JP2016007643A - TITANIUM ALLOY INTERMEDIATE FORGING MATERIAL, SHAPE DETERMINING METHOD FOR THE TITANIUM ALLOY INTERMEDIATE FORGING MATERIAL, MANUFACTURING METHOD FOR TITANIUM ALLOY β FORGING MATERIAL, TITANIUM ALLOY β FORGING MATERIAL, AND ULTRASONIC FLAW DETECTION METHOD - Google Patents

TITANIUM ALLOY INTERMEDIATE FORGING MATERIAL, SHAPE DETERMINING METHOD FOR THE TITANIUM ALLOY INTERMEDIATE FORGING MATERIAL, MANUFACTURING METHOD FOR TITANIUM ALLOY β FORGING MATERIAL, TITANIUM ALLOY β FORGING MATERIAL, AND ULTRASONIC FLAW DETECTION METHOD Download PDF

Info

Publication number
JP2016007643A
JP2016007643A JP2014131874A JP2014131874A JP2016007643A JP 2016007643 A JP2016007643 A JP 2016007643A JP 2014131874 A JP2014131874 A JP 2014131874A JP 2014131874 A JP2014131874 A JP 2014131874A JP 2016007643 A JP2016007643 A JP 2016007643A
Authority
JP
Japan
Prior art keywords
titanium alloy
forging
forging material
forged material
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014131874A
Other languages
Japanese (ja)
Other versions
JP6236361B2 (en
Inventor
良規 伊藤
Yoshinori Ito
良規 伊藤
啓太 佐々木
Keita Sasaki
啓太 佐々木
昂 今野
Ko Konno
昂 今野
昌吾 村上
Shogo Murakami
昌吾 村上
重臣 荒木
Shigeomi Araki
重臣 荒木
小島 壮一郎
Soichiro Kojima
壮一郎 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2014131874A priority Critical patent/JP6236361B2/en
Publication of JP2016007643A publication Critical patent/JP2016007643A/en
Application granted granted Critical
Publication of JP6236361B2 publication Critical patent/JP6236361B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Forging (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a titanium alloy intermediate forging material from which a titanium alloy β forging material in which strain distribution occurring in the inside of a forging material is uniformized and low cycle fatigue strength and ultrasonic flaw detection property are made compatible, can be obtained.SOLUTION: There is provided a titanium alloy intermediate forging material 100 to be used for manufacturing a titanium alloy β forging material which is made of a titanium alloy of α+β type, which is rotationally symmetric and has a prescribed radially large and thin shape, and the radially outer circumference of which becomes a product part. The titanium alloy intermediate forging material 100 has a minimum thickness part at a central part 28, has one maximum thickness part at an outer periphery 23, satisfies prescribed formulae, and has a prescribed relation between its shape and the shape of the titanium alloy β forging material.

Description

本発明は、超音波検査にて欠陥の有無が検査されるα+β型チタン合金のβ鍛造材の製造に供するチタン合金中間鍛造材、チタン合金中間鍛造材の形状決定方法、チタン合金β鍛造材の製造方法、チタン合金β鍛造材、および、超音波探傷検査方法に関する。   The present invention relates to a titanium alloy intermediate forging material, a method for determining the shape of a titanium alloy intermediate forging material, a method for determining the shape of a titanium alloy intermediate forging material, and a titanium alloy β forging material. The present invention relates to a manufacturing method, a titanium alloy β forged material, and an ultrasonic flaw detection inspection method.

Ti−6Al−4V合金に代表されるα+β型チタン合金は、軽量、高強度、高耐食性に加え、溶接性、超塑性、拡散接合性等の諸特性を有することから、エンジン部品等、航空機産業で多く使用されている。α+β型チタン合金は、主相である稠密六方晶(hcp構造)のα相と体心立方晶(bcc構造)のβ相とが室温で安定に共存し、β変態点(Tβ)以上の温度域でβ相単相となる。α+β型チタン合金の鍛造材には、Tβ以上の温度に到達しないようにTβ未満の温度域(α+β二相域)に加熱してこの温度域で鍛造するα+β鍛造によるものと、Tβ以上の温度域(β単相域)に加熱して鍛造するβ鍛造によるものとがある。そして、α+β鍛造とβ鍛造とでは、形成される材料組織は全く異なり、それに伴い材料特性が異なることが知られている。   Α + β type titanium alloy, represented by Ti-6Al-4V alloy, has various characteristics such as weldability, superplasticity, and diffusion bondability in addition to light weight, high strength, and high corrosion resistance. Is used a lot. In the α + β type titanium alloy, the dense hexagonal (hcp structure) α phase, which is the main phase, and the β phase of the body-centered cubic (bcc structure) stably coexist at room temperature, and the temperature is higher than the β transformation point (Tβ). It becomes β phase single phase in the region. Forging materials of α + β type titanium alloy, heat forging in a temperature range below Tβ (α + β two-phase region) and forging in this temperature range so as not to reach temperatures above Tβ, and temperatures above Tβ There is a thing by the β forging which heats and forges to a zone (β single phase zone). It is known that the material structure formed is completely different between the α + β forging and the β forging, and the material characteristics are different accordingly.

チタン合金鍛造材は、β鍛造によれば、針状α相組織となる。具体的には、次のように組織が形成される。まず、Tβ以上の温度域でβ相単相となり、等軸状のβ相(β粒)が鍛造加工により扁平に潰れた後、Tβ未満の温度域まで冷却されてこの温度域で保持されると、β粒の結晶粒界に沿ってα相が膜状に析出し、引き続き、β粒の結晶粒内にα相が針状に析出する(図3で白く示されているのがα相)。なお、β鍛造には、β単相域で鍛造を完了させるもの、β単相域外(α+β二相域)に温度降下後も鍛造が継続されるもの、およびα+β二相域に温度が降下してから鍛造を開始するものがある。さらにβ鍛造材は、鍛造条件やその後の冷却条件によって、旧β粒の結晶粒界上のα相の形態や厚さ、また粒内の針状α相の長さや厚さが変化し、さらには粒界上の膜状のα相が存在しないものもあり得る。一方、チタン合金鍛造材は、α+β鍛造によれば、粒状α組織となる(図4参照)。一般的に、α+β型チタン合金鍛造材において、破壊靭性はβ鍛造をされた鍛造材の方がα+β鍛造をされた鍛造材よりも優れ、逆に疲労強度特性はα+β鍛造をされた鍛造材の方がβ鍛造をされた鍛造材よりも優れることが知られている。   The titanium alloy forged material has a needle-like α phase structure according to β forging. Specifically, the organization is formed as follows. First, it becomes a β phase single phase in a temperature range equal to or higher than Tβ, and after the equiaxed β phase (β grains) is flattened by forging, it is cooled to a temperature range lower than Tβ and held in this temperature range. Then, the α phase precipitates in the form of a film along the grain boundaries of β grains, and subsequently the α phase precipitates in the form of needles in the β grains (the white phase shown in FIG. 3 is the α phase). ). In β forging, forging is completed in the β single-phase region, forging continues after the temperature drops outside the β single-phase region (α + β two-phase region), and the temperature drops in the α + β two-phase region. Some start forging after that. Furthermore, the β forging material changes in the form and thickness of the α phase on the grain boundary of the old β grains, and the length and thickness of the acicular α phase in the grains, depending on the forging conditions and the subsequent cooling conditions. May not have a film-like α phase on the grain boundary. On the other hand, the titanium alloy forged material has a granular α structure according to α + β forging (see FIG. 4). In general, forging materials with α + β-type titanium alloy, fracture toughness is better for forged materials with β-forging than forged materials with α + β-forging, and conversely, fatigue strength characteristics are for forged materials with α + β-forging. It is known that this method is superior to the forged material that has been β-forged.

このようなチタン合金鍛造材に関する技術として、例えば特許文献1には、Al:5.50〜6.75%、V:3.50〜4.50%を含有し、残部が不可避の不純物およびTiからなるチタン合金の部品を製造する方法が開示されている。そして、この製造方法では、このチタン合金の素材を900℃以上変態温度未満の温度において恒温鍛造し、その際の歪み速度を5×10−3/sec以下に保って素材の変形を行ない、等軸(α+β)組織をもつニアネットシェープの成形品を得、これに必要な機械加工を施して製品とすることが開示されている。 As a technique related to such a titanium alloy forged material, for example, Patent Document 1 contains Al: 5.50 to 6.75%, V: 3.50 to 4.50%, the balance being inevitable impurities and Ti A method of manufacturing a titanium alloy part comprising: In this manufacturing method, the titanium alloy material is isothermally forged at a temperature of 900 ° C. or more and less than the transformation temperature, and the material is deformed while maintaining the strain rate at 5 × 10 −3 / sec or less. It is disclosed that a near net shape molded article having an axis (α + β) structure is obtained, and a necessary machining is performed to obtain a product.

また、例えば特許文献2には、外面形状が円形の素材を開放型の上下金型を用いてその軸方向に圧下して外面形状が円形の円形材に鍛造する際に、内径が下記(1)式に規定される条件を満足する直径dのリング工具をその軸心を前記金型の軸心に一致させて設け、この状態で鍛造中の材料を前記リング工具の内面に接触させ、その後、リング工具を取り除いて鍛造することを特徴とする円形材の鍛造方法が開示されている。
D+2E≦d≦D・・・(1)、ここでD:素材の最大直径(mm)、E:素材装入時の金型の軸心と素材の軸心との変位量(mm)、D:圧下量が総圧下量の70%の時点における材料の平均外径(mm)。
Further, for example, in Patent Document 2, when a material having a circular outer surface shape is squeezed in the axial direction using an open upper and lower molds and forged into a circular material having a circular outer surface shape, the inner diameter is the following (1 A ring tool having a diameter d satisfying the conditions defined in the formula (1) is provided with its axis aligned with the axis of the mold, and in this state, the material being forged is brought into contact with the inner surface of the ring tool, A method for forging a circular material, characterized in that the ring tool is removed and forging is disclosed.
D + 2E ≦ d ≦ D 1 (1), where D: maximum diameter of the material (mm), E: displacement amount (mm) between the axis of the mold and the axis of the material when the material is charged, D 1 : The average outer diameter (mm) of the material when the reduction amount is 70% of the total reduction amount.

また、例えば特許文献3には、β鍛造をされたチタン合金鍛造材であって、アスペクト比が平均で2以上10以下である旧β粒の多結晶構造を有し、前記旧β粒の粒界は、鍛造方向に平行な線となす角が平均で80°以下であり、前記旧β粒の粒界上に形成されたα相は、前記粒界方向における長さが平均で15μm以下であることを特徴とするチタン合金鍛造材が開示されている。   Further, for example, Patent Document 3 discloses a β-forged titanium alloy forged material having a polycrystalline structure of old β grains having an average aspect ratio of 2 or more and 10 or less. The boundary has an average angle of 80 ° or less with the line parallel to the forging direction, and the α phase formed on the grain boundary of the old β grain has an average length in the grain boundary direction of 15 μm or less. There is disclosed a titanium alloy forging characterized by the fact.

特開平5−25597号公報JP-A-5-25597 特開2003−19534号公報JP 2003-19534 A 特開2014−55318号公報JP 2014-55318 A

航空機のエンジン部品等は、高い疲労強度特性と共に、高い信頼性が要求されることから、超音波探傷により欠陥の有無が検査される。超音波探傷検査は、探触子から発信(送信)された超音波を被検査体の表面から内部に入射させ、傷等の欠陥で反射する反射波を同じく探触子で受信することで、内部の欠陥の有無を判定する検査である。   Aircraft engine parts and the like are required to have high fatigue strength characteristics and high reliability, and therefore are inspected for defects by ultrasonic flaw detection. In ultrasonic flaw detection, the ultrasonic wave transmitted (transmitted) from the probe is incident from the surface of the object to be inspected, and the reflected wave reflected by the defect such as a flaw is received by the probe. This is an inspection for determining the presence or absence of internal defects.

そして、チタン合金β鍛造材は、低サイクル疲労強度と超音波探傷性の両立が課題とされている。チタン合金β鍛造材の低サイクル疲労強度はβ鍛造時に素材に加える歪の増加に伴い向上するものの、逆に超音波探傷性は鍛造歪の増加と共に悪化することが知られている。そして、鍛造材の形状が大径薄肉の場合、鍛造素材内の歪の不均一が生じ易く、局所的に鍛造歪が大きくなる部位が生じ、超音波探傷性を悪化させる問題がある。   The titanium alloy β-forged material has a problem of achieving both low cycle fatigue strength and ultrasonic flaw detection. Although the low cycle fatigue strength of the titanium alloy β-forged material is improved with an increase in strain applied to the material during β-forging, it is known that the ultrasonic flaw detection property deteriorates as the forging strain increases. When the forged material has a large diameter and thin wall, unevenness of strain in the forged material is likely to occur, and there is a problem that a forging strain is locally increased, resulting in deterioration of ultrasonic flaw detection properties.

ここで、特許文献1に記載の技術では、本願で対象とするβ域での鍛造には適用できず、また、歪分布についても制御できていない。なお、実施例において、歪速度を適正化することで切屑が減少するとしている。しかしながら、これについて実験データが開示されているわけではない。   Here, the technique described in Patent Document 1 cannot be applied to forging in the β region, which is the subject of the present application, and the strain distribution cannot be controlled. In the embodiment, the chip is reduced by optimizing the strain rate. However, experimental data for this is not disclosed.

また、特許文献2に記載の鍛造方法は、開放型の金型を用いて鍛造する際に軸芯のズレ起因で起こる偏肉を抑制する方法であり、所定形状のリングを下金型にセットし、途中鍛造段階の偏肉を抑制するものである。しかしながら、特許文献2に記載の技術では、円形材に生じる偏肉は抑制されるが、この技術は内部の歪分布を均一にするものではない。   Further, the forging method described in Patent Document 2 is a method for suppressing uneven thickness caused by misalignment of the shaft core when forging using an open die, and a ring having a predetermined shape is set in the lower die. In this way, uneven thickness at the forging stage is suppressed. However, in the technique described in Patent Document 2, uneven thickness generated in the circular material is suppressed, but this technique does not make the internal strain distribution uniform.

また、特許文献3に記載のチタン合金鍛造材は、鍛造材に加えるβ鍛造歪を全体的に低減することで、低サイクル疲労強度と超音波探傷性を両立させている。なお、鍛造歪については、高い低サイクル疲労強度を発現させるのに必要なβ鍛造歪よりも多く、一方で、超音波探傷性を損なわない鍛造歪の範囲に圧下量で制御する。しかしながら、特許文献3に記載の技術では、低サイクル疲労強度と超音波探傷性を両立できる歪の範囲が狭く、β鍛造チタン合金鍛造材の形状の自由度が低いという問題がある。   Moreover, the titanium alloy forged material described in Patent Document 3 achieves both low cycle fatigue strength and ultrasonic flaw detection by reducing the overall β forging strain applied to the forged material. Note that the forging strain is controlled by the amount of reduction within a range of forging strain that is greater than the β forging strain necessary to develop a high low cycle fatigue strength, and on the other hand, does not impair the ultrasonic flaw detection property. However, the technique described in Patent Document 3 has a problem that the range of strain that can achieve both low cycle fatigue strength and ultrasonic flaw detection is narrow, and the degree of freedom of the shape of the β-forged titanium alloy forged material is low.

本発明は、前記問題点に鑑みてなされたものであり、鍛造材内部に生じる歪分布を均一化し、低サイクル疲労強度と超音波探傷性を両立させたチタン合金β鍛造材を得ることができるチタン合金中間鍛造材、チタン合金中間鍛造材の形状決定方法、チタン合金β鍛造材の製造方法、チタン合金β鍛造材、および、超音波探傷検査方法を提供することを課題とする。   The present invention has been made in view of the above problems, and can obtain a titanium alloy β-forged material in which strain distribution generated in the forged material is made uniform and both low cycle fatigue strength and ultrasonic flaw detection properties are achieved. It is an object to provide a titanium alloy intermediate forging material, a method for determining the shape of a titanium alloy intermediate forging material, a method for manufacturing a titanium alloy β forging material, a titanium alloy β forging material, and an ultrasonic flaw detection inspection method.

本発明に係るチタン合金中間鍛造材は、α+β型のチタン合金から成り、回転対称で且つ式(1)、式(2)、式(3)で示される大径薄肉形状で、径方向の外周部が製品部となるチタン合金β鍛造材の製造に供されるチタン合金中間鍛造材であって、前記チタン合金中間鍛造材は、最小厚み部が中心部にあり、外周部に最大厚み部が1箇所存在し、式(4)、式(5)、式(6)、式(7)、式(8)を満足し、且つ、前記チタン合金β鍛造材の形状との間に式(9)の関係を有することを特徴とする。   The titanium alloy intermediate forging according to the present invention is made of an α + β type titanium alloy, is rotationally symmetric, has a large-diameter thin-walled shape represented by the formulas (1), (2), and (3), and has a radially outer periphery. The titanium alloy intermediate forging material used for the production of titanium alloy β forging material in which the part becomes the product portion, wherein the titanium alloy intermediate forging material has the minimum thickness portion in the central portion and the maximum thickness portion in the outer peripheral portion. 1 exists, satisfies the formula (4), the formula (5), the formula (6), the formula (7), the formula (8), and the shape of the titanium alloy β forging (9) ).

0.1<b/A<0.5・・・・・(1)
40<b1<200・・・・・・・・・(2)
0.1<B/A<0.9・・・・・(3)
1.2≦b/a≦4.0・・・・・(4)
0.05<B/A≦0.55・・・(5)
20°≦θ≦ 70°・・・・・・・・(6)
2A/5≦C・・・・・・・・・・(7)
0.5≦c/b・・・・・・・・・(8)
0.20≦b/b≦0.60・・・(9)
0.1 <b 1 / A 1 <0.5 (1)
40 <b 1 <200 (2)
0.1 <B 1 / A 1 <0.9 (3)
1.2 ≦ b 0 / a 0 ≦ 4.0 (4)
0.05 <B 0 / A 0 ≦ 0.55 (5)
20 ° ≦ θ ≦ 70 ° (6)
2A 0/5 ≦ C 0 ·········· (7)
0.5 ≦ c 0 / b 0 (8)
0.20 ≦ b 1 / b 0 ≦ 0.60 (9)

ここで、
:チタン合金中間鍛造材の中心部の底部からの最小厚み(mm)
:チタン合金中間鍛造材の外周部の底部からの最大厚み(mm)
:チタン合金中間鍛造材の最外周部の厚み(mm)
:チタン合金中間鍛造材の外径の半径(mm)
:チタン合金中間鍛造材の凹部の半径(mm)
:中心部から最大厚みに達するまでの径(mm)
:チタン合金β鍛造材の外径の半径(mm)
:チタン合金β鍛造材の内径の半径(mm)
:チタン合金β鍛造材の製品部の最大厚さ(mm)
θ :チタン合金中間鍛造材の上面において中心部から外周部にかけて形成された傾斜部における、底部から(a+b)/2の位置の接線と、前記凹部の底面の接線とのなす角
である。
here,
a 0 : Minimum thickness (mm) from the bottom of the center of the titanium alloy intermediate forging
b 0 : Maximum thickness (mm) from the bottom of the outer periphery of the titanium alloy intermediate forging
c 0 : Thickness (mm) of the outermost peripheral portion of the titanium alloy intermediate forged material
A 0 : Radius of outer diameter of titanium alloy intermediate forging (mm)
B 0 : Radius of recess of titanium alloy intermediate forging (mm)
C 0 : Diameter from the center to the maximum thickness (mm)
A 1 : Radius of outer diameter of titanium alloy β forged material (mm)
B 1 : Radius (mm) of inner diameter of titanium alloy β-forged material
b 1 : Maximum thickness (mm) of the product part of the titanium alloy β-forged material
θ: an angle formed by a tangent at a position (a 0 + b 0 ) / 2 from the bottom and a tangent at the bottom of the recess in the inclined portion formed from the center to the outer periphery on the upper surface of the titanium alloy intermediate forging is there.

かかる構成によれば、このチタン合金中間鍛造材を用いて製造された大径薄肉形状のチタン合金β鍛造材において、内部に生じる歪分布が均一化される。これにより、低サイクル疲労強度と超音波探傷性を両立させたチタン合金β鍛造材を得ることができる。   According to this configuration, in the large-diameter thin-walled titanium alloy β-forged material manufactured using this titanium alloy intermediate forged material, the strain distribution generated inside is made uniform. As a result, a titanium alloy β-forged material having both low cycle fatigue strength and ultrasonic flaw detection properties can be obtained.

また、チタン合金中間鍛造材は、式(10)で表されるMo当量[Mo]eqが2.7を超え15未満であるチタン合金を用いることが好ましい。
[Mo]eq=[Mo]+[Ta]/5+[Nb]/3.6+[W]/2.5+[V]/1.5+1.25[Cr]+1.25[Ni]+1.7[Mn]+1.7[Co]+2.5[Fe]・・・(10)
ただし、前記式(10)の[X]は、前記チタン合金における元素Xの含有量(質量%)とする。
Moreover, it is preferable to use the titanium alloy whose Mo equivalent [Mo] eq represented by Formula (10) is more than 2.7 and less than 15 as the titanium alloy intermediate forging material.
[Mo] eq = [Mo] + [Ta] / 5 + [Nb] /3.6+ [W] /2.5+ [V] /1.5+1.25 [Cr] +1.25 [Ni] +1.7 [ Mn] +1.7 [Co] +2.5 [Fe] (10)
However, [X] in the formula (10) is the content (mass%) of the element X in the titanium alloy.

かかる構成によれば、得られたチタン合金β鍛造材は、α相の体積含有率が減少して旧β粒の形状の影響が強くなり、超音波探傷性が向上する。   According to such a configuration, the obtained titanium alloy β forged material has a reduced α phase volume content, and the influence of the shape of the old β grains becomes stronger, and the ultrasonic flaw detection property is improved.

本発明に係るチタン合金中間鍛造材の形状決定方法は、前記記載の関係式に則り、前記チタン合金中間鍛造材の形状を定めることを特徴とする。   The shape determination method of the titanium alloy intermediate forging according to the present invention is characterized in that the shape of the titanium alloy intermediate forging is determined according to the relational expression described above.

かかる構成によれば、チタン合金中間鍛造材の形状決定方法は、低サイクル疲労強度と超音波探傷性を両立させたチタン合金β鍛造材を得るためのチタン合金中間鍛造材の形状を簡便に決定することができる。   According to such a configuration, the method for determining the shape of the titanium alloy intermediate forged material simply determines the shape of the titanium alloy intermediate forged material to obtain a titanium alloy β forged material that achieves both low cycle fatigue strength and ultrasonic flaw detection. can do.

本発明に係るチタン合金β鍛造材の製造方法は、前記記載のチタン合金中間鍛造材を、合金成分によって決まるβ変態点をTβで表したとき、(Tβ+5℃)以上に加熱して、β結晶粒径が100μm以上800μm未満の範囲になるまで保持した後、(Tβ−150℃)以上の温度域で鍛造を行い、直ちに(Tβ−150℃)未満の温度まで冷却することを特徴とする。 Method for producing titanium alloy beta forging according to the present invention, the titanium alloy intermediate forged material of the described, when the beta transformation point determined by the alloy components expressed in T beta, and heated to (T β + 5 ℃) or higher After holding until the β crystal grain size is in the range of 100 μm or more and less than 800 μm, forging in a temperature range of (T β −150 ° C.) or higher and immediately cooling to a temperature of (T β −150 ° C.) or lower. It is characterized by.

かかる手順によれば、チタン合金β鍛造材の製造方法は、大径薄肉形状であり、内部に生じる歪分布が均一化された、低サイクル疲労強度と超音波探傷性を両立させたチタン合金β鍛造材を得ることができる。   According to such a procedure, the titanium alloy β forging manufacturing method has a large-diameter, thin-walled shape, the strain distribution generated inside is uniform, and the titanium alloy β having both low cycle fatigue strength and ultrasonic flaw detection properties. A forging material can be obtained.

本発明に係るチタン合金β鍛造材は、前記記載の製造方法で製造したことを特徴とする。   The titanium alloy β forging according to the present invention is manufactured by the manufacturing method described above.

かかる構成によれば、チタン合金β鍛造材は、大径薄肉形状であり、内部に生じる歪分布が均一化されたものとなる。これにより、低サイクル疲労強度と超音波探傷性を両立させたチタン合金β鍛造材となる。   According to such a configuration, the titanium alloy β forged material has a large-diameter and thin-walled shape, and the strain distribution generated inside becomes uniform. As a result, a titanium alloy β-forged material having both low cycle fatigue strength and ultrasonic flaw detection properties is obtained.

本発明に係る超音波探傷検査方法は、前記記載のチタン合金β鍛造材に対する超音波探傷検査方法であって、プローブ径が5〜30mmの範囲である探触子を用いて、周波数が1〜20MHzの範囲である超音波にて、前記チタン合金β鍛造材の鍛造圧下量の最も大きい方向に平行な方向に探傷する工程を含むことを特徴とする。   An ultrasonic flaw detection inspection method according to the present invention is an ultrasonic flaw inspection method for the titanium alloy β forging described above, and a probe having a probe diameter in the range of 5 to 30 mm and having a frequency of 1 to 1. It includes a step of performing flaw detection in a direction parallel to the direction in which the forging reduction amount of the titanium alloy β forging material is the largest with ultrasonic waves in the range of 20 MHz.

かかる方法により、超音波探傷検査方法は、比較的高ノイズとなる鍛造方向に探傷しても十分にノイズが少ないため、チタン合金β鍛造材における面積の広い面を探触子で走査することができ、検査が容易になり、かつ高精度な検査を行うことができる。   With such a method, the ultrasonic flaw detection inspection method has sufficient noise even when flaw detection is performed in the forging direction, which results in relatively high noise. This makes it possible to perform inspection with high accuracy.

本発明のチタン合金中間鍛造材によれば、大径薄肉形状の鍛造材内部に生じる歪分布が均一化され、低サイクル疲労強度と超音波探傷性を両立させたチタン合金β鍛造材を得ることができる。
本発明のチタン合金中間鍛造材の形状決定方法によれば、簡便にチタン合金中間鍛造材の形状を決定することができる。
本発明のチタン合金β鍛造材の製造方法によれば、大径薄肉形状の鍛造材内部に生じる歪分布が均一化され、低サイクル疲労強度と超音波探傷性を両立させたチタン合金β鍛造材を得ることができる。
本発明のチタン合金β鍛造材によれば、大径薄肉形状の鍛造材内部に生じる歪分布が均一化され、低サイクル疲労強度と超音波探傷性を両立させた鍛造材となる。
本発明の超音波探傷検査方法によれば、前記のチタン合金β鍛造材に対して高精度な検査を行うことができる。
According to the titanium alloy intermediate forging material of the present invention, obtaining a titanium alloy β forging material in which the strain distribution generated in the large-diameter thin-walled forging material is made uniform, and both low cycle fatigue strength and ultrasonic flaw detection properties are achieved. Can do.
According to the titanium alloy intermediate forging material shape determining method of the present invention, the shape of the titanium alloy intermediate forging material can be easily determined.
According to the method for producing a titanium alloy β-forged material of the present invention, a titanium alloy β-forged material in which the strain distribution generated in the large-diameter thin-walled forged material is made uniform and both low cycle fatigue strength and ultrasonic flaw detection properties are achieved. Can be obtained.
According to the titanium alloy β forged material of the present invention, the strain distribution generated in the large-diameter thin-walled forged material is made uniform, and the forged material achieves both low cycle fatigue strength and ultrasonic flaw detection.
According to the ultrasonic inspection method of the present invention, the titanium alloy β forged material can be inspected with high accuracy.

本発明のチタン合金β鍛造材の形状の一例を説明するための模式的な断面図である。It is typical sectional drawing for demonstrating an example of the shape of the titanium alloy beta forging material of this invention. 本発明のチタン合金中間鍛造材の形状の一例を説明するための模式的な断面図である。It is typical sectional drawing for demonstrating an example of the shape of the titanium alloy intermediate forging material of this invention. チタン合金鍛造材の組織の画像写真であり、β鍛造材の一例である。It is an image photograph of the structure of a titanium alloy forging material, and is an example of a β forging material. チタン合金鍛造材の組織の画像写真であり、α+β鍛造材の一例である。It is an image photograph of the structure of a titanium alloy forging material, and is an example of an α + β forging material.

以下、本発明の実施の形態について詳細に説明する。
<チタン合金中間鍛造材>
本発明のチタン合金中間鍛造材は、大径薄肉形状の鍛造材内部に生じる歪分布を均一化し、製造されるチタン合金β鍛造材における低サイクル疲労強度と超音波探傷性を両立させたものである。そして、そのために、鍛造前の素材(チタン合金中間鍛造材)の形状を蝶型とし、チタン合金β鍛造材の形状に応じて適性化した中間鍛造材形状としたものである。
Hereinafter, embodiments of the present invention will be described in detail.
<Titanium alloy intermediate forging material>
The titanium alloy intermediate forging material according to the present invention has a uniform distribution of strain generated inside a large-diameter thin-walled forging material, and achieves both low cycle fatigue strength and ultrasonic flaw detection in the manufactured titanium alloy β-forging material. is there. For that purpose, the shape of the material before forging (titanium alloy intermediate forging material) is a butterfly shape, and the intermediate forging material shape is made suitable according to the shape of the titanium alloy β forging material.

なお、製造されるチタン合金β鍛造材において、
疲労強度特性発現に必要なβ鍛造歪量:0.50以上
超音波探傷性の悪化を防ぐために必要な歪量:2.70以下(好ましくは2.50以下)
とする。これらの値は、基礎実験の結果、求めたクライテリアである。
超音波探傷ノイズの誤認識を防ぎ、また、特性の均質化(機械的特性の均質化および超音波探傷性の均質化)のため、
「(最大歪量−最小歪量)/最大歪量」:0.70以下
すなわち、(εmax−εmin)/εmax≦0.70
とする。
なお、超音波探傷時に周囲よりもノイズの高い箇所(歪の高い箇所に対応)があると、欠陥と誤認される可能性があり、全体でのバランス(均質化すること)も必要となる。
In the manufactured titanium alloy β forging material,
Β forging strain required to develop fatigue strength characteristics: 0.50 or more Strain required to prevent deterioration of ultrasonic flaw detection property: 2.70 or less (preferably 2.50 or less)
And These values are the criteria obtained as a result of basic experiments.
To prevent false recognition of ultrasonic flaw detection noise and to homogenize characteristics (homogenization of mechanical characteristics and homogenization of ultrasonic flaw detection),
“(Maximum strain amount−minimum strain amount) / maximum strain amount”: 0.70 or less, that is, (ε max −ε min ) / ε max ≦ 0.70
And
In addition, if there is a location with higher noise than the surroundings (corresponding to a location with high distortion) during ultrasonic flaw detection, it may be mistaken for a defect, and overall balance (homogenization) is also required.

以下、具体的に説明する。
本発明のチタン合金中間鍛造材は、α+β型のチタン合金から成り、回転対称で且つ式(1)、式(2)、式(3)で示される大径薄肉形状で、径方向の外周部が製品部となるチタン合金β鍛造材の製造に供されるものである。
そして、チタン合金中間鍛造材は、最小厚み部が中心部にあり、外周部に最大厚み部が1箇所存在し、式(4)、式(5)、式(6)、式(7)、式(8)を満足し、且つ、前記チタン合金β鍛造材の形状との間に式(9)の関係を有する。なお、これらの式は、解析を繰り返すことで導き出したものである。
This will be specifically described below.
The titanium alloy intermediate forging material of the present invention is made of an α + β type titanium alloy, is rotationally symmetric and has a large-diameter thin-walled shape represented by the formula (1), the formula (2), and the formula (3). Is used for the production of a titanium alloy β-forged material that becomes a product part.
And the titanium alloy intermediate forging material has the minimum thickness portion in the central portion, and there is one maximum thickness portion in the outer peripheral portion, and the equations (4), (5), (6), (7), Formula (8) is satisfied, and the relationship of Formula (9) is established with the shape of the titanium alloy β forged material. These equations are derived by repeating the analysis.

0.1<b/A<0.5・・・・・(1)
40<b1<200・・・・・・・・・(2)
0.1<B/A<0.9・・・・・(3)
1.2≦b/a≦4.0・・・・・(4)
0.05<B/A≦0.55・・・(5)
20°≦θ≦ 70°・・・・・・・・(6)
2A/5≦C・・・・・・・・・・(7)
0.5≦c/b・・・・・・・・・(8)
0.20≦b/b≦0.60・・・(9)
0.1 <b 1 / A 1 <0.5 (1)
40 <b 1 <200 (2)
0.1 <B 1 / A 1 <0.9 (3)
1.2 ≦ b 0 / a 0 ≦ 4.0 (4)
0.05 <B 0 / A 0 ≦ 0.55 (5)
20 ° ≦ θ ≦ 70 ° (6)
2A 0/5 ≦ C 0 ·········· (7)
0.5 ≦ c 0 / b 0 (8)
0.20 ≦ b 1 / b 0 ≦ 0.60 (9)

ここで、
:チタン合金中間鍛造材の中心部の底部からの最小厚み(mm)
:チタン合金中間鍛造材の外周部の底部からの最大厚み(mm)
:チタン合金中間鍛造材の最外周部の厚み(mm)
:チタン合金中間鍛造材の外径の半径(mm)
:チタン合金中間鍛造材の凹部の半径(mm)
:中心部から最大厚みに達するまでの径(mm)
:チタン合金β鍛造材の外径の半径(mm)
:チタン合金β鍛造材の内径の半径(mm)
:チタン合金β鍛造材の製品部の最大厚さ(mm)
θ :チタン合金中間鍛造材の上面において中心部から外周部にかけて形成された傾斜部における、底部から(a+b)/2の位置の接線と、前記凹部の底面の接線とのなす角
である。
なお、これらのパラメータは、チタン合金中間鍛造材の製造における荒地鍛造およびチタン合金β鍛造材の製造におけるβ鍛造など、これらの製造の際の諸条件により制御することができる。
here,
a 0 : Minimum thickness (mm) from the bottom of the center of the titanium alloy intermediate forging
b 0 : Maximum thickness (mm) from the bottom of the outer periphery of the titanium alloy intermediate forging
c 0 : Thickness (mm) of the outermost peripheral portion of the titanium alloy intermediate forged material
A 0 : Radius of outer diameter of titanium alloy intermediate forging (mm)
B 0 : Radius of recess of titanium alloy intermediate forging (mm)
C 0 : Diameter from the center to the maximum thickness (mm)
A 1 : Radius of outer diameter of titanium alloy β forged material (mm)
B 1 : Radius (mm) of inner diameter of titanium alloy β-forged material
b 1 : Maximum thickness (mm) of the product part of the titanium alloy β-forged material
θ: an angle formed by a tangent at a position (a 0 + b 0 ) / 2 from the bottom and a tangent at the bottom of the recess in the inclined portion formed from the center to the outer periphery on the upper surface of the titanium alloy intermediate forging is there.
These parameters can be controlled by various conditions during production, such as wasteland forging in the production of a titanium alloy intermediate forging material and β forging in the production of a titanium alloy β forging material.

まず、対象とするチタン合金β鍛造材の形状に関する式(1)〜(3)について、図1を参照して説明する。チタン合金β鍛造材は、図1に示す形状である。チタン合金β鍛造材10は、中心部18を通る中心線Lを基準に回転対称である。   First, equations (1) to (3) relating to the shape of the target titanium alloy β forging will be described with reference to FIG. The titanium alloy β forged material has a shape shown in FIG. The titanium alloy β forged material 10 is rotationally symmetric with respect to a center line L passing through the center portion 18.

[式(1):0.1<b/A<0.5]
式(1)は、チタン合金β鍛造材10が大径薄肉形状であることを定義したものである。
図1に示すように、チタン合金β鍛造材10は、製品部11である外周部13と、この外周部13の一方側(内側)に位置する内周部14と、この外周部13の他方側(外側)に位置するバリ部12とからなる。チタン合金β鍛造材10は、径方向の外周部13が製品部11となる。径方向とは、チタン合金β鍛造材10の中心部18から、外側に向かう方向である。チタン合金β鍛造材10は、外周部13と内周部14とによって、ここでは中央の下側が凹状に形成されている(凹部を有する)。なお、図1では、内周部14の肉厚の薄い部分が外周部13の上側に位置し、チタン合金β鍛造材10の中央の下側が凹状に形成されている。しかしながら、必ずしも内周部14の肉厚の薄い部分が外周部13の上側にある必要はなく、外周部13の肉厚中央付近や下側に位置していてもよく、更には内周部14の厚みが途中で変化したり、曲線を有したりしていてもよい。これらは、いずれも本発明の範囲に含まれる。このような内周部14の肉厚の薄い部分を有する構成により、歩留まりを上げることができる。
[Formula (1): 0.1 <b 1 / A 1 <0.5]
Formula (1) defines that the titanium alloy β forged material 10 has a large-diameter thin wall shape.
As shown in FIG. 1, the titanium alloy β forged material 10 includes an outer peripheral portion 13 that is a product portion 11, an inner peripheral portion 14 that is located on one side (inner side) of the outer peripheral portion 13, and the other of the outer peripheral portion 13. It consists of the burr | flash part 12 located in the side (outside). In the titanium alloy β forged material 10, the outer peripheral portion 13 in the radial direction becomes the product portion 11. The radial direction is a direction from the central portion 18 of the titanium alloy β forged material 10 toward the outside. The titanium alloy β-forged material 10 is formed with a concave portion (having a concave portion) in the lower side of the center here by the outer peripheral portion 13 and the inner peripheral portion 14. In addition, in FIG. 1, the thin part of the inner peripheral part 14 is located above the outer peripheral part 13, and the lower side of the center of the titanium alloy β forged material 10 is formed in a concave shape. However, the thin portion of the inner peripheral portion 14 does not necessarily have to be on the upper side of the outer peripheral portion 13, and may be located near or below the thickness center of the outer peripheral portion 13, and further, the inner peripheral portion 14. The thickness of may change in the middle or may have a curve. These are all included in the scope of the present invention. With such a configuration having a thin portion of the inner peripheral portion 14, the yield can be increased.

そして、Aにおけるチタン合金β鍛造材10の外径の半径とは、チタン合金β鍛造材10の中心部18から製品部11の最外端までの長さをいう。
また、製品部11とは、チタン合金β鍛造材10の外周部13(本体部)をいい、例えば航空機のエンジン部品等の製品になる部分である。ここでは、製品部11とは、中心部18側において底部(底面)15が水平になる位置(ここでは、最大厚みbとなる部位)から、チタン合金β鍛造材10の外側のバリ部12になるまでの部位をいう(符号Pは、製品部の長さである)。ただし、図1の形状は一例であり、製品部11は、実際に製品として用いる部位の最内端から最外端であればよい。なお、後記するように、製品部11の形状によっては、製品部11の最内端が最大厚みbとならない場合もある。
And the radius of the outer diameter of the titanium alloy β-forged material 10 in A 1 refers to the length from the central portion 18 of the titanium alloy β-forged material 10 to the outermost end of the product portion 11.
The product portion 11 refers to the outer peripheral portion 13 (main body portion) of the titanium alloy β forged material 10 and is a portion that becomes a product such as an aircraft engine part. Here, the product part 11 is the burr part 12 outside the titanium alloy β forging material 10 from the position where the bottom part (bottom face) 15 is horizontal on the center part 18 side (here, the part having the maximum thickness b 1 ). (The symbol P is the length of the product part). However, the shape of FIG. 1 is an example, and the product part 11 should just be the outermost end from the innermost end of the site | part actually used as a product. Incidentally, as described later, depending on the shape of the product portion 11, there is a case where the innermost end of the product portion 11 is not a maximum thickness b 1.

ここで、チタン合金β鍛造材10は、外周部13に最大厚み部が1箇所存在するものとすることができる。図1では、製品部11(外周部13)の全てが最大厚みbであり、製品部11が最大厚み部となる。ただし、製品部11の厚みは、製品部の長さPの全域において一定である必要はなく、所望の製品形状に合わせて適宜変更してもよい。例えば、製品部11の長さPの領域の途中が括れていても良く、この括れ部を挟んだ外側と内側(いずれも製品部11内)で厚みが異なっていても良い(最大厚みbは製品部11の最内端よりも外側になる場合もある)。
また、チタン合金β鍛造材10は、中心部18を最小厚みとすることができる。なお、符号aは、チタン合金β鍛造材10の中心部18の底部からの最小厚みである。
ここで、チタン合金β鍛造材10の中心部18とは、回転対称となるチタン合金β鍛造材10の中心となる部位であり、図1において、中心線Lとチタン合金β鍛造材10が交差する部位である。そして、チタン合金β鍛造材10は、中心部18を通る中心線Lを基準に回転対称となる。
Here, the titanium alloy β forged material 10 may have one maximum thickness portion on the outer peripheral portion 13. In Figure 1, all of the product portion 11 (the outer peripheral portion 13) is the maximum thickness b 1, the product portion 11 is maximum thickness portion. However, the thickness of the product part 11 does not need to be constant over the entire length P of the product part, and may be appropriately changed according to a desired product shape. For example, the middle of the region of the length P of the product part 11 may be bound, and the thickness may be different between the outside and the inside (both in the product part 11) sandwiching the constricted part (maximum thickness b 1). May be outside the innermost end of the product part 11).
Further, the titanium alloy β forged material 10 can have the central portion 18 having a minimum thickness. Reference symbol a 1 is the minimum thickness from the bottom of the center portion 18 of the titanium alloy β forged material 10.
Here, the central portion 18 of the titanium alloy β forged material 10 is a portion that becomes the center of the rotationally symmetric titanium alloy β forged material 10, and in FIG. 1, the center line L intersects with the titanium alloy β forged material 10. It is a part to do. The titanium alloy β forged material 10 is rotationally symmetric with respect to the center line L passing through the center portion 18.

/Aは、好ましくは0.2超であり、より好ましくは0.25超である。また、b/Aは、好ましくは0.4未満であり、より好ましくは0.35未満である。 b 1 / A 1 is preferably more than 0.2, more preferably more than 0.25. Further, b 1 / A 1 is preferably less than 0.4, and more preferably less than 0.35.

[式(2):40<b1<200]
式(2)は、想定するチタン合金β鍛造材10の厚み範囲を定義したものである。
1は、好ましくは60mm超であり、より好ましくは80mm超である。また、b1は、好ましくは170mm未満であり、より好ましくは150mm未満である。
[Formula (2): 40 <b 1 <200]
Formula (2) defines the thickness range of the assumed titanium alloy β forged material 10.
b 1 is preferably more than 60 mm, more preferably more than 80 mm. In addition, b 1 is preferably less than 170 mm, more preferably less than 150 mm.

[式(3):0.1<B/A<0.9]
式(3)は、チタン合金β鍛造材10の外周部13と内周部14との割合を規定したものである。
ここで、チタン合金β鍛造材10の外周部13とは、チタン合金β鍛造材10の外側の所定領域である。また、チタン合金β鍛造材10の内周部14とは、チタン合金β鍛造材の内側(中心部側)の所定領域であり、外周部13(製品部11)よりも中心部18側の領域である。
また、Bにおけるチタン合金β鍛造材10の内径の半径とは、図1に示すように、チタン合金β鍛造材10の中心部18から製品部11の最内端までの長さをいう。なお、製品部11の最内端とは、ここでは、製品部11の中心部18側において底部(底面)15が水平になる位置(ここでは、最大厚みbとなる部位)をいう。ただし、前記したとおり、製品部11の最内端が最大厚みbとならない場合もあるが、この場合でも、実際に製品として用いる部位の最内端をチタン合金β鍛造材10の内径の半径の基準とすればよい。そして、製品部11の最内端より外側が製品部11となる。
/Aは、好ましくは0.2超であり、より好ましくは0.25超である。また、B/Aは、好ましくは0.8未満であり、より好ましくは0.75未満である。
[Formula (3): 0.1 <B 1 / A 1 <0.9]
Formula (3) defines the ratio of the outer peripheral portion 13 and the inner peripheral portion 14 of the titanium alloy β forged material 10.
Here, the outer peripheral portion 13 of the titanium alloy β forged material 10 is a predetermined region outside the titanium alloy β forged material 10. Further, the inner peripheral portion 14 of the titanium alloy β-forged material 10 is a predetermined region inside (center portion side) of the titanium alloy β-forged material, and is a region closer to the central portion 18 than the outer peripheral portion 13 (product portion 11). It is.
Further, the radius of the inner diameter of the titanium alloy β forged material 10 in B 1 refers to the length from the central portion 18 of the titanium alloy β forged material 10 to the innermost end of the product portion 11 as shown in FIG. Here, the innermost end of the product portion 11 refers to a position where the bottom portion (bottom surface) 15 is horizontal on the central portion 18 side of the product portion 11 (here, a portion having the maximum thickness b 1 ). However, as described above, the innermost end of the product portion 11 may not have the maximum thickness b 1. Even in this case, the innermost end of the part actually used as the product is the radius of the inner diameter of the titanium alloy β forged material 10. This should be the standard. The product portion 11 is located outside the innermost end of the product portion 11.
B 1 / A 1 is preferably more than 0.2, more preferably more than 0.25. Further, B 1 / A 1 is preferably less than 0.8, and more preferably less than 0.75.

次に、チタン合金中間鍛造材の形状に関する式(4)〜(8)について、図2を参照して説明する。チタン合金中間鍛造材は、図2に示す形状である。チタン合金中間鍛造材100は、中心部28を通る中心線Lを基準に回転対称である。   Next, equations (4) to (8) relating to the shape of the titanium alloy intermediate forged material will be described with reference to FIG. The titanium alloy intermediate forging material has a shape shown in FIG. The titanium alloy intermediate forged material 100 is rotationally symmetric with respect to a center line L passing through the center portion 28.

[式(4):1.2≦b/a≦4.0]
/aが1.2未満となると、チタン合金β鍛造材10の内周部14に歪の集中が生じる。一方、b/aが4.0を超えると、チタン合金β鍛造材10の外周部13に歪の集中が生じる。したがって、チタン合金中間鍛造材100は、式(4)として「1.2≦b/a≦4.0」とする。
ここで、a、bにおけるチタン合金中間鍛造材100の底部25とは、チタン合金中間鍛造材100の底面のことであり、チタン合金中間鍛造材100の底面が水平になる部位である。そして、この底部25には、後述する底面の凸部40は含まれない。
また、チタン合金中間鍛造材100の外周部23とは、後述する接線51と接線52との接点に垂直な位置よりも外側の部位をいう。
[Formula (4): 1.2 ≦ b 0 / a 0 ≦ 4.0]
When b 0 / a 0 is less than 1.2, strain concentration occurs in the inner peripheral portion 14 of the titanium alloy β forged material 10. On the other hand, when b 0 / a 0 exceeds 4.0, strain concentration occurs in the outer peripheral portion 13 of the titanium alloy β forged material 10. Therefore, the titanium alloy intermediate forged material 100 satisfies “1.2 ≦ b 0 / a 0 ≦ 4.0” as the formula (4).
Here, the bottom portion 25 of the titanium alloy intermediate forged material 100 at a 0 and b 0 is the bottom surface of the titanium alloy intermediate forged material 100, and is a portion where the bottom surface of the titanium alloy intermediate forged material 100 is horizontal. The bottom portion 25 does not include a convex portion 40 on the bottom surface described later.
Further, the outer peripheral portion 23 of the titanium alloy intermediate forged material 100 refers to a portion outside the position perpendicular to a contact point between a tangent line 51 and a tangent line 52 described later.

ここで、チタン合金中間鍛造材100は、外周部23に最大厚み部が1箇所存在するものとする。最大厚みbの領域(径方向の長さ)は、製造されるチタン合金β鍛造材10の形状に応じて適宜調整すればよい。また、チタン合金中間鍛造材100は、中心部28を最小厚みとする。
/aは、チタン合金β鍛造材10の内周部14に歪の集中が生じることで製品部11の内周側(内周部14と近接する位置)に歪の集中が生じることを抑制する観点から、好ましくは1.5以上であり、より好ましくは1.65以上である。また、b/aは、チタン合金β鍛造材10の外周部13の歪の集中を抑制する観点から、好ましくは3.5以下であり、より好ましくは2.8以下である。
Here, the titanium alloy intermediate forged material 100 is assumed to have one maximum thickness portion on the outer peripheral portion 23. (Length in the radial direction) area of maximum thickness b 0 may be appropriately adjusted according to the shape of the titanium alloy β forging material 10 to be manufactured. Further, the titanium alloy intermediate forging material 100 has the central portion 28 having a minimum thickness.
b 0 / a 0 means that strain concentration occurs on the inner peripheral side of the product portion 11 (position close to the inner peripheral portion 14) due to concentration of strain on the inner peripheral portion 14 of the titanium alloy β-forged material 10. From a viewpoint of suppressing, Preferably it is 1.5 or more, More preferably, it is 1.65 or more. Further, b 0 / a 0 is preferably 3.5 or less, and more preferably 2.8 or less, from the viewpoint of suppressing the concentration of strain on the outer peripheral portion 13 of the titanium alloy β-forged material 10.

[式(5):0.05<B/A≦0.55]
/Aが0.05以下となると、チタン合金β鍛造材10の中央部に歪が集中する傾向が強くなる。なお、チタン合金β鍛造材10の中央部とは、内周部14に加えて、製品部11の内周部14寄りを含む部位である。一方、B/Aが0.55を超えると、チタン合金中間鍛造材100の鍛造時の荷重が高くなる。したがって、チタン合金中間鍛造材100は、式(5)として「0.05<B/A≦0.55」とする。
ここで、Bにおけるチタン合金中間鍛造材100の凹部30とは、チタン合金中間鍛造材100の中心部28の上面に形成された凹状の部位である。すなわち、チタン合金中間鍛造材100は、その中央に凹部30を有している。チタン合金中間鍛造材100の中央とは、中心部28を含む中心部28近傍の部位である。ここでは、中心線Lを中心とした半径Bの内側の領域である。そして、チタン合金中間鍛造材100の凹部30の半径とは、中心部28から、後述する接線51と接線52との接点に垂直な位置までの長さをいう。
また、Aにおけるチタン合金中間鍛造材100の外径の半径とは、チタン合金中間鍛造材100の中心部28からチタン合金中間鍛造材100の最外周部までの長さをいう。
/Aは、チタン合金β鍛造材10の中央部の歪の集中を抑制する観点から、好ましくは0.16超である。また、B/Aは、チタン合金中間鍛造材100の鍛造時の荷重を低くする観点から、好ましくは0.5以下であり、より好ましくは0.45以下である。
[Formula (5): 0.05 <B 0 / A 0 ≦ 0.55]
When B 0 / A 0 is 0.05 or less, the tendency for strain to concentrate at the center of the titanium alloy β-forged material 10 becomes stronger. The central portion of the titanium alloy β forged material 10 is a portion including the inner peripheral portion 14 and the inner peripheral portion 14 of the product portion 11. On the other hand, if B 0 / A 0 exceeds 0.55, the load during forging of the titanium alloy intermediate forged material 100 becomes high. Therefore, the titanium alloy intermediate forging material 100 is set to “0.05 <B 0 / A 0 ≦ 0.55” as the formula (5).
Here, the concave portion 30 of the titanium alloy intermediate forged material 100 in B 0 is a concave portion formed on the upper surface of the central portion 28 of the titanium alloy intermediate forged material 100. That is, the titanium alloy intermediate forged material 100 has a recess 30 at the center thereof. The center of the titanium alloy intermediate forged material 100 is a portion in the vicinity of the center portion 28 including the center portion 28. Here, it is a region inside the radius B 0 with the center line L as the center. And the radius of the recessed part 30 of the titanium alloy intermediate forged material 100 means the length from the center part 28 to the position perpendicular to the contact point of the tangent line 51 and the tangent line 52 described later.
In addition, the radius of the outer diameter of the titanium alloy intermediate forged material 100 at A 0 refers to the length from the center portion 28 of the titanium alloy intermediate forged material 100 to the outermost peripheral portion of the titanium alloy intermediate forged material 100.
B 0 / A 0 is preferably more than 0.16 from the viewpoint of suppressing the concentration of strain in the central portion of the titanium alloy β forged material 10. Further, B 0 / A 0 is preferably 0.5 or less, more preferably 0.45 or less, from the viewpoint of reducing the load during forging of the titanium alloy intermediate forged material 100.

[式(6):20°≦θ≦ 70°]
θが20°未満となると、チタン合金β鍛造材10の内周部14に歪が集中し易くなる。一方、θが70°を超えると、チタン合金中間鍛造材100の鍛造時の荷重が高くなると共に、チタン合金β鍛造材10の外周部13に歪が集中し易くなる。したがって、チタン合金中間鍛造材100は、式(6)として「20°≦θ≦ 70°」とする。
ここで、θは、接線51と接線52とのなす角のうち、小さいほうの角である。
接線51は、チタン合金中間鍛造材100の上面において中心部28から外周部23にかけて形成された傾斜部における、底部25から(a+b)/2の位置の接線である。すなわち、接線51は、チタン合金中間鍛造材100の上面内側の斜面(凹部30に連続して形成された傾斜面)に沿って引いた線である。また、接線52は、中心線Lと直交する凹部30の底面の接線である。すなわち、接線52は、中心線Lと直交するように凹部30の底面に沿って引いた線である。
θは、チタン合金β鍛造材10の内周部14の歪の集中が生じることで製品部11の内周側(内周部14と近接する位置)に歪の集中が生じることを抑制する観点から、好ましくは30°以上であり、より好ましくは40°以上である。また、θは、チタン合金中間鍛造材100の鍛造時の荷重を低くすると共に、チタン合金β鍛造材10の外周部13の歪の集中を抑制する観点から、好ましくは65°以下である。
[Formula (6): 20 ° ≦ θ ≦ 70 °]
When θ is less than 20 °, strain tends to concentrate on the inner peripheral portion 14 of the titanium alloy β-forged material 10. On the other hand, when θ exceeds 70 °, the load at the time of forging of the titanium alloy intermediate forged material 100 is increased, and strain is easily concentrated on the outer peripheral portion 13 of the titanium alloy β forged material 10. Therefore, the titanium alloy intermediate forged material 100 is set to “20 ° ≦ θ ≦ 70 °” as the equation (6).
Here, θ is the smaller one of the angles formed by the tangent line 51 and the tangent line 52.
The tangent line 51 is a tangent line at a position of (a 0 + b 0 ) / 2 from the bottom part 25 in the inclined part formed from the center part 28 to the outer peripheral part 23 on the upper surface of the titanium alloy intermediate forging material 100. That is, the tangent line 51 is a line drawn along the slope on the inner side of the upper surface of the titanium alloy intermediate forged material 100 (the slope formed continuously with the recess 30). Further, the tangent line 52 is a tangent line of the bottom surface of the concave portion 30 orthogonal to the center line L. That is, the tangent line 52 is a line drawn along the bottom surface of the recess 30 so as to be orthogonal to the center line L.
θ is a viewpoint that suppresses the occurrence of strain concentration on the inner peripheral side (position close to the inner peripheral portion 14) of the product portion 11 due to the concentration of strain on the inner peripheral portion 14 of the titanium alloy β forged material 10. Therefore, it is preferably 30 ° or more, and more preferably 40 ° or more. Further, θ is preferably 65 ° or less from the viewpoint of reducing the load during forging of the titanium alloy intermediate forging material 100 and suppressing the concentration of strain on the outer peripheral portion 13 of the titanium alloy β forging material 10.

[式(7):2A/5≦C
チタン合金中間鍛造材100の底部25からの最大厚み部は、チタン合金中間鍛造材100の半径の2/5の位置、あるいは、2/5の位置よりも外側にある。底部25からの最大厚み部が2/5の位置よりも内側に存在すると、チタン合金β鍛造材10の内周部14に歪が集中し易くなる。したがって、チタン合金中間鍛造材100は、式(7)として「2A/5≦C」とする。
ここで、a、Cにおけるチタン合金中間鍛造材100の中心部28とは、回転対称となるチタン合金中間鍛造材100の中心となる部位であり、図2において、中心線Lとチタン合金中間鍛造材100が交差する部位である。そして、チタン合金中間鍛造材100は、中心部28を通る中心線Lを基準に回転対称となる。
Expression (7): 2A 0/5 ≦ C 0]
The maximum thickness portion from the bottom portion 25 of the titanium alloy intermediate forged material 100 is located at a position 2/5 of the radius of the titanium alloy intermediate forged material 100 or outside the position of 2/5. When the maximum thickness part from the bottom part 25 exists inside the position of 2/5, the strain tends to concentrate on the inner peripheral part 14 of the titanium alloy β-forged material 10. Therefore, the titanium alloy intermediate forged material 100, and "2A 0/5C 0" as an expression (7).
Here, the center portion 28 of the titanium alloy intermediate forged material 100 at a 0 and C 0 is a portion that becomes the center of the rotationally symmetric titanium alloy intermediate forged material 100. In FIG. This is a portion where the intermediate forging material 100 intersects. The titanium alloy intermediate forged material 100 is rotationally symmetric with respect to the center line L passing through the center portion 28.

[式(8):0.5≦c/b
/bが0.5未満となると、例えば、C0より外側の最大厚みb0を有する領域が減り、チタン合金β鍛造材10の外周部13の歪が小さくなる虞がある。したがって、チタン合金中間鍛造材100は、式(8)として「0.5≦c/b」とする。
ここで、cにおけるチタン合金中間鍛造材100の最外周部は、ここでは、チタン合金中間鍛造材100の最も外側の側面が垂直になる部位をいう。
[Formula (8): 0.5 ≦ c 0 / b 0 ]
When c 0 / b 0 is less than 0.5, for example, the region having the maximum thickness b 0 outside C 0 is reduced, and the distortion of the outer peripheral portion 13 of the titanium alloy β-forged material 10 may be reduced. Therefore, the titanium alloy intermediate forged material 100 is set to “0.5 ≦ c 0 / b 0 ” as the equation (8).
Here, the outermost peripheral portion of the titanium alloy intermediate forged material 100 at c 0 refers to a portion where the outermost side surface of the titanium alloy intermediate forged material 100 is vertical.

次に、チタン合金中間鍛造材の形状とチタン合金β鍛造材の形状の関係に関する式(9)について、図1、2を参照して説明する。   Next, equation (9) relating to the relationship between the shape of the titanium alloy intermediate forging material and the shape of the titanium alloy β forging material will be described with reference to FIGS.

[式(9):0.20≦b/b≦0.60]
/bが0.20未満となると、チタン合金β鍛造材10の外周部13の歪が大きくなり過ぎる。一方、b/bが0.60を超えると、チタン合金β鍛造材10の外周部13に所定の歪を加えることが出来ない。したがって、チタン合金中間鍛造材100は、式(9)として「0.20≦b/b≦0.60」とする。
/bは、チタン合金β鍛造材10の外周部13の歪を抑制する観点から、好ましくは0.30以上であり、より好ましくは0.35以上である。また、b/bは、チタン合金β鍛造材10の外周部13に所定の歪を加えやすくする観点から、好ましくは0.50以下である。
[Formula (9): 0.20 ≦ b 1 / b 0 ≦ 0.60]
When b 1 / b 0 is less than 0.20, the distortion of the outer peripheral portion 13 of the titanium alloy β forged material 10 becomes too large. On the other hand, if b 1 / b 0 exceeds 0.60, a predetermined strain cannot be applied to the outer peripheral portion 13 of the titanium alloy β-forged material 10. Therefore, the titanium alloy intermediate forged material 100 satisfies “0.20 ≦ b 1 / b 0 ≦ 0.60” as the equation (9).
b 1 / b 0 is preferably 0.30 or more, more preferably 0.35 or more, from the viewpoint of suppressing the distortion of the outer peripheral portion 13 of the titanium alloy β forged material 10. Further, b 1 / b 0 is preferably 0.50 or less from the viewpoint of easily applying a predetermined strain to the outer peripheral portion 13 of the titanium alloy β forged material 10.

[その他]
図2に示すように、チタン合金中間鍛造材100は、鍛造時にチタン合金中間鍛造材100を下金型に設置する際の位置決めを容易にするため、チタン合金中間鍛造材100の底面に凸部40を設けることが好ましい。
更に、チタン合金中間鍛造材100は、位置決めを容易にするため、図2中のdを10mm以上とすることが好ましい。dは、チタン合金中間鍛造材100の底部25から、チタン合金中間鍛造材100の最も外側の側面が垂直になるまでの部位である。dの上限はbまで大きくすることが可能であるが、鍛造変形の均一性を確保するため、(2/3)b以下が好ましい。
[Others]
As shown in FIG. 2, the titanium alloy intermediate forging material 100 has a convex portion on the bottom surface of the titanium alloy intermediate forging material 100 in order to facilitate positioning when the titanium alloy intermediate forging material 100 is installed in the lower mold during forging. 40 is preferably provided.
Moreover, titanium alloy intermediate forged material 100, to facilitate positioning, it is preferable that the d 0 in FIG. 2 or more 10 mm. d 0 is a portion from the bottom 25 of the titanium alloy intermediate forged material 100 to the outermost side surface of the titanium alloy intermediate forged material 100 becoming vertical. The upper limit of d 0 is can be increased to b 0, to ensure the uniformity of the forging deformation, preferably (2/3) b 0 or less.

(チタン合金:Mo当量2.7を超え15未満)
本発明に係るチタン合金β鍛造材を形成するチタン合金は、α+β型チタン合金であれば適用することができるが、次式(10)で表されるMo当量[Mo]eqが2.7を超え15未満となる組成であることが好ましい。チタン合金は、Mo当量が大きくなるに従い、α相の体積含有率が減少して旧β粒の形状の影響が強くなり、超音波探傷性に与える鍛造歪の影響が強くなるためである。チタン合金のMo当量は、超音波探傷性に与える鍛造歪の影響をより強くする観点から、より好ましくは4.5以上、さらに好ましくは6.5以上である。一方、チタン合金は、Mo当量[Mo]eqが大きくなるにしたがい、合金元素が偏析し易くなり、組織がばらつく虞があるため、15未満とすることが好ましい。チタン合金のMo当量は、組織がばらつく虞をより低減させる観点から、より好ましくは12以下、さらに好ましくは10.5以下である。
(Titanium alloy: Mo equivalent 2.7 and less than 15)
The titanium alloy forming the titanium alloy β forging according to the present invention can be applied as long as it is an α + β type titanium alloy, but the Mo equivalent [Mo] eq represented by the following formula (10) is 2.7. The composition is preferably more than 15 and less than 15. This is because in the titanium alloy, as the Mo equivalent increases, the volume content of the α phase decreases and the influence of the shape of the old β grains becomes stronger, and the influence of forging strain on ultrasonic flaw detection becomes stronger. The Mo equivalent of the titanium alloy is more preferably 4.5 or more, and even more preferably 6.5 or more, from the viewpoint of strengthening the influence of forging strain on ultrasonic flaw detection. On the other hand, the titanium alloy is preferably less than 15 because the alloy element is easily segregated and the structure may vary as the Mo equivalent [Mo] eq increases. The Mo equivalent of the titanium alloy is more preferably 12 or less, and even more preferably 10.5 or less, from the viewpoint of further reducing the possibility that the structure varies.

[Mo]eq=[Mo]+[Ta]/5+[Nb]/3.6+[W]/2.5+[V]/1.5+1.25[Cr]+1.25[Ni]+1.7[Mn]+1.7[Co]+2.5[Fe]・・・(10)
ただし、前記式(10)の[X]は、前記チタン合金における元素X(X:Mo,Ta,Nb,W,V,Cr,Ni,Mn,Co,Fe)の各含有量(質量%)とする。
[Mo] eq = [Mo] + [Ta] / 5 + [Nb] /3.6+ [W] /2.5+ [V] /1.5+1.25 [Cr] +1.25 [Ni] +1.7 [ Mn] +1.7 [Co] +2.5 [Fe] (10)
However, [X] in the formula (10) is the content (mass%) of the element X (X: Mo, Ta, Nb, W, V, Cr, Ni, Mn, Co, Fe) in the titanium alloy. And

このようなチタン合金としては、具体的にはAMS4981,AMS4995で規定されるチタン合金が挙げられる。AMS4981で規定されるチタン合金(Ti−6Al−2Sn−4Zr−6Mo合金、Ti−6246合金)は、Al:5.50〜6.50質量%、Sn:1.75〜2.25質量%、Zr:3.50〜4.50質量%、Mo:5.50〜6.50質量%を含有し、残部はTiおよび不可避的不純物であり、各元素の平均値から計算されるMo当量は6.0である。前記不可避的不純物としては、概ね、N:0.04質量%、C:0.08質量%、H:0.015質量%、Fe:0.15質量%、O:0.15質量%を含有する。   Specific examples of such a titanium alloy include titanium alloys specified by AMS4981 and AMS4995. Titanium alloys (Ti-6Al-2Sn-4Zr-6Mo alloy, Ti-6246 alloy) specified by AMS4981 are Al: 5.50-6.50 mass%, Sn: 1.75-2.25 mass%, Zr: 3.50 to 4.50% by mass, Mo: 5.50 to 6.50% by mass, the balance being Ti and inevitable impurities, and the Mo equivalent calculated from the average value of each element is 6 .0. The inevitable impurities generally include N: 0.04 mass%, C: 0.08 mass%, H: 0.015 mass%, Fe: 0.15 mass%, and O: 0.15 mass%. To do.

AMS4995で規定されるチタン合金(Ti−5Al−2Sn−2Zr−4Cr−4Mo合金、Ti−17合金)は、Al:4.5〜5.5質量%、Sn:1.5〜2.5質量%、Zr:1.5〜2.5質量%、Cr:3.5〜4.5質量%、Mo:3.5〜4.5質量%、O:0.08〜0.12質量%であって、残部はTiおよび不可避的不純物であり、各元素の平均値から計算されるMo当量は9.5である。前記不可避的不純物としては、概ね、Fe:0.03質量%、C:0.05質量%、N:0.04質量%、H:0.0125質量%を含有する。   Titanium alloy (Ti-5Al-2Sn-2Zr-4Cr-4Mo alloy, Ti-17 alloy) specified by AMS4995 is Al: 4.5 to 5.5 mass%, Sn: 1.5 to 2.5 mass %, Zr: 1.5 to 2.5% by mass, Cr: 3.5 to 4.5% by mass, Mo: 3.5 to 4.5% by mass, O: 0.08 to 0.12% by mass The balance is Ti and inevitable impurities, and the Mo equivalent calculated from the average value of each element is 9.5. The inevitable impurities generally include Fe: 0.03% by mass, C: 0.05% by mass, N: 0.04% by mass, and H: 0.0125% by mass.

<チタン合金中間鍛造材の形状決定方法>
本発明のチタン合金中間鍛造材の形状決定方法は、前記した式(1)〜(9)の関係式に則り、前記したチタン合金中間鍛造材の形状を定めるものである。
すなわち、想定するチタン合金β鍛造材の形状について、式(1)〜(3)を満足するように、厚さや内径、外径を決定する。そして、それに基づき、チタン合金中間鍛造材の形状について、式(4)〜(8)を満足するように、厚さや内径、外径、凹部の形状等を決定する。さらに、チタン合金中間鍛造材の形状とチタン合金β鍛造材の形状の関係に関する式(9)を決定する。
また、前記したとおり、チタン合金中間鍛造材は、式(10)で表されるMo当量[Mo]eqが2.7を超え15未満であるチタン合金を用いるものとしてもよい。
<Titanium alloy intermediate forging shape determination method>
The method for determining the shape of the titanium alloy intermediate forged material according to the present invention determines the shape of the titanium alloy intermediate forged material described above in accordance with the relational expressions (1) to (9).
That is, the thickness, the inner diameter, and the outer diameter are determined so as to satisfy the expressions (1) to (3) with respect to the assumed shape of the titanium alloy β forged material. And based on it, about thickness of a titanium alloy intermediate forging material, thickness, an internal diameter, an outer diameter, the shape of a recessed part, etc. are determined so that Formula (4)-(8) may be satisfied. Furthermore, Formula (9) regarding the relationship between the shape of the titanium alloy intermediate forging material and the shape of the titanium alloy β forging material is determined.
Further, as described above, the titanium alloy intermediate forging material may be a titanium alloy having a Mo equivalent [Mo] eq represented by the formula (10) of more than 2.7 and less than 15.

<チタン合金β鍛造材の製造方法>
本発明に係るチタン合金β鍛造材は、所望の組成のチタン合金からなるインゴットを公知の方法でビレットに鍛造し(ビレット鍛造工程と称する)、必要に応じて機械加工を行ってから、α+β二相域にて荒地鍛造を行い、チタン合金中間鍛造材とする。その後、β鍛造を行って所望の製品形状に製造される。ビレット鍛造工程は、例えば、β鍛造→α+β鍛造→β熱処理→応力除去焼鈍→α+β鍛造→焼鈍の順序で行われる。α+β鍛造はβ変態点(適宜、Tβと表す)よりも10〜200℃程度低い温度域に、β鍛造はTβよりも10〜150℃程度高い温度域に、それぞれ加熱し、所定の鍛錬比(鍛伸方向に垂直な断面の、鍛造前に対する鍛造後の面積比、例えば1.5)の鍛造を行い、室温に冷却する。ビレット鍛造工程における鍛造をα+β鍛造とするかβ鍛造とするかは製品に要求される特性に応じて設定すればよく、鍛造の回数も所望するビレットの径等に応じて行えばよい。また2回の焼鈍はそれぞれ必要に応じて行えばよく、例えば2回目の焼鈍はその後の機械加工をし易くするために行われる。さらにチタン合金ビレットを機械加工することで、表面の酸化皮膜やシワやバリが除去され、表面粗度を整えることができ、その後の鍛造(チタン合金中間鍛造材の製造における荒地鍛造およびチタン合金β鍛造材の製造におけるβ鍛造)がし易くなる。そして、本発明に係るチタン合金β鍛造材を製造するために、チタン合金中間鍛造材を以下の方法でβ鍛造する。
<Method for producing titanium alloy β-forged material>
The titanium alloy β forged material according to the present invention is formed by forging an ingot made of a titanium alloy having a desired composition into a billet by a known method (referred to as a billet forging step), and performing machining as necessary, and then α + β two Wasteland forging is performed in the phase area to obtain a titanium alloy intermediate forging material. Thereafter, β forging is performed to produce a desired product shape. The billet forging step is performed, for example, in the order of β forging → α + β forging → β heat treatment → stress relief annealing → α + β forging → annealing. α + β forging is heated to a temperature range about 10 to 200 ° C. lower than the β transformation point (appropriately expressed as T β ), and β forging is heated to a temperature range about 10 to 150 ° C. higher than T β. Forging is performed at a ratio (area ratio after forging of the cross section perpendicular to the forging direction to before forging, for example, 1.5), and cooled to room temperature. Whether the forging in the billet forging process is α + β forging or β forging may be set according to the characteristics required for the product, and the number of forgings may be determined according to the desired billet diameter and the like. Further, the two annealings may be performed as necessary. For example, the second annealing is performed to facilitate subsequent machining. Furthermore, by machining the titanium alloy billet, the surface oxide film, wrinkles and burrs can be removed, and the surface roughness can be adjusted, and then forging (forging for rough ground and titanium alloy β in the production of titanium alloy intermediate forgings) (Β forging in the production of forgings) is easy to perform. And in order to manufacture the titanium alloy β forged material according to the present invention, the titanium alloy intermediate forged material is β forged by the following method.

本発明に係るチタン合金β鍛造材の製造方法は、前記のチタン合金中間鍛造材を、合金成分によって決まるβ変態点をTβで表したとき、(Tβ+5℃)以上に加熱して、β結晶粒径(平均粒径)が100μm以上800μm未満の範囲になるまで保持した後、(Tβ−150℃)以上の温度域で鍛造を行い、直ちに(Tβ−150℃)未満の温度まで冷却する方法である。 Method for producing titanium alloy beta forging according to the present invention, the titanium alloy intermediate forging, when the beta transformation point determined by the alloy components expressed in T beta, and heated to (T β + 5 ℃) above, After holding until the β crystal grain size (average grain size) is in the range of 100 μm or more and less than 800 μm, forging is performed in a temperature range of (T β −150 ° C.) or more, and immediately below (T β −150 ° C.). It is the method of cooling to.

(鍛造前加熱温度:(Tβ+5℃)以上)
鍛造前加熱は、一般的なβ鍛造と同様に、鍛造前に、チタン合金中間鍛造材をβ単相域まで加熱してβ相単相にするために行われる。β単相域とはβ変態点(Tβ)以上の温度域であり、Tβはチタン合金ビレットの全体(100%)がβ相となる最低温度で、当該チタン合金中間鍛造材(チタン合金β鍛造材)を形成するチタン合金の組成によって変化する。例えば、AMS4981で規定されるチタン合金(Ti−6246合金)のTβは960℃程度であり、AMS4995で規定されるチタン合金(Ti−17合金)のTβは890℃程度である。本発明においては、チタン合金中間鍛造材を深部まで確実にβ相単相とし、また(Tβ−150℃)以上の温度域で鍛造を完了させる。本発明においては、チタン合金中間鍛造材を深部まで確実にβ相単相とするため、鍛造前加熱温度は(Tβ+5℃)以上とする。一方、チタン合金中間鍛造材がβ単相域において高温になるにしたがい、β相の結晶粒の成長速度が速くなるため結晶粒径を制御し難くなり、また(Tβ+150℃)を超えると、表面に厚い酸化スケールが形成され易く、鍛造後に除去する必要が生じるため、加熱温度は(Tβ+150℃)以下が好ましい(より好ましくはTβ+100℃)。さらに、鍛造前の加熱温度が過剰に高いと、鍛造完了時の温度が高くなって、鍛造後に(Tβ−150℃)以上の温度域外((Tβ−150℃)未満)に冷却されるまでに、β結晶粒(非扁平粒)が過剰に成長する虞がある。
(Heating temperature before forging: ( + 5 ° C) or more)
The heating before forging is performed in order to heat the titanium alloy intermediate forging material to the β single-phase region to form the β-phase single phase before forging, as in general β forging. The β single-phase region is a temperature region above the β transformation point (T β ), and T β is the lowest temperature at which the entire titanium alloy billet (100%) becomes the β phase, and the titanium alloy intermediate forging material (titanium alloy) It varies depending on the composition of the titanium alloy forming the (β-forged material). For example, the T beta titanium alloy as defined in AMS4981 (Ti-6246 alloy) is about 960 ° C., the T beta titanium alloy as defined in AMS4995 (Ti-17 alloy) is about 890 ° C.. In the present invention, the titanium alloy intermediate forging material is surely made into a β-phase single phase to the deep part, and forging is completed in a temperature range of (T β -150 ° C.) or higher. In the present invention, the heating temperature before forging is set to (T β + 5 ° C.) or more in order to ensure that the titanium alloy intermediate forged material is a β-phase single phase to the deep part. On the other hand, as the titanium alloy intermediate forging material becomes higher in the β single-phase region, the growth rate of the β-phase crystal grains becomes faster, so it becomes difficult to control the crystal grain size, and when it exceeds (T β + 150 ° C) Since a thick oxide scale is easily formed on the surface and needs to be removed after forging, the heating temperature is preferably (T β + 150 ° C.) or less (more preferably T β + 100 ° C.). Further, when the heating temperature before forging is too high, higher temperature during forging completion is cooled after forging (T beta -150 ° C.) or higher temperatures outside ((T β -150 ℃) below) By the time, β crystal grains (non-flat grains) may grow excessively.

チタン合金中間鍛造材を加熱してβ単相域に到達させた後、鍛造開始前に一定時間保持して、β結晶粒を適度な大きさ、具体的には径100μm以上800μm未満の範囲に成長させる。保持時間は、チタン合金中間鍛造材の保持温度によって異なるが、例えば1000℃で60〜480分間程度保持すればよい。なお、いったん所望のβ結晶粒組織が形成された後は、チタン合金中間鍛造材の温度は、鍛造前に(Tβ+5℃)未満に降下してもよいが、後記するように、鍛造完了まで(Tβ−150℃)以上の温度域を保持することができるように設定する。 After heating the titanium alloy intermediate forging material to reach the β single phase region, the titanium alloy intermediate forging material is held for a certain period of time before forging starts, and the β crystal grains are appropriately sized, specifically in the range of 100 μm or more and less than 800 μm in diameter. Grow. The holding time varies depending on the holding temperature of the titanium alloy intermediate forging material, but may be held, for example, at 1000 ° C. for about 60 to 480 minutes. Once the desired β crystal grain structure is formed, the temperature of the titanium alloy intermediate forging may drop below (T β + 5 ° C.) before forging, but as described later, forging is completed. until it sets so as to be able to hold the temperature range of not lower than (T β -150 ℃).

(鍛造温度:(Tβ−150℃)以上)
鍛造温度を(Tβ−150℃)以上で行うことで、鍛造前にβ結晶粒の粒界上および粒内にα相が析出するのを抑え、破壊靱性が低下し難くしている。
鍛造温度が(Tβ−150℃)未満になると、β結晶粒の粒界上および粒内にα相が析出し始める。鍛造を完了する前にこれらのα相が形成されると破壊靭性が劣化する虞がある。したがって、鍛造温度(より具体的には、チタン合金中間鍛造材の鍛造の完了時における温度)は、(Tβ−150℃)以上とする。β結晶粒の粒界上および粒内にα相をより析出し難くする観点から、鍛造温度は(Tβ−100℃)以上が好ましい。このとき、鍛造に使用される金型は、400℃以上に加熱されていることが好ましく、鍛造温度(チタン合金中間鍛造材の温度)に加熱されていることがさらに好ましい。このように加熱された金型を使用することで、鍛造されるチタン合金中間鍛造材の表面が内部に対して早期に冷却され過ぎることがなく、表面近傍もTβ−150℃以上に保持して鍛造を完了することができる。なお、鍛造完了まで(Tβ−150℃)以上の温度域に保持する必要があるのは、チタン合金β鍛造材の製品部分であり、鍛造後(冷却後)に除去される表層等の余肉(製品部分以外)における温度は、これに限定されない。
(Forging temperature: (T β -150 ℃) or higher)
By performing the forging temperature at (T β −150 ° C.) or more, the α phase is prevented from precipitating on the grain boundaries and in the grains before forging, and the fracture toughness is hardly lowered.
When the forging temperature is less than (T β −150 ° C.), the α phase starts to precipitate on the grain boundaries and in the grains of the β crystal grains. If these α phases are formed before forging is completed, the fracture toughness may deteriorate. Therefore, (more specifically, the temperature at the completion of the forging of titanium alloy intermediate forging) forging temperature, and (T beta -150 ° C.) or higher. The forging temperature is preferably (T β −100 ° C.) or more from the viewpoint of making it difficult to precipitate the α phase on the grain boundaries and in the grains of the β crystal grains. At this time, the mold used for forging is preferably heated to 400 ° C. or higher, and more preferably heated to a forging temperature (temperature of the titanium alloy intermediate forging material). By using such a heated die, the surface of the forged titanium alloy intermediate forging material is not cooled too quickly with respect to the inside, and the vicinity of the surface is also maintained at T β −150 ° C. or higher. Forging can be completed. Note that it is the product part of the titanium alloy β-forged material that needs to be maintained in a temperature range of not less than (T β −150 ° C.) until the forging is completed, and the surplus of the surface layer and the like removed after forging (after cooling) The temperature in the meat (other than the product part) is not limited to this.

鍛造における加工率(圧下率)は、本発明の構成を満たす条件であれば、一般的な仕上げ鍛造と同様の条件で鍛造することができる。例えばβ結晶粒をアスペクト比が3を超える扁平粒にするためには、平坦面を有する金型による円柱形状ビレットの鍛造を例にすると、圧下率45%以上、好ましくは55%以上の加工、あるいはそれに相当する加工を加えることが好ましい。また、チタン合金ビレットに対する金型の移動速度は、ひずみ速度が10-3〜10(1/s)とすることが好ましい。 As long as the processing rate (reduction rate) in forging is a condition that satisfies the configuration of the present invention, forging can be performed under the same conditions as in general finish forging. For example, in order to make β crystal grains into flat grains having an aspect ratio of more than 3, for example, forging a cylindrical billet with a mold having a flat surface, a reduction ratio of 45% or more, preferably 55% or more, Or it is preferable to add the process equivalent to it. Moreover, it is preferable that the moving speed of the mold with respect to the titanium alloy billet is 10 −3 to 10 (1 / s).

鍛造後のチタン合金中間鍛造材を、前記保持時間の経過後に直ちに(Tβ−150℃)未満に冷却することで、β単相域外(α+β二相域)として非扁平なβ結晶粒の成長を停止させ、かつ旧β粒の粒界に太く連続したα相が析出することを抑制して、得られたチタン合金β鍛造材の疲労強度の劣化を防止する。そのために、保持後の冷却速度は、好ましくは10℃/min以上、より好ましくは50℃/min以上である。一方、冷却速度の上限は特に規定しないが、500℃/min以下が実用的であり、また粒内の針状α相を長くして破壊靭性を向上させるため、好ましい。冷却方法は、空冷、送風、水冷、湯冷、油冷等の公知の方法を適用すればよい。 Growth of non-flat β crystal grains outside the β single-phase region (α + β two-phase region) by cooling the forged titanium alloy intermediate forged material to less than (T β -150 ° C) immediately after the holding time has elapsed. And the precipitation of a thick and continuous α phase at the grain boundaries of the old β grains is prevented, thereby preventing the fatigue strength of the obtained titanium alloy β forging from deteriorating. Therefore, the cooling rate after holding is preferably 10 ° C./min or more, more preferably 50 ° C./min or more. On the other hand, the upper limit of the cooling rate is not particularly defined, but 500 ° C./min or less is practical, and is preferable because the acicular α phase in the grains is lengthened to improve fracture toughness. The cooling method may be a known method such as air cooling, air blowing, water cooling, hot water cooling, or oil cooling.

得られたチタン合金β鍛造材は、必要に応じて、公知の方法にて溶体化処理および時効処理にて調質熱処理を行い、さらに機械加工を行って酸化皮膜や余肉を除去し、以下の超音波探傷検査を実施される。具体的には表面から1mm以上の厚さを除去し、表面粗度6.3S以上に平滑化してから、超音波探傷検査を行うことが好ましい。チタン合金β鍛造材は、その後、必要に応じて再度機械加工されてエンジン部品等の製品となる。これらの処理は、公知の方法で行われてよい。   The obtained titanium alloy β forged material is subjected to a tempering heat treatment by a solution treatment and an aging treatment by a known method, if necessary, and further machined to remove an oxide film and surplus, An ultrasonic flaw inspection is conducted. Specifically, it is preferable to perform ultrasonic flaw detection after removing a thickness of 1 mm or more from the surface and smoothing the surface to a surface roughness of 6.3S or more. Thereafter, the titanium alloy β forged material is machined again as necessary to become a product such as an engine part. These processes may be performed by a known method.

<チタン合金β鍛造材>
本発明のチタン合金β鍛造材は、前記したチタン合金β鍛造材の製造方法で製造されたものである。すなわち、チタン合金β鍛造材は、α+β型のチタン合金から成り、図1に示すように、回転対称で且つ式(1)〜(3)で示される大径薄肉形状で、径方向の外周部が製品部となる鍛造材となる。
チタン合金β鍛造材は、例えば航空機のエンジン部品等に用いることができる。航空機のエンジン部品としては、例えば航空機エンジンの回転部品等が挙げられる。
<Titanium alloy β forging material>
The titanium alloy β forged material of the present invention is manufactured by the above-described method for manufacturing a titanium alloy β forged material. That is, the titanium alloy β forging material is made of an α + β type titanium alloy, and as shown in FIG. 1, is a rotationally symmetric and large-diameter thin-walled shape represented by the formulas (1) to (3), and has a radially outer peripheral portion. Becomes the forging material that becomes the product part.
The titanium alloy β forged material can be used, for example, for aircraft engine parts. Examples of aircraft engine parts include rotating parts of aircraft engines.

<超音波探傷検査方法>
本発明に係るチタン合金β鍛造材に対する超音波探傷検査は、公知の方法で行うことができ、探触子はプローブ径が5〜30mmの範囲のものから選択し、超音波(送信波)は周波数1〜20MHzの範囲を使用する。プローブ径は10mm以上、超音波の周波数は15MHz以下が好ましい。また、欠陥の検出分解能が高い水浸探傷法にて検査を行うことが好ましい。本発明に係るチタン合金β鍛造材は、鍛造における圧下量の最も大きい方向と平行な方向を含む方向に探傷する超音波探傷検査に供すことができる。超音波探傷検査の方向とは、送信波の進行方向(チタン合金β鍛造材の内部を透過させる方向)を指す。チタン合金β鍛造材は鍛造圧下量の最も大きい方向が最もノイズが多い傾向があるが、本発明に係るチタン合金β鍛造材は、かかる方向に探傷しても十分にノイズが少なく高精度な検査を行うことができる。また、チタン合金β鍛造材は、この方向の厚さが最も小さい(薄い)場合が多いので、深部まで精度よく検査を行うことができ、さらに探触子を走査するこの方向に垂直な表面の面積が広い場合が多いので、検査し易い。また、チタン合金β鍛造材(製品)の形状に応じて、前記1方向での探傷、またはさらに方向を変化させて合計2回以上検査することが好ましい。さらに、チタン合金β鍛造材の厚さ(送信波の進行方向長さ)によっては、逆方向から送信波を入射してもよい。
<Ultrasonic flaw detection method>
The ultrasonic flaw detection inspection for the titanium alloy β forged material according to the present invention can be performed by a known method, and the probe is selected from a probe having a diameter of 5 to 30 mm, and the ultrasonic wave (transmitted wave) is A frequency range of 1-20 MHz is used. The probe diameter is preferably 10 mm or more, and the ultrasonic frequency is preferably 15 MHz or less. Moreover, it is preferable to perform inspection by a water immersion flaw detection method having high defect detection resolution. The titanium alloy β forged material according to the present invention can be subjected to an ultrasonic flaw detection inspection in which flaw detection is performed in a direction including a direction parallel to the direction in which the amount of reduction in the forging is the largest. The direction of ultrasonic flaw detection inspection refers to the traveling direction of the transmission wave (the direction in which the inside of the titanium alloy β-forged material is transmitted). Titanium alloy β-forged materials tend to have the most noise in the direction of the largest forging reduction amount, but the titanium alloy β-forged materials according to the present invention have sufficiently low noise and high-precision inspection even if flaw detection is performed in such directions. It can be performed. In addition, since the titanium alloy β-forged material is often the smallest (thin) in this direction, it can be inspected to the deep part with high accuracy, and the surface perpendicular to this direction for scanning the probe can be obtained. Since the area is often large, it is easy to inspect. Moreover, it is preferable to inspect for a total of two or more times by flaw detection in one direction or further changing the direction according to the shape of the titanium alloy β forged material (product). Further, depending on the thickness of the titanium alloy β forged material (the length in the traveling direction of the transmission wave), the transmission wave may be incident from the opposite direction.

以上、本発明の実施形態について説明したが、本発明は、回転対称の薄肉大径形状のチタン合金β鍛造材の外周に翼形状の部位が備え付けられている鍛造材に対しても、適用することができる。   As mentioned above, although embodiment of this invention was described, this invention is applied also to the forging material by which the outer periphery of the titanium alloy beta forging material of the thin-walled large diameter shape of rotational symmetry is equipped with the blade | wing shape site | part. be able to.

以上、本発明を実施するための形態について述べてきたが、以下に、本発明の効果を確認した実施例を、本発明の要件を満たさない比較例と対比して具体的に説明する。なお、本発明はこの実施例によって制限を受けるものではなく、請求項に示した範囲で変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。   As mentioned above, although the form for implementing this invention has been described, the Example which confirmed the effect of this invention is demonstrated concretely compared with the comparative example which does not satisfy | fill the requirements of this invention below. It should be noted that the present invention is not limited by this embodiment, and can be implemented with modifications within the scope shown in the claims, all of which are included in the technical scope of the present invention.

FEM(Finite Element Method (有限要素法))解析によりチタン合金鍛造材中に発生する歪分布に対して、チタン合金中間鍛造材の形状の影響を調査した。
ここでは、チタン合金素材として、AMS4981で規定されるTi−6246合金(Tβ:960℃)の物性値を用いてFEM解析を行った。
The influence of the shape of the titanium alloy intermediate forging material on the strain distribution generated in the titanium alloy forging material was investigated by FEM (Finite Element Method) analysis.
Here, as the titanium alloy material, Ti-6246 alloy defined by AMS4981: it was FEM analysis using the physical property values of (T β 960 ℃).

解析では、チタン合金中間鍛造材内の温度分布を所定温度に一定とした後、炉外に取り出し、下金型に設置後、鍛造を行う解析を行った。
解析の結果、歪分布を出力し、製品部内の最大値と最小値を抽出した。ここで、鍛造材の外周面、並びに金型に接する面から10mm内側が製品部として歪量を評価し、歪量が0.50以上2.70以下の範囲、および、歪の均一性として“(最大歪−最大歪)/最大歪“が0.70以下に収まる形状条件を合格とした。
結果を表1に示す。また、解析条件は以下である。
In the analysis, the temperature distribution in the titanium alloy intermediate forging was made constant at a predetermined temperature, then taken out of the furnace, installed in the lower die, and then forged.
As a result of the analysis, strain distribution was output, and the maximum and minimum values in the product part were extracted. Here, the amount of strain is evaluated as a product part 10 mm inside from the outer peripheral surface of the forged material and the surface in contact with the mold, and the strain amount is in the range of 0.50 to 2.70 and the strain uniformity is “ A shape condition in which “(maximum strain−maximum strain) / maximum strain” was within 0.70 was determined to be acceptable.
The results are shown in Table 1. The analysis conditions are as follows.

[解析条件]
鍛造前加熱温度:990℃(Tβ+30℃)
鍛造温度:930℃以上((Tβ−150℃)以上)
冷却温度:鍛造後、直ちに800℃以下まで冷却
金型温度:650℃
雰囲気温度:20℃
鍛造速度:10mm/sec
金型方式:セミクローズドダイ
[Analysis conditions]
Heating temperature before forging: 990 ° C (T β + 30 ° C)
Forging temperature: 930 ℃ or higher ((T β -150 ℃) or higher)
Cooling temperature: Immediately after forging, cooling to 800 ° C or lower Mold temperature: 650 ° C
Atmospheric temperature: 20 ° C
Forging speed: 10mm / sec
Mold method: Semi-closed die

表1に示すように、所定の形状条件を満足する試験体1〜9は適正な歪分布が得られ、低サイクル疲労強度と超音波探傷性を兼備することが分かる。一方、試験体10〜15は規定の形状条件を満足しないため、歪分布が悪い。具体的には、以下のとおりである。   As shown in Table 1, it can be seen that the specimens 1 to 9 satisfying the predetermined shape conditions have an appropriate strain distribution, and have both low cycle fatigue strength and ultrasonic flaw detection. On the other hand, since the test bodies 10 to 15 do not satisfy the prescribed shape conditions, the strain distribution is poor. Specifically, it is as follows.

試験体10は、式(4)、(5)、(6)、(7)が規定の範囲外となり、歪の均一性が悪い。
試験体11は式(7)、(9)が規定の範囲外となり、最小歪が小さく、歪の均一性が悪い。
試験体12は式(9)が下限を下回り、式(6)の上限を超え、最大歪が上限を超え、歪の均一性が悪い。
試験体13は式(4)が下限を下回り、歪の均一性が悪い。
試験体14、15は式(9)が上限を上回り、最小歪が小さく、且つ、歪の均一性が悪い。
In the test body 10, the formulas (4), (5), (6), and (7) are outside the specified range, and the strain uniformity is poor.
In the test body 11, formulas (7) and (9) are outside the specified range, the minimum strain is small, and the strain uniformity is poor.
In the test body 12, the formula (9) is below the lower limit, exceeds the upper limit of the formula (6), the maximum strain exceeds the upper limit, and the strain uniformity is poor.
As for the test body 13, Formula (4) is less than a minimum, and the uniformity of distortion is bad.
In the test bodies 14 and 15, Equation (9) exceeds the upper limit, the minimum strain is small, and the strain uniformity is poor.

以上、本発明について実施の形態および実施例を示して詳細に説明したが、本発明の趣旨は前記した内容に限定されることなく、その権利範囲は特許請求の範囲の記載に基づいて広く解釈しなければならない。なお、本発明の内容は、前記した記載に基づいて広く改変・変更等することが可能であることはいうまでもない。   The present invention has been described in detail with reference to the embodiments and examples. However, the gist of the present invention is not limited to the above-described contents, and the scope of right is widely interpreted based on the description of the claims. Must. Needless to say, the contents of the present invention can be widely modified and changed based on the above description.

10 チタン合金β鍛造材
11 製品部
12 バリ部
13 チタン合金β鍛造材の外周部
14 チタン合金β鍛造材の内周部
15 チタン合金β鍛造材の底部
18 チタン合金β鍛造材の中心部
23 チタン合金中間鍛造材の外周部
25 チタン合金中間鍛造材の底部
28 チタン合金中間鍛造材の中心部
30 チタン合金中間鍛造材の凹部
40 凸部
51 接線
52 接線
100 チタン合金中間鍛造材
L 中心線
DESCRIPTION OF SYMBOLS 10 Titanium alloy beta forging material 11 Product part 12 Burr part 13 Titanium alloy beta forging material outer peripheral part 14 Titanium alloy beta forging inner part 15 Titanium alloy beta forging bottom part 18 Titanium alloy beta forging center part 23 Titanium Peripheral portion of alloy intermediate forging material 25 Bottom portion of titanium alloy intermediate forging material 28 Center portion of titanium alloy intermediate forging material 30 Recessed portion of titanium alloy intermediate forging material 40 Convex portion 51 Tangent line 52 Tangent line 100 Titanium alloy intermediate forged material L Center line

Claims (6)

α+β型のチタン合金から成り、回転対称で且つ式(1)、式(2)、式(3)で示される大径薄肉形状で、径方向の外周部が製品部となるチタン合金β鍛造材の製造に供されるチタン合金中間鍛造材であって、
前記チタン合金中間鍛造材は、最小厚み部が中心部にあり、外周部に最大厚み部が1箇所存在し、式(4)、式(5)、式(6)、式(7)、式(8)を満足し、且つ、
前記チタン合金β鍛造材の形状との間に式(9)の関係を有することを特徴とするチタン合金中間鍛造材。
0.1<b/A<0.5・・・・・(1)
40<b1<200・・・・・・・・・(2)
0.1<B/A<0.9・・・・・(3)
1.2≦b/a≦4.0・・・・・(4)
0.05<B/A≦0.55・・・(5)
20°≦θ≦ 70°・・・・・・・・(6)
2A/5≦C・・・・・・・・・・(7)
0.5≦c/b・・・・・・・・・(8)
0.20≦b/b≦0.60・・・(9)
ここで、
:チタン合金中間鍛造材の中心部の底部からの最小厚み(mm)
:チタン合金中間鍛造材の外周部の底部からの最大厚み(mm)
:チタン合金中間鍛造材の最外周部の厚み(mm)
:チタン合金中間鍛造材の外径の半径(mm)
:チタン合金中間鍛造材の凹部の半径(mm)
:中心部から最大厚みに達するまでの径(mm)
:チタン合金β鍛造材の外径の半径(mm)
:チタン合金β鍛造材の内径の半径(mm)
:チタン合金β鍛造材の製品部の最大厚さ(mm)
θ :チタン合金中間鍛造材の上面において中心部から外周部にかけて形成された傾斜部における、底部から(a+b)/2の位置の接線と、前記凹部の底面の接線とのなす角
である。
Titanium alloy β-forged material made of α + β-type titanium alloy, which is rotationally symmetric and has a large-diameter, thin-walled shape represented by formula (1), formula (2), and formula (3), and the outer peripheral portion in the radial direction is the product portion Titanium alloy intermediate forging material used for the production of
The titanium alloy intermediate forging material has a minimum thickness portion at the center and one maximum thickness portion on the outer peripheral portion. Formula (4), Formula (5), Formula (6), Formula (7), Formula (8) is satisfied, and
A titanium alloy intermediate forging material having a relationship of the formula (9) with the shape of the titanium alloy β forging material.
0.1 <b 1 / A 1 <0.5 (1)
40 <b 1 <200 (2)
0.1 <B 1 / A 1 <0.9 (3)
1.2 ≦ b 0 / a 0 ≦ 4.0 (4)
0.05 <B 0 / A 0 ≦ 0.55 (5)
20 ° ≦ θ ≦ 70 ° (6)
2A 0/5 ≦ C 0 ·········· (7)
0.5 ≦ c 0 / b 0 (8)
0.20 ≦ b 1 / b 0 ≦ 0.60 (9)
here,
a 0 : Minimum thickness (mm) from the bottom of the center of the titanium alloy intermediate forging
b 0 : Maximum thickness (mm) from the bottom of the outer periphery of the titanium alloy intermediate forging
c 0 : Thickness (mm) of the outermost peripheral portion of the titanium alloy intermediate forged material
A 0 : Radius of outer diameter of titanium alloy intermediate forging (mm)
B 0 : Radius of recess of titanium alloy intermediate forging (mm)
C 0 : Diameter from the center to the maximum thickness (mm)
A 1 : Radius of outer diameter of titanium alloy β forged material (mm)
B 1 : Radius (mm) of inner diameter of titanium alloy β-forged material
b 1 : Maximum thickness (mm) of the product part of the titanium alloy β-forged material
θ: an angle formed by a tangent at a position (a 0 + b 0 ) / 2 from the bottom and a tangent at the bottom of the recess in the inclined portion formed from the center to the outer periphery on the upper surface of the titanium alloy intermediate forging is there.
式(10)で表されるMo当量[Mo]eqが2.7を超え15未満であるチタン合金を用いることを特徴とする請求項1に記載のチタン合金中間鍛造材。

[Mo]eq=[Mo]+[Ta]/5+[Nb]/3.6+[W]/2.5+[V]/1.5+1.25[Cr]+1.25[Ni]+1.7[Mn]+1.7[Co]+2.5[Fe]・・・(10)
ただし、前記式(10)の[X]は、前記チタン合金における元素Xの含有量(質量%)とする。
The titanium alloy intermediate forging material according to claim 1, wherein a titanium alloy having a Mo equivalent [Mo] eq represented by the formula (10) of more than 2.7 and less than 15 is used.

[Mo] eq = [Mo] + [Ta] / 5 + [Nb] /3.6+ [W] /2.5+ [V] /1.5+1.25 [Cr] +1.25 [Ni] +1.7 [ Mn] +1.7 [Co] +2.5 [Fe] (10)
However, [X] in the formula (10) is the content (mass%) of the element X in the titanium alloy.
請求項1に記載の関係式に則り、前記チタン合金中間鍛造材の形状を定めることを特徴とするチタン合金中間鍛造材の形状決定方法。   The shape determination method of the titanium alloy intermediate forging material characterized by determining the shape of the titanium alloy intermediate forging material according to the relational expression according to claim 1. 請求項1または請求項2に記載のチタン合金中間鍛造材を、合金成分によって決まるβ変態点をTβで表したとき、(Tβ+5℃)以上に加熱して、β結晶粒径が100μm以上800μm未満の範囲になるまで保持した後、(Tβ−150℃)以上の温度域で鍛造を行い、直ちに(Tβ−150℃)未満の温度まで冷却することを特徴とするチタン合金β鍛造材の製造方法。 The titanium alloy intermediate forging material according to claim 1 or 2 is heated to (T β + 5 ° C) or higher when a β transformation point determined by the alloy component is expressed by T β , and a β crystal grain size is 100 μm. The titanium alloy β is characterized in that after being held to a range of less than 800 μm, forging in a temperature range of (T β −150 ° C.) or higher and immediately cooled to a temperature of less than (T β −150 ° C.) A method for producing forgings. 請求項4に記載の製造方法で製造したことを特徴とするチタン合金β鍛造材。   A titanium alloy β-forged material manufactured by the manufacturing method according to claim 4. 請求項5に記載のチタン合金β鍛造材に対する超音波探傷検査方法であって、
プローブ径が5〜30mmの範囲である探触子を用いて、周波数が1〜20MHzの範囲である超音波にて、前記チタン合金β鍛造材の鍛造圧下量の最も大きい方向に平行な方向に探傷する工程を含むことを特徴とする超音波探傷検査方法。
An ultrasonic flaw inspection method for the titanium alloy β forged material according to claim 5,
Using a probe whose probe diameter is in the range of 5 to 30 mm, in an ultrasonic wave whose frequency is in the range of 1 to 20 MHz, in a direction parallel to the direction in which the forging reduction amount of the titanium alloy β forging is the largest. An ultrasonic flaw detection inspection method comprising a flaw detection step.
JP2014131874A 2014-06-26 2014-06-26 Titanium alloy intermediate forging material, titanium alloy intermediate forging material shape determination method, and titanium alloy β forging material manufacturing method Expired - Fee Related JP6236361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014131874A JP6236361B2 (en) 2014-06-26 2014-06-26 Titanium alloy intermediate forging material, titanium alloy intermediate forging material shape determination method, and titanium alloy β forging material manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014131874A JP6236361B2 (en) 2014-06-26 2014-06-26 Titanium alloy intermediate forging material, titanium alloy intermediate forging material shape determination method, and titanium alloy β forging material manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017197165A Division JP6454768B2 (en) 2017-10-10 2017-10-10 Titanium alloy β-forged material and ultrasonic inspection method

Publications (2)

Publication Number Publication Date
JP2016007643A true JP2016007643A (en) 2016-01-18
JP6236361B2 JP6236361B2 (en) 2017-11-22

Family

ID=55225608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014131874A Expired - Fee Related JP6236361B2 (en) 2014-06-26 2014-06-26 Titanium alloy intermediate forging material, titanium alloy intermediate forging material shape determination method, and titanium alloy β forging material manufacturing method

Country Status (1)

Country Link
JP (1) JP6236361B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2656259C1 (en) * 2017-05-12 2018-06-04 Хермит Эдванст Технолоджиз ГмбХ Method of selecting titanium alloy for ultrasonic waveguide
CN108246947A (en) * 2017-12-07 2018-07-06 陕西宏远航空锻造有限责任公司 A kind of GH4169 alloy die forgings improve the forging method of flaw detection bottom damage
RU2664665C1 (en) * 2017-05-12 2018-08-21 Хермит Эдванст Технолоджиз ГмбХ Method of selecting titanium alloy for ultrasound waveguide
CN113699411A (en) * 2021-08-20 2021-11-26 湖南瀚德微创医疗科技有限公司 Waveguide rod beneficial to ultrasonic conduction and preparation method thereof
CN115595521A (en) * 2022-10-19 2023-01-13 湖南湘投金天钛业科技股份有限公司(Cn) Forging method of Ti17 titanium alloy large-size bar with high structural uniformity

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS531617A (en) * 1976-06-28 1978-01-09 Kobe Steel Ltd Production of forged product of titanium alloy
US6110302A (en) * 1996-12-24 2000-08-29 General Electric Company Dual-property alpha-beta titanium alloy forgings
JP2014055318A (en) * 2012-09-11 2014-03-27 Kobe Steel Ltd Titanium alloy forging material and production method of the same, and production method of titanium alloy forging component

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS531617A (en) * 1976-06-28 1978-01-09 Kobe Steel Ltd Production of forged product of titanium alloy
US6110302A (en) * 1996-12-24 2000-08-29 General Electric Company Dual-property alpha-beta titanium alloy forgings
JP2014055318A (en) * 2012-09-11 2014-03-27 Kobe Steel Ltd Titanium alloy forging material and production method of the same, and production method of titanium alloy forging component

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2656259C1 (en) * 2017-05-12 2018-06-04 Хермит Эдванст Технолоджиз ГмбХ Method of selecting titanium alloy for ultrasonic waveguide
RU2664665C1 (en) * 2017-05-12 2018-08-21 Хермит Эдванст Технолоджиз ГмбХ Method of selecting titanium alloy for ultrasound waveguide
CN108246947A (en) * 2017-12-07 2018-07-06 陕西宏远航空锻造有限责任公司 A kind of GH4169 alloy die forgings improve the forging method of flaw detection bottom damage
CN113699411A (en) * 2021-08-20 2021-11-26 湖南瀚德微创医疗科技有限公司 Waveguide rod beneficial to ultrasonic conduction and preparation method thereof
CN115595521A (en) * 2022-10-19 2023-01-13 湖南湘投金天钛业科技股份有限公司(Cn) Forging method of Ti17 titanium alloy large-size bar with high structural uniformity
CN115595521B (en) * 2022-10-19 2023-07-14 湖南湘投金天钛业科技股份有限公司 Forging method of Ti17 titanium alloy large-size bar with high tissue uniformity

Also Published As

Publication number Publication date
JP6236361B2 (en) 2017-11-22

Similar Documents

Publication Publication Date Title
JP6236361B2 (en) Titanium alloy intermediate forging material, titanium alloy intermediate forging material shape determination method, and titanium alloy β forging material manufacturing method
JP6084553B2 (en) Titanium alloy forged material and method for producing the same
JP6454768B2 (en) Titanium alloy β-forged material and ultrasonic inspection method
JP6088280B2 (en) Titanium alloy forged material, manufacturing method thereof, and ultrasonic flaw detection inspection method
KR101521039B1 (en) Fabrication method for stepped forged material
TWI483793B (en) Method for die forging and method for manufacturing forgings
CN106938285B (en) A kind of manufacturing method of stainless steel square tube
JP6022341B2 (en) Titanium alloy billet, method for producing titanium alloy billet, titanium alloy forged material, method for producing titanium alloy forged material, and method for producing aircraft parts
JP6350919B2 (en) Manufacturing method of ring rolling material
RU2555267C2 (en) Method of fabrication of thin sheets from two-phase titanium alloy and product from these sheets
WO2018176870A1 (en) Method for controlling integration of hot power spinning forming/performance of cylindrical part based on hot processing map
JP6079294B2 (en) Free forging method of Ni-base heat-resistant alloy member
JP5952689B2 (en) Titanium alloy forged material, method for producing the same, and method for producing titanium alloy forged parts
CN111390079A (en) Preparation method of ultra-large TC4 alloy cake
CN108517478A (en) A kind of manufacturing process of the small-bore accurate pipe of 718 alloy
WO2020031579A1 (en) Method for producing ni-based super-heat-resisting alloy, and ni-based super-heat-resisting alloy
JP2018090843A (en) PRODUCTION METHOD OF α+β TYPE TITANIUM ALLOY WING MEMBER
KR101330641B1 (en) A Manufacturing method for profiled ring of Ni-base superalloy for obtaining a uniform microstructure
WO2014196042A1 (en) Forged titanium alloy material and method for producing same, and ultrasonic testing method
JP2017078216A (en) Manufacturing method of heat resistant aluminum alloy material
JP5827165B2 (en) Titanium alloy forging, its manufacturing method, and its ultrasonic flaw detection inspection method
CN102560043A (en) Heat treatment process for large 35CrMo steel axis forgings
CN104894499A (en) TiNbTaZr low-modulus titanium alloy surface treatment method
JP7154083B2 (en) machine parts
WO2023176333A1 (en) Tapered material manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170711

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171030

R150 Certificate of patent or registration of utility model

Ref document number: 6236361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees