fiber reinforced thermoplastic resin is press-molded using the ball as a part of a press die in a state where the ball is mounted between the inner ring and the outer ring of the ball bearing. A pair of annular bodies corresponding to the outer shape of the minute and provided with a plurality of pockets having a clearance between the balls, and a pair of annular bodies, A step of integrating by joining the connecting portions connecting the adjacent pockets in a state where the balls are sandwiched therebetween,
A method for manufacturing a corrugated cage.
前記一対の環状体のうちの一方をプレス成形によって作製し、引き続いて他方の環状体をプレス成形によって作製しながら、先に作製した環状体と、前記結合部同士の熱溶着によって一体化させる請求項1に記載の波型保持器の製造方法。   One of the pair of annular bodies is produced by press molding, and then the other annular body is produced by press molding, and the previously produced annular body is integrated by thermal welding between the coupling portions. Item 2. A method for manufacturing a corrugated cage according to Item 1. 前記一対の環状体のうち少なくとも一方をプレス成形によって作製する際のプレス量を、前記ポケットと前記玉との間に設けられるクリアランス分を加えた寸法に設定する請求項1または2に記載の波型保持器の製造方法。   The wave according to claim 1 or 2, wherein a pressing amount when at least one of the pair of annular bodies is manufactured by press molding is set to a dimension including a clearance provided between the pocket and the ball. A method for manufacturing a mold cage. 前記プレス成形時のポケットの開口寸法を、前記ポケットと前記玉との間に設けられるクリアランス分を加えた寸法に設定する請求項1ないし3のいずれか1項に記載の波型保持器の製造方法。   4. The corrugated cage according to claim 1, wherein an opening dimension of the pocket at the time of the press molding is set to a dimension including a clearance provided between the pocket and the ball. 5. Method. 前記繊維強化熱可塑性樹脂は、長繊維状の繊維を不連続状に充填してなる請求項1ないし4のいずれか1項に記載の波型保持器の製造方法。   The said fiber reinforced thermoplastic resin is a manufacturing method of the corrugated cage of any one of Claim 1 thru | or 4 formed by filling a long fiber-like fiber discontinuously.
JP2015139916A 2015-07-13 2015-07-13 Manufacturing method of wave-type cage Pending JP2017020597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015139916A JP2017020597A (en) 2015-07-13 2015-07-13 Manufacturing method of wave-type cage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015139916A JP2017020597A (en) 2015-07-13 2015-07-13 Manufacturing method of wave-type cage

Publications (1)

Publication Number Publication Date
JP2017020597A true JP2017020597A (en) 2017-01-26

Family

ID=57887968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015139916A Pending JP2017020597A (en) 2015-07-13 2015-07-13 Manufacturing method of wave-type cage

Country Status (1)

Country Link
JP (1) JP2017020597A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017072223A (en) * 2015-10-09 2017-04-13 北陸プレス工業株式会社 Cage for rolling bearing rolling element, and molding method
KR102079621B1 (en) * 2018-08-29 2020-02-20 셰플러코리아(유) A Ball Bearing Having Retainer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017072223A (en) * 2015-10-09 2017-04-13 北陸プレス工業株式会社 Cage for rolling bearing rolling element, and molding method
KR102079621B1 (en) * 2018-08-29 2020-02-20 셰플러코리아(유) A Ball Bearing Having Retainer

Similar Documents

Publication Publication Date Title
JP2017020597A (en) Manufacturing method of wave-type cage
JP2007247856A (en) Resin cage for rolling bearing
JP6401413B1 (en) Method for producing metal-fiber reinforced resin composite molded body
EP2799213A1 (en) Thermoplastic resin molded article having hollow portion and method for manufacturing same
CN103298593A (en) Preform fabrication apparatus, fabrication method, and preform fabricated with same method
JP5391901B2 (en) Manufacturing method of fiber reinforced resin gear
KR20050037501A (en) Bearing shell for a spherical joint and method for the production thereof
CN205244141U (en) Flanged modularization slide bearing
US20160339611A1 (en) Thermoplastic composite part and method of fabrication
CN112996653B (en) FRP forming system and method
JP6277858B2 (en) Method for manufacturing roller bearing cage and method for assembling roller bearing
JP6676447B2 (en) Manufacturing method of molded body
US9579853B2 (en) Method for making a molded composite article
JP2018153950A (en) Method of manufacturing composite structure of CFRP member and metal member
CN103465436B (en) The manufacture method of the fibre-reinforced products of tool combining mechanism
CN202250805U (en) Combined piston for vehicles
WO2015141299A1 (en) Joined component, manufacturing method for same, and forming mold
JP2013132647A (en) Brazed bonded components
KR20150094085A (en) Manufacturing Method of Wheel Using Insulation Fiber Fabric and Wheel Manufactured by the Same
JP2016112779A (en) Continuous fiber-reinforced resin member and method for producing continuous fiber-reinforced resin member
JP6776635B2 (en) Fastening member fixing structure of resin member
JP7340704B2 (en) FRP molding system and method
KR102124252B1 (en) Rotating roll die for special material cold rolling
JP6911957B2 (en) Manufacturing method of fiber reinforced composite molded product
JP6164553B2 (en) Method for manufacturing sintered parts