JP2001288518A - High strength and high toughness titanium alloy member and its producing method - Google Patents

High strength and high toughness titanium alloy member and its producing method

Info

Publication number
JP2001288518A
JP2001288518A JP2000098619A JP2000098619A JP2001288518A JP 2001288518 A JP2001288518 A JP 2001288518A JP 2000098619 A JP2000098619 A JP 2000098619A JP 2000098619 A JP2000098619 A JP 2000098619A JP 2001288518 A JP2001288518 A JP 2001288518A
Authority
JP
Japan
Prior art keywords
titanium alloy
strength
phase
alloy member
equivalent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000098619A
Other languages
Japanese (ja)
Inventor
Yoshiomi Okazaki
喜臣 岡崎
Hitoshi Hatano
等 畑野
Hideto Oyama
英人 大山
Shinya Ishisoto
伸也 石外
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000098619A priority Critical patent/JP2001288518A/en
Publication of JP2001288518A publication Critical patent/JP2001288518A/en
Pending legal-status Critical Current

Links

Landscapes

  • Golf Clubs (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high strength and high toughness titanium alloy member having good strength characteristics and fracture toughness. SOLUTION: In this high strength and high toughness titanium alloy member, comprising an α+β type titanium alloy in which the Mo equivalent obtained by the following formula, Mo equivalent = Mo%+1/5Ta%+1/3.6Nb%+1/1.5V %+1.25Cr%+1.25Ni%+1.7Mn%+1.7Co%+2.5Fe% (% denotes mass %) satisfies 6.0 to 12.0, the volume fractional ratio of the intergranular α structure formed on the old β grain boundary is <=5.0%, also, the size of the minor axis in the acicular α phase formed in the old β grains is >=0.75 μm, and the aspect ratio is >=7.0.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば航空機のジ
ェットエンジン部材やゴルフクラブヘッド用素材などに
使用して有用な高強度、高靱性チタン合金部材およびそ
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength, high-toughness titanium alloy member useful for, for example, a jet engine member of an aircraft or a material for a golf club head, and a method for producing the same.

【0002】[0002]

【従来の技術】ジェットエンジンのコンプレッサーディ
スクなどに使用される素材は、その使用環境の厳しさか
ら高度な機械的性質が要求され、強度ばかりでなく、亀
裂の進展に対する抵抗、すなわち破壊靱性値が高いこと
が望まれる。これに対し、チタン合金は比強度が高いこ
とから近年使用が拡大しており、チタン合金の中でも、
強度・靱性のバランスに優れ加工熱処理によって所望の
特性に制御できるα+β型チタン合金を使用するのが主
流となりつつある。
2. Description of the Related Art Materials used for compressor disks of jet engines and the like are required to have high mechanical properties due to the severe use environment, and not only strength but also resistance to crack propagation, that is, fracture toughness value. High is desired. In contrast, the use of titanium alloys has been expanding in recent years due to its high specific strength, and among titanium alloys,
It is becoming mainstream to use α + β type titanium alloys which have an excellent balance between strength and toughness and can be controlled to desired properties by thermomechanical treatment.

【0003】また、上記α+β型チタン合金について、
強度−靱性バランスを向上させる方法として、βプロセ
スと呼ばれる方法があり、強度・靱性バランスに優れた
チタン合金部材の製造方法として認識されつつある。β
プロセスとはα+β型チタン合金をβ変態点以上の温度
に加熱し、その後α相が析出する前に熱間加工を施すこ
とによって旧β結晶粒内に析出サイトを導入し、その後
の冷却過程のα相析出時に旧β粒界への優先析出を抑制
し粒内から針状α相を形成させ、続く溶体化処理におい
て針状組織を発達させ、さらに続く時効処理において針
状αのラス間に微細な析出αを生成することによって完
成される。
Further, regarding the above α + β type titanium alloy,
As a method of improving the strength-toughness balance, there is a method called a β process, which is being recognized as a method of manufacturing a titanium alloy member having an excellent strength-toughness balance. β
The process is to heat the α + β type titanium alloy to a temperature above the β transformation point, and then perform hot working before the α phase precipitates to introduce precipitation sites into the old β crystal grains, Prevents preferential precipitation at the old β grain boundary during α phase precipitation, forms acicular α phase from within the grains, develops acicular structure in subsequent solution treatment, and further develops between acicular α laths in subsequent aging treatment It is completed by producing fine precipitation α.

【0004】しかしながら、旧β粒界に優先的かつ連続
的に析出する粒界α相を完全に抑制し、旧β粒内に針状
α相を成長させることは根本的に相反することであり、
組織制御が困難であった。
[0004] However, completely suppressing the grain boundary α phase preferentially and continuously precipitated at the old β grain boundary and growing the acicular α phase in the old β grain is fundamentally contradictory. ,
Tissue control was difficult.

【0005】このような点に関してこれまでに種々の製
造方法が提案されている。例えば、特開平8−2696
56号公報によれば、βトランザスより30℃高いβ単
相域で仕上鍛造を行った後に急冷することにより、加工
方向に垂直な方向のβ粒界へのα相の連続析出を抑制
し、仕上加工率によらず破壊靱性を向上させる手法が提
案されている。
[0005] In this regard, various production methods have been proposed. For example, JP-A-8-2696
According to No. 56, by performing rapid cooling after performing a finish forging in a β single phase region higher by 30 ° C. than β Transus, it is possible to suppress continuous precipitation of an α phase at a β grain boundary in a direction perpendicular to a processing direction, A method for improving fracture toughness regardless of the finishing ratio has been proposed.

【0006】ところで前述したようにチタン合金は強化
のために加工後に後処理として溶体化処理および時効処
理を行うのが通例である。本発明者等が検討したとこ
ろ、前述の手法によれば、鍛造まま部材では、旧β粒界
へのα相の析出は抑制できても、その後の溶体化処理時
に旧β粒界にα相が生成および成長するため最終的に粒
界に連続的にα相が析出する結果になり、強度特性、特
に強度、伸びが劣化することが判明した。
[0006] As described above, the titanium alloy is generally subjected to a solution treatment and an aging treatment as a post-treatment after the working for strengthening. The present inventors have studied and found that, according to the above-described method, in the as-forged member, even though the precipitation of the α phase at the old β grain boundary can be suppressed, the α phase remains at the old β grain boundary during the subsequent solution treatment. Is generated and grown, and as a result, an α phase is continuously precipitated at the grain boundary, and it has been found that the strength characteristics, particularly the strength and the elongation, are deteriorated.

【0007】さらに加工後の冷却速度が増加すると、旧
β粒内に形成される針状α相のラスが微細になるため、
破壊靱性の劣化をもたらすことになった。
[0007] When the cooling rate after processing is further increased, the lath of the acicular α phase formed in the old β grains becomes finer.
This resulted in degradation of fracture toughness.

【0008】このように依然として、βプロセスによっ
ても良好な強度特性・破壊靱性を部材に付与する点にお
いては困難な点が存在しており、改善の要求には強いも
のがあった。
[0008] As described above, there are still difficult points in imparting good strength properties and fracture toughness to members even by the β process, and there has been a strong demand for improvement.

【0009】[0009]

【発明が解決しようとする課題】本発明は、以上のよう
な問題点に着目してなされたものであって、その目的は
良好な強度特性・破壊靱性を有する高強度、高靱性チタ
ン合金部材と、それを確実に製造できる方法を提供する
ものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to provide a high-strength, high-toughness titanium alloy member having good strength characteristics and fracture toughness. And a method for reliably manufacturing the same.

【0010】[0010]

【課題を解決するための手段】上記の課題を解決するた
め、本発明(請求項1)に係る高強度、高靱性チタン合
金部材は、下記Mo当量式により求められるMo当量が
6.0〜12.0を満たすα+β型チタン合金からな
り、旧β粒界に形成される粒界α組織が体積分率にして
5.0%以下であり、かつ、旧β粒内に形成される針状
α相の短軸径が0.75μm以上で、かつアスペクト比
が7.0以上とするもので、強度特性並びに破壊靱性に
優れるものである。ただし、Mo当量=Mo%+1/5
Ta%+1/3.6Nb%+1/1.5V%+1.25
Cr%+1.25Ni%+1.7Mn%+1.7Co%
+2.5Fe%(%は質量%を表わす)
In order to solve the above-mentioned problems, a high-strength, high-toughness titanium alloy member according to the present invention (claim 1) has a Mo equivalent obtained by the following Mo equivalent formula of 6.0 to 6.0. An α + β type titanium alloy that satisfies 12.0, the grain boundary α structure formed in the old β grain boundary is 5.0% or less in volume fraction, and the needle-like shape formed in the old β grain The α-phase has a minor axis diameter of 0.75 μm or more and an aspect ratio of 7.0 or more, and has excellent strength properties and fracture toughness. However, Mo equivalent = Mo% + /
Ta% + 1 / 3.6Nb% + 1 / 1.5V% + 1.25
Cr% + 1.25Ni% + 1.7Mn% + 1.7Co%
+ 2.5Fe% (% represents mass%)

【0011】また、上記高強度、高靱性チタン合金部材
においては、針状αラス間に存在する時効析出α相の短
軸径が0.10μm以下で、かつアスペクト比が5.0
以下で、かつ、全α相の相分率が体積分率にして40%
以上であることが好ましく、このようにすることで、よ
り良好な強度が確保できる。
[0011] In the high-strength, high-toughness titanium alloy member, the minor axis diameter of the aged precipitate α phase existing between the acicular α laths is 0.10 μm or less and the aspect ratio is 5.0.
And the phase fraction of all α phases is 40% in volume fraction
It is preferable that the above is attained, and by doing so, more favorable strength can be secured.

【0012】また、本発明(請求項4)に係る高強度、
高靱性チタン合金部材の製造方法は、下記Mo当量式に
より求められるMo当量が6.0〜12.0を満たすα
+β型チタン合金を、β域まで加熱した後、そのβ域の
任意の温度で加工を開始し、(βトランザス−150
℃)以上βトランザス未満の任意の温度域で加工を終了
した後、その終了時点より0.2〜2.0℃/秒の冷却
速度で冷却した後、α+β2相域で溶体化・時効処理を
施すもので、これにより、強度特性並びに破壊靱性に優
れる上記チタン合金を確実に得ることができる。ただ
し、Mo当量=Mo%+1/5Ta%+1/3.6Nb
%+1/1.5V%+1.25Cr%+1.25Ni%
+1.7Mn%+1.7Co%+2.5Fe%(%は質
量%を表わす)
Further, according to the present invention (claim 4), high strength,
The method for producing a high toughness titanium alloy member is such that the Mo equivalent obtained by the following Mo equivalent equation satisfies 6.0 to 12.0.
After heating the + β-type titanium alloy to the β region, processing is started at an arbitrary temperature in the β region, and (β Transus -150
After finishing the processing in an arbitrary temperature range of not less than β) and less than β transus, after cooling at a cooling rate of 0.2 to 2.0 ° C./sec from the end point, solution treatment and aging treatment are performed in the α + β2 phase region. By doing so, it is possible to reliably obtain the titanium alloy having excellent strength characteristics and fracture toughness. However, Mo equivalent = Mo% + / Ta% + 1 / 3.6Nb
% + 1 / 1.5V% + 1.25Cr% + 1.25Ni%
+ 1.7Mn% + 1.7Co% + 2.5Fe% (% represents% by mass)

【0013】[0013]

【発明の実施の形態】本発明の詳細について以下に説明
する。強度特性、特に強度、伸びを改善するには、溶体
化処理後において、旧β粒界に生成する粒界αを完全に
抑制し、破壊靱性を改善するには、溶体化処理後におい
て、旧β粒内に生成する針状α相を成長させることが望
ましいが、先に述べたように、これらを同時に達成する
ことは容易ではない。本発明者等は明確な組織制御指針
を確立すべく、組織形態と機械的性質について種々検討
を重ねた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below. In order to improve the strength properties, especially strength and elongation, after the solution treatment, the grain boundary α generated in the old β grain boundary is completely suppressed, and in order to improve the fracture toughness, the It is desirable to grow the acicular α phase generated in the β grains, but as described above, it is not easy to achieve them simultaneously. The present inventors have conducted various studies on the tissue morphology and mechanical properties in order to establish clear tissue control guidelines.

【0014】まず、強度特性(強度、伸び)について述
べる。本発明者等は、組織と強度・伸びの相関について
検討し、溶体化処理後において、体積分率にして5.0
%以下に抑制することができればこれを確保できること
を見出した。なお、本発明で述べるところの粒界α分率
とは、倍率400倍で、少なくとも2視野を撮影した顕
微鏡組織写真を画像解析することにより、算出したもの
である。
First, the strength characteristics (strength and elongation) will be described. The present inventors have studied the correlation between the structure and the strength / elongation, and after the solution treatment, the volume fraction of 5.0 was obtained.
% If it can be suppressed to not more than%. It should be noted that the grain boundary α fraction described in the present invention is calculated by image analysis of a microstructure photograph of at least two visual fields at a magnification of 400 times.

【0015】また、それを実現するための手段について
も検討した。上述した組織特性は熱間加工そしてそれに
続く溶体化処理後の組織形態について述べたものであ
り、それぞれの条件が影響を及ぼすが、特に熱間加工条
件が大きく影響する。これはα+β2相域での溶体化処
理によって形成される組織形態は、基本的に加工後の組
織を踏襲して形成されることによる。従って熱間加工時
に起こる冶金現象に着目して検討を重ねた。
[0015] Further, means for realizing this have been studied. The above-mentioned structure characteristics describe the structure of the structure after the hot working and the subsequent solution treatment, and each condition has an influence, but particularly the hot working condition has a great effect. This is because the structure morphology formed by the solution treatment in the α + β2 phase region basically follows the structure after processing. Therefore, the study was repeated focusing on the metallurgical phenomenon that occurs during hot working.

【0016】α+β型チタン合金をβ域に加熱し冷却す
ると、まず加工βの再結晶が生じ、引き続いて再結晶β
粒の粒成長が生じ、粒界α相、粒内α相が生成する。再
結晶が生じれば旧β粒界面積が増加することになり、粒
界α相分率が増加する結果となり好ましくない。それば
かりでなく粒内針状α相の優先核生成サイトである加工
組織(転位・サブグレイン)が消失し針状α相の生成を
遅延する。
When the α + β type titanium alloy is heated to the β region and cooled, first, the reworked β is recrystallized, and subsequently the recrystallized β
Grain growth occurs, and a grain boundary α phase and an intragranular α phase are generated. If recrystallization occurs, the area of the old β grain boundary increases, and the fraction of the α phase in the grain boundary increases, which is not preferable. In addition, the processed structure (dislocation / subgrain), which is the preferential nucleation site of the intragranular acicular α phase, disappears, and the production of the acicular α phase is delayed.

【0017】このため完全再結晶させることなくα相を
生成させる必要があり、その条件について検討した結
果、加工率によらず、βトランザス未満の任意の温度で
加工を終了し、溶体化処理温度まで0.2℃/秒以上の
冷却速度で冷却すればよいことを見出した。そうするこ
とにより、α相析出までの冷却中に再結晶は進行せず、
粒界α相が体積分率にして5.0%を超えることはな
く、良好な強度特性が確保できる。
For this reason, it is necessary to generate the α phase without complete recrystallization, and as a result of examining the conditions, the processing is completed at an arbitrary temperature lower than β transus regardless of the processing rate, and the solution treatment temperature is reduced. It has been found that the cooling may be performed at a cooling rate of 0.2 ° C./sec or more. By doing so, recrystallization does not proceed during cooling up to α phase precipitation,
The grain boundary α phase does not exceed 5.0% in volume fraction, and good strength characteristics can be secured.

【0018】また、冷却速度を規定した理由は次のよう
になる。βトランザスと冷却速度の最適値には相関があ
り、βトランザスが高い成分系の合金では、元素の拡散
速度が増大するため、核生成後の粒界α相の成長速度が
増加するため、それを抑制すべく冷却速度を高める必要
がある。この点について鋭意検討した結果、本発明にお
いて提示したMo当量範囲に含まれる合金では、最も高
いβトランザスを持つ合金であったとしても0.2℃/
秒以上で冷却すれば、良好な強度特性が確保できる。
The reason for defining the cooling rate is as follows. There is a correlation between the β transus and the optimum value of the cooling rate.In the case of alloys with a high β transus, the diffusion rate of elements increases, and the growth rate of the α phase at the grain boundary after nucleation increases. It is necessary to increase the cooling rate in order to suppress the cooling. As a result of intensive studies on this point, the alloy included in the Mo equivalent range presented in the present invention, even if the alloy having the highest β transus, was 0.2 ° C. /
Cooling in seconds or more ensures good strength properties.

【0019】これに対し、0.2℃/秒を下回る冷却速
度で冷却した場合については、粒界α相が体積分率にし
て5.0%を超えて生成するため、良好な強度特性を得
ることができない。
On the other hand, when the cooling is performed at a cooling rate lower than 0.2 ° C./sec, since the grain boundary α phase is generated at a volume fraction exceeding 5.0%, good strength characteristics are obtained. I can't get it.

【0020】本発明では、溶体化処理条件について規定
を設けるものではないが、少なくともβトランザス以下
の温度域において処理を行い、前述の組織を形成すれば
良好な強度特性が確保可能である。
In the present invention, the conditions for the solution treatment are not specified, but if the treatment is performed at least in a temperature range of β transus or less to form the above-mentioned structure, good strength characteristics can be secured.

【0021】次に破壊靱性の改善について述べる。これ
については亀裂伝播面から亀裂を分岐させることが有効
であり、針状α組織形成が望ましいことが知られてい
る。針状組織形態に着眼し鋭意検討を重ねた結果、針状
α相の短軸径が0.75μm以上で、且つアスペクト比
が7.0以上であるときに良好な靱性を確保できること
を知見した。
Next, improvement in fracture toughness will be described. In this regard, it is known that branching a crack from a crack propagation surface is effective, and it is known that formation of an acicular α-structure is desirable. As a result of intensive studies focusing on the needle-like structure, it was found that good toughness can be ensured when the minor axis diameter of the needle-like α-phase is 0.75 μm or more and the aspect ratio is 7.0 or more. .

【0022】なお、本発明で述べるところの針状α相と
は、旧β粒内に生成した針状のα相であって、その面積
が0.5μm2以上のものをいう。またアスペクト比と
は、針状αの長軸径と短軸径の比であり、倍率300倍
の顕微鏡組織写真を画像解析し、2視野以上について平
均値を算出したものである。
The acicular α-phase described in the present invention is an acicular α-phase formed in old β grains, and has an area of 0.5 μm 2 or more. The aspect ratio is the ratio of the major axis diameter to the minor axis diameter of the needle-shaped α, and is obtained by analyzing a microstructure photograph at a magnification of 300 times and calculating an average value over two visual fields.

【0023】次にそれを実現するための手段について述
べる。針状組織形態を制御するにあたり、核生成と成長
過程に着目して検討を重ねた結果、加工終了温度と冷却
速度が非常に重要であること、具体的にはβトランザス
−150℃より高い温度で加工を終了し、2.0℃/秒
以下で冷却すれば、β粒内に生成した針状α相が破壊靱
性を確保するにたる形状まで成長しうることを見出し
た。
Next, means for realizing this will be described. In controlling the morphology of the needle-like structure, as a result of repeated investigations focusing on the nucleation and growth processes, the processing end temperature and cooling rate are very important, specifically, β transus-a temperature higher than 150 ° C. It was found that if the working was terminated at 2.0 ° C./second or less and the cooling was performed at 2.0 ° C./second or less, the acicular α phase generated in the β grains could grow to a shape sufficient to secure fracture toughness.

【0024】βトランザス−150℃より低い温度で加
工を終了した際には、核生成速度が過度に増加する上、
拡散速度が低下するため、旧β粒内のα相組織形態は針
状ではなく等軸化するため破壊靱性が劣化する。このた
め、βトランザス−150℃より高い温度域で加工を終
了させればよいが、より好ましくはβトランザス−10
0℃である。
When processing is completed at a temperature lower than β-transus-150 ° C., the nucleation rate is excessively increased, and
Since the diffusion rate decreases, the α-phase microstructure in the old β grains is not acicular but equiaxed, so that the fracture toughness deteriorates. For this reason, the processing may be terminated in a temperature range higher than β Transus-150 ° C., and more preferably β Transus-10
0 ° C.

【0025】冷却速度については、前述したようにβト
ランザスと冷却速度の最適値には相関があり、βトラン
ザスが低い成分系の合金では、元素の拡散速度が減少す
るため、針状αは成長しがたい。この点については、本
発明において提示した成分範囲に含まれる合金では、最
も低いβトランザスを持つ合金であったとしても2.0
℃/秒以下で冷却すれば針状αは成長することができ、
破壊靱性は確保できる。
With respect to the cooling rate, as described above, there is a correlation between the β transus and the optimum value of the cooling rate. In a component type alloy having a low β transus, the diffusion rate of the element decreases, so that the acicular α grows. It is difficult. In this regard, in the alloys included in the component ranges presented in the present invention, even if the alloy has the lowest β transus, it is 2.0%.
If cooled at a rate of less than ℃ / sec, the needle-shaped α can grow,
Fracture toughness can be secured.

【0026】以上述べた組織特徴は同時に達成しうるも
のであり、双方の特徴を付与したチタン合金は、優れた
強度特性−靱性バランスを確保していることを見出し本
発明は完成した。本発明で特徴としている加工温度域は
上記のようにして決定されたものであるが、それ以外の
本発明の詳細な説明を以下に行う。
The structural characteristics described above can be achieved at the same time, and it has been found that a titanium alloy provided with both characteristics has an excellent balance between strength characteristics and toughness, and the present invention has been completed. The processing temperature range characteristic of the present invention has been determined as described above, but other details of the present invention will be described below.

【0027】本発明者等は、これまでに述べてきた組織
特徴に加え、時効処理後の組織を適切に制御することに
より、さらに強度特性、特に耐力の改善が可能であるこ
とを見出している。耐力は時効処理後において生成され
る析出α相の形態によって決定され、針状αラス間に存
在する時効析出α相の短軸径が0.10μm以下で、ア
スペクト比が5.0以下であり、且つ総α相分率が40
%を超えて組織が形成されているときに良好な強度特性
を確保できることを見出した。
The present inventors have found that, in addition to the structure characteristics described above, by appropriately controlling the structure after the aging treatment, it is possible to further improve the strength characteristics, particularly the proof stress. . The yield strength is determined by the form of the precipitated α-phase formed after the aging treatment. The minor axis diameter of the aged precipitated α-phase existing between the acicular α laths is 0.10 μm or less, and the aspect ratio is 5.0 or less. And the total α phase fraction is 40
It has been found that good strength characteristics can be ensured when the structure is formed in excess of%.

【0028】なお、本発明で述べるところの時効析出α
相とは、針状α間に析出しているα相であって、面積で
0.5μm2未満のものをいう。また時効析出α相のア
スペクト比は、倍率10000倍で撮影した顕微鏡組織
写真を画像解析し、2視野以上について平均値を算出し
たものである。
The aging precipitation α described in the present invention
The phase refers to an α phase precipitated between needle-like α and having an area of less than 0.5 μm 2 . The aspect ratio of the aged precipitated α phase is obtained by image analysis of a microstructure photograph taken at a magnification of 10,000 times and calculating an average value for two or more visual fields.

【0029】時効析出α相形について、短軸径が0.1
0μmを、アスペクト比が5.0を超えた場合は、析出
強化量が不足するため、強度を確保することができな
い。また、総α相分率が体積分率にして40%含有して
いない場合についても上記と同様の理由によって、良好
な強度確保は困難になる。なお、総α相分率の上限はチ
タン合金の成分系によって決定されるものであり、本発
明は特に上限を規定するものではない。
With respect to the aged precipitate α-phase form, the minor axis diameter is 0.1
If the aspect ratio exceeds 0 μm and the aspect ratio exceeds 5.0, the strength cannot be secured because the amount of precipitation strengthening is insufficient. Also, when the total α-phase fraction does not contain 40% in volume fraction, it becomes difficult to secure good strength for the same reason as described above. The upper limit of the total α-phase fraction is determined by the component system of the titanium alloy, and the present invention does not particularly define the upper limit.

【0030】本発明者等は、析出αの形態は時効処理の
温度・保持時間によって制御可能であり、総α相分率に
ついても時効処理温度によって決定されることを見出し
ている。しかしながら、そればかりでなく、前段階の加
工・溶体化処理後の組織形態や合金成分組成などの影響
も受けるため、その適正温度・時間を一概に述べること
はできず、本発明においては時効処理条件を規定するも
のではないが、上述の組織が形成された場合に、優れた
耐力を得ることが可能となる。
The present inventors have found that the form of the precipitated α can be controlled by the temperature and the holding time of the aging treatment, and that the total α-phase fraction is also determined by the aging temperature. However, not only that, but also affected by the structure morphology and alloy composition after the previous stage processing and solution treatment, the appropriate temperature and time can not be described unconditionally, in the present invention aging treatment Although the conditions are not specified, it is possible to obtain excellent proof stress when the above-mentioned structure is formed.

【0031】本発明において提示した組織形態を実現す
れば、高強度・高靱性のα+β型チタン合金を得ること
ができるが、機械的性質は当然のことながら、合金成分
の影響も受けることになる。添加されている合金成分に
よって決定される次式Mo当量=Mo%+1/5Ta%
+1/3.6Nb%+1/1.5V%+1.25Cr%
+1.25Ni%+1.7Mn%+1.7Co%+2.
5Fe% (%は質量%を表わす)によって決定される
Mo当量が6.0〜12.0に入るα+β型チタン合
金、所謂Nearβチタン合金である場合に、非常に優
れた特性を発揮することを本発明者等は見出している。
Mo当量が6.0〜12.0の範囲に入っている合金系
であれば、その他の成分について詳細に限定しなくても
本発明による効果は期待できる。
If the structure morphology proposed in the present invention is realized, a high strength and high toughness α + β type titanium alloy can be obtained, but the mechanical properties are naturally affected by the alloy components. . The following equation determined by the added alloy component: Mo equivalent = Mo% + / Ta%
+ 1 / 3.6Nb% + 1 / 1.5V% + 1.25 Cr%
+ 1.25Ni% + 1.7Mn% + 1.7Co% + 2.
It is demonstrated that when an α + β type titanium alloy whose Mo equivalent determined by 5Fe% (% represents mass%) falls within the range of 6.0 to 12.0, that is, a so-called Nearβ titanium alloy, it exhibits extremely excellent properties. The present inventors have found.
As long as the Mo equivalent is in the range of 6.0 to 12.0, the effects of the present invention can be expected without limiting the other components in detail.

【0032】また、本発明で示したチタン合金部材は、
良好な機械的性質を発揮することから、ジェットエンジ
ンディスク材以外の用途にも適用することが可能であ
る。特にゴルフクラブヘッド用素材として、有効に活用
できる。
Further, the titanium alloy member shown in the present invention is:
Since it exhibits good mechanical properties, it can be applied to uses other than jet engine disc materials. Particularly, it can be effectively used as a material for a golf club head.

【0033】[0033]

【実施例】以下、実施例を挙げて本発明を詳細に説明す
る。表1に示した成分組成を持つ代表的なチタン合金を
供試材として用いた。供試材を真空アーク溶解炉により
溶製し、直径150mm、長さ240mmの形状に切り
出し、種々の温度域で加工を行った後冷却した。この加
工材に溶体化処理および時効処理を施し、適当な大きさ
に切り出して研磨、エッチングし、得られた組織写真か
ら画像解析により、種々の値を算出した。その結果を表
2に示した。なお、本実施例における溶体化・時効処理
条件は表3,4に示した通りであり、それぞれの冷却開
始温度を変化させることにより、組織形態を制御した。
The present invention will be described below in detail with reference to examples. Representative titanium alloys having the component compositions shown in Table 1 were used as test materials. The test material was melted by a vacuum arc melting furnace, cut into a shape having a diameter of 150 mm and a length of 240 mm, processed in various temperature ranges, and cooled. This processed material was subjected to a solution treatment and an aging treatment, cut out to an appropriate size, polished and etched, and various values were calculated by image analysis from the obtained structure photograph. The results are shown in Table 2. The conditions of the solution treatment and the aging treatment in this example are as shown in Tables 3 and 4. The morphology was controlled by changing the respective cooling start temperatures.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【表3】 [Table 3]

【0037】[0037]

【表4】 [Table 4]

【0038】また、引張試験および破壊靱性試験によっ
て機械的性質の評価を行った。引張試験はASTM E
8に従い、破壊靱性の測定はASTM E399に従っ
て行った。これらの評価試験結果を表5に示す。
The mechanical properties were evaluated by a tensile test and a fracture toughness test. ASTM E for tensile test
8 and the measurement of fracture toughness was performed according to ASTM E399. Table 5 shows the results of these evaluation tests.

【0039】[0039]

【表5】 [Table 5]

【0040】表5において、試料No.1〜14はいず
れも本発明で提示した温度域で加工を終了し空冷されて
おり、組織構成条件を全て満たす実施例である。一方、
試料No.15〜26は加工条件、組織構成条件のいず
れかが本発明を満たさない比較例である。ここで、比較
例15と21は加工を施さずに冷却したものであり、加
工によって粒内針状α核生成サイトを導入する重要性を
評価するために、比較例として挙げている。
In Table 5, Sample No. Examples 1 to 14 are examples in which the processing is completed in the temperature range suggested in the present invention and air-cooled, and all the structural conditions are satisfied. on the other hand,
Sample No. Nos. 15 to 26 are comparative examples in which any of the processing conditions and the structure constituting conditions do not satisfy the present invention. Here, Comparative Examples 15 and 21 were cooled without processing, and are listed as Comparative Examples in order to evaluate the importance of introducing intragranular α-nucleation sites by processing.

【0041】強度特性については、耐力が1100MP
a以上で、伸び8%以上のものを良好(○)とし、破壊
靱性値については60MPa√m以上のものを良好
(○)とした。強度特性、破壊靱性のうち一つでも劣る
ものを不良(×)とした。表5の結果によれば、試料N
o.1〜14の本発明例の試料は同一の成分を持つ比較
例15〜26と比べると、いずれの合金系においても優
れた強度特性、破壊靭性が得られていることが分かる。
Regarding the strength characteristics, the proof stress was 1100MP.
a and elongation of 8% or more were evaluated as good (○), and fracture toughness of 60 MPa√m or more was evaluated as good (○). Any one of the strength characteristics and the fracture toughness, which was inferior, was evaluated as poor (x). According to the results in Table 5, sample N
o. It can be seen that the samples of Examples 1 to 14 of the present invention have excellent strength properties and fracture toughness in any of the alloy systems as compared with Comparative Examples 15 to 26 having the same components.

【0042】[0042]

【発明の効果】以上説明したように、本発明に係る高強
度、高靱性チタン合金部材であれば、強度特性並びに破
壊靱性に優れており、ジェットエンジンディスク材はも
とより厳しい機械的性質を求められる用途への適用がで
きる。また、本発明に係る高強度、高靱性チタン合金部
材の製造方法によれば、前記強度特性並びに破壊靱性に
優れるチタン合金部材を確実に提供することができる。
As described above, the high-strength, high-toughness titanium alloy member according to the present invention is excellent in strength characteristics and fracture toughness, and requires strict mechanical properties as well as jet engine disk materials. Can be applied to applications. Further, according to the method for producing a high-strength, high-toughness titanium alloy member according to the present invention, it is possible to reliably provide a titanium alloy member having excellent strength characteristics and fracture toughness.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 630 C22F 1/00 630A 630B 673 673 683 683 691 691B 692 692A 694 694B (72)発明者 大山 英人 兵庫県高砂市荒井町新浜2丁目3番1号 株式会社神戸製鋼所高砂製作所内 (72)発明者 石外 伸也 兵庫県高砂市荒井町新浜2丁目3番1号 株式会社神戸製鋼所高砂製作所内Continuation of the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) C22F 1/00 630 C22F 1/00 630A 630B 673 673 683 683 691 691B 692 692A 694 694B (72) Inventor Hideto Oyama Hyogo 2-3-1, Shinhama, Arai-machi, Takasago City, Kobe Prefecture Inside Kobe Steel, Ltd. Takasago Works (72) Inventor Shinya Ishigai 2-3-1, Shinama, Araimachi, Takasago City, Hyogo Prefecture, Kobe Steel Works, Takasago Works

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 下記Mo当量式により求められるMo当
量が6.0〜12.0を満たすα+β型チタン合金から
なり、旧β粒界に形成される粒界α組織が体積分率にし
て5.0%以下であり、かつ、旧β粒内に形成される針
状α相の短軸径が0.75μm以上で、かつアスペクト
比が7.0以上であることを特徴とする高強度、高靱性
チタン合金部材。ただし、Mo当量=Mo%+1/5T
a%+1/3.6Nb%+1/1.5V%+1.25C
r%+1.25Ni%+1.7Mn%+1.7Co%+
2.5Fe%(%は質量%を表わす)
1. A titanium alloy comprising an α + β type titanium alloy having a Mo equivalent determined by the following Mo equivalent formula satisfying 6.0 to 12.0, and a grain boundary α structure formed at an old β grain boundary has a volume fraction of 5%. 0.0% or less, and the short axis diameter of the acicular α phase formed in the old β grains is 0.75 μm or more and the aspect ratio is 7.0 or more, high strength, High toughness titanium alloy member. However, Mo equivalent = Mo% + / T
a% + 1 / 3.6Nb% + 1 / 1.5V% + 1.25C
r% + 1.25 Ni% + 1.7 Mn% + 1.7Co% +
2.5Fe% (% represents mass%)
【請求項2】 針状αラス間に存在する時効析出α相の
短軸径が0.10μm以下で、かつアスペクト比が5.
0以下であり、かつ、全α相の相分率が体積分率にして
40%以上である請求項1に記載の高強度、高靱性チタ
ン合金部材。
2. The aging precipitated α phase existing between the acicular α laths has a minor axis diameter of 0.10 μm or less and an aspect ratio of 5.
2. The high-strength and high-toughness titanium alloy member according to claim 1, wherein the titanium alloy member has a volume fraction of 40% or more in terms of a volume fraction of all α phases.
【請求項3】 請求項1又は2に記載の高強度、高靱性
チタン合金部材が、ゴルフクラブのヘッド用素材として
用いられる高強度、高靱性チタン合金部材。
3. A high-strength, high-toughness titanium alloy member, wherein the high-strength, high-toughness titanium alloy member according to claim 1 or 2 is used as a material for a golf club head.
【請求項4】 下記Mo当量式により求められるMo当
量が6.0〜12.0を満たすα+β型チタン合金を、
β域まで加熱した後、そのβ域の任意の温度で加工を開
始し、(βトランザス−150℃)以上βトランザス未
満の任意の温度域で加工を終了した後、その終了時点よ
り0.2〜2.0℃/秒の冷却速度で冷却した後、α+
β2相域で溶体化・時効処理を施すことを特徴とする高
強度、高靱性チタン合金部材の製造方法。ただし、Mo
当量=Mo%+1/5Ta%+1/3.6Nb%+1/
1.5V%+1.25Cr%+1.25Ni%+1.7
Mn%+1.7Co%+2.5Fe%(%は質量%を表
わす)
4. An α + β type titanium alloy whose Mo equivalent obtained by the following Mo equivalent formula satisfies 6.0 to 12.0,
After heating to the β region, the processing is started at an arbitrary temperature in the β region, and the processing is terminated in an arbitrary temperature region of (β transus-150 ° C.) or more and less than β transus, and then 0.2 mm from the end point. After cooling at a cooling rate of ~ 2.0 ° C / sec, α +
A method for producing a high-strength, high-toughness titanium alloy member, comprising performing solution treatment and aging treatment in a β2 phase region. However, Mo
Equivalent = Mo% + / Ta% + 1 / 3.6Nb% + 1 /
1.5V% + 1.25Cr% + 1.25Ni% + 1.7
Mn% + 1.7Co% + 2.5Fe% (% represents mass%)
JP2000098619A 2000-03-31 2000-03-31 High strength and high toughness titanium alloy member and its producing method Pending JP2001288518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000098619A JP2001288518A (en) 2000-03-31 2000-03-31 High strength and high toughness titanium alloy member and its producing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000098619A JP2001288518A (en) 2000-03-31 2000-03-31 High strength and high toughness titanium alloy member and its producing method

Publications (1)

Publication Number Publication Date
JP2001288518A true JP2001288518A (en) 2001-10-19

Family

ID=18613078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000098619A Pending JP2001288518A (en) 2000-03-31 2000-03-31 High strength and high toughness titanium alloy member and its producing method

Country Status (1)

Country Link
JP (1) JP2001288518A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6929566B2 (en) 2003-01-15 2005-08-16 Sri Sports Limited Golf club head and method of manufacturing the same
US7096558B2 (en) 2003-05-16 2006-08-29 Sri Sports Limited Method of manufacturing golf club head
US7910052B2 (en) 2004-10-15 2011-03-22 Sumitomo Metal Industries, Ltd. Near β-type titanium alloy
JP2011102414A (en) * 2009-11-10 2011-05-26 Kobe Steel Ltd NEAR-beta TYPE TITANIUM ALLOY HAVING EXCELLENT LOW CYCLE FATIGUE PROPERTY
WO2014027677A1 (en) 2012-08-15 2014-02-20 新日鐵住金株式会社 Resource-saving titanium alloy member having excellent strength and toughness, and method for manufacturing same
JP2014055318A (en) * 2012-09-11 2014-03-27 Kobe Steel Ltd Titanium alloy forging material and production method of the same, and production method of titanium alloy forging component
CN116254491A (en) * 2023-03-03 2023-06-13 东北大学 Heat treatment method for improving strength of laser cladding forming Ti-5321 titanium alloy

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6929566B2 (en) 2003-01-15 2005-08-16 Sri Sports Limited Golf club head and method of manufacturing the same
US7096558B2 (en) 2003-05-16 2006-08-29 Sri Sports Limited Method of manufacturing golf club head
US7910052B2 (en) 2004-10-15 2011-03-22 Sumitomo Metal Industries, Ltd. Near β-type titanium alloy
JP2011102414A (en) * 2009-11-10 2011-05-26 Kobe Steel Ltd NEAR-beta TYPE TITANIUM ALLOY HAVING EXCELLENT LOW CYCLE FATIGUE PROPERTY
WO2014027677A1 (en) 2012-08-15 2014-02-20 新日鐵住金株式会社 Resource-saving titanium alloy member having excellent strength and toughness, and method for manufacturing same
KR20150012287A (en) 2012-08-15 2015-02-03 신닛테츠스미킨 카부시키카이샤 Resource-saving titanium alloy member having excellent strength and toughness, and method for manufacturing same
US9689062B2 (en) 2012-08-15 2017-06-27 Nippon Steel & Sumitomo Metal Corporation Resource saving-type titanium alloy member possessing improved strength and toughness and method for manufacturing the same
JP2014055318A (en) * 2012-09-11 2014-03-27 Kobe Steel Ltd Titanium alloy forging material and production method of the same, and production method of titanium alloy forging component
CN116254491A (en) * 2023-03-03 2023-06-13 东北大学 Heat treatment method for improving strength of laser cladding forming Ti-5321 titanium alloy

Similar Documents

Publication Publication Date Title
JP4995570B2 (en) Nickel base alloy and heat treatment method of nickel base alloy
US10351939B2 (en) Cu—Al—Mn-based alloy exhibiting stable superelasticity and method of producing the same
EP0716155B1 (en) Method for making an alpha-beta titanum alloy
JP5343333B2 (en) Method for producing high-strength aluminum alloy material with excellent resistance to stress corrosion cracking
EP0247181B1 (en) Aluminum-lithium alloys and method of making the same
EP3023508A1 (en) Expanded member comprising cu-al-mn alloy material and exhibiting superior anti-stress corrosion properties, and use therefor
TW201116634A (en) Nano-crystalline titanium alloy, and producing method thereof
JP2007084864A (en) alpha-beta TYPE TITANIUM ALLOY SUPERIOR IN MACHINABILITY AND HOT WORKABILITY
JP6315319B2 (en) Method for producing Fe-Ni base superalloy
JP2010196112A (en) HIGH STRENGTH Al-Cu-Mg ALLOY EXTRUDED MATERIAL AND METHOD FOR PRODUCING THE SAME
JP2005320570A (en) alpha-beta TITANIUM ALLOY WITH EXCELLENT MACHINABILITY
EP1096033B1 (en) Process for the heat treatment of a Ni-base heat-resisting alloy
JP3101280B2 (en) Manufacturing method of Al-based alloy and Al-based alloy product
JP7120437B2 (en) bar
JPWO2014027677A1 (en) Resource-saving titanium alloy member excellent in strength and toughness and manufacturing method thereof
JP3564304B2 (en) Heat treatment method for Ni-base heat-resistant alloy
JP2001288518A (en) High strength and high toughness titanium alloy member and its producing method
WO2007043687A9 (en) HIGH-STRENGTH Co-BASED ALLOY WITH ENHANCED WORKABILITY AND PROCESS FOR PRODUCING THE SAME
JP5279119B2 (en) Partially modified aluminum alloy member and manufacturing method thereof
EP0266741A1 (en) Aluminium-lithium alloys and method of producing these
JPH11343529A (en) High strength, high ductility and high toughness titanium alloy member and its production
JPH08144034A (en) Production of titanium-aluminium intermetallic compound-base alloy
JP2017218660A (en) Titanium alloy forging material
JP2021008660A (en) MANUFACTURING METHOD OF Ni-BASED HOT FORGED MATERIAL
WO2022249665A1 (en) Aluminum alloy, aluminum alloy wire, and method for manufacturing aluminum alloy wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Effective date: 20050720

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20061219

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070313