JP2016008159A - Method for producing blast furnace slag fine powder, and method for producing blast furnace cement - Google Patents

Method for producing blast furnace slag fine powder, and method for producing blast furnace cement Download PDF

Info

Publication number
JP2016008159A
JP2016008159A JP2014130724A JP2014130724A JP2016008159A JP 2016008159 A JP2016008159 A JP 2016008159A JP 2014130724 A JP2014130724 A JP 2014130724A JP 2014130724 A JP2014130724 A JP 2014130724A JP 2016008159 A JP2016008159 A JP 2016008159A
Authority
JP
Japan
Prior art keywords
blast furnace
mass
furnace slag
cement
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014130724A
Other languages
Japanese (ja)
Other versions
JP6311485B2 (en
Inventor
英俊 三隅
Hidetoshi Misumi
英俊 三隅
貴康 伊藤
Takayasu Ito
貴康 伊藤
高橋 俊之
Toshiyuki Takahashi
俊之 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2014130724A priority Critical patent/JP6311485B2/en
Publication of JP2016008159A publication Critical patent/JP2016008159A/en
Application granted granted Critical
Publication of JP6311485B2 publication Critical patent/JP6311485B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for precisely predicting an activity index and sorting excellent blast furnace slag even if quality of the blast furnace slag varies widely.SOLUTION: A method for producing blast furnace slag fine powder having the Cl content of 450-800 mg/kg comprises a step of simultaneously mixing/pulverizing the blast furnace slag, gypsum, limestone and an inorganic substance containing chlorine. The blast furnace slag fine powder contains 90-98 mass% of the blast furnace slag, 0.5-5.0 mass% of the gypsum and 0.5-5 mass% of the limestone.

Description

本発明は、高炉セメントの製造時に塩素を含む無機物を添加して効率よく高炉セメントの強度発現を得ることができる高炉スラグ微粉末の製造方法に関する。また、この高炉スラグ微粉末を使用した高炉セメントの製造方法に関する。   The present invention relates to a method for producing fine blast furnace slag powder, which can efficiently obtain the strength expression of blast furnace cement by adding an inorganic substance containing chlorine at the time of producing the blast furnace cement. Moreover, it is related with the manufacturing method of the blast furnace cement which uses this blast furnace slag fine powder.

製鉄所から生産される高炉水砕スラグは、2012年度でおよそ2千万tであり、そのうちのおよそ90%はセメント原料に利用されている。中でも、高炉セメントに利用されるスラグの品質はその高炉セメントの品質に大きく影響を及ぼし、JIS(JIS A 6206「コンクリート用高炉スラグ微粉末」)に定められている塩基度((CaO+MgO+Al)/SiO)が高炉スラグの品質管理指標値として扱われている。 Blast furnace granulated slag produced from steelworks is approximately 20 million tons in 2012, of which approximately 90% is used as cement raw material. Among them, the quality of the slag used for the blast furnace cement greatly affects the quality of the blast furnace cement, and the basicity ((CaO + MgO + Al 2 O 3 ) defined in JIS (JIS A 6206 “Blast furnace slag fine powder for concrete”). ) / SiO 2 ) is treated as a quality control index value of blast furnace slag.

また、高炉スラグの溶銑温度や冷却速度のような製造条件は、高炉スラグの品質に影響を及ぼすことがわかっている(例えば、非特許文献1)。   In addition, it has been found that the manufacturing conditions such as the hot metal temperature and cooling rate of the blast furnace slag affect the quality of the blast furnace slag (for example, Non-Patent Document 1).

このように、高炉スラグの化学成分や製造条件のばらつきにより、スラグの活性が低下し、高炉セメントの強度発現性が低下する場合がある。この場合、強度補完策として、様々なアクションをとることが必要となる。   Thus, due to variations in chemical components and manufacturing conditions of the blast furnace slag, the activity of the slag may be reduced, and the strength development of the blast furnace cement may be reduced. In this case, it is necessary to take various actions as a strength complementation measure.

一方で、セメント業界はセメントの原燃料として、塩素分の多い廃棄物(都市ゴミ焼却灰、廃プラスチックなど)を使用している。しかし、クリンカーの製造において、塩素は、セメント原料焼成系内におけるコーチングトラブルを誘発したり、セメントクリンカー中の塩素分を高めたりする。このため、セメント原料焼成系内における塩化アルカリ等の含有量を低減させることを目的に、例えば、特許文献1に示されるような、塩素バイパス装置がセメントキルンに付加的に設置されている。塩素バイパスダスト中には、KClなどの塩化物やセメント原料の仮焼物とそれらの硫酸塩が含まれている。   Meanwhile, the cement industry uses chlorine-rich waste (such as municipal waste incineration ash and waste plastic) as a raw material for cement. However, in the production of clinker, chlorine induces coating troubles in the cement raw material firing system and increases the chlorine content in the cement clinker. For this reason, for the purpose of reducing the content of alkali chloride and the like in the cement raw material firing system, for example, a chlorine bypass device as shown in Patent Document 1 is additionally installed in the cement kiln. Chlorine bypass dust contains chlorides such as KCl, calcined cement raw materials, and sulfates thereof.

また、従来より、塩素バイパスダストの有効利用を図るため、種々の方法が提案されている。例えば、特許文献2では、塩素バイパスダストを高炉セメントに添加し、セメントの強度改善を図る方法が提案されている。また、特許文献3では、塩素バイパスダストを高炉セメントに添加し、セレン溶出量の低減を図る方法が提案されている。   Conventionally, various methods have been proposed for effective use of chlorine bypass dust. For example, Patent Document 2 proposes a method for improving the strength of cement by adding chlorine bypass dust to blast furnace cement. Patent Document 3 proposes a method of reducing chlorine leaching amount by adding chlorine bypass dust to blast furnace cement.

花田光雄,宮入英彦,河内廸,高炉セメントに関する研究,セメント技術年報,pp.171-175,Vol.20(1966)Mitsuo Hanada, Hidehiko Miyairi, Satoshi Kawauchi, Research on Blast Furnace Cement, Annual Report of Cement Technology, pp.171-175, Vol.20 (1966)

特開平10−330136号公報Japanese Patent Laid-Open No. 10-330136 特開平10−218657号公報JP-A-10-218657 特開2008―174409号公報JP 2008-174409 A

しかしながら、特許文献2のような塩素バイパスダストの添加は、セメント中の塩素量を増加させ、コンクリート構造物中の鉄筋の腐食を招くおそれがある。   However, the addition of chlorine bypass dust as in Patent Document 2 increases the amount of chlorine in the cement and may cause corrosion of reinforcing bars in the concrete structure.

そこで、本発明は、高炉セメントの製造時に少ない塩素量で効率よく高炉セメントの強度発現を得て、鉄筋の腐食を抑制できる高炉スラグ粉および高炉セメントの製造方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a blast furnace slag powder and a method for producing a blast furnace cement capable of efficiently obtaining the strength expression of the blast furnace cement with a small amount of chlorine at the time of producing the blast furnace cement and suppressing corrosion of the reinforcing bars.

本発明者らは上記目的を達成すべく鋭意検討した結果、高炉セメントの製造時に少量の塩素の添加で効率よく高炉セメントの強度発現を得ることができる高炉スラグ粉の製造方法および高炉セメントの製造方法を見出し本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have obtained a method for producing blast furnace slag powder and a method for producing blast furnace cement that can efficiently obtain the strength expression of blast furnace cement by adding a small amount of chlorine during the production of blast furnace cement. The method has been found and the present invention has been completed.

すなわち、本発明は、高炉スラグと石膏と石灰石と塩素を含む無機物質とを同時に混合して粉砕し、Cl含有量が450〜800mg/kgである高炉スラグ微粉末を製造する、高炉スラグ微粉末の製造方法に関する。   That is, the present invention provides a blast furnace slag fine powder that simultaneously mixes and pulverizes blast furnace slag, gypsum, limestone, and chlorine-containing inorganic substance to produce a blast furnace slag fine powder having a Cl content of 450 to 800 mg / kg. It relates to the manufacturing method.

本発明の製造方法によれば、少量の塩素の添加で効率よく高炉セメントの強度発現を得ることができる高炉スラグ微粉末の製造方法を提供出来る。   According to the production method of the present invention, it is possible to provide a method for producing blast furnace slag fine powder that can efficiently obtain the strength expression of blast furnace cement with the addition of a small amount of chlorine.

また、本発明は、高炉スラグ微粉末30〜60質量%と、セメント40〜70質量%とを混合する、高炉セメントの製造方法に関する。   Moreover, this invention relates to the manufacturing method of blast furnace cement which mixes 30-60 mass% of blast furnace slag fine powder, and 40-70 mass% of cement.

本発明の製造方法によれば、少量の塩素の添加で効率よく高炉セメントの強度発現を得ることができる、高炉セメントの製造方法を提供出来る。   According to the production method of the present invention, it is possible to provide a method for producing blast furnace cement, which can efficiently obtain the strength expression of blast furnace cement with the addition of a small amount of chlorine.

本発明に関わる高炉スラグ微粉末の製造方法によれば、少量の塩素の添加で効率よく高炉セメントの強度発現を得ることができる、高炉スラグ微粉末の製造方法を提供することが出来る。また、本発明に関わる高炉セメントの製造方法によれば、少量の塩素の添加で効率よく高炉セメントの強度発現を得ることができる、高炉セメントの製造方法を提供することが出来る。   According to the method for producing blast furnace slag fine powder according to the present invention, it is possible to provide a method for producing blast furnace slag fine powder, which can efficiently obtain the strength expression of blast furnace cement with the addition of a small amount of chlorine. Moreover, according to the method for producing a blast furnace cement according to the present invention, it is possible to provide a method for producing a blast furnace cement capable of efficiently obtaining the strength of the blast furnace cement with the addition of a small amount of chlorine.

高炉セメントの塩素量、高炉スラグ微粉末中の塩素量と圧縮強さ比との関係を示すグラフである。It is a graph which shows the relationship between the amount of chlorine of blast furnace cement, the amount of chlorine in blast furnace slag fine powder, and compressive strength ratio.

以下、本発明の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail.

<高炉スラグ微粉末の製造方法>   <Manufacturing method of blast furnace slag fine powder>

本実施形態の高炉スラグ微粉末の製造方法は、高炉スラグと石膏と石灰石と塩素を含む無機物質とを同時に混合して粉砕し高炉スラグ微粉末を製造する。ここで、同時に混合して粉砕するとは、例えば竪型粉砕ミルやチューブミルのような粉砕機に各々の材料をほぼ同時に投入し粉砕することを意味する。同時に粉砕することで、高炉スラグ粉の周囲を塩素を含む無機物質が覆い、水和活性が高まることが推測される。   In the method for producing a blast furnace slag fine powder according to this embodiment, a blast furnace slag fine powder is produced by simultaneously mixing and pulverizing blast furnace slag, gypsum, limestone, and an inorganic substance containing chlorine. Here, mixing and pulverizing at the same time means that the respective materials are charged almost simultaneously into a pulverizer such as a vertical pulverizing mill or a tube mill and pulverized. By pulverizing at the same time, it is estimated that the blast furnace slag powder is covered with an inorganic substance containing chlorine and the hydration activity is increased.

塩素を含む無機物質は、塩素バイパスダスト、NaCl、KCl及びCaCl等から選ばれる1種以上であることが好ましい。特に塩素バイパスダストを用いると、産業副産物の有効利用につながる。 The inorganic substance containing chlorine is preferably at least one selected from chlorine bypass dust, NaCl, KCl, CaCl 2 and the like. Especially when chlorine bypass dust is used, it leads to effective utilization of industrial by-products.

塩素バイパスダストは、塩素バイパス装置によって抽気された排ガスから集塵されたダストである。この塩素バイパスダストの固形物は、KCl、NaCl、CaCl等の塩化物やセメント原料の仮焼物、それらの硫酸塩等から成る。 Chlorine bypass dust is dust collected from the exhaust gas extracted by the chlorine bypass device. The solid substance of this chlorine bypass dust consists of chlorides such as KCl, NaCl, CaCl 2 , calcined cement raw materials, sulfates thereof, and the like.

塩素を含む無機物質の添加量は、製造された高炉スラグ微粉末中のCl含有量が450〜800mg/kg、より好ましくは550〜790mg/kg、さらに好ましくは600〜780mg/kg、特に好ましくは630〜770になるよう調整する。450mg/kg以下であれば、高炉セメントの強さ補完として十分ではなく、800mg/kg以上であれば、セメントの凝結時間が短縮するあるいはコンクリート構造物中の鉄筋腐食を引き起こす可能性があるため好ましくない。   The amount of the inorganic substance containing chlorine is such that the Cl content in the produced blast furnace slag fine powder is 450 to 800 mg / kg, more preferably 550 to 790 mg / kg, still more preferably 600 to 780 mg / kg, particularly preferably. Adjust to 630-770. If it is 450 mg / kg or less, it is not sufficient to supplement the strength of blast furnace cement, and if it is 800 mg / kg or more, it is preferable because the setting time of cement may be shortened or rebar corrosion in concrete structures may be caused. Absent.

前記石灰石は、JIS R 5210「ポルトランドセメント」に規定される品質を満足することが望ましい。前記石灰石の添加量は高炉スラグ微粉末に対して、0.5〜5質量%、好ましくは0.7〜4質量%である。この範囲であれば、十分な強度発現性を得ることができる。   The limestone desirably satisfies the quality specified in JIS R 5210 “Portland cement”. The amount of limestone added is 0.5 to 5% by mass, preferably 0.7 to 4% by mass, based on the blast furnace slag fine powder. If it is this range, sufficient intensity | strength expressiveness can be acquired.

石膏は、JIS R 9151「セメント用天然せっこう」に規定される品質を満足することが望ましい。セメント組成物には、具体的に二水石膏、半水石膏、不溶性無水石膏が好適に用いられる。   It is desirable that the gypsum satisfies the quality specified in JIS R 9151 “natural gypsum for cement”. Specifically, dihydrate gypsum, hemihydrate gypsum, and insoluble anhydrous gypsum are suitably used for the cement composition.

前記高炉スラグは、SiOを30〜40質量%、Alを10〜20質量%、CaOを30〜50質量%、MgOを3〜10質量%、Feを0.1〜5.0質量%、NaOを0.1〜0.4質量%、KOを0.2〜0.6質量%、TiOを0.2〜0.6質量%、MnOを0.1〜0.3質量%及びClを0.001〜0.010質量%含有することが好ましい。 The blast furnace slag is composed of 30 to 40% by mass of SiO 2 , 10 to 20% by mass of Al 2 O 3 , 30 to 50% by mass of CaO, 3 to 10% by mass of MgO, 0.1 to Fe 2 O 3 . 5.0 wt%, a Na 2 O 0.1 to 0.4 wt%, the K 2 O 0.2 to 0.6 wt%, the TiO 2 0.2 to 0.6 wt%, the MnO 0 It is preferable to contain 0.1-0.3 mass% and Cl 0.001-0.010 mass%.

SiOを31〜39質量%、Alを11〜19質量%、CaOを31〜49質量%、MgOを3.5〜9.5質量%、Feを0.2〜4.5質量%、NaOを0.15〜0.35質量%、KOを0.25〜0.55質量%、TiOを0.25〜0.55質量%、MnOを0.15〜0.28質量%及びClを0.0015〜0.0095質量%含有することがより好ましい。 The SiO 2 31 to 39 wt%, the Al 2 O 3 11 to 19 wt%, the CaO 31 to 49 wt%, the MgO from 3.5 to 9.5 mass%, the Fe 2 O 3 0.2 to 4 .5 wt%, a Na 2 O 0.15 to 0.35 wt%, the K 2 O 0.25 to 0.55 wt%, the TiO 2 0.25 to 0.55 wt%, the MnO 0. It is more preferable to contain 15-0.28 mass% and 0.0015-0.0095 mass% of Cl.

SiOを32〜38質量%、Alを12〜18質量%、CaOを32〜48質量%、MgOを4.0〜9.0質量%、Feを0.3〜4.0質量%、NaOを0.20〜0.30質量%、KOを0.27〜0.50質量%、TiOを0.30〜0.53質量%、MnOを0.17〜0.26質量%及びClを0.0020〜0.0090質量%含有することがさらに好ましい。 The SiO 2 32 to 38 wt%, the Al 2 O 3 12 to 18 wt%, the CaO 32-48 wt%, the MgO 4.0 to 9.0 wt%, the Fe 2 O 3 0.3 to 4 .0 wt%, a Na 2 O 0.20 to 0.30 wt%, the K 2 O 0.27-.50 wt%, the TiO 2 from 0.30 to .53 wt%, and MnO 0. More preferably, it contains 17 to 0.26% by mass and 0.0020 to 0.0090% by mass of Cl.

高炉スラグ微粉末のSO含有量は、好ましくは1.0〜2.5質量%、より好ましくは1.1.0〜2.4質量%、さらに好ましくは1.2〜2.3質量%となるように、石膏添加量を調整する。1.0質量%未満であれば、高炉セメントの凝結や流動性に悪影響を及ぼし、2.5質量%よりも多ければ、スラグ使用量が減り、高炉セメントとしての性能が低下するため好ましくない。 The SO 3 content of the blast furnace slag fine powder is preferably 1.0 to 2.5% by mass, more preferably 1.1.0 to 2.4% by mass, and still more preferably 1.2 to 2.3% by mass. The amount of gypsum added is adjusted so that If it is less than 1.0% by mass, it will adversely affect the setting and fluidity of the blast furnace cement, and if it is more than 2.5% by mass, the amount of slag used will decrease and the performance as a blast furnace cement will be unfavorable.

本発明に関わる高炉スラグ微粉末の粉末度は、好ましくは3500〜4500cm/g、より好ましくは3600〜4400cm/g、さらに好ましくは3700〜4300cm/gである。高炉スラグ微粉末の粉末度が3500cm/g未満であれば、高炉セメントの強度発現性が低下し、4500cm/gよりも大きければ、高炉スラグ微粉末の製造コストが高まる。 The fineness of the blast furnace slag fine powder according to the present invention is preferably 3500 to 4500 cm 2 / g, more preferably 3600 to 4400 cm 2 / g, and further preferably 3700 to 4300 cm 2 / g. Is less than the fineness is 3500 cm 2 / g of ground granulated blast furnace slag, and reduced strength development of blast furnace cement, greater than 4500cm 2 / g, increases the manufacturing cost of the ground granulated blast furnace slag.

<高炉セメントの製造方法>
次に、本発明に関わる高炉セメントの製造方法について説明する。
<Manufacturing method of blast furnace cement>
Next, the manufacturing method of the blast furnace cement concerning this invention is demonstrated.

高炉セメントの製造方法は、上述した高炉スラグ微粉末の製造工程で得られた高炉スラグ微粉末を用いる。   The blast furnace cement production method uses the blast furnace slag fine powder obtained in the above-described production process of the blast furnace slag fine powder.

前記高炉セメントは、高炉スラグ微粉末30〜60質量%と、ポルトランドセメント40〜70質量%とを混合する。好ましくは高炉スラグ微粉末40〜50質量%と、ポルトランドセメント50〜60質量%とを混合する。より好ましくは高炉スラグ微粉末42〜48質量%と、ポルトランドセメント52〜58質量%とを混合する。この範囲であれば、高炉スラグ粉に添加した塩素により、高炉セメントの強度増進を効率よく図ることができる。   The said blast furnace cement mixes 30-60 mass% of blast furnace slag fine powder, and 40-70 mass% of Portland cement. Preferably 40-50 mass% of blast furnace slag fine powder and 50-60 mass% of Portland cement are mixed. More preferably, blast furnace slag fine powder 42-48 mass% and Portland cement 52-58 mass% are mixed. Within this range, the chlorine added to the blast furnace slag powder can efficiently enhance the strength of the blast furnace cement.

本発明の高炉セメントに使用するポルトランドセメント組成物の製造方法は、石灰石、硅石、石炭灰、粘土、高炉スラグ、建設発生土、下水汚泥、銅からみ及び焼却灰からなる群より選ばれる原料を混合し、焼成してセメントクリンカーを製造する工程と、セメントクリンカーと石膏とを混合する工程とを含む。   The manufacturing method of the Portland cement composition used for the blast furnace cement of the present invention comprises mixing raw materials selected from the group consisting of limestone, meteorite, coal ash, clay, blast furnace slag, construction generated soil, sewage sludge, copper squeeze and incineration ash. And firing to produce a cement clinker, and mixing the cement clinker and gypsum.

セメントクリンカーは、SP方式(多段サイクロン予熱方式)又はNSP方式(仮焼炉を併設した多段サイクロン予熱方式)等の既存のセメント製造設備を用いて、製造することができる。   The cement clinker can be manufactured using an existing cement manufacturing facility such as an SP system (multistage cyclone preheating system) or an NSP system (multistage cyclone preheating system provided with a calcining furnace).

ポルトランドセメントは、セメントクリンカーと石膏を含むが、さらに少量の混合材を添加してもよい。混合材は、JIS R 5211「高炉セメント」に規定される高炉スラグ、JIS R 5212「シリカセメント」に規定されるシリカ質混合材、JIS A 6201「コンクリート用フライアッシュ」に規定されるフライアッシュ、JIS R 5210「ポルトランドセメント」に規定される石灰石を利用することができる。   Portland cement contains cement clinker and gypsum, but a smaller amount of admixture may be added. The mixed material is a blast furnace slag defined in JIS R 5211 “Blast Furnace Cement”, a siliceous mixed material defined in JIS R 5212 “Silica Cement”, fly ash defined in JIS A 6201 “Fly Ash for Concrete”, Limestone as defined in JIS R 5210 “Portland cement” can be used.

前記ポルトランドセメントは、CS含有量が55〜65質量%、C2S含有量が10〜20質量%、CA含有量が5〜12質量%及びCAF含有量が5〜12質量%であることが好ましい。また、CS含有量が57〜60質量%、C2S含有量が12〜15質量%、CA含有量が8〜11質量%及びCAF含有量が6〜10質量%であることがより好ましい。これらの範囲であれば、少量の塩素の添加で効率よく高炉セメントの強度発現を得ることができる高炉スラグ微粉末の製造方法を提供出来る。 The Portland cement has a C 3 S content of 55 to 65% by mass, a C 2 S content of 10 to 20% by mass, a C 3 A content of 5 to 12% by mass, and a C 4 AF content of 5 to 12%. It is preferable that it is mass%. Also, C 3 S content of 57 to 60 mass%, C 2 S content of 12 to 15 mass%, in C 3 A content of 8-11% by weight and C 4 AF content of 6-10 wt% More preferably. If it is in these ranges, the manufacturing method of the blast furnace slag fine powder which can obtain the strength expression of a blast furnace cement efficiently by addition of a small amount of chlorine can be provided.

ポルトランドセメントの粉末度は、好ましくは2800〜5000cm/g、より好ましくは3000〜4800cm/g、さらに好ましくは3100〜4700である。ポルトランドセメントの粉末度が2800cm/g未満であれば、高炉セメントの強度発現性が低下し、5000cm/gよりも大きければ、ポルトランドセメントの製造コストが高まる。 The fineness of Portland cement is preferably 2800 to 5000 cm 2 / g, more preferably 3000 to 4800 cm 2 / g, and further preferably 3100 to 4700. If fineness is 2800cm less than 2 / g of Portland cement, it reduces the strength development of blast furnace cement, is greater than 5000 cm 2 / g, increases the cost of manufacture Portland cement.

以下に、実施例及び比較例を挙げて本発明の内容を詳細に説明する。なお、本発明はこれらの例によって限定されるものではない。   The contents of the present invention will be described in detail below with reference to examples and comparative examples. Note that the present invention is not limited to these examples.

本検討では、高炉スラグを粉砕して高炉スラグ微粉末を作製した後にポルトランドセメントと後混合して高炉セメントを製造する製造方式(分離粉砕)と高炉スラグやクリンカーなどを同時に粉砕して高炉セメントを製造する製造方式(同時粉砕)によって評価した。表1〜4に用いた材料のキャラクターを示す。表1には高炉スラグの化学組成を、表2には塩素バイパスダストの化学組成を、表3には分離粉砕で使用したポルトランドセメントの鉱物組成、塩素量およびブレーン比表面積を、表4には混合粉砕で使用したクリンカーの鉱物組成と塩素量を示す。なお、高炉スラグは、塩基度(JIS)が異なる2種類のものを使用し、ポルトランドセメントは実機製造品を用いた。   In this study, the blast furnace slag is pulverized to produce fine powder of blast furnace slag, and then mixed with Portland cement to produce blast furnace cement (separated pulverization). The production method (simultaneous grinding) was used for evaluation. Tables 1 to 4 show the material characters used. Table 1 shows the chemical composition of blast furnace slag, Table 2 shows the chemical composition of chlorine bypass dust, Table 3 shows the mineral composition, chlorine content and Blaine specific surface area of Portland cement used in the separation and grinding. The mineral composition and chlorine content of the clinker used in the mixed grinding are shown. Two types of blast furnace slag with different basicities (JIS) were used, and Portland cement was manufactured by an actual machine.

化学成分は、JIS R 5202「セメントの化学分析方法」による分析結果から得られた蛍光X線の検量線を用いて測定した。f.CaOはセメント協会標準試験法のJCAS I−01:1997「遊離酸化カルシウムの定量方法」によって測定した。また、ポルトランドセメントおよびポルトランドセメントクリンカーの鉱物組成は、定量した化学成分から、CS含有量、C2S含有量、CA含有量、CAF含有量を式(1)〜(4)により求めた。 The chemical component was measured using a fluorescent X-ray calibration curve obtained from an analysis result according to JIS R 5202 “Cement Chemical Analysis Method”. f. CaO was measured according to JCAS I-01: 1997 “Method for Quantifying Free Calcium Oxide” of Cement Association Standard Test Method. In addition, the mineral composition of Portland cement and Portland cement clinker is calculated from the quantified chemical components using the formulas (1) to (4) based on the C 3 S content, C 2 S content, C 3 A content, and C 4 AF content. ).

S=4.07×CaO−7.60×SiO−6.72×Al−1.43×Fe・・・式(1)
但し、セメントの場合は、右辺に −2.85×SO を加える。
C 3 S = 4.07 × CaO- 7.60 × SiO 2 -6.72 × Al 2 O 3 -1.43 × Fe 2 O 3 ··· Equation (1)
However, in the case of cement, add −2.85 × SO 3 to the right side.

S=2.87×SiO−0.75×CS・・・式(2)
A=2.65×Al−1.69×Fe・・・式(3)
AF=3.04×Fe・・・式(4)
C 2 S = 2.87 × SiO 2 -0.75 × C 3 S ··· Equation (2)
C 3 A = 2.65 × Al 2 O 3 −1.69 × Fe 2 O 3 Formula (3)
C 4 AF = 3.04 × Fe 2 O 3 Formula (4)

Figure 2016008159
Figure 2016008159

Figure 2016008159
Figure 2016008159

Figure 2016008159
Figure 2016008159

Figure 2016008159
Figure 2016008159

表5に高炉スラグ微粉末(分離粉砕)の製造に使用した材料を、表6に高炉スラグ微粉末の配合を示す。
即ち、表5中の○印は使用した材料で、高炉スラグ微粉末95.1質量%、二水石膏3.9質量%(SO基準で1.8質量%)、石灰石1.0質量%となるようにして使用し、これら材料の合計100質量%に対して外割で塩素バイパスダスト0〜0.90質量%を使用した。これらの材料に対して、粉砕助剤を添加し、ブレーン比表面積がいずれも4000±50cm/gとなるようにボールミルで粉砕した。
Table 5 shows the materials used for the production of blast furnace slag fine powder (separation and pulverization), and Table 6 shows the composition of the blast furnace slag fine powder.
That is, the circles in Table 5 are the materials used, 95.1% by mass of blast furnace slag fine powder, 3.9% by mass of dihydrate gypsum (1.8% by mass on the basis of SO 3 ), 1.0% by mass of limestone The chlorine bypass dust was 0 to 0.90% by mass based on 100% by mass of the total of these materials. A pulverization aid was added to these materials and pulverized with a ball mill so that the Blaine specific surface area was 4000 ± 50 cm 2 / g.

Figure 2016008159
Figure 2016008159

Figure 2016008159
*塩素バイパスダストは、高炉スラグ微粉末と二水石膏の合計量100質量%に対して外割で添加した。
Figure 2016008159
* Chlorine bypass dust was added in an external ratio with respect to 100% by mass of the total amount of blast furnace slag fine powder and dihydrate gypsum.

表7に、高炉セメントの製造(分離粉砕)に使用した材料を示す。即ち、表中の○印は使用した材料で、高炉セメント中に、高炉スラグ微粉末44.5質量%、ポルトランドセメント55.5質量%となるようにして使用した。   Table 7 shows materials used for manufacturing (separating and grinding) blast furnace cement. That is, the ◯ marks in the table are the materials used, and were used in the blast furnace cement so that the blast furnace slag fine powder was 44.5% by mass and the Portland cement was 55.5% by mass.

Figure 2016008159
Figure 2016008159

表8に、高炉セメントの製造(混合粉砕)に使用した材料を、表9に配合を示す。即ち、表8中の○印は使用した材料で、高炉スラグ微粉末43.0質量%、クリンカー51.8質量%、二水石膏3.2質量%、石灰石2.0質量%、塩素バイパスダスト0.20〜1.00質量%を使用した。   Table 8 shows materials used for manufacturing (mixing and grinding) blast furnace cement, and Table 9 shows the composition. That is, the circles in Table 8 are the materials used, 43.0% by mass of blast furnace slag fine powder, 51.8% by mass of clinker, 3.2% by mass of dihydrate gypsum, 2.0% by mass of limestone, chlorine bypass dust 0.20 to 1.00% by mass was used.

Figure 2016008159
Figure 2016008159

Figure 2016008159
*塩素バイパスダストは、高炉スラグ微粉末とクリンカーと石膏と石灰石の合計量100質量%に対して外割で添加した。
Figure 2016008159
* Chlorine bypass dust was added in an external ratio with respect to 100% by mass of the total amount of blast furnace slag fine powder, clinker, gypsum and limestone.

以上の作製した高炉セメントを使用して、モルタル圧縮強さを調べた。試験方法は、JIS R 5201:1997「セメントの物理試験方法」に準拠して、モルタル供試体の作製および圧縮強さの測定を行った。なお、分離粉砕の場合にはNo.4(参考)を、混合粉砕の場合にはNo.8(参考)を基準とし、No.1〜3はNo.4に対する圧縮強さ比(%)で、No.5〜7はNo.8に対する圧縮強さ比(%)で表した。表10に材齢7日の圧縮強さ比の結果を示す。   The mortar compressive strength was investigated using the blast furnace cement produced above. The test method was based on JIS R 5201: 1997 “Cement physical test method”, and a mortar specimen was prepared and its compressive strength was measured. In the case of separation and pulverization, no. 4 (reference) is No. in the case of mixed grinding. 8 (reference) as a reference, No. 1-3 are No.1. No. 4 compression strength ratio (%) 5-7 are No. It was expressed as a compressive strength ratio (%) to 8. Table 10 shows the results of the compression strength ratio at 7 days of age.

Figure 2016008159
Figure 2016008159

図1に材齢7日の高炉セメントの塩素量と圧縮強さ比との関係を示す。高炉セメントの強さ比を100%に改善するのに必要な高炉セメント中の塩素量は分離粉砕で約350ppm、混合粉砕で約500ppmとなり、分離粉砕の方が少量の塩素で効率良く強度改善できることがわかった。   FIG. 1 shows the relationship between the amount of chlorine and the compressive strength ratio of a blast furnace cement with an age of 7 days. The amount of chlorine in the blast furnace cement required to improve the strength ratio of the blast furnace cement to 100% is about 350 ppm for the separation pulverization and about 500 ppm for the mixed pulverization. The separation pulverization can improve the strength more efficiently with a small amount of chlorine. I understood.

従って、本発明の高炉スラグ微粉末および高炉セメントの製造方法によれば、少ない塩素の添加量で効率よく強度増進を行うことができ、品質が安定したセメントを製造することができる。   Therefore, according to the method for producing blast furnace slag fine powder and blast furnace cement of the present invention, it is possible to efficiently increase the strength with a small amount of added chlorine, and to produce a cement with stable quality.

Claims (7)

高炉スラグと石膏と石灰石と塩素を含む無機物質とを同時に混合して粉砕し、Cl含有量が450〜800mg/kgである高炉スラグ微粉末を製造することを特徴とする、高炉スラグ微粉末の製造方法。   Blast furnace slag fine powder, characterized in that blast furnace slag fine powder having a Cl content of 450 to 800 mg / kg is produced by simultaneously mixing and grinding blast furnace slag, gypsum, limestone, and chlorine-containing inorganic substance. Production method. 前記高炉スラグ微粉末は、前記高炉スラグ90〜98質量%、前記石膏0.5〜5.0質量%及び前記石灰石0.5〜5質量%を含有する、請求項1記載の高炉スラグ微粉末の製造方法。   The blast furnace slag fine powder according to claim 1, wherein the blast furnace slag fine powder contains 90 to 98 mass% of the blast furnace slag, 0.5 to 5.0 mass% of the gypsum, and 0.5 to 5 mass% of the limestone. Manufacturing method. 前記高炉スラグは、SiOを30〜40質量%、Alを10〜20質量%、CaOを30〜50質量%、MgOを3〜10質量%、Feを0.1〜5.0質量%、NaOを0.1〜0.4質量%、KOを0.2〜0.6質量%、TiOを0.2〜0.6質量%、MnOを0.1〜0.3質量%及びClを0.001〜0.010質量%含有する、請求項1又は2記載の高炉スラグ微粉末の製造方法。 The blast furnace slag is composed of 30 to 40% by mass of SiO 2 , 10 to 20% by mass of Al 2 O 3 , 30 to 50% by mass of CaO, 3 to 10% by mass of MgO, 0.1 to Fe 2 O 3 . 5.0 wt%, a Na 2 O 0.1 to 0.4 wt%, the K 2 O 0.2 to 0.6 wt%, the TiO 2 0.2 to 0.6 wt%, the MnO 0 The manufacturing method of the blast furnace slag fine powder of Claim 1 or 2 containing 0.1-0.3 mass% and 0.001-0.010 mass% of Cl. 前記塩素を含む無機物質は、塩素バイパスダスト、NaCl、KCl及びCaClから選ばれる1種以上である、請求項1〜3の何れか1項記載の高炉スラグ微粉末の製造方法。 The inorganic substance containing chlorine, chlorine bypass dust is NaCl, 1 or more selected from KCl and CaCl 2, any one method of manufacturing the ground granulated blast furnace slag according to claims 1-3. 高炉スラグ微粉末中のSO含有量が1.0〜2.5質量%となるように前記石膏を添加する、請求項1〜4の何れか1項記載の高炉スラグ微粉末の製造方法。 SO 3 content of blast furnace slag powder is added the plaster so that 1.0 to 2.5 wt%, any one method of manufacturing blast furnace slag as claimed in claims 1-4. 請求項1〜5の何れか1項記載の高炉スラグ微粉末30〜60質量%と、ポルトランドセメント40〜70質量%とを混合する、高炉セメントの製造方法。   A method for producing blast furnace cement, comprising mixing 30 to 60 mass% of blast furnace slag fine powder according to any one of claims 1 to 5 and 40 to 70 mass% of Portland cement. 前記ポルトランドセメントのCS含有量が55〜65質量%、C2S含有量が10〜20質量%、CA含有量が5〜12質量%及びCAF含有量が5〜12質量%である、請求項6記載の高炉セメントの製造方法。 The Portland cement has a C 3 S content of 55 to 65% by mass, a C 2 S content of 10 to 20% by mass, a C 3 A content of 5 to 12% by mass, and a C 4 AF content of 5 to 12% by mass. The method for producing a blast furnace cement according to claim 6, wherein
JP2014130724A 2014-06-25 2014-06-25 Method for producing fine blast furnace slag powder and method for producing blast furnace cement Active JP6311485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014130724A JP6311485B2 (en) 2014-06-25 2014-06-25 Method for producing fine blast furnace slag powder and method for producing blast furnace cement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014130724A JP6311485B2 (en) 2014-06-25 2014-06-25 Method for producing fine blast furnace slag powder and method for producing blast furnace cement

Publications (2)

Publication Number Publication Date
JP2016008159A true JP2016008159A (en) 2016-01-18
JP6311485B2 JP6311485B2 (en) 2018-04-18

Family

ID=55225975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014130724A Active JP6311485B2 (en) 2014-06-25 2014-06-25 Method for producing fine blast furnace slag powder and method for producing blast furnace cement

Country Status (1)

Country Link
JP (1) JP6311485B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017141135A (en) * 2016-02-12 2017-08-17 宇部興産株式会社 Cement composition and method for producing the same
JP2017193473A (en) * 2016-04-22 2017-10-26 宇部興産株式会社 Cement composition and method for producing the same
JP2017218354A (en) * 2016-06-09 2017-12-14 宇部興産株式会社 Cement composition and method for producing the same
JP2017218355A (en) * 2016-06-09 2017-12-14 宇部興産株式会社 Cement composition and method for producing the same
CN113213799A (en) * 2021-06-24 2021-08-06 马鞍山钢铁股份有限公司 Preparation method of slag micropowder

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6543912B2 (en) * 2014-10-30 2019-07-17 宇部興産株式会社 Cement composition and method for producing the same
JP6543911B2 (en) * 2014-10-30 2019-07-17 宇部興産株式会社 Cement composition and method for producing the same
CN110105021A (en) * 2019-05-29 2019-08-09 华南理工大学 A kind of portland cement sill of high cracking resistance, super corrosion resistance of chloride ion

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4866121A (en) * 1971-12-14 1973-09-11
JPS5468789A (en) * 1977-11-14 1979-06-02 Nippon Steel Corp Treating method for blast furnace slag
JPS62280309A (en) * 1986-05-30 1987-12-05 Ube Ind Ltd Blast furnace slag composition
JPS63223203A (en) * 1987-03-12 1988-09-16 日本ソイル株式会社 Paving construction method
JPH10218657A (en) * 1997-02-06 1998-08-18 Chichibu Onoda Cement Corp Cement composition and its production
JP2003002726A (en) * 2001-04-18 2003-01-08 Nippon Steel Corp Producing method of concrete like solid body using steel making slag
JP2012254909A (en) * 2011-06-10 2012-12-27 Taiheiyo Cement Corp Cement composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4866121A (en) * 1971-12-14 1973-09-11
JPS5468789A (en) * 1977-11-14 1979-06-02 Nippon Steel Corp Treating method for blast furnace slag
JPS62280309A (en) * 1986-05-30 1987-12-05 Ube Ind Ltd Blast furnace slag composition
JPS63223203A (en) * 1987-03-12 1988-09-16 日本ソイル株式会社 Paving construction method
JPH10218657A (en) * 1997-02-06 1998-08-18 Chichibu Onoda Cement Corp Cement composition and its production
JP2003002726A (en) * 2001-04-18 2003-01-08 Nippon Steel Corp Producing method of concrete like solid body using steel making slag
JP2012254909A (en) * 2011-06-10 2012-12-27 Taiheiyo Cement Corp Cement composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017141135A (en) * 2016-02-12 2017-08-17 宇部興産株式会社 Cement composition and method for producing the same
JP2017193473A (en) * 2016-04-22 2017-10-26 宇部興産株式会社 Cement composition and method for producing the same
JP2017218354A (en) * 2016-06-09 2017-12-14 宇部興産株式会社 Cement composition and method for producing the same
JP2017218355A (en) * 2016-06-09 2017-12-14 宇部興産株式会社 Cement composition and method for producing the same
CN113213799A (en) * 2021-06-24 2021-08-06 马鞍山钢铁股份有限公司 Preparation method of slag micropowder

Also Published As

Publication number Publication date
JP6311485B2 (en) 2018-04-18

Similar Documents

Publication Publication Date Title
JP6311485B2 (en) Method for producing fine blast furnace slag powder and method for producing blast furnace cement
JP6021753B2 (en) Mixed cement
JP2010235381A (en) Cement composition and method for manufacturing the same
JP5626420B2 (en) Cement composition
JP5627840B2 (en) Cement composition
JP2010222171A (en) Cement clinker, method for producing the same and hydraulic cement
JP5398236B2 (en) Cement clinker manufacturing method
JP6282408B2 (en) Hydraulic composition
JP2017122016A (en) Manufacturing method of portland cement clinker
JP2015078112A (en) Hydraulic composition
JP2015067490A (en) Cement clinker and cement
JP6855691B2 (en) Cement composition and its manufacturing method
JP6305875B2 (en) Method for producing Portland cement clinker
JP2013241304A (en) Cement composition and method for producing the same
JP6981481B2 (en) Cement composition and its manufacturing method
JP2014224033A (en) Fluidity improvement type cement clinker
JP6285135B2 (en) Cement clinker and cement
JP2013224227A (en) Method for producing cement composition
JP2012201520A (en) Cement composition, and method for producing the same
JP6676999B2 (en) Cement composition and method for producing the same
JP6055367B2 (en) Fluidity improved clinker
JP2012229162A (en) Method for producing cement clinker
JP2019142749A (en) Cement composition and method for producing cement composition
JP6672862B2 (en) Cement composition and method for producing the same
JP6253972B2 (en) cement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180305

R150 Certificate of patent or registration of utility model

Ref document number: 6311485

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250