JP2016008240A - Powdery particulate resin composition for compression molding and resin sealing type semiconductor device - Google Patents

Powdery particulate resin composition for compression molding and resin sealing type semiconductor device Download PDF

Info

Publication number
JP2016008240A
JP2016008240A JP2014128554A JP2014128554A JP2016008240A JP 2016008240 A JP2016008240 A JP 2016008240A JP 2014128554 A JP2014128554 A JP 2014128554A JP 2014128554 A JP2014128554 A JP 2014128554A JP 2016008240 A JP2016008240 A JP 2016008240A
Authority
JP
Japan
Prior art keywords
resin composition
resin
compression molding
curing accelerator
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014128554A
Other languages
Japanese (ja)
Other versions
JP6235969B2 (en
Inventor
俊幸 山根
Toshiyuki Yamane
俊幸 山根
前田 剛
Takeshi Maeda
剛 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Chemical Corp
Original Assignee
Kyocera Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Chemical Corp filed Critical Kyocera Chemical Corp
Priority to JP2014128554A priority Critical patent/JP6235969B2/en
Publication of JP2016008240A publication Critical patent/JP2016008240A/en
Application granted granted Critical
Publication of JP6235969B2 publication Critical patent/JP6235969B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a powdery particulate resin composition for compression molding which is suitable for a compression molding method, is excellent in adhesiveness to a semiconductor element and is a sealing material having good moldability, and to provide a resin sealing type semiconductor device using the same.SOLUTION: There are provided a powdery particulate resin composition for compression molding which is a resin composition for sealing comprising (A) an epoxy resin, (B) a phenol curing agent, (C) a curing accelerator, (D) spherical silica and (E) a coumarone-based resin as essential components, wherein the (C) curing accelerator contains (c1) an imidazole-based curing accelerator and (c2) a phosphorus-based curing accelerator and 75 to 95 mass% of the (D) spherical silica is contained based on the total amount of the resin composition; and a resin sealing type semiconductor device obtained by sealing a semiconductor element using the resin composition.

Description

本発明は、半導体素子等の電子部品の封止材料として使用される圧縮成形用粉粒状樹脂組成物、及びこれを用いた樹脂封止型半導体装置に関する。   The present invention relates to a powdery resin composition for compression molding used as a sealing material for electronic components such as semiconductor elements, and a resin-encapsulated semiconductor device using the same.

トランジスタ、IC、LSI等の半導体装置における封止材料として、エポキシ樹脂をベースとし、これに硬化剤や硬化促進剤、さらにはシリカ粉末等の無機充填材、着色剤等を配合した樹脂組成物が広く用いられている。
従来、このような封止材料を用いた封止プロセスは、トランスファ成形が一般的であった。しかし、近時、半導体素子上の封止の厚みが薄かったり、あるいはボンディングワイヤが細線かつ長い揚合に有用な方法として、圧縮成形法が注目されてきている。
すなわち、近年、電子部品のプリント配線板への高密度実装化に伴い、半導体装置はピン挿入型のパッケージから表面実装型のパッケージにその主流が移ってきており、さらに、表面実装型パッケージも薄型化・小型化が進んでいる。薄型化・小型化された表面実装型パッケージでは、半導体素子のパッケージに対する占有体積も大きくなり、半導体素子を覆う被覆の肉厚は薄くなってきている。また、半導体素子の多機能化、大容量化に伴い、チップ面積の増大、多ピン化が進み、さらには電極パッド数の増加によって、パッドピッチ、パッドサイズの縮小化、いわゆる狭パッドピッチ化も進んでいる。
As a sealing material in semiconductor devices such as transistors, ICs, LSIs, etc., there is a resin composition based on an epoxy resin, in which a curing agent, a curing accelerator, an inorganic filler such as silica powder, and a coloring agent are blended. Widely used.
Conventionally, transfer molding is generally used as a sealing process using such a sealing material. However, recently, a compression molding method has been attracting attention as a method useful for assembling a thin sealing wire on a semiconductor element or forming a long and thin bonding wire.
In other words, with the recent trend toward high-density mounting of electronic components on printed wiring boards, the mainstream of semiconductor devices has shifted from pin insertion type packages to surface mounting type packages, and surface mounting type packages have also become thinner. Downsizing and downsizing. In the surface mount type package that has been reduced in thickness and size, the occupied volume of the semiconductor element relative to the package has increased, and the thickness of the coating covering the semiconductor element has been reduced. In addition, with the increase in the functionality and capacity of semiconductor elements, the chip area and the number of pins have increased, and further, the increase in the number of electrode pads has led to a reduction in pad pitch and pad size, so-called narrow pad pitch. Progressing.

―方、半導体素子を搭載する基板は、半導体素子ほどの電極パッドの狭ピッチ化ができないため、半導体装置から引き出すボンディングワイヤのワイヤ長を長くしたり、ワイヤを細線化したりすることにより多端子化に対応している。しかしながら、ワイヤが細くなると、後の樹脂封止工程でワイヤが樹脂の注入圧力により流されやすくなる。特に、サイドゲート方式のトランスファ成形ではこの傾向が著しい。   -On the other hand, the substrate on which the semiconductor element is mounted cannot be made as narrow as the electrode pads as much as the semiconductor element, so the number of terminals can be increased by increasing the wire length of the bonding wire drawn from the semiconductor device or by making the wire thinner. It corresponds to. However, if the wire becomes thin, the wire is likely to be flowed by the injection pressure of the resin in the subsequent resin sealing step. This tendency is particularly remarkable in the side gate type transfer molding.

そこで、トランスファ成形法に代わる封止プロセスとして、圧縮成形法が用いられるようになってきている(例えば、特許文献1参照)。この方法は、被封止物(例えば、半導体素子を実装した基板等)を上型に吸着させる一方、これに対向させるように、下型に粉粒状樹脂(封止材料)を供給し、下型を上昇させながら、被封止物と封止材料を加圧して封止成形するものである。圧縮成形法によれば、溶融した粉粒状樹脂が被封止物の主面と略平行な方向に流動するため、流動量を少なくすることができ、樹脂の流れによる被封止物(例えば、半導体素子を実装した基板におけるワイヤや配線等)の変形・破損を低減させることが期待できる。   Therefore, a compression molding method has been used as a sealing process instead of the transfer molding method (see, for example, Patent Document 1). In this method, an object to be sealed (for example, a substrate on which a semiconductor element is mounted) is adsorbed to the upper mold, while powder resin (sealing material) is supplied to the lower mold so as to oppose it. While raising the mold, the object to be sealed and the sealing material are pressurized and sealed. According to the compression molding method, since the molten granular resin flows in a direction substantially parallel to the main surface of the object to be sealed, the amount of flow can be reduced, and the object to be sealed by the flow of the resin (for example, It can be expected to reduce deformation and breakage of wires, wirings, and the like on a substrate on which a semiconductor element is mounted.

このような圧縮成形法に適した封止材料としては、例えば、エポキシ樹脂、硬化剤、硬化促進剤、無機充填材等を含有し、粒径100μm〜3mmの粒子が85質量%以上である粒度分布を有する粉粒状の樹脂組成物が提案されている(例えば、特許文献2参照)。
しかしながら、薄型化・小型化された表面実装型パッケージでは、半導体素子のパッケージに対する占有体積が大きくなり、半導体素子を覆う封止材料の肉厚が益々薄くなってきていることから半導体素子と封止材料との接着強度の向上が求められていた。
また、従来から半導体素子表面には応力緩和のために、ポリイミド樹脂によるパッシベーション膜を形成するバッファーコートが行われてきていたが、コストダウンを目的にパッシベーション膜の省略が検討されている。
しかしながら、パッシベーション膜を省略すると、封止材料と半導体素子の保護層である窒化珪素との接着性が低下し、リフロー時に剥離が発生するおそれがあった。そこで、窒化珪素との接着性に優れる封止材料である封止用樹脂組成物が求められていた。
例えば、クマロン系樹脂を用いて半導体素子に対する接着性等を向上させることが提案されている(例えば、特許文献3〜5参照)。
しかしながら、クマロン系樹脂を用いたとしても他の条件が満たされないと成形体の内部および外部にボイドが発生、すなわち、成形性が悪く接着力が十分でない場合があり、さらなる改善が求められている。
As a sealing material suitable for such a compression molding method, for example, an epoxy resin, a curing agent, a curing accelerator, an inorganic filler and the like are included, and a particle size of 100 μm to 3 mm is 85% by mass or more. A granular resin composition having a distribution has been proposed (see, for example, Patent Document 2).
However, in the surface mount type package that has been reduced in thickness and size, the occupied volume of the semiconductor element in the package has increased, and the thickness of the sealing material that covers the semiconductor element has become increasingly thinner. There has been a demand for improvement in adhesive strength with materials.
Conventionally, a buffer coating for forming a passivation film with a polyimide resin has been performed on the surface of a semiconductor element in order to relieve stress. However, the omission of the passivation film has been studied for the purpose of cost reduction.
However, if the passivation film is omitted, the adhesion between the sealing material and silicon nitride which is a protective layer of the semiconductor element is lowered, and there is a possibility that peeling occurs during reflow. Therefore, a sealing resin composition that is a sealing material excellent in adhesiveness with silicon nitride has been demanded.
For example, it has been proposed to improve adhesion to a semiconductor element using a coumarone-based resin (see, for example, Patent Documents 3 to 5).
However, even if a coumarone resin is used, if other conditions are not satisfied, voids are generated inside and outside of the molded body, that is, the moldability is poor and the adhesive force may not be sufficient, and further improvement is required. .

特開2008−279599号公報JP 2008-279599 A 特開2011−153173号公報JP 2011-153173 A 特開平10−279638号公報JP-A-10-279638 特開2000−198817号公報JP 2000-198817 A 特開2001−40179号公報JP 2001-40179 A

本発明は、上記従来技術の課題を解決するためになされたもので、圧縮成形法に好適で、半導体素子等の電子部品との接着性に優れると共に、ワイヤ流れ率が小さく、耐リフロー性に優れ、成形性の良好な封止材料である圧縮成形用粉粒状樹脂組成物、及びその樹脂組成物を用いた樹脂封止型半導体装置を提供することを目的としている。   The present invention has been made to solve the above-mentioned problems of the prior art, is suitable for compression molding, has excellent adhesion to electronic parts such as semiconductor elements, has a low wire flow rate, and is resistant to reflow. An object of the present invention is to provide a powder resin composition for compression molding, which is an excellent sealing material with good moldability, and a resin-encapsulated semiconductor device using the resin composition.

すなわち、本発明は、
(1)(A)エポキシ樹脂、(B)フェノール硬化剤、(C)硬化促進剤、(D)球状シリカ、および(E)クマロン系樹脂を必須成分として含有する封止用樹脂組成物であって、前記(C)硬化促進剤が、(c1)イミダゾール系硬化促進剤及び(c2)リン系硬化促進剤を含有し、(D)球状シリカを、前記樹脂組成物全量基準で75〜95質量%含有することを特徴とする圧縮成形用粉粒状樹脂組成物、
(2)前記(E)クマロン系樹脂を前記(A)エポキシ樹脂100質量部に対して1〜10質量部含有する上記(1)に記載の圧縮成形用粉粒状樹脂組成物、
(3)前記(c1)イミダゾール系硬化促進剤及び(c2)リン系硬化促進剤の配合割合(c1)/(c2)が質量比で1/5〜1/1である上記(1)または(2)に記載の圧縮成形用粉粒状樹脂組成物、
(4)前記(E)クマロン系樹脂の軟化点が90〜140℃である上記(1)から(3)のいずれか1項に記載の圧縮成形用粉粒状樹脂組成物および
(5)上記(1)から(4)のいずれか1項に記載の圧縮成形用粉粒状樹脂組成物を用いて半導体素子を封止してなる樹脂封止型半導体装置
を提供する。
That is, the present invention
(1) A sealing resin composition containing (A) an epoxy resin, (B) a phenol curing agent, (C) a curing accelerator, (D) spherical silica, and (E) a coumarone-based resin as essential components. The (C) curing accelerator contains (c1) an imidazole curing accelerator and (c2) a phosphorus curing accelerator, and (D) spherical silica is 75 to 95 mass based on the total amount of the resin composition. %, A granular resin composition for compression molding,
(2) The granular resin composition for compression molding as described in (1) above, which contains 1 to 10 parts by mass of the (E) coumarone-based resin with respect to 100 parts by mass of the (A) epoxy resin.
(3) The above (1) or (1) or (1) or (1) in which the mixing ratio (c1) / (c2) of the (c1) imidazole curing accelerator and (c2) phosphorus curing accelerator is 1/5 to 1/1 by mass ratio. 2) a granular resin composition for compression molding according to 2),
(4) The powdered resin composition for compression molding according to any one of (1) to (3) above, wherein the softening point of the (E) coumarone-based resin is 90 to 140 ° C., and (5) the above ( A resin-encapsulated semiconductor device obtained by encapsulating a semiconductor element using the granular resin composition for compression molding according to any one of 1) to (4).

本発明によれば、半導体素子等の電子部品に対して高い接着力を示すと共に、ワイヤ流れ率が小さく、耐リフロー性に優れ、成形性の良好な封止材料である圧縮成形用粉粒状樹脂組成物が得られる。   ADVANTAGE OF THE INVENTION According to this invention, while showing high adhesive force with respect to electronic components, such as a semiconductor element, the wire flow rate is small, it is excellent in reflow resistance, and it is a sealing material with good moldability. A composition is obtained.

以下、本発明について詳細に説明する。
本発明において、成分(A)のエポキシ樹脂は、1分子内にエポキシ基を2個以上有するモノマー、オリゴマー、ポリマー全般であり、その分子量、分子構造を特に限定するものではないが、例えば、ビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂等の結晶性エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂等の多官能エポキシ樹脂;フェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂等のアラルキル型エポキシ樹脂;ジヒドロキシナフタレン型エポキシ樹脂、ジヒドロキシナフタレンの2量体をグリシジルエーテル化して得られるエポキシ樹脂等のナフトール型エポキシ樹脂;トリグリシジルイソシアヌレート、モノアリルジグリシジルイソシアヌレート等のトリアジン核含有エポキシ樹脂;ジシクロペンタジエン変性フェノール型エポキシ樹脂等の有橋環状炭化水素化合物変性フェノール型エポキシ樹脂が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。
Hereinafter, the present invention will be described in detail.
In the present invention, the epoxy resin of component (A) is a monomer, oligomer, or polymer in general having two or more epoxy groups in one molecule, and its molecular weight and molecular structure are not particularly limited. Type epoxy resins, bisphenol type epoxy resins, stilbene type epoxy resins and other crystalline epoxy resins; phenol novolac type epoxy resins, cresol novolac type epoxy resins and other novolak type epoxy resins; triphenolmethane type epoxy resins, alkyl-modified triphenolmethane Polyfunctional epoxy resins such as epoxy resins; aralkyl epoxy resins such as phenol aralkyl epoxy resins having a phenylene skeleton and phenol aralkyl epoxy resins having a biphenylene skeleton; dihydroxynaphthalene epoxy Resin, naphthol type epoxy resin such as epoxy resin obtained by glycidyl etherification of dihydroxynaphthalene dimer; triazine nucleus-containing epoxy resin such as triglycidyl isocyanurate, monoallyl diglycidyl isocyanurate; dicyclopentadiene modified phenol type epoxy Examples include bridged cyclic hydrocarbon compound-modified phenol type epoxy resins such as resins, and these may be used alone or in combination of two or more.

本発明において、成分(B)のフェノール硬化剤はエポキシ樹脂の硬化剤として一般に使用される1分子中に2個以上のフェノール性水酸基を有するフェノール化合物であればよく、特に制限されるものではない。具体的には、レゾールシン、カテコール、ビスフェノールA、ビスフェノールF、置換又は非置換のビフェノール等の1分子中に2個のフェノール性水酸基を有する化合物、フェノール、クレゾール、キシレノール、レゾールシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール、アミノフェノール等のフェノール類及び/又はα−ナフトール、β−ナフトール、ジヒドロキシナフタレン等のナフトール類とホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド、サリチルアルデヒド等のアルデヒド類とを酸性触媒下で縮合又は共縮合させて得られるノボラック型フェノール樹脂、フェノール類及びナフトール類から選ばれる少なくとも1種とジメトキシパラキシレンやビス(メトキシメチル)ビフェニルから合成されるフェノールアラルキル樹脂、ナフトールアラルキル樹脂等のアラルキル型フェノール樹脂、パラキシリレン及びメタキシリレン変性フェノール樹脂から選ばれる少なくとも1種、メラミン変性フェノール樹脂、テルペン変性フェノール樹脂、フェノール類及びナフトール類から選ばれる少なくとも1種とジシクロペンタジエンから共重合により合成される、ジシクロペンタジエン型フェノール樹脂、ジシクロペンタジエン型ナフトール樹脂、シクロペンタジエン変性フェノール樹脂、多環芳香環変性フェノール樹脂、ビフェニル型フェノール樹脂;トリフェニルメタン型フェノール樹脂、これら樹脂の2種以上を共重合して得たフェノール樹脂が挙げられる。これらは1種を単独で用いても2種以上を組み合わせて用いても良い。
成分(B)は成分(A)のエポキシ樹脂に対して、当量比で0.5〜1.5の範囲で配合される。
In the present invention, the phenol curing agent of component (B) is not particularly limited as long as it is a phenol compound having two or more phenolic hydroxyl groups in one molecule generally used as a curing agent for epoxy resins. . Specifically, compounds having two phenolic hydroxyl groups in one molecule such as resorcin, catechol, bisphenol A, bisphenol F, substituted or unsubstituted biphenol, phenol, cresol, xylenol, resorcin, catechol, bisphenol A, Under acidic catalysis of phenols such as bisphenol F, phenylphenol, aminophenol and / or naphthols such as α-naphthol, β-naphthol, dihydroxynaphthalene and aldehydes such as formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde, salicylaldehyde At least one selected from a novolak-type phenolic resin, phenols and naphthols obtained by condensation or co-condensation with dimethoxyparaxylene or bis (methoxyme From at least one selected from aralkyl-type phenol resins synthesized from (til) biphenyl, aralkyl-type phenol resins such as naphthol aralkyl resins, paraxylylene and metaxylylene-modified phenol resins, melamine-modified phenol resins, terpene-modified phenol resins, phenols and naphthols Dicyclopentadiene type phenol resin, dicyclopentadiene type naphthol resin, cyclopentadiene modified phenol resin, polycyclic aromatic ring modified phenol resin, biphenyl type phenol resin synthesized by copolymerization from at least one selected from dicyclopentadiene; Examples thereof include triphenylmethane type phenol resins and phenol resins obtained by copolymerizing two or more of these resins. These may be used alone or in combination of two or more.
Component (B) is blended in an equivalent ratio of 0.5 to 1.5 with respect to the epoxy resin of component (A).

本発明において、成分(C)の硬化促進剤は成分(c1)のイミダゾール系硬化促進剤及び成分(c2)のリン系硬化促進剤の両方を含有することを要する。
前記成分(C)の硬化促進剤が成分(c1)のイミダゾール系硬化促進剤のみでは、接着力が十分ではなく、リフロー時に半導体素子と封止樹脂との界面で剥離が発生するおそれがあり、成分(c2)のリン系硬化促進剤のみでは、硬化性に劣り成形後の樹脂硬化物内部及び表面に膨れに起因するボイドが発生するおそれがあるため好ましくない。
In the present invention, the curing accelerator of component (C) needs to contain both the imidazole curing accelerator of component (c1) and the phosphorus curing accelerator of component (c2).
If the component (C) curing accelerator is only the imidazole curing accelerator of the component (c1), the adhesive force is not sufficient, and there is a possibility that peeling occurs at the interface between the semiconductor element and the sealing resin during reflow, Only the phosphorus-based curing accelerator of component (c2) is not preferable because it is inferior in curability and may cause voids due to swelling inside and on the surface of the cured resin after molding.

前記成分(c1)のイミダゾール系硬化促進剤及び前記成分(c2)のリン系硬化促進剤の配合割合(c1)/(c2)は、質量比で1/5〜1/1であることが好ましく、1/3〜1/1がより好ましい。前記配合割合が前記範囲に対して、成分(c1)のイミダゾール系硬化促進剤が多いと、接着力が十分ではなくリフロー時に半導体素子と封止樹脂との界面で剥離が発生するおそれがあり、成分(c2)のリン系硬化促進剤が多いと、硬化性に劣り成形後の樹脂硬化物内部及び表面に膨れに起因するボイドが発生するおそれがあるため好ましくない。   The mixing ratio (c1) / (c2) of the imidazole curing accelerator of the component (c1) and the phosphorus curing accelerator of the component (c2) is preferably 1/5 to 1/1. 1/3 to 1/1 is more preferable. If the blending ratio is large relative to the above range, the imidazole curing accelerator of the component (c1) is large, there is a risk that peeling will occur at the interface between the semiconductor element and the sealing resin when the reflow is not sufficient, If the amount of the phosphorus-based curing accelerator of component (c2) is large, it is not preferable because the curability is poor and voids due to swelling may occur in the resin cured product and on the surface after molding.

さらに、前記成分(C)の硬化促進剤の配合量は成分(A)のエポキシ樹脂、成分(B)のフェノール硬化剤の合計量100質量部に対して、通常、0.2〜5.0質量部程度、好ましくは0.5〜2.0質量部の範囲で選定される。   Furthermore, the compounding amount of the curing accelerator of component (C) is usually 0.2 to 5.0 with respect to 100 parts by mass of the total amount of the epoxy resin of component (A) and the phenol curing agent of component (B). It is selected in the range of about part by mass, preferably 0.5 to 2.0 parts by mass.

前記成分(c1)のイミダゾール系硬化促進剤としては、2−ヘプタデシルイミダソゾール、2−メチルイミダゾール、2−エチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、4−メチルイミダゾール、4−エチルイミダゾール、2−フェニル−4−ヒドロキシメチルイミダゾール、2−エチル−4−メチルイミダゾール、1−シアノエチル−2−メチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール、2−フェニル−4、5−ジヒドロキシメチルイミダゾール等を挙げることができる。
中でも、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール(2P4MHZ)および2−ヘプタデシルイミダゾール(C17Z−T)は硬化性が良好であることから好ましく用いられる。
Examples of the imidazole curing accelerator of the component (c1) include 2-heptadecylimidazolazol, 2-methylimidazole, 2-ethylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 4-methylimidazole. 4-ethylimidazole, 2-phenyl-4-hydroxymethylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-methylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2- And phenyl-4,5-dihydroxymethylimidazole.
Of these, 2-phenyl-4-methyl-5-hydroxymethylimidazole (2P4MHZ) and 2-heptadecylimidazole (C17Z-T) are preferably used because of their good curability.

前記成分(c2)のリン系硬化促進剤としては、トリフェニルホスフィン、トリブチルホスフィン、トリ(p−トリル)ホスフィン、トリ(p−メトキシフェニル)ホスフィン、トリ(p−エトキシフェニル)ホスフィン、トリフェニルホスフィン・トリフェニルボレート、テトラフェニルホスホニウム・テトラフェニルボレート等のトリオルガノホスフィン類や四級ホスホニウム塩等を挙げることができる。
中でも、トリ(p−トリル)ホスフィン(TPTP)は、低弾性化による耐リフロー性が良好であることから好ましく用いられる。
なお、本発明の圧縮成形用粉粒状樹脂組成物には上記(c1)および(c2)以外の硬化促進剤を添加することができる。(c1)および(c2)以外の硬化促進剤としては、ベンジルジメチルアミンのような3級アミン化合物、1,8−ジアザビシクロ[5.4.0]ウンデセン−7のフェノール塩やフェノールノボラック塩、炭酸塩などの誘導体等を挙げることができる。(c1)および(c2)以外の硬化促進剤の添加量は(c1)および(c2)100質量部に対して100質量部以下とすることが好ましい。
Examples of the phosphorus-based curing accelerator for the component (c2) include triphenylphosphine, tributylphosphine, tri (p-tolyl) phosphine, tri (p-methoxyphenyl) phosphine, tri (p-ethoxyphenyl) phosphine, and triphenylphosphine. -Triorganophosphines such as triphenylborate, tetraphenylphosphonium and tetraphenylborate, and quaternary phosphonium salts.
Among these, tri (p-tolyl) phosphine (TPTP) is preferably used because it has good reflow resistance due to low elasticity.
In addition, hardening accelerators other than said (c1) and (c2) can be added to the granular resin composition for compression molding of this invention. Curing accelerators other than (c1) and (c2) include tertiary amine compounds such as benzyldimethylamine, phenol salts and phenol novolac salts of 1,8-diazabicyclo [5.4.0] undecene-7, carbonic acid Derivatives such as salts can be mentioned. The addition amount of the curing accelerator other than (c1) and (c2) is preferably 100 parts by mass or less with respect to 100 parts by mass of (c1) and (c2).

本発明において、成分(D)の球状シリカの配合割合は樹脂組成物全量基準で75質量%〜95質量%であることを要し、好ましくは、82質量%〜91質量%である。球状シリカの配合割合を樹脂組成物全体の75質量%以上とすることにより、線膨張係数が増大して成形品の寸法精度、耐温性、機械的強度、などが低下するのを防止する。逆に、95質量%以下とすることにより、溶融粘度が増大して流動性が低下したり、成形性が低下して実用が困難になってしまうのを防止する。   In the present invention, the proportion of the component (D) spherical silica is required to be 75% by mass to 95% by mass based on the total amount of the resin composition, and preferably 82% by mass to 91% by mass. By setting the blending ratio of the spherical silica to 75% by mass or more of the entire resin composition, it is possible to prevent the linear expansion coefficient from increasing and the dimensional accuracy, temperature resistance, mechanical strength, etc. of the molded product from being lowered. On the contrary, by setting it as 95 mass% or less, it prevents that melt viscosity increases and fluidity | liquidity falls, or a moldability falls and it becomes difficult to use practically.

前記成分(D)の球状シリカの平均粒径は5μm〜30μmであることが好ましく、平均粒径を5μm以上とすることにより、流動性が低下し、成形性が損なわれるのを防止する。また、平均粒径を30μm以下とすることにより、発泡しやすくなるのを防止する。
前記球状シリカには溶融シリカ粉末を混合しても良い。
この成分(D)の球状シリカ100質量部に対する溶融シリカ粉末の配合割合は、80〜100質量部であることが好ましく、さらに好ましくは90〜100質量部である。
80質量%以上とすることにより、耐反り特性が低下してしまうのを防止する。なお、溶融シリカ粉末以外には、結晶シリカ、微細合成シリカを配合することができる。
微細合成シリカを適量配合することによって、流動性、成形性が良好となる。
The average particle size of the spherical silica of the component (D) is preferably 5 μm to 30 μm. By setting the average particle size to 5 μm or more, the fluidity is lowered and the moldability is prevented from being impaired. Moreover, it becomes easy to foam by making an average particle diameter 30 micrometers or less.
The spherical silica may be mixed with fused silica powder.
The blending ratio of the fused silica powder to 100 parts by mass of the spherical silica of component (D) is preferably 80 to 100 parts by mass, and more preferably 90 to 100 parts by mass.
By setting it as 80 mass% or more, it prevents that a curvature-proof characteristic falls. In addition to the fused silica powder, crystalline silica and fine synthetic silica can be blended.
By blending an appropriate amount of fine synthetic silica, fluidity and moldability are improved.

本発明において、成分(E)のクマロン系樹脂としては、例えば、以下の一般式(1)で表される骨格を有する樹脂が挙げられる。   In the present invention, examples of the coumarone resin of component (E) include resins having a skeleton represented by the following general formula (1).

Figure 2016008240
(1)
Figure 2016008240
(1)

上式において、uは0又は1以上の整数、vは0又は1以上の整数、wは0又は1以上の整数を示す。但し、uとvは同時に0にはならない。このようなクマロン系樹脂としては、ニットレジンクマロンG-90(軟化点90℃)、ニットレジンクマロンG-100N(軟化点100℃)、ニットレジンクマロンV−120(軟化点120℃)〔以上、日塗化学(株)製〕が挙げられる。
本発明において、前記成分(E)のクマロン系樹脂を成分(A)のエポキシ樹脂100質量部に対して1〜10質量部含有することが好ましく、1〜7質量部であることがより好ましく、2〜6質量部であることがさらに好ましく、2〜5質量部であることが特に好ましい。
成分(E)のクマロン系樹脂の含有量が、1質量部未満では十分な接着力が得られず、リフロー時に半導体素子と封止樹脂との界面で剥離が発生するおそれがあり、10質量部よりも多いと硬化性が阻害され成形後の樹脂硬化物内部及び表面に膨れに起因するボイドが発生するおそれがあるため好ましくない。
In the above formula, u is 0 or an integer of 1 or more, v is 0 or an integer of 1 or more, and w is 0 or an integer of 1 or more. However, u and v are not 0 at the same time. Examples of such coumarone resins include knit resin coumarone G-90 (softening point 90 ° C.), knit resin coumarone G-100N (softening point 100 ° C.), and knit resin coumarone V-120 (softening point 120 ° C.). [Nippon Chemical Co., Ltd.].
In this invention, it is preferable to contain 1-10 mass parts with respect to 100 mass parts of epoxy resins of a component (A), and it is more preferable that it is 1-7 mass parts. It is more preferable that it is 2-6 mass parts, and it is especially preferable that it is 2-5 mass parts.
If the content of the coumarone resin of component (E) is less than 1 part by mass, sufficient adhesive strength cannot be obtained, and peeling may occur at the interface between the semiconductor element and the sealing resin during reflow. If it is more than the range, the curability is hindered, and voids resulting from swelling in the cured resin cured product and on the surface are not preferable.

さらに、前記成分(E)のクマロン系樹脂の軟化点は90〜140℃であることが好ましく、100〜140℃であることがさらに好ましい。クマロン系樹脂の軟化点を90℃以上とすることにより、成形後の樹脂硬化物表面にクマロン系樹脂が滲み出し、外観異常が発生するのを防止する。軟化点を140℃以下とすることにより、混練時の分散性が不十分となり、溶解し終わっていないクマロン系樹脂が樹脂組成物中に偏在し、内部ボイドや、成形後の樹脂硬化物表面にフクレ状の外観異常が発生するのを防止する。
これらは半導体封止時に樹脂の流動範囲が小さい圧縮成形法において特に顕著に現れる。
Furthermore, the softening point of the coumarone resin of the component (E) is preferably 90 to 140 ° C, and more preferably 100 to 140 ° C. By setting the softening point of the coumarone-based resin to 90 ° C. or higher, it is possible to prevent the coumarone-based resin from oozing out on the surface of the cured resin product after molding and causing appearance abnormality. By setting the softening point to 140 ° C. or lower, the dispersibility at the time of kneading becomes insufficient, and the coumarone-based resin that has not been dissolved is unevenly distributed in the resin composition, and is formed on the internal voids or the surface of the cured resin after molding. Prevents blister-like appearance abnormalities.
These are particularly prominent in compression molding methods in which the resin flow range is small during semiconductor encapsulation.

また、本発明の圧縮成形用粉粒状樹脂組成物中には、以上の各成分の他、本発明の効果を阻害しない範囲で、この種の組成物に一般に配合される前記成分(D)以外の無機充填材〔アルミナ、チッ化ケイ素、チッ化アルミ等〕、カップリング剤、合成ワックス、天然ワックス、高級脂肪酸、高級脂訪酸の金属塩等の離型剤、カーボンブラック、コバルトブルーなどの着色剤、シリコーンオイル、シリコーンゴムなどの改質剤、ハイドロタルサイト類のようなイオン捕捉剤などを配合することができる。
カップリング剤としては、エポキシシラン系、アミノシラン系、ウレイドシラン系、ビニルシラン系、アルキルシラン系、有機チタネート系、アルミニウムアルコレート系などのカップリング剤が使用される。これらは単独または2種以上混合して使用することができる。難燃性および硬化性の観点からは、中でも、アミノシラン系カップリング剤が好ましく、特に、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ一アミノプロピルメチルジメトキシシラン、γ−アミノプロピルメチルジエトキシシランなどが好ましい。
上記成分の配合量は圧縮成形用粉粒状樹脂組成物中、0.05〜3質量%程度、好ましくは0.1〜1質量%程度である。
本発明の圧縮成形用粉粒状樹脂組成物を調製するにあたっては、前記成分(A)〜(D)、および、前述した必要に応じて配合される各種成分を、ミキサーなどによって十分に混合した後、熱ロール、ニーダ等により加熱溶融混合処理を行い、樹脂組成物を調製する。ついで、樹脂組成物を冷却固化させ適当な大きさに粉砕した後、粉砕物を篩にかけて分級する。粒度0.2mm〜3.0mmが95質量%以上含まれるものが本発明の圧縮成形用粉粒状樹脂組成物として好ましく用いられる。
Moreover, in the granular resin composition for compression molding of the present invention, in addition to the above components, the component (D) other than the component (D) generally blended in this type of composition as long as the effects of the present invention are not impaired. Inorganic fillers (alumina, silicon nitride, aluminum nitride, etc.), coupling agents, synthetic waxes, natural waxes, higher fatty acids, release agents such as higher fatty acid acids, carbon black, cobalt blue, etc. Colorants, modifiers such as silicone oil and silicone rubber, and ion scavengers such as hydrotalcites can be blended.
As the coupling agent, an epoxy silane, amino silane, ureido silane, vinyl silane, alkyl silane, organic titanate, aluminum alcoholate, or the like is used. These can be used alone or in admixture of two or more. From the viewpoints of flame retardancy and curability, aminosilane-based coupling agents are preferred, and in particular, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropylmethyldimethoxysilane, γ-amino. Propylmethyldiethoxysilane and the like are preferable.
The compounding amount of the above components is about 0.05 to 3% by mass, preferably about 0.1 to 1% by mass, in the granular resin composition for compression molding.
In preparing the powdered resin composition for compression molding of the present invention, the components (A) to (D) and various components to be blended as necessary are mixed thoroughly by a mixer or the like. Then, heat melting and mixing treatment is performed by a hot roll, a kneader or the like to prepare a resin composition. Next, the resin composition is solidified by cooling and pulverized to an appropriate size, and the pulverized product is classified through a sieve. Those containing 95% by mass or more of particles having a particle size of 0.2 mm to 3.0 mm are preferably used as the granular resin composition for compression molding of the present invention.

本発明の圧縮成形用粉粒状樹脂組成物を調製するための粉砕方法については特に制限されず、一般的な粉砕機を用いることができる。好ましくは、カッティングミル、ボールミル、サイクロンミル、ハンマーミル、振動ミル、カッターミル、グラインダーミルであり、さらに好ましくは、スピードミルである。
分級工程では、上記粉砕によって得られた樹脂組成物の粉砕物を、篩いにかけて分級またはエアー分級によって所定の粒度分布を持つ粒子集合体、すなわち、本発明の圧縮成形用粉粒状樹脂組成物が得られる。
7〜500メッシュ程度の篩を用いて分級すると本発明の樹脂封止型半導体装置に良好に適用できる圧縮成形用粉粒状樹脂組成物が得られる。
The pulverization method for preparing the granular resin composition for compression molding of the present invention is not particularly limited, and a general pulverizer can be used. A cutting mill, a ball mill, a cyclone mill, a hammer mill, a vibration mill, a cutter mill, and a grinder mill are preferable, and a speed mill is more preferable.
In the classification step, the pulverized product of the resin composition obtained by the above pulverization is sieved to obtain a particle aggregate having a predetermined particle size distribution by classification or air classification, that is, a granular resin composition for compression molding of the present invention. It is done.
When classified using a sieve of about 7 to 500 mesh, a granular resin composition for compression molding that can be applied well to the resin-encapsulated semiconductor device of the present invention is obtained.

さらに、本発明の圧縮成形用粉粒状樹脂組成物においては、下記式で定義される圧縮度が12%〜19%であることが好ましく、さらに好ましくは13%〜18%である。
圧縮度(%)
=〔(タップかさ密度−初期かさ密度)/タップかさ密度〕×100
上式において、タップかさ密度、初期かさ密度はJIS R 1682の定義に準じて測定したものである。
圧縮度が12%〜19%の範囲であると、本発明の圧縮成形用粉粒状樹脂組成物は良好な融解性を発現し、成形性に優れるとともに、成形時のワイヤ流れ率も低減されるため好ましい。
本発明の圧縮成形用粉粒状樹脂組成物は、特に表面が窒化ケイ素処理された半導体素子に好適である。
Furthermore, in the granular resin composition for compression molding of the present invention, the degree of compression defined by the following formula is preferably 12% to 19%, and more preferably 13% to 18%.
Compressibility (%)
= [(Tap bulk density−initial bulk density) / tap bulk density] × 100
In the above formula, the tap bulk density and the initial bulk density are measured according to the definition of JIS R 1682.
When the degree of compression is in the range of 12% to 19%, the granular resin composition for compression molding of the present invention exhibits good melting properties, excellent moldability, and the wire flow rate during molding is reduced. Therefore, it is preferable.
The granular resin composition for compression molding of the present invention is particularly suitable for a semiconductor element having a surface treated with silicon nitride.

次に、本発明を実施例によりさらに詳細に説明する。なお、本発明はこれらの実施例に何ら限定されるものではない。   Next, the present invention will be described in more detail with reference to examples. In addition, this invention is not limited to these Examples at all.

〔実施例1〕
エポキシ樹脂としてNC−3000〔商品名、日本化薬(株)製のビフェニル型エポキシ樹脂;エポキシ当量285、軟化点56℃〕7.0質量部、フェノール硬化剤としてMEHC−7800M〔商品名、明和化成(株)製のフェノールアラルキル樹脂;水酸基当量173、軟化点81℃〕4.6質量部、イミダゾール系硬化促進剤として2P4MHZ〔商品名、四国化成(株)製の2−フェニル−4−ヒドロキシメチル−5−メチルイミダゾール〕0.03質量部、リン系硬化促進剤としてTPTP〔商品名、北興化学(株)製のトリ(p−トリル)ホスフィン〕0.05質量部、球状シリカとしてFB−105〔商品名、電気化学工業(株)製;平均粒径11μm〕86.3質量部、クマロン系樹脂としてV−120〔商品名、日塗化学(株)製、軟化点120℃〕0.3質量部、シランカップリング剤として3−フェニルアミノプロピルトリメトキシシラン〔東レ・ダウコーニング(株)製、商品名:Z−6883〕0.20質量部、及び着色剤としてカーボンブラック〔三菱化学(株)製、商品名:MA−600〕0.25質量部、難燃剤としてFP−100〔商品名、(株)伏見製薬所製〕0.20質量部、KW−2200〔商品名、協和化学工業(株)製のハイドロタルサイト〕0.30質量部を常温でミキサーを用いて混合した後、熱ロールを用いて120℃で加熟混練した。冷却後、五橋製作所(株)製のスピードミルを用いて粉砕した後、篩を通過させて圧縮度14.4%の圧縮成形用粉粒状樹脂組成物を得た。
[Example 1]
NC-3000 [trade name, biphenyl type epoxy resin manufactured by Nippon Kayaku Co., Ltd .; epoxy equivalent 285, softening point 56 ° C.] 7.0 parts by mass as epoxy resin, MEHC-7800M [trade name, Meiwa] Phenol aralkyl resin manufactured by Kasei Co., Ltd .; 4.6 parts by mass of hydroxyl group equivalent 173, softening point 81 ° C., 2P4MHZ [trade name, 2-phenyl-4-hydroxy manufactured by Shikoku Kasei Co., Ltd.] Methyl-5-methylimidazole] 0.03 parts by mass, TPTP [trade name, tri (p-tolyl) phosphine made by Hokuko Chemical Co., Ltd.] 0.05 parts by mass as a phosphorus curing accelerator, FB- as spherical silica 105 [trade name, manufactured by Denki Kagaku Kogyo Co., Ltd .; average particle diameter 11 μm] 86.3 parts by mass, V-120 [trade name, Nisshinka] as coumarone-based resin Co., Ltd., softening point 120 ° C.] 0.3 parts by mass, 3-phenylaminopropyltrimethoxysilane [Toray Dow Corning Co., Ltd., trade name: Z-6883] 0.20 mass as a silane coupling agent Parts, and carbon black as a colorant [Mitsubishi Chemical Co., Ltd., trade name: MA-600] 0.25 parts by mass, flame retardant as FP-100 [trade name, manufactured by Fushimi Pharmaceutical Co., Ltd.] 0.20 Mass part, KW-2200 [trade name, hydrotalcite manufactured by Kyowa Chemical Industry Co., Ltd.] 0.30 part by mass was mixed at room temperature using a mixer, and then ripened and kneaded at 120 ° C. using a hot roll. . After cooling, the mixture was pulverized using a speed mill manufactured by Gohashi Seisakusho, and then passed through a sieve to obtain a granular resin composition for compression molding having a degree of compression of 14.4%.

〔実施例2〕
前記V−120を1.05質量部とした以外は、実施例1と同様にして圧縮度15.7%の圧縮成形用粉粒状樹脂組成物を得た。
[Example 2]
A granular resin composition for compression molding having a degree of compression of 15.7% was obtained in the same manner as in Example 1 except that V-120 was changed to 1.05 parts by mass.

〔実施例3〕
前記2P4MHZを0.02質量部、前記TPTPを0.08質量部混合した以外は実施例1と同様にして圧縮度14.7%の圧縮成形用粉粒状樹脂組成物を得た。
Example 3
A granular resin composition for compression molding having a degree of compression of 14.7% was obtained in the same manner as in Example 1 except that 0.02 parts by mass of 2P4MHZ and 0.08 parts by mass of TPTP were mixed.

〔実施例4〕
前記2P4MHZの代わりにC17Z−T〔四国化成(株)製の2−ヘプタデシルイミダゾール〕を0.02質量部、前記TPTPを0.05質量部とした以外は、実施例1と同様にして圧縮度13.8%の圧縮成形用粉粒状樹脂組成物を得た。
Example 4
Compressed in the same manner as in Example 1 except that C2Z-T [2-heptadecylimidazole manufactured by Shikoku Kasei Co., Ltd.] instead of 2P4MHZ was changed to 0.02 parts by mass, and TPTP was changed to 0.05 parts by mass. A granular resin composition for compression molding having a degree of 13.8% was obtained.

〔実施例5〕
前記V−120の代わりに液状のクマロン系樹脂としてL−20〔商品名、日塗化学(株)製;室温で液状〕を0.15質量部配合した以外は、実施例1と同様にして圧縮度16.2%の圧縮成形用粉粒状樹脂組成物を得た。
Example 5
Except for blending 0.15 parts by mass of L-20 (trade name, manufactured by Nikkiso Chemical Co., Ltd .; liquid at room temperature) as a liquid coumarone-based resin instead of the V-120, the same as in Example 1. A granular resin composition for compression molding having a degree of compression of 16.2% was obtained.

〔比較例1〕
前記2P4MHZを配合せず、前記TPTPを0.10質量部配合した以外は、実施例1と同様にして圧縮度15.3%の圧縮成形用粉粒状樹脂組成物を得た。
[Comparative Example 1]
A granular resin composition for compression molding having a compression degree of 15.3% was obtained in the same manner as in Example 1 except that the 2P4MHZ was not blended and the TPTP was blended in an amount of 0.10 parts by mass.

〔比較例2〕
前記TPTPを配合せず、前記2P4MHZを0.06質量部配合した以外は、実施例1と同様にして圧縮度14.2%の圧縮成形用粉粒状樹脂組成物を得た。
[Comparative Example 2]
A granular resin composition for compression molding having a degree of compression of 14.2% was obtained in the same manner as in Example 1 except that the TPTP was not blended and the 2P4MHZ was blended in an amount of 0.06 parts by mass.

〔比較例3〕
前記V−120を配合しない以外は、実施例1と同様にして圧縮度13.9%の圧縮成形用粉粒状樹脂組成物を得た。
上記各実施例及び各比較例で得られた圧縮成形用粉粒状樹脂組成物について、下記に示す方法で各種特性を測定した。測定結果を配合組成等とともに表1に示す。
[Comparative Example 3]
A granular resin composition for compression molding having a degree of compression of 13.9% was obtained in the same manner as in Example 1 except that V-120 was not blended.
About the granular resin composition for compression molding obtained by each said Example and each comparative example, various characteristics were measured by the method shown below. The measurement results are shown in Table 1 together with the composition and the like.

測定項目と測定方法
[圧縮度]
ホソカワミクロン(株)製のパウダーテスターを用い、JIS R1628に準拠して、初期かさ密度(n=10の平均値)及びタップかさ密度(n=10の平均値)を測定し、前述の式(1)より算出した。なお、測定容器として、ステンレス鋼(SUS304)製の容積:100ccの有底円筒状の容器を使用した。また、タッピングはタップ高さ20mm、タップ速度60回/分、タップ時間3分間の条件で行った。
Measurement items and measurement method [Compression degree]
Using a powder tester manufactured by Hosokawa Micron Co., Ltd., the initial bulk density (average value of n = 10) and tap bulk density (average value of n = 10) were measured in accordance with JIS R1628. ). In addition, as a measurement container, a stainless steel (SUS304) volume: 100 cc bottomed cylindrical container was used. The tapping was performed under the conditions of a tap height of 20 mm, a tap speed of 60 times / minute, and a tap time of 3 minutes.

[スパイラルフロー]
EMMI−I−65に準じて、圧縮成形用粉粒状樹脂組成物を成形温度175℃および成形圧力9.8MPa、150秒の条件でスパイラルフローを測定した。
スパイラルフローは175以上であることが好ましい。
[Spiral flow]
In accordance with EMMI-I-65, the spiral flow was measured under conditions of a molding temperature of 175 ° C. and a molding pressure of 9.8 MPa for 150 seconds.
The spiral flow is preferably 175 or more.

[成形性]
20mm×20mm×1.05mmのFBGA(Fine pitch Ba11 Grid Array)を、圧縮成形用粉粒状樹脂組成物を用いて、金型温度175℃、成形圧力10.0MPa、硬化時間2分間の条件で圧縮成形した後、得られた成形品20個の外観を目視観察し、ボイドの発生状況を観察し、下記の基準により判定した。
さらに、超音波探傷装置〔日立建機ファインテック (株)製、FS300II〕により成形品の内部及び外部ボイドの発生状況を観察し、下記の基準により判定した。
○:外観異常またはボイドの発生なし
△:長径0.5mm以下のボイドが発生
×:長径0.5mmを超えるボイドが発生
[Formability]
20 mm x 20 mm x 1.05 mm FBGA (Fine pitch Ba11 Grid Array) is compressed using a granular resin composition for compression molding under conditions of a mold temperature of 175 ° C, a molding pressure of 10.0 MPa, and a curing time of 2 minutes. After molding, the appearance of the 20 molded products obtained was visually observed, the occurrence of voids was observed, and judged according to the following criteria.
Furthermore, the state of occurrence of internal and external voids in the molded product was observed with an ultrasonic flaw detector [manufactured by Hitachi Construction Machinery Finetech Co., Ltd., FS300II], and judged according to the following criteria.
○: Abnormal appearance or no generation of voids △: Generation of voids with a major axis of 0.5 mm or less ×: Generation of voids with a major axis exceeding 0.5 mm

[半導体素子との接着性]
表面が窒化ケイ素処理された半導体素子を準備し、この半導体素子の素子面との接着面積が4mm2になるように前記樹脂組成物を用いて、金型温度175℃、成形圧力10MPa、硬化時問3分間の条件で圧縮成形した後、175℃で8時間の後硬化を行ない、樹脂封止型半導体装置を作製した。次いで、ボンドテスター装置〔西進商事 (株)製、SS-30WD〕を用いて、260℃にて半導体素子の水平方向からプッシュプルゲージにて速度0.5mm/秒で力を加え、接着力を測定し、下記基準で半導体素子との接着性を判定した。
○:接着力が1.5MPa以上
△:接着力が1.0MPa以上、1.5MPa未満
×:接着力が1.0MPa未満
[Adhesiveness with semiconductor elements]
A semiconductor element whose surface was treated with silicon nitride was prepared, and the resin composition was used so that the adhesion area with the element surface of this semiconductor element was 4 mm 2 , a mold temperature of 175 ° C., a molding pressure of 10 MPa, and a curing time Q After compression molding for 3 minutes, post-curing was performed at 175 ° C. for 8 hours to produce a resin-encapsulated semiconductor device. Next, using a bond tester device (SS-30WD manufactured by Seishin Shoji Co., Ltd.), the force was applied at a speed of 0.5 mm / sec with a push-pull gauge from the horizontal direction of the semiconductor element at 260 ° C. Measurements were made and the adhesion to semiconductor elements was determined according to the following criteria.
○: Adhesive force is 1.5 MPa or more Δ: Adhesive force is 1.0 MPa or more and less than 1.5 MPa ×: Adhesive force is less than 1.0 MPa

[ワイヤ流れ率]
20mm×20mm×1.05mmのFGBAを、圧縮成形用粉粒状樹脂組成物を用いて、金型温度:175℃、成形圧力10MPa、硬化時間3分間の条件で圧縮成形した後、得られた成形品中のFBGA内部のワイヤをX線観察装置〔ポニー工業(株)製〕で観察し、最大変形部の変形率〔封止前のワイヤの位置と封止後のワイヤの位置との最大距離のワイヤの長さに対する比率(%)〕を求め、下記基準で判定した。
○:変形率が1%未満
△:変形率が1%以上、3%未満
×:変形率が3%以上
[Wire flow rate]
20 mm × 20 mm × 1.05 mm FGBA was compression molded using a powder resin composition for compression molding under conditions of a mold temperature: 175 ° C., a molding pressure of 10 MPa, and a curing time of 3 minutes. The wire inside the FBGA in the product is observed with an X-ray observation device (made by Pony Industry Co., Ltd.), and the deformation rate of the maximum deformation part [maximum distance between the position of the wire before sealing and the position of the wire after sealing The ratio of the wire length to the wire length (%)] was determined and judged according to the following criteria.
○: Deformation rate is less than 1% △: Deformation rate is 1% or more and less than 3% ×: Deformation rate is 3% or more

[耐リフロー性]
前記樹脂封止型半導体装置20個を、30℃、60%RHの恒温恒湿槽にて192時間吸湿させた後、260℃の赤外線リフロー炉中で加熟し、冷却後、剥離の有無を超音波探傷装置により観察し、剥離が発生した個数〔NG(クラック)数/20個〕を数えて耐リフロー性を判定した。
[Reflow resistance]
The 20 resin-encapsulated semiconductor devices were absorbed in a thermostatic chamber at 30 ° C. and 60% RH for 192 hours, then ripened in an infrared reflow oven at 260 ° C., and after cooling, the presence or absence of peeling was exceeded. Observation with a sonic flaw detector and the number of peels [NG (cracks) number / 20] were counted to determine the reflow resistance.

Figure 2016008240
Figure 2016008240

表1から下記のことがわかる。
比較例1で示されているように、成分(E)のクマロン系樹脂を実施例と同じ量添加しても硬化促進剤としてイミダゾール系硬化促進剤を併用しないと成形性やワイヤ流れ率が悪い。比較例2で示されているように、成分(E)のクマロン系樹脂を実施例と同じ量添加しても硬化促進剤としてリン系硬化促進剤を併用しないと接着力が低く、耐リフロー性が悪い。比較例3で示されているように、硬化促進剤としてイミダゾール系硬化促進剤とリン系硬化促進剤を併用したとしてもクマロン系樹脂を配合しないと接着力やワイヤ流れ率が若干低く、耐リフロー性が悪い。
Table 1 shows the following.
As shown in Comparative Example 1, even if the same amount of the coumarone-based resin of component (E) is added as in the examples, the moldability and wire flow rate are poor unless an imidazole-based curing accelerator is used as a curing accelerator. . As shown in Comparative Example 2, even when the same amount of the coumarone resin of component (E) is added as in the examples, the adhesive strength is low unless a phosphorus curing accelerator is used as a curing accelerator, and the reflow resistance is low. Is bad. As shown in Comparative Example 3, even if an imidazole curing accelerator and a phosphorus curing accelerator are used in combination as the curing accelerator, if the coumarone resin is not blended, the adhesive force and the wire flow rate are slightly low, and the reflow resistance The nature is bad.

本発明の圧縮成形用粉粒状樹脂組成物は半導体素子等の電子部品の封止材料の分野で好適に使用され、この樹脂組成物を用いた樹脂封止型半導体装置は信頼性が高い。   The powdered resin composition for compression molding of the present invention is suitably used in the field of sealing materials for electronic components such as semiconductor elements, and a resin-encapsulated semiconductor device using this resin composition has high reliability.

Claims (5)

(A)エポキシ樹脂、(B)フェノール硬化剤、(C)硬化促進剤、(D)球状シリカ、および(E)クマロン系樹脂を必須成分として含有する封止用樹脂組成物であって、前記(C)硬化促進剤が、(c1)イミダゾール系硬化促進剤及び(c2)リン系硬化促進剤を含有し、(D)球状シリカを、前記樹脂組成物全量基準で75〜95質量%含有することを特徴とする圧縮成形用粉粒状樹脂組成物。   A sealing resin composition containing (A) an epoxy resin, (B) a phenol curing agent, (C) a curing accelerator, (D) spherical silica, and (E) a coumarone-based resin as essential components, (C) The curing accelerator contains (c1) an imidazole-based curing accelerator and (c2) a phosphorus-based curing accelerator, and (D) spherical silica is contained in an amount of 75 to 95% by mass based on the total amount of the resin composition. A granular resin composition for compression molding characterized by the above. 前記(E)クマロン系樹脂を前記(A)エポキシ樹脂100質量部に対して1〜10質量部含有する請求項1に記載の圧縮成形用粉粒状樹脂組成物。   The granular resin composition for compression molding according to claim 1, comprising 1 to 10 parts by mass of the (E) coumarone-based resin with respect to 100 parts by mass of the (A) epoxy resin. 前記(c1)イミダゾール系硬化促進剤及び(c2)リン系硬化促進剤の配合割合(c1)/(c2)が質量比で1/5〜1/1である請求項1または2に記載の圧縮成形用粉粒状樹脂組成物。   The compression ratio according to claim 1 or 2, wherein a mixing ratio (c1) / (c2) of the (c1) imidazole-based curing accelerator and (c2) phosphorus-based curing accelerator is 1/5 to 1/1. A granular resin composition for molding. 前記(E)クマロン系樹脂の軟化点が90〜140℃である請求項1から3のいずれか1項に記載の圧縮成形用粉粒状樹脂組成物。   The granular resin composition for compression molding according to any one of claims 1 to 3, wherein the softening point of the (E) coumarone-based resin is 90 to 140 ° C. 請求項1から4のいずれか1項に記載の圧縮成形用粉粒状樹脂組成物を用いて半導体素子を封止してなる樹脂封止型半導体装置。   A resin-encapsulated semiconductor device obtained by encapsulating a semiconductor element using the powdery resin composition for compression molding according to any one of claims 1 to 4.
JP2014128554A 2014-06-23 2014-06-23 Powdered resin composition for compression molding and resin-encapsulated semiconductor device Active JP6235969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014128554A JP6235969B2 (en) 2014-06-23 2014-06-23 Powdered resin composition for compression molding and resin-encapsulated semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014128554A JP6235969B2 (en) 2014-06-23 2014-06-23 Powdered resin composition for compression molding and resin-encapsulated semiconductor device

Publications (2)

Publication Number Publication Date
JP2016008240A true JP2016008240A (en) 2016-01-18
JP6235969B2 JP6235969B2 (en) 2017-11-22

Family

ID=55226043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014128554A Active JP6235969B2 (en) 2014-06-23 2014-06-23 Powdered resin composition for compression molding and resin-encapsulated semiconductor device

Country Status (1)

Country Link
JP (1) JP6235969B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017160427A (en) * 2016-03-04 2017-09-14 京セラ株式会社 Resin composition for sealing and semiconductor device
JP2017179014A (en) * 2016-03-28 2017-10-05 味の素株式会社 Resin composition
KR20180063657A (en) * 2016-12-02 2018-06-12 주식회사 이온 Under-sink water purifier faucet and control method
JP2018168217A (en) * 2017-03-29 2018-11-01 住友ベークライト株式会社 Resin composition for encapsulation, and semiconductor device based on the same
JP2019172911A (en) * 2018-03-29 2019-10-10 京セラ株式会社 Resin composition and semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001040179A (en) * 1999-08-03 2001-02-13 Nitto Denko Corp Epoxy resin composition for sealing semiconductor and semiconductor device using the same
JP2009114325A (en) * 2007-11-06 2009-05-28 Kyocera Chemical Corp Epoxy resin molding compound for sealing use, and semiconductor device
JP2011132268A (en) * 2009-12-22 2011-07-07 Panasonic Electric Works Co Ltd Epoxy resin composition and semiconductor device
JP2012062448A (en) * 2010-09-17 2012-03-29 Kyocera Chemical Corp Resin composition for sealing semiconductor and resin-sealed semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001040179A (en) * 1999-08-03 2001-02-13 Nitto Denko Corp Epoxy resin composition for sealing semiconductor and semiconductor device using the same
JP2009114325A (en) * 2007-11-06 2009-05-28 Kyocera Chemical Corp Epoxy resin molding compound for sealing use, and semiconductor device
JP2011132268A (en) * 2009-12-22 2011-07-07 Panasonic Electric Works Co Ltd Epoxy resin composition and semiconductor device
JP2012062448A (en) * 2010-09-17 2012-03-29 Kyocera Chemical Corp Resin composition for sealing semiconductor and resin-sealed semiconductor device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017160427A (en) * 2016-03-04 2017-09-14 京セラ株式会社 Resin composition for sealing and semiconductor device
JP2017179014A (en) * 2016-03-28 2017-10-05 味の素株式会社 Resin composition
CN107236251A (en) * 2016-03-28 2017-10-10 味之素株式会社 Resin combination
KR20170113230A (en) * 2016-03-28 2017-10-12 아지노모토 가부시키가이샤 Resin composition
KR20210114901A (en) * 2016-03-28 2021-09-24 아지노모토 가부시키가이샤 Resin composition
KR102325456B1 (en) 2016-03-28 2021-11-15 아지노모토 가부시키가이샤 Resin composition
KR102376003B1 (en) 2016-03-28 2022-03-21 아지노모토 가부시키가이샤 Resin composition
KR20180063657A (en) * 2016-12-02 2018-06-12 주식회사 이온 Under-sink water purifier faucet and control method
JP2018168217A (en) * 2017-03-29 2018-11-01 住友ベークライト株式会社 Resin composition for encapsulation, and semiconductor device based on the same
JP2019172911A (en) * 2018-03-29 2019-10-10 京セラ株式会社 Resin composition and semiconductor device

Also Published As

Publication number Publication date
JP6235969B2 (en) 2017-11-22

Similar Documents

Publication Publication Date Title
JP5130912B2 (en) Epoxy resin composition and semiconductor device
JP6235969B2 (en) Powdered resin composition for compression molding and resin-encapsulated semiconductor device
JP6551499B2 (en) Semiconductor molding resin material for compression molding and semiconductor device
JP5742723B2 (en) Mold for measuring fluid characteristics, method for measuring fluid characteristics, resin composition for semiconductor encapsulation, and method for manufacturing semiconductor device
JP2017160427A (en) Resin composition for sealing and semiconductor device
JP2012062448A (en) Resin composition for sealing semiconductor and resin-sealed semiconductor device
WO2019131095A1 (en) Encapsulating epoxy resin composition for ball grid array package, cured epoxy resin object, and electronic component/device
JP2017031371A (en) Resin composition for encapsulating semiconductor and semiconductor device
JP6315368B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP6389382B2 (en) Semiconductor encapsulating resin sheet and resin encapsulating semiconductor device
JP2010195997A (en) Highly dielectric epoxy resin composition and high-frequency device
JP6888870B2 (en) Resin composition for encapsulating semiconductors and semiconductor devices
JP2014133830A (en) Epoxy resin composition for semiconductor encapsulation and single-sided encapsulation type semiconductor device
JP6315367B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP4496740B2 (en) Epoxy resin composition and semiconductor device
WO2020241594A1 (en) Encapsulating resin composition and electronic component device
JP6351927B2 (en) Resin composition for sealing and method for manufacturing semiconductor device
JP4691886B2 (en) Epoxy resin composition and semiconductor device
JP2006070197A (en) Compression molding resin composition, resin sealed semiconductor device and its manufacturing method
JP7274384B2 (en) Resin composition for semiconductor encapsulation, semiconductor device, and method for manufacturing semiconductor device
JP6941737B2 (en) Flake-shaped sealing resin composition and semiconductor device
JP2013234305A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JP4380237B2 (en) Thermosetting resin composition epoxy resin composition and semiconductor device
JP2017128657A (en) Sealing epoxy resin composition, and semiconductor device and method for manufacturing the same
WO2005054331A1 (en) Epoxy resin composition and semiconductor device using the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160520

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171027

R150 Certificate of patent or registration of utility model

Ref document number: 6235969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150