JP5952689B2 - Titanium alloy forged material, method for producing the same, and method for producing titanium alloy forged parts - Google Patents

Titanium alloy forged material, method for producing the same, and method for producing titanium alloy forged parts Download PDF

Info

Publication number
JP5952689B2
JP5952689B2 JP2012199970A JP2012199970A JP5952689B2 JP 5952689 B2 JP5952689 B2 JP 5952689B2 JP 2012199970 A JP2012199970 A JP 2012199970A JP 2012199970 A JP2012199970 A JP 2012199970A JP 5952689 B2 JP5952689 B2 JP 5952689B2
Authority
JP
Japan
Prior art keywords
titanium alloy
forging
old
grains
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012199970A
Other languages
Japanese (ja)
Other versions
JP2014055318A (en
Inventor
良規 伊藤
良規 伊藤
昌吾 村上
昌吾 村上
敬之 木下
敬之 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2012199970A priority Critical patent/JP5952689B2/en
Publication of JP2014055318A publication Critical patent/JP2014055318A/en
Application granted granted Critical
Publication of JP5952689B2 publication Critical patent/JP5952689B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Forging (AREA)

Description

本発明は、超音波検査にて欠陥の有無を検査されるα+β型チタン合金のβ鍛造材に係る技術に関する。   The present invention relates to a technology related to a β-forged material of α + β-type titanium alloy that is inspected for the presence of defects by ultrasonic inspection.

Ti−6Al−4V合金に代表されるα+β型チタン合金は、軽量、高強度、高耐食性に加え、溶接性、超塑性、拡散接合性等の諸特性を有することから、エンジン部品等、航空機産業で多く使用されている。α+β型チタン合金は、主相である稠密六方晶(hcp構造)のα相と体心立方晶(bcc構造)のβ相とが室温で安定に共存し、β変態点(Tβ)以上の温度域でβ相単相となる。α+β型チタン合金の鍛造材には、Tβ以上の温度に到達しないようにTβ未満の温度域(α+β二相域)に加熱してこの温度域で鍛造するα+β鍛造によるものと、Tβ以上の温度域(β単相域)に加熱して鍛造するβ鍛造によるものとがあり、形成される材料組織は全く異なり、それに伴い材料特性が異なることが知られている。 Α + β type titanium alloy, represented by Ti-6Al-4V alloy, has various characteristics such as weldability, superplasticity, and diffusion bondability in addition to light weight, high strength, and high corrosion resistance. Is used a lot. In the α + β type titanium alloy, the α phase of the dense hexagonal crystal (hcp structure) as the main phase and the β phase of the body-centered cubic crystal (bcc structure) coexist stably at room temperature, and the β transformation point (T β ) or higher It becomes β phase single phase in the temperature range. The forging material of α + β type titanium alloy includes α + β forging which is heated to a temperature range (α + β two-phase region) below T β so as not to reach a temperature equal to or higher than T β and is forged in this temperature range, and T β It is known that there are those by β forging in which the above temperature range (β single phase range) is heated and forged, the material structure formed is completely different, and the material properties are accordingly different.

チタン合金鍛造材は、β鍛造によれば、針状α相組織となる。具体的には、次のように組織が形成される。まず、Tβ以上の温度域でβ相単相となり、等軸状のβ相(β粒)が鍛造加工により扁平に潰れた後、Tβ未満の温度域まで冷却されてこの温度域で保持されると、β粒の結晶粒界に沿ってα相が膜状に析出し、引き続き、β粒の結晶粒内にα相が針状に析出する(図3(a)で白く示されているのがα相)。なお、β鍛造には、β単相域で鍛造を完了させるもの、β単相域外(α+β二相域)に温度降下後も鍛造が継続されるもの、およびα+β二相域に温度が降下してから鍛造を開始するものがある。さらにβ鍛造材は、鍛造条件やその後の冷却条件によって、旧β粒の結晶粒界上のα相の形態や厚さ、また粒内の針状α相の長さや厚さが変化し、さらには粒界上の膜状のα相が存在しないものもあり得る。一方、チタン合金鍛造材は、α+β鍛造によれば、粒状α組織となる(図3(b)参照)。一般的に、α+β型チタン合金鍛造材において、破壊靭性はβ鍛造をされた鍛造材の方がα+β鍛造をされた鍛造材よりも優れ、逆に疲労強度特性はα+β鍛造をされた鍛造材の方がβ鍛造をされた鍛造材よりも優れることが知られている。 The titanium alloy forged material has a needle-like α phase structure according to β forging. Specifically, the organization is formed as follows. First, it becomes a β phase single phase at a temperature range of T β or more, and after the equiaxed β phase (β grains) is flattened by forging, it is cooled to a temperature range below T β and held at this temperature range. Then, the α phase precipitates in the form of a film along the grain boundaries of the β grains, and subsequently the α phase precipitates in the form of needles in the crystal grains of the β grains (shown in white in FIG. 3 (a)). Α phase). In β forging, forging is completed in the β single-phase region, forging continues after the temperature drops outside the β single-phase region (α + β two-phase region), and the temperature drops in the α + β two-phase region. Some start forging after that. Furthermore, the β forging material changes in the form and thickness of the α phase on the grain boundary of the old β grains, and the length and thickness of the acicular α phase in the grains, depending on the forging conditions and the subsequent cooling conditions. May not have a film-like α phase on the grain boundary. On the other hand, the titanium alloy forged material has a granular α structure according to α + β forging (see FIG. 3B). In general, in α + β-type titanium alloy forgings, fracture toughness is better for forged materials that are β-forged than forged materials for which α + β-forged, and conversely, fatigue strength characteristics are that of forged materials that are α + β-forged. It is known that this method is superior to the forged material that has been β-forged.

航空機のエンジン部品は、高い疲労強度特性と共に、高い信頼性が要求されることから、超音波探傷により欠陥の有無が検査される。超音波探傷検査は、探触子から発信(送信)された超音波を被検査体の表面から内部に入射させ、傷等の欠陥で反射する反射波を同じく探触子で受信することで、内部の欠陥の有無を判定する検査である。しかし、α相とβ相が共存するα+β型チタン合金は、α+β鍛造材かβ鍛造材かにかかわらず、超音波探傷時に材料組織に起因するノイズが高く、このノイズのため、欠陥の検出精度が低下したり、あるいは材料組織起因のノイズを欠陥と誤認したりして、問題となっている。そのため、α+β型チタン合金(以下、チタン合金)で形成されるエンジン部品等には、超音波探傷時のノイズを低減して超音波探傷性を向上させることが求められている。   Aircraft engine parts are required to have high fatigue strength characteristics as well as high reliability, and therefore are inspected for defects by ultrasonic flaw detection. In ultrasonic flaw detection, the ultrasonic wave transmitted (transmitted) from the probe is incident from the surface of the object to be inspected, and the reflected wave reflected by the defect such as a flaw is received by the probe. This is an inspection for determining the presence or absence of internal defects. However, α + β-type titanium alloys in which α and β phases coexist, regardless of whether they are α + β forged or β forged, have high noise due to the material structure during ultrasonic flaw detection. Or the noise caused by the material structure is mistaken as a defect. Therefore, engine parts and the like formed of an α + β type titanium alloy (hereinafter, titanium alloy) are required to reduce noise during ultrasonic flaw detection and improve ultrasonic flaw detection performance.

そこで、従来は、ノイズを低減したα+β型チタン合金材として、例えば、α+β二相域での熱間圧延前に、β単相域から急冷して組織を微細化して、その後のα+β二相域での熱間圧延および熱処理により、等軸α組織を得たチタン合金圧延板が提案されている(特許文献1)。   Therefore, conventionally, as an α + β type titanium alloy material with reduced noise, for example, before hot rolling in the α + β two-phase region, the β single-phase region is rapidly cooled to refine the structure, and the subsequent α + β two-phase region A titanium alloy rolled sheet having an equiaxed α structure obtained by hot rolling and heat treatment is proposed (Patent Document 1).

特許第2988269号公報Japanese Patent No. 2988269

しかしながら、前記した従来技術はα+β鍛造によるα+β型チタン合金材に関するものである。一方、β鍛造材については、前記した通りα+β鍛造材とは材料組織の形成過程および最終的に形成される形態が大きく異なるので、超音波探傷時のノイズの原因が異なると考えられ、これに伴い改善方法も異なるため、前記技術を適用してノイズを低減することができない。   However, the prior art described above relates to an α + β type titanium alloy material by α + β forging. On the other hand, as for β forging, as described above, since the formation process of the material structure and the form finally formed are greatly different from α + β forging, it is considered that the cause of noise during ultrasonic flaw detection is different. Since the improvement methods are also different, it is impossible to reduce noise by applying the above technique.

本発明は、前記問題点に鑑みてなされたものであり、α+β型チタン合金のβ鍛造材について、疲労強度特性等の航空機用部品に要求される機械的特性を保持しつつ、超音波探傷時のノイズを低減した超音波探傷性に優れるチタン合金鍛造材およびその製造方法、ならびにチタン合金鍛造部品の製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and for β-forged materials of α + β-type titanium alloys, while maintaining mechanical properties required for aircraft parts such as fatigue strength properties, at the time of ultrasonic flaw detection An object of the present invention is to provide a titanium alloy forged material excellent in ultrasonic flaw detection with reduced noise, a method for producing the same, and a method for producing a titanium alloy forged part.

本発明者らは鋭意研究の結果、β鍛造により送信波の入射方向に垂直な広い面を有する扁平な形状に潰れた旧β粒の粒界で送信波が正反射し易く、この反射波が探触子で受信されてノイズの主原因となることを解明するに至った。さらに、旧β粒の形状を適正に制御することにより、疲労強度特性等を保持しつつ、β鍛造材の超音波探傷性を向上することができることを明らかにした。   As a result of earnest research, the inventors of the present invention easily transmit the reflected wave regularly at the grain boundary of the old β grains that have been crushed into a flat shape having a wide surface perpendicular to the incident direction of the transmitted wave by β forging. It has been clarified that it is received by the probe and is the main cause of noise. Furthermore, it was clarified that by appropriately controlling the shape of the old β grain, the ultrasonic flaw detection property of the β forged material can be improved while maintaining the fatigue strength characteristics and the like.

すなわち、本発明に係るチタン合金鍛造材は、平坦面を有する形状の鍛造材であって、針状のα相組織を有し、アスペクト比が平均で2以上10以下である旧β粒の多結晶構造からなるものである。そして、チタン合金鍛造材は、前記平坦面の法線方向に平行な断面において前記旧β粒の粒界が前記平坦面の法線方向に平行な線となす角の平均値が80°以下であり、前記旧β粒の粒界上に形成されたα相の前記粒界方向における長さが平均で15μm以下であることを特徴とする。さらに本発明に係るチタン合金鍛造材は、前記旧β粒の前記平坦面の法線方向における径が平均で60μm以上700μm以下とする。さらに本発明に係るチタン合金鍛造材は、アスペクト比が3未満かつ前記平坦面の法線方向における径が30μm以上200μm以下である旧β粒が、前記平坦面の法線方向に平行な断面における面積率で1%以上存在しないものとする。 That is, the titanium alloy forged material according to the present invention is a forged material having a flat surface, has a needle-like α phase structure, and has an average aspect ratio of 2 to 10 on average. crystal structure Tona is shall. Then, a titanium alloy forging, the average value of the old β grains in the grain boundary is a line parallel to the angle in the normal direction of the flat surface in a cross section parallel to the normal direction of the flat surface at less than 80 ° And the average length of the α phase formed on the grain boundaries of the old β grains in the grain boundary direction is 15 μm or less. Furthermore, in the titanium alloy forged material according to the present invention, the average diameter of the old β grains in the normal direction of the flat surface is 60 μm or more and 700 μm or less. Further, in the titanium alloy forging according to the present invention, the old β grains having an aspect ratio of less than 3 and a diameter in the normal direction of the flat surface of 30 μm or more and 200 μm or less are in a cross section parallel to the normal direction of the flat surface . It is assumed that the area ratio does not exist 1% or more.

かかる構成のチタン合金鍛造材は、旧β粒のアスペクト比すなわち扁平の度合いが所定範囲に規定され、さらに旧β粒の粒界が鍛造方向に垂直または略垂直にならないように規定されることで、β鍛造材としての強度を低下させることなく、鍛造方向と平行に入射した送信波が旧β粒の粒界で反射しても探触子に受信されず、ノイズが低減するので超音波探傷性に優れる。   The titanium alloy forged material having such a structure is defined such that the aspect ratio of the old β grains, that is, the degree of flatness is defined within a predetermined range, and the grain boundary of the old β grains is defined not to be perpendicular or substantially perpendicular to the forging direction. , Ultrasonic flaw detection because the transmission wave incident in parallel to the forging direction is reflected on the grain boundary of the old β grains and is not received by the probe without reducing the strength of the β forging material, and noise is reduced. Excellent in properties.

さらに本発明に係るチタン合金鍛造材は、前記旧β粒の粒界上に形成されたα相および当該粒界に沿って形成されたα相が存在する領域である粒界α帯の幅が平均で10μm以下であることが好ましい。   Further, the forged titanium alloy according to the present invention has a width of the grain boundary α band which is a region where the α phase formed on the grain boundary of the old β grain and the α phase formed along the grain boundary exist. The average is preferably 10 μm or less.

かかる構成のチタン合金鍛造材は、旧β粒の粒内のα相の多くが針状であるため、破壊靭性が良好である。   The titanium alloy forged material having such a configuration has good fracture toughness because most of the α phase in the old β grains is needle-like.

さらに、本発明に係るチタン合金鍛造材は、次式(1)で表されるMo当量[Mo]eqが2.7を超え15未満であるチタン合金からなることが好ましい。
[Mo]eq=[Mo]+[Ta]/5+[Nb]/3.6+[W]/2.5+[V]/1.5+1.25[Cr]+1.25[Ni]+1.7[Mn]+1.7[Co]+2.5[Fe] ・・・(1)
ただし、前記式(1)の[X]は、前記チタン合金における元素X(X:Mo,Ta,Nb,W,V,Cr,Ni,Mn,Co,Fe)の各含有量(質量%)とする。
Further, the forged titanium alloy according to the present invention is preferably made of a titanium alloy having a Mo equivalent [Mo] eq represented by the following formula (1) of more than 2.7 and less than 15.
[Mo] eq = [Mo] + [Ta] / 5 + [Nb] /3.6+ [W] /2.5+ [V] /1.5+1.25 [Cr] +1.25 [Ni] +1.7 [ Mn] +1.7 [Co] +2.5 [Fe] (1)
However, [X] in the formula (1) is the content (mass%) of the element X (X: Mo, Ta, Nb, W, V, Cr, Ni, Mn, Co, Fe) in the titanium alloy. And

かかる構成により、チタン合金鍛造材は、α+β型チタン合金となり、旧β粒の形状の影響が強くなって、機械的特性と超音波探傷性とを並存させることができる。   With this configuration, the titanium alloy forged material becomes an α + β type titanium alloy, and the influence of the shape of the old β grains becomes strong, and mechanical characteristics and ultrasonic flaw detection properties can coexist.

本発明に係るチタン合金鍛造材は、β鍛造を行って製造される。この本発明に係るチタン合金鍛造材の製造方法は、前記β鍛造が、β変態点をTβで表したとき、(Tβ+10℃)以上に加熱して、β結晶粒径が300μm以上1000μm以下の範囲になるまで保持し、(Tβ−150℃)以上(Tβ+200℃)以下の温度域で、相当ひずみ0.45以上2.1以下となる条件で一方向に鍛造した後、(Tβ−150℃)よりも低い温度に冷却することを特徴とする。 The titanium alloy forging according to the present invention is manufactured by performing β forging. In the method for producing a titanium alloy forging according to the present invention, the β forging is heated to (T β + 10 ° C.) or more when the β transformation point is expressed by T β , and the β crystal grain size is 300 μm or more and 1000 μm. held until the following range, after forging in one direction under the condition that the (T β -150 ℃) or (T β + 200 ℃) at a temperature range, equivalent strain of 0.45 or more 2.1 or less, characterized by cooling to a temperature lower than (T β -150 ℃).

かかる手順により、チタン合金鍛造材の製造方法は、β鍛造にて旧β粒が適度に扁平なチタン合金鍛造材が得られる。   By this procedure, the titanium alloy forging material can be obtained by a forging method in which the old β grains are moderately flat in β forging.

本発明に係るチタン合金鍛造部品の製造方法は、前記チタン合金鍛造材の製造方法によりチタン合金鍛造材を製造する工程と、前記チタン合金鍛造材に、前記鍛造における圧下量の最も大きい方向に平行な方向に超音波を照射して探傷する工程と、を行うことを特徴とする。このチタン合金鍛造部品の製造方法により、航空機のエンジンに使用される部品を製造することができる。 The method for producing a titanium alloy forged part according to the present invention includes a step of producing a titanium alloy forged material by the method for producing a titanium alloy forged material, and a parallel to the titanium alloy forged material in a direction in which the reduction amount in the forging is the largest. And flaw detection by irradiating ultrasonic waves in various directions. By this method for manufacturing a titanium alloy forged part, a part used for an aircraft engine can be manufactured.

かかる方法により、チタン合金鍛造部品の製造方法は、超音波探傷検査において、比較的高ノイズとなる方向に超音波にて探傷しても十分にノイズが少ないため、チタン合金鍛造材における面積の広い面を探触子で走査することができ、検査が容易かつ高精度な検査を行うことができる。   With this method, the titanium alloy forged part manufacturing method has a large area in the titanium alloy forging because the ultrasonic flaw detection has a sufficiently low noise even when ultrasonic flaw detection is performed in a direction of relatively high noise. The surface can be scanned with a probe, and inspection can be performed easily and with high accuracy.

本発明に係るチタン合金鍛造材によれば、超音波探傷検査にて欠陥を高精度で検出可能となり、航空機のエンジン部品等の製品の信頼性が向上する。そして、本発明に係るチタン合金鍛造材の製造方法によれば、前記の効果を有するチタン合金鍛造材を容易に製造することができる。また、本発明に係るチタン合金鍛造部品の製造方法によれば、前記のチタン合金鍛造材に対して高精度な超音波探傷検査を行ったチタン合金鍛造部品を製造することができる。   According to the titanium alloy forging according to the present invention, defects can be detected with high accuracy by ultrasonic flaw detection, and the reliability of products such as aircraft engine parts is improved. And according to the manufacturing method of the titanium alloy forging material which concerns on this invention, the titanium alloy forging material which has the said effect can be manufactured easily. Further, according to the method for manufacturing a titanium alloy forged part according to the present invention, it is possible to manufacture a titanium alloy forged part that has been subjected to high-accuracy ultrasonic flaw inspection on the titanium alloy forged material.

チタン合金のβ鍛造材の組織の状態を説明する断面模式図である。It is a cross-sectional schematic diagram explaining the state of the structure | tissue of (beta) forging material of a titanium alloy. チタン合金のβ鍛造材におけるα相の形状を説明するための模式図で、旧β粒の粒界近傍の拡大断面図である。It is a schematic diagram for demonstrating the shape of the (alpha) phase in (beta) forging material of a titanium alloy, and is an expanded sectional view of the grain boundary vicinity of an old beta grain. チタン合金鍛造材の組織の画像写真であり、(a)はβ鍛造材、(b)はα+β鍛造材のそれぞれの一例である。It is an image photograph of the structure of a titanium alloy forging material, (a) is an example of β forging material, and (b) is an example of α + β forging material.

以下、本発明の実施の形態について詳細に説明する。
〔チタン合金鍛造材〕
本発明に係るチタン合金鍛造材は、従来のβ鍛造材と同様に、航空機のエンジン部品に適用され、特に超音波探傷検査にて内部の欠陥を検査することを必要とするものに好適である。具体的にはディスクやシャフトに利用されるチタン合金鍛造材に適用することができ、厚さ(鍛造方向長さ)が平均で80mm以上、最薄部でも50mm以上とすることができる。
Hereinafter, embodiments of the present invention will be described in detail.
[Titanium alloy forging]
The titanium alloy forging according to the present invention is applied to aircraft engine parts, like the conventional β forging, and is particularly suitable for those that require inspection of internal defects by ultrasonic flaw detection. . Specifically, it can be applied to a titanium alloy forged material used for a disk or a shaft, and the thickness (length in the forging direction) can be 80 mm or more on average, and 50 mm or more even at the thinnest part.

本発明に係るチタン合金鍛造材は、α+β型チタン合金(以下、チタン合金)からなり、従来のβ鍛造材と同様に、旧β粒(β相)と、旧β粒の結晶粒界上や結晶粒内に析出したα相とを有する。ただし、本発明に係るチタン合金鍛造材は、旧β粒のアスペクト比が平均で2以上10以下であり、旧β粒の鍛造方向における径が平均で700μm以下であることが好ましく、アスペクト比3未満かつ鍛造方向における径30μm以上200μm以下の旧β粒が1%以上存在しないことが好ましい。また、本発明に係るチタン合金鍛造材は、旧β粒の粒界の、鍛造方向に平行な線となす角が平均で80°以下である。また、本発明に係るチタン合金鍛造材は、旧β粒の粒界上に形成されたα相が、前記粒界方向における長さが平均で15μm以下であり、前記粒界上に、および当該粒界に沿って、α相が形成された領域である粒界α帯が、平均で幅10μm以下であることが好ましい。   The titanium alloy forging according to the present invention is made of an α + β type titanium alloy (hereinafter referred to as titanium alloy), and like the conventional β forging, the old β grains (β phase) and the crystal grain boundaries of the old β grains And α phase precipitated in the crystal grains. However, in the titanium alloy forged material according to the present invention, the average aspect ratio of the old β grains is 2 or more and 10 or less, and the diameter of the old β grains in the forging direction is preferably 700 μm or less on average. It is preferable that 1% or more of old β grains having a diameter of 30 μm or more and 200 μm or less in the forging direction are not present. In addition, in the titanium alloy forged material according to the present invention, the angle between the grain boundaries of the old β grains and the line parallel to the forging direction is 80 ° or less on average. Further, in the titanium alloy forged material according to the present invention, the α phase formed on the grain boundaries of the old β grains has an average length in the grain boundary direction of 15 μm or less, on the grain boundaries, and It is preferable that the grain boundary α band, which is a region where the α phase is formed, along the grain boundary has an average width of 10 μm or less.

β鍛造においては、チタン合金材がβ変態点(Tβ)以上の温度域(β単相域)に加熱されて保持されることで、β相単相状態となって、等軸状(アスペクト比が1に近い)のβ相の結晶粒(β結晶粒、β粒)が形成され成長する。そして、鍛造加工により、β結晶粒が潰されて鍛造方向(圧下方向)に垂直に広がった扁平形状に変形し、パンケーキ形状となったβ結晶粒(旧β粒)が積み重なった多結晶構造の組織となる(図1参照)。鍛造後に冷却されてTβ未満の十分に低い温度域(α+β二相域)に降下すると、旧β粒の粒界上や粒内にα相が析出する(図3(a)参照)。したがって、β鍛造材において、旧β粒は、径が鍛造方向において最小となる場合が多い。また、チタン合金鍛造材は、鍛造後に、冷却が遅くて温度がβ単相域である時間が長いと、新たに等軸状のβ粒が成長する。図1では、α相について、破線で示した円内の拡大図に、旧β粒の粒界上の膜状に形成されたα相を示し、それ以外は図示を省略する。 In β-forging, the titanium alloy material is heated and held in a temperature range (β single-phase region) that is equal to or higher than the β transformation point (T β ), thereby becoming a β-phase single-phase state. Β-phase crystal grains (β crystal grains, β grains) having a ratio close to 1 are formed and grown. And the β crystal grains are crushed by the forging process, deformed into a flat shape spreading perpendicularly to the forging direction (reduction direction), and the polycrystalline structure in which the β crystal grains (former β grains) in a pancake shape are stacked (See FIG. 1). When cooled after forging drops to a sufficiently low temperature range of less than T β (α + β two-phase region), alpha-phase is precipitated in the former beta grain of grain boundaries on and intragranular (see Figure 3 (a)). Therefore, in the β forged material, the diameter of the old β grain is often minimized in the forging direction. In addition, when the titanium alloy forged material is cooled slowly and the temperature is in the β single-phase region for a long time after forging, new equiaxed β grains grow. In FIG. 1, the α phase formed in a film shape on the grain boundary of the old β grain is shown in an enlarged view in a circle indicated by a broken line with respect to the α phase, and the other illustrations are omitted.

(旧β粒のアスペクト比:平均2以上10以下)
本発明において、旧β粒のアスペクト比とは、鍛造方向の径に対するこの方向に垂直な方向の径の比を指す。すなわち図1においては、上下方向の径に対する左右方向の径の比である。また、結晶粒の径とは、所定の方向における最大長を指す。本発明に係るチタン合金鍛造材は、従来のβ鍛造材と同様に、扁平形状のβ結晶粒(旧β粒)の多結晶構造により、高い破壊靱性および疲労強度を有する。チタン合金鍛造材は、鍛造前においてアスペクト比の小さい(1に近い)等軸状であった旧β粒が、鍛造時に加えられたひずみ量が多くなるにしたがい、アスペクト比が大きく、扁平になって、かかる旧β粒の疲労強度の向上の寄与度が高くなる。
(Aspect ratio of old β grains: average 2 to 10)
In the present invention, the aspect ratio of the old β grains refers to the ratio of the diameter in the direction perpendicular to this direction to the diameter in the forging direction. That is, in FIG. 1, the ratio of the diameter in the left-right direction to the diameter in the up-down direction. Moreover, the diameter of a crystal grain refers to the maximum length in a predetermined direction. The titanium alloy forging according to the present invention has high fracture toughness and fatigue strength due to the polycrystalline structure of flat β crystal grains (former β grains), similar to the conventional β forging. Titanium alloy forged material has a flat aspect ratio with a large aspect ratio as the amount of strain applied to the former β grains, which were equiaxed with a small aspect ratio (close to 1) before forging, increases as the amount of strain applied during forging increases. Thus, the contribution of improving the fatigue strength of the old β grains increases.

チタン合金鍛造材は、旧β粒のアスペクト比が平均で2未満では、等軸状のβ粒が多いことになり、このようなβ粒が疲労強度の向上に寄与しないため、疲労強度が不足する。したがって、チタン合金鍛造材は、旧β粒のアスペクト比が平均で2以上であり、3以上であることが好ましく、さらに、後記するようにアスペクト比が3未満の旧β粒ができるだけ少ないことがより好ましい。旧β粒のアスペクト比は、鍛造時のひずみ量が不足したことにより、β粒が十分に変形しなかった場合に、あるいは、鍛造後に速やかにTβよりも低い温度に冷却されなかったことにより、等軸状の新たなβ粒が多く生成した場合に小さくなる。一方、旧β粒はアスペクト比が大きくなる、すなわちより扁平になるにしたがい、旧β粒の粒界の傾きが減少して鍛造方向に垂直な面に近付き、かつその面が大きくなって、超音波探傷検査(鍛造方向に平行に超音波を照射した場合。以下同。)におけるノイズが増大する。旧β粒のアスペクト比が平均で10を超えると、超音波探傷検査においてノイズにより測定精度が低下する虞がある。したがって、チタン合金鍛造材は、旧β粒のアスペクト比が平均で10以下であり、8以下であることが好ましく、7以下であることがより好ましく、6以下であることがさらに好ましい。このような旧β粒のアスペクト比は、鍛造時のひずみ量(圧下量)で制御することができ、さらに、鍛造完了後は速やかに冷却して短時間でTβよりも十分に低い温度に到達させて、新たなβ粒が成長しないようにすることが好ましい。 Titanium alloy forgings have an average aspect ratio of the old β grains of less than 2, so that there are many equiaxed β grains, and these β grains do not contribute to the improvement of fatigue strength, so the fatigue strength is insufficient. To do. Therefore, the titanium alloy forged material has an average aspect ratio of the old β grains of 2 or more and preferably 3 or more. Further, as will be described later, the old β grains having an aspect ratio of less than 3 should be as few as possible. More preferred. The aspect ratio of the old β grains is due to the fact that the β grains did not deform sufficiently due to lack of strain during forging or because they were not immediately cooled to a temperature lower than T β after forging. It becomes smaller when a lot of new equiaxed β grains are produced. On the other hand, as the aspect ratio of the old β grains increases, that is, as the flatness becomes flatter, the inclination of the grain boundaries of the old β grains decreases and approaches the plane perpendicular to the forging direction, and the plane becomes larger and super- Noise in sonic flaw inspection (when ultrasonic waves are irradiated parallel to the forging direction; the same applies hereinafter) increases. If the aspect ratio of the old β grains exceeds 10 on average, there is a risk that measurement accuracy may be reduced due to noise in ultrasonic flaw detection. Accordingly, the titanium alloy forged material has an average aspect ratio of the old β grains of 10 or less, preferably 8 or less, more preferably 7 or less, and even more preferably 6 or less. The aspect ratio of such old beta grains, the amount of strain during forging can be controlled by (rolling reduction), further, after the forging is completed in a temperature well below a short time T beta cooled rapidly It is preferable to make it reach so that new β grains do not grow.

(旧β粒界が、鍛造方向に平行な線となす角:平均80°以下)
チタン合金鍛造材は、前記した通り、鍛造方向に垂直に広がった扁平な旧β粒が鍛造方向に積み重なった組織を有する。したがって、図1に断面図に示すように、旧β粒の粒界(旧β粒界)が、鍛造方向に垂直に比較的近い面を形成することになる。チタン合金鍛造材は、この粒界の傾きが鍛造方向に垂直な面により近く、かつこのような粒界が広く、また多くなるにしたがい、超音波探傷検査におけるノイズが増大する。具体的には、旧β粒の粒界が、鍛造方向に垂直な面となす角が平均で10°未満に、言い換えると鍛造方向に平行な線となす角(図1のθ1,θ2,θ3,θ4)が平均で80°を超えると、超音波探傷検査においてノイズにより測定困難となる虞がある。したがって、旧β粒界の、鍛造方向に平行な線となす角は、平均で80°以下とする。この角度は鋭角(最大90°の絶対値)で判定する。なお、旧β粒の粒界は曲面が多いので、後記するように、チタン合金鍛造材の断面を観察して、当該断面に線(曲線)状に表れる粒界の接線で測定すればよい。このような旧β粒の粒界の角度は、旧β粒が扁平になり過ぎない、すなわち旧β粒を前記で規定されたアスペクト比に制御すれば得られる。
(An angle between the old β grain boundary and a line parallel to the forging direction: average of 80 ° or less)
As described above, the titanium alloy forged material has a structure in which flat old β grains spreading perpendicularly to the forging direction are stacked in the forging direction. Therefore, as shown in a cross-sectional view in FIG. 1, the grain boundaries of the old β grains (old beta grain boundaries) form a surface that is relatively close to the forging direction. In the titanium alloy forged material, the inclination of the grain boundary is closer to the plane perpendicular to the forging direction, and as the grain boundary becomes wider and larger, the noise in the ultrasonic flaw inspection increases. Specifically, the angle between the grain boundaries of the old β grains and the plane perpendicular to the forging direction is less than 10 ° on average, in other words, the angles formed with lines parallel to the forging direction (θ 1 and θ 2 in FIG. 1). , Θ 3 , θ 4 ) exceeds 80 ° on average, it may be difficult to measure due to noise in ultrasonic flaw detection. Therefore, the angle between the old β grain boundary and the line parallel to the forging direction is 80 ° or less on average. This angle is determined by an acute angle (absolute value of a maximum of 90 °). In addition, since the grain boundaries of the old β grains have many curved surfaces, as will be described later, the cross section of the titanium alloy forged material may be observed and measured at the grain boundary tangent lines appearing in a line (curve) shape in the cross section. Such an angle of the grain boundary of the old β grains can be obtained by controlling the old β grains to the aspect ratio defined above, that is, the old β grains do not become too flat.

(旧β粒の鍛造方向の径:平均700μm以下)
チタン合金鍛造材は、旧β粒が大き過ぎると疲労強度が低下するため、具体的には鍛造方向における径が平均で700μm以下であることが好ましい。一方、旧β粒の径の下限は特に規定しないが、現実的には60μmよりも小さくすることは困難である。チタン合金鍛造材の旧β粒の径は、鍛造前の加熱で成長したβ粒の径に依存し、加熱温度および保持時間で制御することができる。すなわち旧β粒を小粒化するためには加熱にて微細なβ粒とする必要があるが、大型化したチタン合金素材(鍛造前のチタン合金鍛造材)は、加熱における昇温速度が表層と深部とで差が大きいので微細かつ均一なβ粒とすることが困難である。具体的には、鍛造前のβ粒は径300μm以上が現実的で、したがって、鍛造後(チタン合金鍛造材)における鍛造方向の径は60μm以上となり、さらに、鍛造前のβ粒は径400μm以上がより安定的に生産し易いため、鍛造後における径は80μm以上とすることが好ましい。
(The diameter of the old β grains in the forging direction: average 700 μm or less)
Since the fatigue strength of the titanium alloy forged material decreases when the old β grains are too large, specifically, the average diameter in the forging direction is preferably 700 μm or less. On the other hand, the lower limit of the diameter of the old β grain is not particularly defined, but it is difficult to make it smaller than 60 μm in practice. The diameter of the old β grains of the titanium alloy forged material depends on the diameter of the β grains grown by heating before forging, and can be controlled by the heating temperature and the holding time. In other words, in order to reduce the size of the old β grains, it is necessary to make them fine β grains by heating. However, the larger titanium alloy material (titanium alloy forging material before forging) has a temperature rise rate in the heating and the surface layer. Since there is a large difference in the deep part, it is difficult to make fine and uniform β grains. Specifically, it is realistic that the β grains before forging have a diameter of 300 μm or more. Therefore, the diameter in the forging direction after forging (titanium alloy forged material) is 60 μm or more, and the β grains before forging have a diameter of 400 μm or more. However, it is preferable that the diameter after forging is 80 μm or more.

(アスペクト比3未満かつ鍛造方向における径30μm以上200μm以下の旧β粒の存在割合:1%未満)
チタン合金鍛造材は、鍛造後に新たにβ粒が成長すると、この等軸状のβ粒により、鍛造で扁平にされた旧β粒の存在割合が減少し、疲労強度が低下する。また、チタン合金鍛造材は、旧β粒のアスペクト比が平均で2以上であっても全体に小さく、かつ径も小さいと、かかる旧β粒では疲労強度を向上させる効果が小さい。具体的には、アスペクト比3未満かつ鍛造方向の径が30μm以上200μm以下の旧β粒(以下、適宜、非扁平β粒と称する)が1%以上存在しない(存在割合が1%未満である)ことが好ましい。このような組織は、鍛造前の加熱でβ粒を適度な径に成長させてから、十分なひずみが加えられる条件で鍛造し、さらに、鍛造完了後は速やかに冷却して短時間でTβよりも十分に低い温度、具体的には(Tβ−30℃)よりも低い温度に到達させて、新たなβ粒が成長しないようにすることで得られる。なお、チタン合金鍛造材におけるこの存在割合は、断面における面積率を指す。
(Existence ratio of old β grains having an aspect ratio of less than 3 and a diameter of 30 μm or more and 200 μm or less in the forging direction: less than 1%)
In the titanium alloy forged material, when β grains newly grow after forging, the presence ratio of the old β grains flattened by forging is reduced due to the equiaxed β grains, and the fatigue strength is lowered. Further, if the forged titanium alloy has an average aspect ratio of the old β grains of 2 or more and is small overall and has a small diameter, the old β grains have a small effect of improving the fatigue strength. Specifically, 1% or more of old β grains having an aspect ratio of less than 3 and a diameter in the forging direction of 30 μm or more and 200 μm or less (hereinafter referred to as non-flat β grains as appropriate) are not present (the existence ratio is less than 1%). Is preferred. Such tissue, a beta particle with heating before forging grown to an appropriate size, forged under conditions sufficient strain is applied, further, after the forging is completed in a short time by cooling rapidly T beta It is obtained by reaching a temperature sufficiently lower than that, specifically, a temperature lower than ( Tβ- 30 ° C) so that new β grains do not grow. In addition, this existence ratio in a titanium alloy forging material points out the area rate in a cross section.

(粒界上のα相の粒界方向における長さ:平均15μm以下)
旧β粒の粒界上に析出したα相(図1参照)は、粒界に沿った膜状であり、通常、粒界上に析出した後、粒界から旧β粒内に向けて成長する。なお、鍛造完了後に旧β粒界上に析出し始めるα相は、膜厚(旧β粒界の法線方向の長さ、図1のtα)が通常2μm程度である。チタン合金鍛造材は、粒界に沿ってα相が連続して長く形成されると、疲労強度が劣化する。したがって、旧β粒界上のα相の当該旧β粒界方向長さ(図1のlα)は、平均で15μm以下とし、10μm以下とすることが好ましく、7μm以下とすることがさらに好ましい。このα相の長さlαは、後記するようにチタン合金鍛造材の断面を観察して、当該断面に線状に表れる旧β粒界上に形成されたα相について、旧β粒界方向の長さを測定すればよい。チタン合金鍛造材は、鍛造にて加えられるひずみが少ないと、その後の冷却時に粒界に沿ってα相が広がって形成され易いため、後記の製造方法にて説明するように、十分なひずみが加えられるように鍛造することが好ましい。
(Length of α phase on grain boundary in grain boundary direction: average 15 μm or less)
The α phase precipitated on the grain boundaries of the old β grains (see FIG. 1) is in the form of a film along the grain boundaries and usually grows from the grain boundaries into the old β grains after depositing on the grain boundaries. To do. In addition, the α phase which begins to precipitate on the old β grain boundary after completion of forging usually has a film thickness (the length of the old β grain boundary in the normal direction, t α in FIG. 1) of about 2 μm. In the titanium alloy forged material, when the α phase is continuously formed long along the grain boundary, the fatigue strength deteriorates. Accordingly, the length of the α phase on the old β grain boundary in the direction of the old β grain boundary (l α in FIG. 1) is 15 μm or less on average, preferably 10 μm or less, and more preferably 7 μm or less. . The length l α of the α phase is determined by observing the cross section of the titanium alloy forging as described later, and the α phase formed on the old β grain boundary appearing linearly in the cross section. What is necessary is just to measure the length. If the titanium alloy forging material has a small strain applied by forging, the α phase spreads easily along the grain boundary during subsequent cooling, so that sufficient strain is applied as described in the manufacturing method described later. It is preferable to forge so that it may be added.

(粒界α帯の幅:平均10μm以下)
ここで、チタン合金鍛造材は、α相が析出する温度域で鍛造が行われると、既に旧β粒の粒界上および粒内に析出したα相が細かく分断される。また、鍛造時にα相が析出していない過冷領域であっても、鍛造完了直後にα相が析出するためにα相の析出密度が増え、通常のβ鍛造では旧β粒内において針状に成長するところ粒状(等軸状)に留まる。この等軸状のα相は、アスペクト比(旧β粒界方向における長さに対する旧β粒界の法線方向の長さの比)が2以下のものを指し、粒内に形成された針状のα相(粒内α、図2参照)とは明確に区別される。このような等軸状のα相は、形成される領域が粒界上からその周辺へ次第に広がることで増加し、すなわち粒界に沿って形成される(図2参照)。チタン合金鍛造材は、このように、旧β粒の粒界の周辺に当該粒界に沿って形成されたα相が多いと、言い換えると広い範囲に存在していると、破壊靭性が劣化する虞がある。したがって、チタン合金鍛造材は、旧β粒の粒界上を含め、その周辺において当該粒界に沿って形成されたα相が存在している帯域(以下、粒界α帯と称する)の幅(旧β粒界の法線方向の長さ)wα(図2参照)が平均で10μm以下であることが好ましい。なお、粒界α帯は、旧β粒界上に形成された、等軸状でないα相(図1参照)が形成されている領域も含まれ、言い換えれば、針状(図2の粒内α)でないα相が形成されている帯域を指す。したがって、旧β粒界の周辺に等軸状のα相が形成されていないチタン合金鍛造材においては、粒界α帯の幅wαが旧β粒界上に形成された膜状のα相の膜厚tα(図1参照)と一致し、このようなチタン合金鍛造材がより好ましい。粒界α帯の幅wαは、後記するようにチタン合金鍛造材の断面を観察して、当該断面に線状に表れる旧β粒界の両側に形成されたα相について、等軸状のものを定義し、この等軸状のα相が含まれている領域(粒界α帯)の、前記旧β粒界の垂線方向長さを測定すればよい。チタン合金鍛造材は、旧β粒の粒界周辺における等軸状のα相の形成が抑制されるように、後記の製造方法にて説明するように所定の温度域で鍛造して完了させることが好ましい。
(Width of grain boundary α band: average 10 μm or less)
Here, when the forged titanium alloy is forged at a temperature range in which the α phase is precipitated, the α phase already precipitated on the grain boundaries and in the grains of the old β grains is finely divided. In addition, even in a supercooled region where the α phase is not precipitated during forging, the α phase precipitates immediately after the forging is completed, so that the α phase precipitation density increases. In normal β forging, needles are formed in the old β grains. When it grows, it remains granular (equal axis). This equiaxed α phase refers to an aspect ratio (the ratio of the length in the normal direction of the old β grain boundary to the length in the direction of the old β grain boundary) of 2 or less, and the needle formed in the grain It is clearly distinguished from the α-phase (intra-granular α, see FIG. 2). Such an equiaxed α phase increases as the formed region gradually spreads from the grain boundary to the periphery thereof, that is, is formed along the grain boundary (see FIG. 2). As described above, when the forged titanium alloy has a lot of α phase formed along the grain boundary around the grain boundary of the old β grain, in other words, if it exists in a wide range, the fracture toughness deteriorates. There is a fear. Therefore, the titanium alloy forging material has a width (hereinafter referred to as a grain boundary α-band) in which the α phase formed along the grain boundary is present in the periphery including the former β grain boundary. (Length of normal β grain boundary in the normal direction) w α (see FIG. 2) is preferably 10 μm or less on average. Note that the grain boundary α band also includes a region formed on the former β grain boundary where an α phase (see FIG. 1) that is not equiaxed is formed, in other words, a needle shape (inside the grain in FIG. 2). A zone where an α phase other than α) is formed. Therefore, in a titanium alloy forging material in which an equiaxed α phase is not formed around the old β grain boundary, the film-like α phase in which the width w α of the grain boundary α band is formed on the old β grain boundary This titanium alloy forged material is more preferable because it matches the film thickness t α (see FIG. 1). As will be described later, the width w α of the grain boundary α band is obtained by observing the cross section of the titanium alloy forging, and the α phase formed on both sides of the old β grain boundary appearing linearly in the cross section is equiaxed. What is necessary is just to measure the perpendicular | vertical direction length of the said former beta grain boundary of the area | region (grain boundary alpha zone) in which this equiaxed alpha phase is contained. Titanium alloy forging is completed by forging in a predetermined temperature range as described in the manufacturing method described later so that the formation of equiaxed α phase around the grain boundary of the old β grain is suppressed. Is preferred.

本発明に係るチタン合金鍛造材の旧β粒のアスペクト比や径、粒界の角度、および非扁平β粒の面積率、ならびに旧β粒界上のα相の長さ、および粒界α帯の幅は、当該チタン合金鍛造材の鍛造方向と平行な断面における1ないし複数視野における値とすることができる。すなわち、チタン合金鍛造材を鍛造方向と平行な面で切断し、断面を研磨(機械研磨、電解研磨)仕上げの後に腐食させて、この断面から例えば1〜数mm角程度の視野を1ないし複数選択し、光学顕微鏡により断面組織を観察する。   The aspect ratio and diameter of the former β grain of the titanium alloy forging according to the present invention, the angle of the grain boundary, the area ratio of the non-flat β grain, the length of the α phase on the former β grain boundary, and the grain boundary α band The width of can be a value in one or a plurality of visual fields in a cross section parallel to the forging direction of the titanium alloy forged material. That is, the titanium alloy forged material is cut along a plane parallel to the forging direction, and the cross section is corroded after polishing (mechanical polishing, electrolytic polishing), and one or more fields of about 1 to several mm square, for example, are viewed from this cross section. Select and observe the cross-sectional structure with an optical microscope.

そして、断面の鍛造方向とこれに直交する方向とのそれぞれにおける旧β粒の長さ(径)を測定し、アスペクト比を算出し、径およびアスペクト比に基づいて非扁平β粒を定義する。また、前記視野において、1本ないし複数本の鍛造方向に平行な直線(図1の一点鎖線)と交差する旧β粒界について、それぞれの交角(90°以下)、詳しくは交点における旧β粒界の接線と前記直線のなす角を測定する。さらに、旧β粒界上に形成されたα相の粒界方向における長さ、および旧β粒界の周辺において等軸状のα相が形成された領域の幅を測定する。これにより、チタン合金鍛造材の断面の前記視野における旧β粒のアスペクト比および径、粒界の角度、粒界上のα相の長さ、粒界α帯の幅のそれぞれの平均値、ならびに非扁平β粒の面積率を算出することができる。   Then, the length (diameter) of the old β grains in each of the forging direction of the cross section and the direction orthogonal thereto is measured, the aspect ratio is calculated, and the non-flat β grains are defined based on the diameter and the aspect ratio. Further, in the field of view, with respect to the old β grain boundaries that intersect one or more straight lines parallel to the forging direction (one-dot chain line in FIG. 1), the respective intersection angles (90 ° or less), more specifically, the old β grains at the intersections The angle between the tangent of the field and the straight line is measured. Further, the length in the grain boundary direction of the α phase formed on the old β grain boundary and the width of the region where the equiaxed α phase is formed around the old β grain boundary are measured. Thereby, the aspect ratio and diameter of the old β grain in the field of view of the cross section of the titanium alloy forging, the angle of the grain boundary, the length of the α phase on the grain boundary, the average value of the width of the grain boundary α band, and The area ratio of non-flat β grains can be calculated.

(チタン合金:Mo当量2.7を超え15未満)
本発明に係るチタン合金鍛造材を形成するチタン合金は、α+β型チタン合金であれば適用することができるが、次式(1)で表されるMo当量[Mo]eqが2.7を超え15未満となる組成であることが好ましい。チタン合金は、Mo当量が大きくなるにしたがい、α相の体積含有率が減少して旧β粒界の形状の影響が強くなって、前記した旧β粒の扁平粒による破壊靱性および疲労強度の向上効果がいっそう得られる。チタン合金のMo当量は、より好ましくは3.5以上、さらに好ましくは4.5以上である。一方、チタン合金は、Mo当量[Mo]eqが大きくなるにしたがい、合金元素が偏析し易くなり、組織がばらつく虞があるため、15未満とすることが好ましい。チタン合金のMo当量は、より好ましくは12以下、さらに好ましくは10以下である。
[Mo]eq=[Mo]+[Ta]/5+[Nb]/3.6+[W]/2.5+[V]/1.5+1.25[Cr]+1.25[Ni]+1.7[Mn]+1.7[Co]+2.5[Fe] ・・・(1)
ただし、式(1)の[X]は、チタン合金における元素X(X:Mo,Ta,Nb,W,V,Cr,Ni,Mn,Co,Fe)の各含有量(質量%)とする。
(Titanium alloy: Mo equivalent 2.7 and less than 15)
The titanium alloy for forming the titanium alloy forging according to the present invention can be applied as long as it is an α + β type titanium alloy, but the Mo equivalent [Mo] eq represented by the following formula (1) exceeds 2.7. The composition is preferably less than 15. As the Mo equivalent increases, the volume content of the α phase decreases and the influence of the shape of the old β grain boundary increases, and the fracture toughness and fatigue strength due to the flat particles of the old β grain are increased. The improvement effect is further obtained. The Mo equivalent of the titanium alloy is more preferably 3.5 or more, and further preferably 4.5 or more. On the other hand, the titanium alloy is preferably less than 15 because the alloy element is easily segregated and the structure may vary as the Mo equivalent [Mo] eq increases. The Mo equivalent of the titanium alloy is more preferably 12 or less, and still more preferably 10 or less.
[Mo] eq = [Mo] + [Ta] / 5 + [Nb] /3.6+ [W] /2.5+ [V] /1.5+1.25 [Cr] +1.25 [Ni] +1.7 [ Mn] +1.7 [Co] +2.5 [Fe] (1)
However, [X] in the formula (1) is each content (mass%) of the element X (X: Mo, Ta, Nb, W, V, Cr, Ni, Mn, Co, Fe) in the titanium alloy. .

このようなチタン合金としては、具体的にはAMS4981,AMS4995で規定されるチタン合金が挙げられる。AMS4981で規定されるチタン合金(Ti−6Al−2Sn−4Zr−6Mo合金、Ti−6246合金)は、Al:5.50〜6.50質量%、Sn:1.75〜2.25質量%、Zr:3.50〜4.50質量%、Mo:5.50〜6.50質量%を含有し、残部はTiおよび不可避的不純物であり、各元素の平均値から計算されるMo当量は6.0である。前記不可避的不純物としては、概ね、N:0.04質量%、C:0.08質量%、H:0.015質量%、Fe:0.15質量%、O:0.15質量%を含有する。   Specific examples of such a titanium alloy include titanium alloys specified by AMS4981 and AMS4995. Titanium alloys (Ti-6Al-2Sn-4Zr-6Mo alloy, Ti-6246 alloy) specified by AMS4981 are Al: 5.50-6.50 mass%, Sn: 1.75-2.25 mass%, Zr: 3.50 to 4.50% by mass, Mo: 5.50 to 6.50% by mass, the balance being Ti and inevitable impurities, and the Mo equivalent calculated from the average value of each element is 6 .0. The inevitable impurities generally include N: 0.04 mass%, C: 0.08 mass%, H: 0.015 mass%, Fe: 0.15 mass%, and O: 0.15 mass%. To do.

AMS4995で規定されるチタン合金(Ti−5Al−2Sn−2Zr−4Cr−4Mo合金、Ti−17合金)は、Al:4.5〜5.5質量%、Sn:1.5〜2.5質量%、Zr:1.5〜2.5質量%、Cr:3.5〜4.5質量%、Mo:3.5〜4.5質量%、O:0.08〜0.12質量%であって、残部はTiおよび不可避的不純物であり、各元素の平均値から計算されるMo当量は9.5である。前記不可避的不純物としては、概ね、Fe:0.03質量%、C:0.05質量%、N:0.04質量%、H:0.0125質量%を含有する。   Titanium alloy (Ti-5Al-2Sn-2Zr-4Cr-4Mo alloy, Ti-17 alloy) specified by AMS4995 is Al: 4.5 to 5.5 mass%, Sn: 1.5 to 2.5 mass %, Zr: 1.5 to 2.5% by mass, Cr: 3.5 to 4.5% by mass, Mo: 3.5 to 4.5% by mass, O: 0.08 to 0.12% by mass The balance is Ti and inevitable impurities, and the Mo equivalent calculated from the average value of each element is 9.5. The inevitable impurities generally include Fe: 0.03% by mass, C: 0.05% by mass, N: 0.04% by mass, and H: 0.0125% by mass.

〔チタン合金鍛造材の製造方法〕
本発明に係るチタン合金鍛造材は、所望の組成のチタン合金からなるインゴットを公知の方法でビレットに鍛造し(ビレット鍛造工程と称する)、必要に応じて機械加工を行ってから、β鍛造を行って所望の製品形状に製造される。ビレット鍛造工程は、例えば、β鍛造→α+β鍛造→β熱処理→応力除去焼鈍→α+β鍛造→焼鈍の順序で行われる。α+β鍛造はβ変態点(適宜、Tβと表す)よりも10〜200℃程度低い温度域に、β鍛造はTβよりも10〜150℃程度高い温度域に、それぞれ加熱し、所定の鍛錬比(鍛伸方向に垂直な断面の、鍛造前に対する鍛造後の面積比、例えば1.5)の鍛造を行い、室温に冷却する。ビレット鍛造工程における鍛造をα+β鍛造とするかβ鍛造とするかは製品に要求される特性に応じて設定すればよく、鍛造の回数も所望するビレットの径等に応じて行えばよい。また2回の焼鈍はそれぞれ必要に応じて行えばよく、例えば2回目の焼鈍はその後の機械加工をし易くするために行われる。さらにチタン合金ビレットを機械加工することで、表面の酸化皮膜やシワやバリが除去され、表面粗度を整えることができ、その後の鍛造(チタン合金鍛造材の製造におけるβ鍛造)がし易くなる。そして、本発明に係るチタン合金鍛造材を製造するために、チタン合金ビレットを以下の方法でβ鍛造する。β鍛造前にチタン合金ビレットに対してα+β二相域にて荒地鍛造を行い、所望の形状に仕上げてもよい。なお、チタン合金鍛造材のβ鍛造前をチタン合金素材と称し、ここではチタン合金素材としてチタン合金ビレットを適用する。
[Production method of titanium alloy forging]
The titanium alloy forged material according to the present invention is formed by forging an ingot made of a titanium alloy having a desired composition into a billet by a known method (referred to as a billet forging step), performing machining as necessary, and then performing β forging. To produce the desired product shape. The billet forging step is performed, for example, in the order of β forging → α + β forging → β heat treatment → stress relief annealing → α + β forging → annealing. α + β forging is heated to a temperature range about 10 to 200 ° C. lower than the β transformation point (appropriately expressed as T β ), and β forging is heated to a temperature range about 10 to 150 ° C. higher than T β. Forging is performed at a ratio (area ratio after forging of the cross section perpendicular to the forging direction to before forging, for example, 1.5), and cooled to room temperature. Whether the forging in the billet forging process is α + β forging or β forging may be set according to the characteristics required for the product, and the number of forgings may be determined according to the desired billet diameter and the like. Further, the two annealings may be performed as necessary. For example, the second annealing is performed to facilitate subsequent machining. Furthermore, by machining the titanium alloy billet, the surface oxide film, wrinkles and burrs can be removed, the surface roughness can be adjusted, and subsequent forging (β forging in the production of titanium alloy forgings) is easy. . And in order to manufacture the titanium alloy forged material which concerns on this invention, a titanium alloy billet is beta forged by the following method. Prior to β forging, the titanium alloy billet may be subjected to rough ground forging in an α + β two-phase region and finished to a desired shape. Note that the titanium alloy forged material before β forging is referred to as a titanium alloy material, and here, a titanium alloy billet is applied as the titanium alloy material.

本発明に係るチタン合金鍛造材の製造方法は、チタン合金素材(チタン合金ビレット)を(Tβ+10℃)以上に加熱して、β結晶粒径(平均粒径)が300μm以上1000μm以下の範囲になるまで保持し、(Tβ−150℃)以上(Tβ+200℃)以下の温度域で、相当ひずみ0.45以上2.1以下となる条件で鍛造した後、(Tβ−150℃)よりも低い温度に冷却する。 In the method for producing a titanium alloy forging according to the present invention, a titanium alloy material (titanium alloy billet) is heated to (T β + 10 ° C.) or more, and the β crystal grain size (average grain size) is in the range of 300 μm to 1000 μm. And forging in a temperature range of (T β −150 ° C.) or more and (T β + 200 ° C.) or less with an equivalent strain of 0.45 or more and 2.1 or less, (T β -150 ° C. ) Cool to a lower temperature.

(鍛造前加熱温度:≧Tβ+10℃)
鍛造前加熱は、一般的なβ鍛造と同様に、鍛造前に、チタン合金ビレットをβ単相域まで加熱してβ相単相にするために行われる。β単相域とはβ変態点(Tβ)以上の温度域であり、Tβはチタン合金ビレットの全体(100%)がβ相となる最低温度で、当該チタン合金ビレット(チタン合金鍛造材)を形成するチタン合金の組成によって変化する。例えば、AMS4981で規定されるチタン合金(Ti−6246合金)のTβは960℃程度であり、AMS4995で規定されるチタン合金(Ti−17合金)のTβは890℃程度である。本発明においては、チタン合金ビレットを深部まで確実にβ相単相とし、また、(Tβ−150℃)以上の温度域で鍛造を完了させる。一方、チタン合金ビレットがβ単相域において高温になるにしたがい、β相の結晶粒の成長速度が速くなるため結晶粒径を制御し難くなり、また、(Tβ+250℃)を超えると、表面に厚い酸化スケールが形成され易く、鍛造後に除去する必要が生じるため、加熱温度は(Tβ+250℃)以下が好ましい。
(Heating temperature before forging: ≧ + 10 ° C.)
The heating before forging is performed in order to heat the titanium alloy billet to the β single-phase region to form the β-phase single phase before forging, as in general β forging. The β single-phase region is a temperature range equal to or higher than the β transformation point (T β ), and T β is the lowest temperature at which the entire titanium alloy billet (100%) becomes the β phase, and the titanium alloy billet (titanium alloy forged material) ) Varies depending on the composition of the titanium alloy forming. For example, the T beta titanium alloy as defined in AMS4981 (Ti-6246 alloy) is about 960 ° C., the T beta titanium alloy as defined in AMS4995 (Ti-17 alloy) is about 890 ° C.. In the present invention, the titanium alloy billet is surely made into a β-phase single phase to the deep part, and forging is completed in a temperature range of (T β −150 ° C.) or higher. On the other hand, as the titanium alloy billet becomes higher in the β single phase region, the growth rate of the β phase crystal grains becomes faster, so it becomes difficult to control the crystal grain size, and when it exceeds (T β + 250 ° C.), Since a thick oxide scale is easily formed on the surface and needs to be removed after forging, the heating temperature is preferably (T β + 250 ° C.) or less.

チタン合金ビレットを加熱してβ単相域に到達させた後、鍛造開始前に一定時間保持して、β結晶粒を適度な大きさ、具体的には径300μm以上1000μm以下の範囲に成長させる。保持時間は、チタン合金ビレットの保持温度によって異なるが、例えば1000℃で60〜480分間程度保持すればよい。なお、いったん所望のβ結晶粒組織が形成された後は、チタン合金ビレットの温度は、鍛造前にTβ+10℃未満に降下してもよいが、後記するように、鍛造完了まで(Tβ−150℃)以上の温度域で保持することができるように設定される。 After heating the titanium alloy billet to reach the β single phase region, the titanium alloy billet is held for a certain period of time before forging starts, and the β crystal grains are grown to an appropriate size, specifically, a diameter of 300 μm to 1000 μm. . The holding time varies depending on the holding temperature of the titanium alloy billet, but may be held, for example, at 1000 ° C. for about 60 to 480 minutes. Once the desired β crystal grain structure is formed, the temperature of the titanium alloy billet may be lowered to less than T β + 10 ° C. before forging. However, as described later, until the forging is completed (T β It is set so that it can be maintained in a temperature range of −150 ° C. or higher.

(鍛造温度(TF):Tβ−150℃≦TF≦Tβ+200℃)
加熱して一定時間保持したチタン合金ビレットを鍛造して、製品の形状とする。ここで、チタン合金ビレットは、Tβ未満の温度域になると、β結晶粒の粒界上に、さらには粒内にα相が析出し始め、(Tβ−150℃)未満の温度域になると、これらのα相の析出が顕著になる。鍛造中にこれらのα相が多く形成されると、破壊靭性が劣化する虞がある。したがって、チタン合金ビレットの鍛造の完了時における温度は(Tβ−150℃)以上とし、(Tβ−110℃)以上が好ましい。鍛造に使用される金型は、400℃以上に加熱されていることが好ましく、鍛造温度(チタン合金ビレットの温度)に加熱されていることがさらに好ましい。このように加熱された金型を使用することで、鍛造されるチタン合金ビレットの表面が内部に対して早期に冷却され過ぎることがなく、表面近傍も(Tβ−150℃)以上に保持して鍛造を完了することができる。一方、鍛造時の温度が過剰に高いと、鍛造完了後に(Tβ−150℃)未満に冷却されるまでに時間がかかることにより、新たなβ粒が成長したり旧β粒の粒界上にα相が太く(厚く)析出して、チタン合金鍛造材の疲労強度が低下する虞がある。したがって、鍛造温度(鍛造の開始から完了までの温度)は(Tβ+200℃)以下とする。なお、鍛造完了まで(Tβ−150℃)以上の温度域に保持されるのは、チタン合金鍛造材の製品部分でよく、鍛造後(冷却後)に除去される表層等の余肉(製品部分以外)における温度は特に規定されない。
(Forging temperature (T F ): T β −150 ° C. ≦ T F ≦ T β + 200 ° C.)
A titanium alloy billet that has been heated and held for a certain period of time is forged into a product shape. Here, the titanium alloy billet, at a temperature range below T beta, on the beta crystal grains of the grain boundaries, more start to precipitate the α phase in the grains, the temperature range of less than (T β -150 ℃) Then, precipitation of these α phases becomes remarkable. If many of these α phases are formed during forging, the fracture toughness may deteriorate. Therefore, the temperature at the completion of the forging of titanium alloy billet was set to (T β -150 ℃) or higher, preferably at least (T β -110 ℃). The mold used for forging is preferably heated to 400 ° C. or higher, and more preferably heated to a forging temperature (temperature of a titanium alloy billet). Such use a heated mold, without the surface of the titanium alloy billet to be forged too is cooled early against the inner surface near also held in (T β -150 ℃) or higher Forging can be completed. On the other hand, if the temperature of forging is excessively high, by take some time to be cooled to below after the forging finished (T β -150 ℃), and new beta grain growth or old beta grain grain boundary on the There is a possibility that the α phase is deposited thick (thick) and the fatigue strength of the titanium alloy forged material is lowered. Therefore, the forging temperature (the temperature from the start to the completion of forging) is set to (T β + 200 ° C.) or less. It should be noted that the product portion of the titanium alloy forged material may be maintained in a temperature range of not less than the completion of forging (T β -150 ° C.), and the surplus surface such as the surface layer to be removed after forging (after cooling) (product The temperature in other than the part is not particularly specified.

(相当ひずみ:0.45以上2.1以下)
鍛造は、一般的な仕上げ鍛造と同様の条件で行うことができる。ここで、鍛造によりチタン合金ビレットに加えるひずみが大きくなるにしたがい、β粒がより扁平に潰れて旧β粒のアスペクト比が大きくなる。相当ひずみが0.45未満では、旧β粒はアスペクト比が過小となって疲労強度の向上に寄与せず、さらに鍛造後の冷却で旧β粒の粒界に沿ってα相が連続して長く形成されるため、チタン合金鍛造材の疲労強度が劣化する。したがって、チタン合金素材に加えられる相当ひずみが0.45以上に、好ましくは0.5以上になるように鍛造する。反対に、相当ひずみが2.1を超えると、旧β粒が過剰に扁平に潰れてアスペクト比が過大になり、旧β粒界が鍛造方向に垂直な面に近くなって、超音波探傷検査においてノイズにより測定精度が低下する。したがって、チタン合金素材に加えられる相当ひずみが2.1以下になるように鍛造し、好ましくは2.0以下に、より好ましくは1.8以下に、さらに好ましくは1.7以下にする。なお、相当ひずみは有限要素法によって求めることができる。このような相当ひずみであって、旧β粒をアスペクト比が平均で2以上にするためには、平坦面を有する金型による円柱形状ビレットの鍛造を例にすると、圧下率33%以上80%以下の加工、あるいはそれに相当する加工を加えることが好ましい。また、チタン合金ビレットに対する金型の移動速度は、ひずみ速度が10-3〜10(1/s)とすることが好ましい。
(Equivalent strain: 0.45 to 2.1)
Forging can be performed under the same conditions as general finish forging. Here, as the strain applied to the titanium alloy billet by forging increases, the β grains are flattened more and the aspect ratio of the old β grains increases. When the equivalent strain is less than 0.45, the old β grains have an aspect ratio that is too low to contribute to the improvement of fatigue strength, and the α phase continues along the grain boundaries of the old β grains by cooling after forging. Since it is formed long, the fatigue strength of the titanium alloy forged material deteriorates. Therefore, forging is performed so that the equivalent strain applied to the titanium alloy material is 0.45 or more, preferably 0.5 or more. On the other hand, when the equivalent strain exceeds 2.1, the old β grain is excessively flattened and the aspect ratio becomes excessive, and the old β grain boundary becomes close to a plane perpendicular to the forging direction. In this case, measurement accuracy decreases due to noise. Therefore, the titanium alloy material is forged so that the equivalent strain applied to the titanium alloy material is 2.1 or less, preferably 2.0 or less, more preferably 1.8 or less, and even more preferably 1.7 or less. The equivalent strain can be obtained by the finite element method. In order to make the old β grains have an average aspect ratio of 2 or more with such an equivalent strain, for example, forging a cylindrical billet with a mold having a flat surface, the rolling reduction is 33% or more and 80% or more. It is preferable to add the following processing or processing corresponding thereto. Moreover, it is preferable that the moving speed of the mold with respect to the titanium alloy billet is 10 −3 to 10 (1 / s).

チタン合金ビレットを、鍛造完了後、(Tβ−150℃)よりも低い温度に冷却することで、β単相域外(α+β二相域)として新たなβ粒の成長を停止させ、かつ旧β粒の粒界上にα相が太く(厚く)析出することを抑制して、得られたチタン合金鍛造材の疲労強度の劣化を防止する。したがって、鍛造完了後はできるだけ時間を空けずに冷却を開始し、具体的には、鍛造完了時から300秒間以内に(Tβ−150℃)よりも低い温度に到達させることが好ましい。そのために、鍛造後の冷却速度は、10℃/min以上が好ましく、50℃/min以上がより好ましい。一方、冷却速度の上限は特に規定しないが、500℃/min以下が実用的であり、また粒内の針状α相を長くして破壊靭性を向上させるため、好ましい。冷却方法は、空冷、送風、水冷、湯冷、油冷等の公知の方法を適用すればよい。なお、(Tβ−150℃)よりも低い温度域における冷却速度は特に規定せず、その他の要求される特性に応じて設定すればよい。 The titanium alloy billet is cooled to a temperature lower than (T β −150 ° C.) after completion of forging, thereby stopping the growth of new β grains outside the β single phase region (α + β two phase region), and the old β Suppressing the precipitation (thickness) of the α phase on the grain boundaries of the grains is prevented, thereby preventing the fatigue strength of the obtained titanium alloy forging from deteriorating. Accordingly, after forging is completed starts cooling without leaving as much as possible time, specifically, it is preferable to reach a temperature lower than within 300 seconds from the time of the forging finished (T β -150 ℃). Therefore, the cooling rate after forging is preferably 10 ° C./min or more, and more preferably 50 ° C./min or more. On the other hand, the upper limit of the cooling rate is not particularly defined, but 500 ° C./min or less is practical, and is preferable because the acicular α phase in the grains is lengthened to improve fracture toughness. The cooling method may be a known method such as air cooling, air blowing, water cooling, hot water cooling, or oil cooling. The cooling rate in the temperature range lower than (T β -150 ℃) is not specifically defined, it may be set according to other required properties.

〔チタン合金鍛造部品の製造方法〕
得られたチタン合金鍛造材は、必要に応じて、公知の方法にて溶体化処理および時効処理にて調質熱処理を行い、さらに機械加工を行って酸化皮膜や余肉を除去し、以下の超音波探傷検査を実施されて、チタン合金鍛造部品となる。具体的には表面から1mm以上の厚さを除去し、表面粗度6.3S以上に平滑化してから、超音波探傷検査を行うことが好ましい。チタン合金鍛造部品は、その後、必要に応じて再度機械加工されてディスクやシャフトのようなエンジン部品等の製品となる。これらの処理は、公知の方法で行われることができる。
[Production method of titanium alloy forged parts]
The obtained titanium alloy forged material is subjected to tempering heat treatment by solution treatment and aging treatment by a known method, if necessary, and further machined to remove oxide film and surplus, Ultrasonic flaw inspection is carried out to produce a titanium alloy forged part. Specifically, it is preferable to perform ultrasonic flaw detection after removing a thickness of 1 mm or more from the surface and smoothing the surface to a surface roughness of 6.3S or more. The titanium alloy forged parts are then machined again as necessary to become products such as engine parts such as disks and shafts. These processes can be performed by a known method.

(超音波探傷検査方法)
本発明に係るチタン合金鍛造部品の製造方法における超音波探傷検査は、公知の方法で行うことができ、探触子はプローブ径が5〜30mmの範囲のものから選択し、超音波(送信波)は周波数1〜20MHzの範囲を使用することが好ましい。プローブ径は10mm以上、超音波の周波数は15MHz以下が好ましい。また、欠陥の検出分解能が高い水浸探傷法にて検査を行うことが好ましい。本発明に係るチタン合金鍛造材は、鍛造における圧下量の最も大きい方向、すなわち鍛造方向(図1参照)と平行な方向を含む方向に探傷する超音波探傷検査に供すことができる。鍛造における圧下量の最も大きい方向とは、鍛造の前後(チタン合金素材とチタン合金鍛造材)で、寸法の減少率が最大の方向であり、図1に示す鍛造方向である。鍛造方向は、鍛造後(チタン合金鍛造材)の組織における旧β粒の形状からも推定することができる。また、超音波探傷検査の方向とは、送信波の進行方向(チタン合金鍛造材の内部を透過させる方向)を指す。チタン合金鍛造材は鍛造圧下量の最も大きい方向が最もノイズが多い傾向があるが、本発明に係るチタン合金鍛造材は、かかる方向に探傷しても十分にノイズが少なく高精度な検査を行うことができる。また、チタン合金鍛造材は、探触子を走査するこの方向に垂直な表面の面積が広い場合が多いので、検査し易い。また、チタン合金鍛造材(チタン合金鍛造部品、製品)の形状に応じて、前記1方向での探傷、またはさらに方向を変化させて合計2回以上検査することが好ましい。さらに、チタン合金鍛造材の厚さ(送信波の進行方向長さ)によっては、逆方向から送信波を入射してもよい。
(Ultrasonic flaw detection method)
The ultrasonic flaw detection in the method for manufacturing a titanium alloy forged part according to the present invention can be performed by a known method, and the probe is selected from those having a probe diameter in the range of 5 to 30 mm, and ultrasonic waves (transmitted waves) are selected. ) Preferably uses a frequency range of 1 to 20 MHz. The probe diameter is preferably 10 mm or more, and the ultrasonic frequency is preferably 15 MHz or less. Moreover, it is preferable to perform inspection by a water immersion flaw detection method having high defect detection resolution. The titanium alloy forged material according to the present invention can be subjected to an ultrasonic flaw inspection in which flaw detection is performed in a direction including the direction parallel to the forging direction (see FIG. 1), that is, the direction in which the reduction amount in forging is the largest. The direction in which the amount of reduction in forging is the largest is before and after forging (titanium alloy material and titanium alloy forged material), and is the direction in which the dimensional reduction rate is maximum, and is the forging direction shown in FIG. The forging direction can also be estimated from the shape of the old β grains in the structure after forging (titanium alloy forged material). In addition, the direction of ultrasonic flaw detection refers to the traveling direction of the transmission wave (the direction in which the inside of the titanium alloy forged material is transmitted). Titanium alloy forgings tend to have the most noise in the direction with the largest forging reduction, but the titanium alloy forgings according to the present invention are sufficiently noise-free and perform high-accuracy inspection even if flaw detection is performed in these directions. be able to. In addition, titanium alloy forgings are easy to inspect because the surface area perpendicular to this direction of scanning the probe is often wide. Moreover, it is preferable to inspect for a total of two or more times by changing the flaw detection in the one direction or further changing the direction according to the shape of the titanium alloy forged material (titanium alloy forged part, product). Further, depending on the thickness of the titanium alloy forged material (the length in the traveling direction of the transmission wave), the transmission wave may be incident from the opposite direction.

以上、本発明を実施するための形態について述べてきたが、以下に、本発明の効果を確認した実施例を、本発明の要件を満たさない比較例と対比して具体的に説明する。なお、本発明はこの実施例によって制限を受けるものではなく、請求項に示した範囲で変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。   As mentioned above, although the form for implementing this invention has been described, the Example which confirmed the effect of this invention is demonstrated concretely compared with the comparative example which does not satisfy | fill the requirements of this invention below. It should be noted that the present invention is not limited by this embodiment, and can be implemented with modifications within the scope shown in the claims, all of which are included in the technical scope of the present invention.

〔試験体作製〕
チタン合金素材として、AMS4981で規定されるTi−6246合金(Tβ:960℃)からなるビレットを、α+β二相域で所定形状に鍛造して用いた。チタン合金素材の形状は、鍛造(β鍛造)後(チタン合金鍛造材)における鍛造方向厚さが45mmとなるように、鍛造時の圧下量(圧下率)に応じて決定した。
[Test specimen preparation]
As titanium alloy material, Ti-6246 alloy, which is defined by AMS4981: a billet consisting of (T β 960 ℃), was used after forging into a predetermined shape by alpha + beta two-phase region. The shape of the titanium alloy material was determined according to the reduction amount (reduction ratio) at the time of forging so that the forging direction thickness after forging (β forging) (titanium alloy forging material) was 45 mm.

(β鍛造)
チタン合金ビレットを、内部の温度分布が一定となるように、炉内にて930℃で2時間保持した後、1010℃に加熱してβ粒が平均粒径500〜600μmになるまで保持し、炉から出して表1に示す鍛造温度まで空冷させた後に、予め低周波加熱装置で鍛造温度に加熱した金型を用いて鍛造した。鍛造は、平坦な面形状の一対の金型を用い、金型移動速度1800mm/minで、変形方向(圧下方向)をビレット軸方向として表1に示す圧下率で行った(鍛造後の素材長さ45mm)。
(Β forging)
The titanium alloy billet is held in a furnace at 930 ° C. for 2 hours so that the internal temperature distribution is constant, and then heated to 1010 ° C. and held until the β grains have an average particle size of 500 to 600 μm, After being taken out of the furnace and air-cooled to the forging temperature shown in Table 1, forging was performed using a mold heated to the forging temperature in advance by a low frequency heating device. Forging was performed using a pair of flat surface-shaped molds, with a mold moving speed of 1800 mm / min, with the deformation direction (rolling direction) as the billet axis direction and the rolling reduction shown in Table 1 (the length of the material after forging) 45 mm).

チタン合金ビレットを鍛造完了後、直ちに(15秒間以内に)金型から取り出し、室温まで冷却して、チタン合金鍛造材を得た。このとき、試験体No.4は空冷、それ以外の試験体は水冷にて冷却した。なお、チタン合金ビレットは、加熱や保持、鍛造時に、1/2H,1/4D位置(H:鍛造材の厚み、D:鍛造材の直径)、すなわち鍛造材の厚み方向と半径方向のそれぞれの中間位置の温度を熱電対で測定して鍛造温度等を管理した。また、表1に記載の鍛造後の冷却速度は予備実験により測定した。すなわち、チタン合金鍛造材と同形状のチタン合金素材を用意し、その1/2H,1/4D位置に熱電対を挿入し、1050℃に加熱保持した後、空冷ならびに水冷を行い、冷却曲線を取得した。その後、900℃に到達した時から700℃に到達した時までの冷却速度が一定であるとして、冷却速度を算出した。   The titanium alloy billet was immediately removed (within 15 seconds) from the mold after forging, and cooled to room temperature to obtain a titanium alloy forged material. At this time, the specimen No. 4 was cooled by air, and the other specimens were cooled by water. In addition, a titanium alloy billet is 1 / 2H, 1 / 4D position (H: thickness of a forging material, D: diameter of a forging material) at the time of heating, holding, and forging, that is, the thickness direction and the radial direction of the forging material, respectively. The forging temperature was controlled by measuring the temperature at the intermediate position with a thermocouple. Moreover, the cooling rate after forging described in Table 1 was measured by a preliminary experiment. That is, prepare a titanium alloy material having the same shape as the titanium alloy forging, insert a thermocouple at the 1 / 2H, 1 / 4D position, heat and hold at 1050 ° C., perform air cooling and water cooling, and set the cooling curve I got it. Thereafter, the cooling rate was calculated assuming that the cooling rate from when it reached 900 ° C. to when it reached 700 ° C. was constant.

(調質)
室温に冷却したチタン合金鍛造材を、Tβ未満(α+β二相域)の935℃に加熱して2時間保持して30℃/minで冷却する溶体化処理の後、595℃で8時間保持して35℃/minで室温まで冷却する時効処理を行い、試験体とした。
(refining)
Titanium alloy forging cooling to room temperature, after solution treatment cooling with T beta less than (alpha + beta two-phase region) of was heated to 935 ° C. and held for 2 hours 30 ° C. / min, 8 h holding at 595 ° C. Then, an aging treatment for cooling to room temperature at 35 ° C./min was performed to obtain a test specimen.

〔材料組織の観察〕
(旧β粒のアスペクト比および径、旧β粒界の角度、非扁平β粒の面積率)
試験体における1/2H,1/4D位置を含む15mm角の立方体の小片試料を試験体から切り出した。そして、旧β粒界の観察を容易にするために、Tβ未満(α+β二相域)の900℃に加熱して、30分間保持後に空冷する熱処理を行った。このように、α+β二相域での熱処理により、β粒の再結晶や粒成長は起こらず旧β粒の形状は維持しつつ、旧β粒内の針状α相の面積率を低下させるため、旧β粒界の観察が容易となる。前記熱処理を施した小片から、試験体の鍛造方向と半径方向とに平行な面な断面を切り出し、前記断面に対して、エメリー紙で機械研磨を行い、ダイヤモンド砥粒による仕上げ研磨の後、フッ硝酸溶液で腐食を行い、組織観察に供した。組織観察は光学顕微鏡にて行い、倍率100倍で3200μm×2000μmの視野をパノラマ状に観察した。旧β粒について、鍛造方向(軸方向)の径とアスペクト比を求め、視野における旧β粒のすべてについて平均値を算出し、また、アスペクト比および径に基づき非扁平β粒を検出して、その視野における面積率を求めた。また、鍛造方向に平行な直線を300μm間隔で引き、直線と交差する旧β粒の粒界について、交点での接線と前記直線との角度(≦90°)を測定し、すべての交点での角度の平均値を算出した。これらの値を表1に示す。
[Observation of material structure]
(Aspect ratio and diameter of old β grains, angle of old β grain boundaries, area ratio of non-flat β grains)
A 15 mm square cube small sample including 1 / 2H and 1 / 4D positions in the test specimen was cut out from the test specimen. And in order to make observation of an old beta grain boundary easy, the heat processing which heats to 900 degrees C less than T beta (alpha + beta two phase area), air-cools after holding for 30 minutes was performed. In this way, heat treatment in the α + β two-phase region reduces the area ratio of the acicular α phase in the old β grains while maintaining the shape of the old β grains without causing recrystallization or grain growth of β grains. This makes it easy to observe the old β grain boundary. A cross section parallel to the forging direction and the radial direction of the specimen is cut out from the heat-treated small piece, and the cross section is mechanically polished with emery paper. Corrosion was performed with a nitric acid solution, and the structure was observed. Tissue observation was performed with an optical microscope, and a field of view of 3200 μm × 2000 μm was observed in a panoramic manner at a magnification of 100 times. For the old β grains, find the diameter and aspect ratio in the forging direction (axial direction), calculate the average value for all the old β grains in the field of view, and detect non-flat β grains based on the aspect ratio and diameter, The area ratio in the visual field was obtained. In addition, straight lines parallel to the forging direction are drawn at 300 μm intervals, and the angle between the tangent at the intersection and the straight line (≦ 90 °) is measured for the grain boundary of the old β grain intersecting the straight line. The average value of angles was calculated. These values are shown in Table 1.

(旧β粒界上のα相の長さ、粒界α帯の幅)
試験体における1/2H,1/4D位置を含む15mm角の立方体の小片試料を試験体から切り出し、試験体の鍛造方向と半径方向とに平行な面な断面について、走査型電子顕微鏡(SEM)にて倍率2000倍で65μm×60μmの視野を10視野観察した。旧β粒の粒界上に形成されたα相の、粒界方向の長さlα(図1参照)を測定し、平均値を算出した。また、粒界の両側において、等軸状(アスペクト比2以下)のα相が形成されている帯域(粒界α帯)の幅wα(図2参照)を測定し、平均値を算出した。等軸状のα相が観察されなかった試験体については、粒界上に形成されたα相の膜厚tα(図1参照)を測定した。これらの値を表1に示す。
(Length of α phase on old β grain boundary, width of grain boundary α band)
A 15 mm square cubic small sample including 1 / 2H and 1 / 4D positions in the test specimen was cut out of the test specimen, and a cross section parallel to the forging direction and the radial direction of the test specimen was scanned using a scanning electron microscope (SEM). Ten fields of view of 65 μm × 60 μm were observed at 2000 magnification. The length l α (see FIG. 1) in the grain boundary direction of the α phase formed on the grain boundaries of the old β grains was measured, and the average value was calculated. In addition, the width w α (see FIG. 2) of a zone (grain boundary α-band) in which an equiaxed (aspect ratio of 2 or less) α phase is formed on both sides of the grain boundary was measured, and an average value was calculated. . For specimens in which no equiaxed α phase was observed, the film thickness t α (see FIG. 1) of the α phase formed on the grain boundaries was measured. These values are shown in Table 1.

〔評価〕
(超音波探傷性)
試験体から45mm角の立方体の試験片を切り出し、水浸探傷法にて超音波探傷検査を行った。プローブ径19.05mm、焦点距離152.4mmの探触子を使用し、周波数5MHzの超音波を送信波とし、水距離(探触子から試験片表面までの距離)は160mmとした。標準化試験片を用いて直径0.62mmの平底穴からの反射強度が80%となるように感度調整を行った後、試験片表面(鍛造方向に垂直な面)における中央の40mm×40mmを検査領域として、探触子を移動走査させながら、鍛造方向(試験体の軸方向)に平行な方向に超音波探傷試験を行って、Cスコープを取得した。
[Evaluation]
(Ultrasonic flaw detection)
A 45 mm square cubic test piece was cut out from the test specimen and subjected to ultrasonic flaw detection by the water immersion flaw detection method. A probe having a probe diameter of 19.05 mm and a focal length of 152.4 mm was used, an ultrasonic wave having a frequency of 5 MHz was used as a transmission wave, and a water distance (distance from the probe to the surface of the test piece) was 160 mm. After adjusting the sensitivity so that the reflection intensity from a flat bottom hole with a diameter of 0.62 mm is 80% using a standardized test piece, the center 40 mm × 40 mm on the test piece surface (surface perpendicular to the forging direction) is inspected. As a region, an ultrasonic flaw detection test was performed in a direction parallel to the forging direction (axial direction of the specimen) while moving and scanning the probe, and a C scope was obtained.

なお、Cスコープとは、水距離を一定として被検査体の表面に沿って探触子を移動走査させ、探触子が検出した探傷深さ範囲における最大ノイズ強度値を表面走査点毎に抽出し、二次元表示した探傷結果である。各試験片において移動走査させた探触子が検出した最大ノイズを表1に示し、50%以下を合格とする。   The C scope moves the probe along the surface of the object to be inspected at a constant water distance, and extracts the maximum noise intensity value in the flaw detection depth range detected by the probe for each surface scanning point. The flaw detection results are displayed two-dimensionally. The maximum noise detected by the probe moved and scanned in each test piece is shown in Table 1, and 50% or less is acceptable.

(機械的特性)
チタン合金鍛造材の機械的特性の評価として、疲労強度の評価および破壊靭性値評価(KIC)を実施した。試験体の1/2H,1/4D位置から、試験体の周(接線)方向が荷重軸と平行になる試験片を切り出し、それぞれの評価用として別々に用意した。
(Mechanical properties)
Fatigue strength evaluation and fracture toughness value evaluation (K IC ) were performed as evaluation of the mechanical properties of the titanium alloy forging. A test piece in which the circumferential (tangential) direction of the test specimen was parallel to the load axis was cut out from the 1 / 2H and 1 / 4D positions of the test specimen and prepared separately for each evaluation.

室温にて、ASTM規格のE466に準拠した低サイクル疲労試験を、荷重制御で、最大荷重1000MPa、応力比0、台形波の条件で、試験片が破断するまで行った。破断サイクル数について、試験体No.8を基準(1)として規格化した値を算出し(試験体No.8の破断サイクル数で除する)、表1に示す。0.5以上を疲労強度合格とする。   A low cycle fatigue test in accordance with ASTM standard E466 was performed at room temperature under load control under conditions of a maximum load of 1000 MPa, a stress ratio of 0, and a trapezoidal wave until the test piece broke. Regarding the number of fracture cycles, the test specimen No. Values normalized with 8 as a reference (1) are calculated (divided by the number of fracture cycles of specimen No. 8), and are shown in Table 1. A fatigue strength of 0.5 or more is considered acceptable.

室温にて、ASTM規格のE399に準拠した破壊靱性試験を実施し、KICを求め、表1に示す。 A fracture toughness test in accordance with ASTM standard E399 was conducted at room temperature to obtain K IC, which is shown in Table 1.

表1に示すように、試験体No.8は、通常のβ鍛造として、β単相域で十分なひずみを加えて鍛造したために、本発明の範囲を超えて扁平度合い(アスペクト比)の大きな旧β粒の組織となった。その結果、試験体No.8は、疲労強度は高いが、一方で旧β粒の粒界が鍛造方向と垂直に近いために、超音波探傷検査におけるノイズの低減効果が得られなかった。   As shown in Table 1, the test specimen No. Since No. 8 was forged by applying sufficient strain in the β single phase region as normal β forging, it became an old β grain structure with a large flatness (aspect ratio) exceeding the range of the present invention. As a result, the test specimen No. No. 8 had high fatigue strength, but on the other hand, the grain boundary of the old β grains was nearly perpendicular to the forging direction, and therefore no noise reduction effect was obtained in ultrasonic flaw detection.

これに対して、試験体No.1〜5は、本発明に係る製造方法、すなわち鍛造前にβ結晶を所定の範囲の粒径に抑制して成長させ、β単相域で所定範囲のひずみを加えるように鍛造し、直ちに冷却したことにより、旧β粒の粒界上には所定長さのα相が、粒内には針状のα相のみが、それぞれ形成され、さらに旧β粒が適度に扁平に潰れて、旧β粒のアスペクト比および粒界の角度の平均が本発明に係るチタン合金鍛造材の範囲を満足する実施例となった。その結果、試験体No.1〜4は試験体No.8と比較して疲労強度が低いものの、航空機のエンジン部品等として必要な機械的特性を保持し、また、本発明の範囲内で旧β粒のアスペクト比を大きくした試験体No.5は試験体No.8と同等の機械的特性を示し、さらにいずれも優れた超音波探傷性を示した。   In contrast, the test specimen No. Nos. 1 to 5 are production methods according to the present invention, that is, before the forging, the β crystal is controlled to grow within a predetermined grain size, forged so as to apply a predetermined range of strain in the β single phase region, and immediately cooled. As a result, an α phase having a predetermined length is formed on the grain boundaries of the old β grains, and only an acicular α phase is formed in the grains, and the old β grains are appropriately flattened flatly. The average of the β grain aspect ratio and the grain boundary angle became an example satisfying the range of the titanium alloy forging according to the present invention. As a result, the test specimen No. 1 to 4 are specimen Nos. Although the fatigue strength is lower than that of the specimen No. 8, the test specimen No. 1 retains the mechanical properties necessary for aircraft engine parts and the like, and has an increased aspect ratio of the old β grains within the scope of the present invention. No. 5 is a specimen No. 8 exhibited mechanical properties equivalent to those of No. 8, and all exhibited excellent ultrasonic flaw detection properties.

試験体No.6は、組織すなわち旧β粒や旧β粒界上のα相について本発明に係るチタン合金鍛造材の範囲を満足する実施例であるため、疲労強度および超音波探傷性は良好であった。ただし、試験体No.6は、鍛造温度が低く、鍛造時にα相が析出していたために、旧β粒内の針状のα相が分断されて、旧β粒界周辺の広い範囲に等軸状のα相が形成され、その結果、破壊靭性値が劣化して、他の実施例(試験体No.1〜5)よりも低い50MPa√m未満となった。   Specimen No. Since No. 6 is an example that satisfies the range of the titanium alloy forged material according to the present invention with respect to the structure, that is, the α phase on the old β grains and the old β grain boundaries, the fatigue strength and the ultrasonic flaw detection property were good. However, specimen No. No. 6, because the forging temperature was low and the α phase was precipitated during forging, the acicular α phase in the old β grain was divided, and an equiaxed α phase was formed in a wide area around the old β grain boundary. As a result, the fracture toughness value deteriorated and became less than 50 MPa√m, which is lower than the other examples (test bodies No. 1 to 5).

一方、試験体No.7は、鍛造時のひずみが不足したために、旧β粒が十分に潰れずにアスペクト比が過小となり、その結果、低ノイズであるが疲労強度が低下した。   On the other hand, the specimen No. In No. 7, since the strain during forging was insufficient, the old β grains were not sufficiently crushed and the aspect ratio was too low. As a result, although the noise was low, the fatigue strength was reduced.

Claims (6)

平坦面を有する形状のチタン合金鍛造材であって、
針状のα相組織を有し、アスペクト比が平均で2以上10以下である旧β粒の多結晶構造からなり
前記旧β粒は、前記平坦面の法線方向における径が平均で60μm以上700μm以下であり、
前記平坦面の法線方向に平行な断面において、前記旧β粒の粒界は、前記平坦面の法線方向に平行な線となす角の平均値が80°以下であり、
前記旧β粒の粒界上に形成されたα相は、前記粒界方向における長さが平均で15μm以下であり、
アスペクト比が3未満、かつ前記平坦面の法線方向における径が30μm以上200μm以下である旧β粒が、前記平坦面の法線方向に平行な断面における面積率で1%以上存在しないことを特徴とするチタン合金鍛造材。
A forged titanium alloy material having a flat surface ,
Has a needle-like α-phase structure, it aspect ratio from the old β grains of the polycrystalline structure is 2 to 10 on average,
The old β grains have an average diameter in the normal direction of the flat surface of 60 μm or more and 700 μm or less,
In the cross section parallel to the normal direction of the flat surface, the grain boundary of the old β grains has an average angle of 80 ° or less with the line parallel to the normal direction of the flat surface ,
The α phase formed on the grain boundaries of the old β grains has an average length in the grain boundary direction of 15 μm or less,
The old β grains having an aspect ratio of less than 3 and a diameter in the normal direction of the flat surface of 30 μm or more and 200 μm or less do not exist in an area ratio of 1% or more in a cross section parallel to the normal direction of the flat surface. A featured titanium alloy forging.
前記旧β粒の粒界上に形成されたα相および当該粒界に沿って形成されたα相が存在する領域である粒界α帯の幅が平均で10μm以下であることを特徴とする請求項1に記載のチタン合金鍛造材。 The width of the grain boundary α band, which is the region where the α phase formed on the grain boundary of the old β grain and the α phase formed along the grain boundary exists, is 10 μm or less on average. The titanium alloy forging material according to claim 1 . 次式(1)で表されるMo当量[Mo]eqが2.7を超え15未満であるチタン合金からなることを特徴とする請求項1または請求項に記載のチタン合金鍛造材。
[Mo]eq=[Mo]+[Ta]/5+[Nb]/3.6+[W]/2.5+[V]/1.5+1.25[Cr]+1.25[Ni]+1.7[Mn]+1.7[Co]+2.5[Fe] ・・・(1)
ただし、前記式(1)の[X]は、前記チタン合金における元素Xの含有量(質量%)とする。
The titanium alloy forging material according to claim 1 or 2 , comprising a titanium alloy having a Mo equivalent [Mo] eq represented by the following formula (1) of more than 2.7 and less than 15.
[Mo] eq = [Mo] + [Ta] / 5 + [Nb] /3.6+ [W] /2.5+ [V] /1.5+1.25 [Cr] +1.25 [Ni] +1.7 [ Mn] +1.7 [Co] +2.5 [Fe] (1)
However, [X] in the formula (1) is the content (mass%) of the element X in the titanium alloy.
β鍛造を行って請求項1ないし請求項3のいずれか一項に記載のチタン合金鍛造材を製造する製造方法であって、
前記β鍛造は、β変態点をTβで表したとき、(Tβ+10℃)以上に加熱して、β結晶粒径が300μm以上1000μm以下の範囲になるまで保持し、(Tβ−150℃)以上(Tβ+200℃)以下の温度域で、相当ひずみ0.45以上2.1以下となる条件で一方向に鍛造した後、(Tβ−150℃)よりも低い温度に冷却することを特徴とするチタン合金鍛造材の製造方法。
A production method for producing a titanium alloy forged material according to any one of claims 1 to 3 by performing β-forging,
In the β forging, when the β transformation point is expressed by T β , the β forging is heated to (T β + 10 ° C.) or more and held until the β crystal grain size is in the range of 300 μm to 1000 μm, and (T β −150 ° C.) or higher (T β + 200 ℃) at a temperature range, after forging in one direction under the condition that the equivalent strain of 0.45 or more 2.1 or less, is cooled to a temperature lower than (T β -150 ℃) A method for producing a forged titanium alloy material.
請求項に記載のチタン合金鍛造材の製造方法によりチタン合金鍛造材を製造する工程と、
前記チタン合金鍛造材に、前記鍛造における圧下量の最も大きい方向に平行な方向に超音波を照射して探傷する工程と、を行うことを特徴とするチタン合金鍛造部品の製造方法。
Producing a titanium alloy forged material by the method for producing a titanium alloy forged material according to claim 4 ;
Performing a flaw detection process by irradiating the titanium alloy forged material with ultrasonic waves in a direction parallel to a direction in which the amount of reduction in the forging is the largest.
請求項に記載のチタン合金鍛造部品の製造方法により、航空機のエンジンに使用される部品を製造することを特徴とするチタン合金鍛造部品の製造方法。 A method for producing a titanium alloy forged part, comprising producing a part for use in an aircraft engine by the method for producing a titanium alloy forged part according to claim 5 .
JP2012199970A 2012-09-11 2012-09-11 Titanium alloy forged material, method for producing the same, and method for producing titanium alloy forged parts Expired - Fee Related JP5952689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012199970A JP5952689B2 (en) 2012-09-11 2012-09-11 Titanium alloy forged material, method for producing the same, and method for producing titanium alloy forged parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012199970A JP5952689B2 (en) 2012-09-11 2012-09-11 Titanium alloy forged material, method for producing the same, and method for producing titanium alloy forged parts

Publications (2)

Publication Number Publication Date
JP2014055318A JP2014055318A (en) 2014-03-27
JP5952689B2 true JP5952689B2 (en) 2016-07-13

Family

ID=50612893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012199970A Expired - Fee Related JP5952689B2 (en) 2012-09-11 2012-09-11 Titanium alloy forged material, method for producing the same, and method for producing titanium alloy forged parts

Country Status (1)

Country Link
JP (1) JP5952689B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016000848A (en) * 2014-06-11 2016-01-07 株式会社神戸製鋼所 Titanium alloy forged material
JP6236361B2 (en) * 2014-06-26 2017-11-22 株式会社神戸製鋼所 Titanium alloy intermediate forging material, titanium alloy intermediate forging material shape determination method, and titanium alloy β forging material manufacturing method
JP6454768B2 (en) * 2017-10-10 2019-01-16 株式会社神戸製鋼所 Titanium alloy β-forged material and ultrasonic inspection method
CN114273581B (en) * 2021-12-26 2023-06-23 贵州安大航空锻造有限责任公司 Multidirectional forging forming method for titanium alloy complex die forging

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04103747A (en) * 1990-08-23 1992-04-06 Daido Steel Co Ltd Manufacture of ti alloy
FR2676460B1 (en) * 1991-05-14 1993-07-23 Cezus Co Europ Zirconium PROCESS FOR THE MANUFACTURE OF A TITANIUM ALLOY PIECE INCLUDING A MODIFIED HOT CORROYING AND A PIECE OBTAINED.
JPH08269656A (en) * 1995-03-30 1996-10-15 Sumitomo Metal Ind Ltd Production of titanium alloy
JP2001288518A (en) * 2000-03-31 2001-10-19 Kobe Steel Ltd High strength and high toughness titanium alloy member and its producing method
JP4209092B2 (en) * 2001-05-28 2009-01-14 三菱重工業株式会社 TiAl-based alloy, method for producing the same, and moving blade using the same
JP5291914B2 (en) * 2007-10-16 2013-09-18 株式会社ハイレックスコーポレーション Titanium fiber and its production method
US20090159162A1 (en) * 2007-12-19 2009-06-25 Arturo Acosta Methods for improving mechanical properties of a beta processed titanium alloy article

Also Published As

Publication number Publication date
JP2014055318A (en) 2014-03-27

Similar Documents

Publication Publication Date Title
JP6088280B2 (en) Titanium alloy forged material, manufacturing method thereof, and ultrasonic flaw detection inspection method
JP6084553B2 (en) Titanium alloy forged material and method for producing the same
Shrivastava et al. Microstructure and texture based analysis of forming behavior and deformation mechanism of AA1050 sheet during Single Point Incremental Forming
JP6022341B2 (en) Titanium alloy billet, method for producing titanium alloy billet, titanium alloy forged material, method for producing titanium alloy forged material, and method for producing aircraft parts
JP5952689B2 (en) Titanium alloy forged material, method for producing the same, and method for producing titanium alloy forged parts
JP6236361B2 (en) Titanium alloy intermediate forging material, titanium alloy intermediate forging material shape determination method, and titanium alloy β forging material manufacturing method
CN111032895B (en) Titanium alloy member
JP6454768B2 (en) Titanium alloy β-forged material and ultrasonic inspection method
WO2014196042A1 (en) Forged titanium alloy material and method for producing same, and ultrasonic testing method
JP6570774B2 (en) Watch parts
JP5827165B2 (en) Titanium alloy forging, its manufacturing method, and its ultrasonic flaw detection inspection method
CN107904442B (en) A kind of processing method of fine grain pure titanium rod material
WO2018030231A1 (en) Method for producing pure titanium metal material thin sheet and method for producing speaker diaphragm
JP2017190480A (en) Titanium sheet
Vrátná et al. Investigation of microhardness and microstructure of AZ31 alloy after high pressure torsion
KR102559606B1 (en) aluminum alloy plate
Ratochka et al. The influence of structure and phase composition of titanium alloy on superplastic deformation
KR102582659B1 (en) Commercially pure titanium sheet having high room temperature formability and high strength and method for manufacturing the same
JP7495645B2 (en) Titanium Plate
WO2022249665A1 (en) Aluminum alloy, aluminum alloy wire, and method for manufacturing aluminum alloy wire
Zhang et al. Investigation on the Size Effect in Large-Scale Beta-Processed Ti-17 Disks Based on Quantitative Metallography
TW202338111A (en) Titanium alloy plate
OZDEN et al. Heat-assisted single point incremental forming of Mg-Zn-Zr alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160119

TRDD Decision of grant or rejection written
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160610

R150 Certificate of patent or registration of utility model

Ref document number: 5952689

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees