JP2016006216A - Electroplating device by clamp feeding of electropeeling clamp deposition metal in the same tank - Google Patents

Electroplating device by clamp feeding of electropeeling clamp deposition metal in the same tank Download PDF

Info

Publication number
JP2016006216A
JP2016006216A JP2014127371A JP2014127371A JP2016006216A JP 2016006216 A JP2016006216 A JP 2016006216A JP 2014127371 A JP2014127371 A JP 2014127371A JP 2014127371 A JP2014127371 A JP 2014127371A JP 2016006216 A JP2016006216 A JP 2016006216A
Authority
JP
Japan
Prior art keywords
clamp
power supply
plating
moves
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014127371A
Other languages
Japanese (ja)
Other versions
JP6162079B2 (en
Inventor
正次 長倉
Masaji Nagakura
正次 長倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marunaka Industrial Co Ltd
Original Assignee
Marunaka Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marunaka Industrial Co Ltd filed Critical Marunaka Industrial Co Ltd
Priority to JP2014127371A priority Critical patent/JP6162079B2/en
Publication of JP2016006216A publication Critical patent/JP2016006216A/en
Application granted granted Critical
Publication of JP6162079B2 publication Critical patent/JP6162079B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an electroplating device where electroplating to the body to be plated by clamp feeding and the electroplating of a metal deposited to the feeding contact part of a clamp in the electroplating process are simultaneously performed in parallel in the same tank, and the molten metal peeled from the feeding contact part of the clamp in the electropeeling process is effectively activated in the electroplating process.SOLUTION: The inside of the same electrolytic tank 1 is provided with an electroplating process A by the clamp feeding of a cathode and an electropeeling process B, and a metal deposited to the feeding contact part 4 of a clamp 3 in the electroplating process A is electrolytically peeled from the feeding contact part 4 fed with the current of the anode in the returning process of the clamp 3. The cathode as a counter electrode is made covalent in the electroplating process A and the electropeeling process B. The feeding contact part 4 of the clamp 3 is formed with titanium. Further, preferably, platinum or iridium is formed at the feeding contact part 4 made of titanium by covering.

Description

本発明は、クランプ給電による電解メッキによってクランプに付着した金属をクランプの戻り行程で電解によって剥離する装置に関する。   The present invention relates to an apparatus for peeling a metal adhering to a clamp by electrolytic plating using a clamp power supply by electrolysis in a return stroke of the clamp.

特許文献1の電解処理装置には、エンドレスに回転して駆動される個々のクランプを、このクランプの戻り経路で回路板などの板状物体に金属を電着する電解室とは別槽の金属除去室の電解液中を通過させ、電解室でクランプに付着した金属を別槽の金属除去室で電解によって除去する技術が開示してある。しかし、エンドレスに回転して駆動されるクランプの搬送経路と戻り経路には、電解室と金属除去室の槽仕切り壁が介在するため、エンドレスに回転駆動されるクランプを電解室と金属除去室の間を通過させるのが技術的に困難であった。   In the electrolytic processing apparatus of Patent Document 1, individual clamps that are driven to rotate endlessly are separated from the electrolytic chamber in which metal is electrodeposited onto a plate-like object such as a circuit board through a return path of the clamps. There has been disclosed a technique of passing through an electrolytic solution in a removal chamber and removing metal adhering to a clamp in the electrolytic chamber by electrolysis in a metal removal chamber of a separate tank. However, since the tank partition wall of the electrolysis chamber and the metal removal chamber is interposed in the transport path and return path of the clamp that is driven to rotate endlessly, the clamp that is rotationally driven is connected to the electrolysis chamber and the metal removal chamber. It was technically difficult to pass through.

この課題を解決するため、本出願人は既に、エンドレスに連続周回駆動される周回駆動手段に取付けられて一定の高さレベルで周回移動される複数のクランプを、このクランプの戻り経路でクランプに付着した金属などの付着成分を剥離する金属剥離処理槽の処理液中を通過させ、クランプに付着した金属などの付着成分の剥離を行う場合でも、電解メッキ処理槽と金属剥離処理槽の槽間の槽仕切り壁が介在する移動経路をクランプがスムーズに通過でき、且つ電解メッキ処理槽や金属剥離処理槽からの処理液の流出を大幅に減少できる装置を提案してある(特許文献2)。   In order to solve this problem, the present applicant has already attached a plurality of clamps that are attached to a circular driving means that is continuously driven in an endless manner and moved around at a constant height level to the clamps in the return path of the clamps. Even when passing through the treatment liquid of the metal stripping treatment tank that peels off the attached components such as attached metal and stripping off the attached components such as metal attached to the clamp, the space between the electrolytic plating treatment tank and the metal peeling treatment tank Has proposed a device that allows the clamp to smoothly pass through a moving path in which the tank partition wall is interposed, and can significantly reduce the outflow of the processing liquid from the electrolytic plating processing tank and the metal stripping processing tank (Patent Document 2).

特開昭63−76898号公報(特公平6−31476号公報)Japanese Patent Laid-Open No. 63-76898 (Japanese Patent Publication No. 6-31476) 特開2013−249527号公報JP2013-249527A

背景技術の特許文献1、2の電解メッキ装置は、電解メッキ処理槽の電解メッキ行程でクランプに付着した金属は、クランプの戻り経路で電解メッキ処理槽とは別槽の液中を通過させ、クランプに付着した金属の剥離を行っている。   In the electroplating apparatus of Patent Documents 1 and 2 of the background art, the metal adhering to the clamp in the electroplating process of the electroplating tank passes through the liquid in a tank separate from the electroplating tank in the return path of the clamp, The metal attached to the clamp is peeled off.

このため、槽形状が複雑となり、槽間仕切り通過などの搬送機械及び搬送機器が複雑となり、剥離液(薬品)の混入の危険があり、装置の管理が難しい、等いろいろな弊害があった。   For this reason, the tank shape is complicated, the conveyance machine and conveyance equipment such as the passage of the tank partition are complicated, there is a risk of mixing with a peeling solution (chemical), and there are various problems such as difficulty in managing the apparatus.

このような実情に鑑み、本発明が解決しようとする主な課題は、クランプ給電による被メッキ体への電解メッキと、電解メッキ行程でクランプの給電接点部に付着した金属の剥離を同一槽内で同時並行的にできるようにし、槽形状を単純化でき、搬送機械及び搬送機器を単純化でき、剥離薬品液が不要で、装置の管理が容易な電解メッキ装置を提供すると共に、電解メッキ行程の始部位置では、クランプの給電接点部の付着金属が常に剥離された状態にして、クランプ給電による電解メッキの品質を向上できる電解メッキ装置を提供することである。   In view of such circumstances, the main problem to be solved by the present invention is that electrolytic plating on the object to be plated by clamp power feeding and peeling of the metal attached to the power feeding contact portion of the clamp in the electrolytic plating process within the same tank. In addition to providing an electroplating apparatus that can simplify the tank shape, simplify the transport machine and transport equipment, eliminate the need for a stripping chemical, and manage the apparatus easily. In the starting position of the above, there is provided an electroplating apparatus capable of improving the quality of electroplating by the clamp power supply in a state in which the attached metal of the power supply contact portion of the clamp is always peeled off.

前記した課題を解決するため、本発明(請求項1の発明)は、周回経路を複数のクランプが連続して移動するクランプ移動手段を設け、同一の電解槽内の電解液中を前記クランプの給電接点部がメッキ行程を移動した後に戻り行程を経て再び前記メッキ行程に入る周回経路を連続して移動するように構成し、メッキ行程を移動する前記クランプは、空中に配設され且つ陰極の電流を供給されたメッキ用給電レールに該クランプの上部が空中で接触されながら移動し、前記メッキ用給電レールから電解液中の給電接点部に陰極の電流を供給し、陰極の電流が供給された給電接点部でメッキ処理される被メッキ体の端部を掴持し、この給電接点部で掴持され陰極の電流を給電された被メッキ体がメッキ行程の電解液中に配設した対のメッキ用陽極の間を一方向に搬送され、この搬送過程でメッキ用陽極から析出された金属を陰極の極性が給電された被メッキ体の表面に電着する電解メッキ装置であり、戻り行程を移動する前記クランプは、空中に配設され且つ陽極の電流を供給された剥離用給電レールに該クランプの上部が空中で接触されながら移動し、前記剥離用給電レールから電解液中の給電接点部に陽極の電流を供給し、メッキ行程で給電接点部に付着した析出金属を戻り行程を移動する陽極の給電接点部から電解によって溶解し剥離できるようにした、同一槽内でクランプ付着金属を電解剥離するクランプ給電による電解メッキ装置を提供する。   In order to solve the above-described problems, the present invention (invention of claim 1) is provided with a clamp moving means for continuously moving a plurality of clamps along a circulation path, and the electrolyte in the same electrolytic cell is placed in the electrolytic solution. The power supply contact portion is configured to continuously move in a circulation path that enters the plating process again after a return process after moving the plating process, and the clamp that moves the plating process is disposed in the air and is connected to the cathode. The upper part of the clamp is moved in contact with the plating power supply rail supplied with current in the air, the cathode current is supplied from the plating power supply rail to the power supply contact portion in the electrolyte, and the cathode current is supplied. The end of the object to be plated is gripped by the power supply contact part, and the object to be plated which is gripped by the power supply contact part and supplied with the current of the cathode is disposed in the electrolyte during the plating process. Anode for plating An electroplating apparatus for electrodepositing the metal deposited from the plating anode in this transport process on the surface of the object to be plated with the polarity of the cathode fed, and moving the return stroke Is moved while the upper part of the clamp is in contact with the peeling power supply rail disposed in the air and supplied with the anode current in the air, and the anode current flows from the peeling power supply rail to the power supply contact portion in the electrolyte. Clamp power supply for electrolytically peeling the metal attached to the clamp in the same tank so that the deposited metal adhering to the power supply contact part in the plating process can be dissolved and peeled off from the power supply contact part of the anode moving in the return process by electrolysis An electrolytic plating apparatus is provided.

また、本発明(請求項2の発明)は、周回経路を複数のクランプが連続して移動するクランプ移動手段をメッキ行程の被メッキ体の搬送通路を間にした両側に設け、同一の電解槽内の電解液中を前記クランプの給電接点部がメッキ行程を移動した後に戻り行程を経て再び前記メッキ行程に入る周回経路を連続して移動するように構成し、メッキ行程を移動する前記クランプは、空中に配設され且つ陰極の電流を供給されたメッキ用給電レールに該クランプの上部が空中で接触されながら移動し、前記メッキ用給電レールから電解液中の給電接点部に陰極の電流を供給し、陰極の電流が供給された給電接点部でメッキ処理される被メッキ体の左右両端部を掴持し、この給電接点部で掴持され陰極の電流を給電された被メッキ体がメッキ行程の電解液中に配設した上下対のメッキ用陽極の間を一方向に水平搬送され、この搬送過程でメッキ用陽極から析出された金属を陰極の極性が給電された被メッキ体の表面に電着する電解メッキ装置であり、戻り行程を移動する前記クランプは、空中に配設され且つ陽極の電流を供給された剥離用給電レールに該クランプの上部が空中で接触されながら移動し、前記剥離用給電レールから電解液中の給電接点部に陽極の電流を供給し、メッキ行程で給電接点部に付着した析出金属を戻り行程を移動する陽極の給電接点部から電解によって溶解し剥離できるようにした、同一槽内でクランプ付着金属を電解剥離するクランプ給電による電解メッキ装置を提供する。   Further, the present invention (invention of claim 2) is provided with clamp moving means for continuously moving a plurality of clamps in the circulation path on both sides with the conveyance path of the object to be plated in the plating process. The clamp that moves the plating stroke is configured to continuously move in the electrolyte path in the inner circuit and continuously move around the return path through the return stroke after the feeding contact portion of the clamp moves through the plating stroke. The upper part of the clamp is moved in contact with the plating power supply rail disposed in the air and supplied with the cathode current, and the cathode current is supplied from the plating power supply rail to the power supply contact portion in the electrolytic solution. The left and right ends of the object to be plated are gripped at the power supply contact portion to which the cathode current is supplied, and the object to be plated which is held at the power supply contact portion and supplied with the cathode current is plated. Electricity of process It is transported horizontally in one direction between the upper and lower pairs of plating anodes arranged in the liquid, and the metal deposited from the plating anode in this transport process is electrodeposited on the surface of the object to be plated with the cathode polarity fed The clamp that moves in the return stroke moves while the upper part of the clamp is in contact with the feeding rail that is disposed in the air and is supplied with the anode current. The anode current is supplied from the power supply rail to the power supply contact part in the electrolyte, and the deposited metal adhering to the power supply contact part in the plating process can be dissolved and separated by electrolysis from the power supply contact part of the anode moving in the return process. Provided is an electroplating apparatus using clamp power feeding for electrolytically peeling the metal attached to the clamp in the same tank.

また、本発明(請求項3の発明)は、前記クランプは、電解液中に入れられる給電接点部を含むクランプ下部の通電部の材質をチタンで形成し、該クランプのチタンの給電接点部を除いたクランプ下部の通電部を絶縁体で被覆して構成し、このクランプの給電接点部をチタンで形成した、同一槽内でクランプ付着金属を電解剥離するクランプ給電による電解メッキ装置を提供する。   Further, according to the present invention (invention of claim 3), the clamp is made of titanium as a material for the current-carrying portion at the lower part of the clamp including the power-feeding contact portion placed in the electrolyte, and the titanium power-feeding contact portion of the clamp is provided. Provided is an electroplating apparatus using clamp power feeding, in which a current-carrying portion at a lower portion of the clamp is covered with an insulator, and a power supply contact portion of the clamp is formed of titanium, and the metal attached to the clamp is electrolytically peeled off in the same tank.

また、本発明(請求項4の発明)は、前記クランプのチタンの給電接点部に白金を被覆し、この白金を給電接点部とした、同一槽内でクランプ付着金属を電解剥離するクランプ給電による電解メッキ装置を提供する。   Further, the present invention (invention of claim 4) is based on clamp power feeding in which the titanium power supply contact portion of the clamp is coated with platinum, and this platinum is used as the power supply contact portion, and the clamp adhering metal is electrolytically peeled off in the same tank. An electrolytic plating apparatus is provided.

また、本発明(請求項5の発明)は、前記クランプのチタンの給電接点部にイリジウムを被覆し、このイリジウムを給電接点部とした、同一槽内でクランプ付着金属を電解剥離するクランプ給電による電解メッキ装置を提供する。   Further, according to the present invention (invention of claim 5), the titanium power supply contact portion of the clamp is coated with iridium, and this iridium is used as the power supply contact portion. An electrolytic plating apparatus is provided.

また、本発明(請求項6の発明)は、メッキ用整流器の正極(プラス電極)と不溶性陽極から成る前記メッキ用陽極を電気的に接続し、このメッキ用整流器の負極(マイナス電極)と前記メッキ用給電レールを電気的に接続し、このメッキ用給電レールに接触されながらメッキ行程を移動するクランプに陰極の電流を供給し、剥離用整流器の正極(プラス電極)と前記剥離用給電レールを電気的に接続し、この剥離用整流器の負極(マイナス電極)と前記メッキ用給電レールを電気的に接続し、この剥離用給電レールに接触されながら戻り行程を移動するクランプに陽極の電流を供給し、陽極の電流を給電された戻り行程を移動するクランプは、反対の極性の電流を供給されているメッキ行程を移動するクランプから給電される陰極の被メッキ体を対極として、陽極を構成するクランプの給電接点部に付着された金属を電解によって溶解し剥離できるようにした、同一槽内でクランプ付着金属を電解剥離するクランプ給電による電解メッキ装置を提供する。   According to the present invention (invention of claim 6), the positive electrode (positive electrode) of the plating rectifier and the plating anode composed of an insoluble anode are electrically connected, and the negative electrode (negative electrode) of the plating rectifier and the above-mentioned The plating power supply rail is electrically connected, the cathode current is supplied to the clamp that moves in the plating process while being in contact with the plating power supply rail, and the positive electrode (plus electrode) of the separation rectifier and the separation power supply rail are connected to each other. Electrically connected, electrically connected the negative electrode (minus electrode) of the stripping rectifier and the feeding rail for plating, and supplied the anode current to the clamp that moved in the return stroke while being in contact with the stripping rail However, a clamp that moves in a return stroke that is fed with an anode current is connected to a cathode that is fed from a clamp that moves in a plating stroke that is fed a current of the opposite polarity. Provided is an electroplating apparatus using clamp power supply for electrolytically peeling a metal attached to a clamp in the same tank so that the metal attached to the power supply contact portion of the clamp constituting the anode can be dissolved and peeled by electrolysis using the body as a counter electrode. .

また、本発明は、前記メッキ用給電レールをメッキ行程における被メッキ体の搬送方向で分離した複数本の給電レールによって形成し、分離した複数本のメッキ用給電レールに対応させてメッキ用整流器をそれぞれ配設し、前記メッキ用陽極をメッキ行程における被メッキ体の搬送方向に一定の間隔を空け複数並べて配設した不溶性陽極とし、前記各メッキ用整流器の負極(マイナス電極)と対応する各メッキ用給電レールをそれぞれ電気的に接続し、この各メッキ用整流器の正極(プラス電極)と対応する各メッキ用給電レールの近くに配設した各メッキ用陽極をそれぞれ電気的に接続し、このメッキ用給電レールに接触されながらメッキ行程を移動するクランプに陰極の電流を供給し、剥離用整流器の正極(プラス電極)と前記剥離用給電レールを電気的に接続し、この剥離用整流器の負極(マイナス電極)と前記各メッキ用給電レールをそれぞれ電気的に接続し、この剥離用給電レールに接触されながら戻り行程を移動するクランプに陽極の電流を供給し、陽極の電流を給電された戻り行程を移動するクランプは、反対の極性の電流を供給されているメッキ行程を移動するクランプから給電される陰極の被メッキ体を対極として、陽極を構成するクランプの給電接点部に付着された金属を電解によって溶解し剥離できるようにした、同一槽内でクランプ付着金属を電解剥離するクランプ給電による電解メッキ装置を提供する。   In the present invention, the plating power supply rail is formed by a plurality of power supply rails separated in the conveying direction of the object to be plated in the plating process, and a plating rectifier is provided corresponding to the plurality of separated power supply rails for plating. Each of the plating anodes is provided as an insoluble anode in which a plurality of the plating anodes are arranged side by side at a predetermined interval in the conveying direction of the object to be plated in the plating process. Each of the power supply rails is electrically connected, and the positive electrode (positive electrode) of each plating rectifier is electrically connected to each of the plating anodes disposed in the vicinity of the corresponding power supply rail for plating. The cathode current is supplied to the clamp that moves in the plating process while being in contact with the power supply rail, and the positive electrode (plus electrode) of the stripping rectifier and the stripping feed The rail is electrically connected, and the negative electrode (minus electrode) of the stripping rectifier is electrically connected to each of the feeding rails for plating, and the anode is attached to the clamp that moves in the return stroke while being in contact with the stripping rail. The clamp that moves the return stroke that is fed with the current of the anode and that is fed with the current of the anode uses the cathode to be plated fed from the clamp that moves the plating stroke that is fed with the current of the opposite polarity as the counter electrode, Disclosed is an electroplating apparatus using clamp power feeding, in which a metal attached to a power supply contact portion of a clamp constituting an anode can be dissolved and peeled off by electrolysis, and the metal attached to the clamp is electrolytically peeled off in the same tank.

また、本発明(請求項7の発明)は、メッキ行程を移動する前記クランプは前記メッキ用給電レールにガイドされスライド接触されながら移動し、戻り行程を移動するクランプは前記剥離用給電レールにガイドされスライド接触されながら反対方向に平行に移動し、前記メッキ用給電レールと前記剥離用給電レールが樹脂製の絶縁レールを介して電気的に接続されない状態で連結され、前記メッキ用給電レールと前記剥離用給電レールと前記絶縁レールで連続する周回経路レールを構成した、同一槽内でクランプ付着金属を電解剥離するクランプ給電による電解メッキ装置を提供する。   Further, according to the present invention (invention of claim 7), the clamp that moves in the plating process moves while being slid and guided by the power supply rail for plating, and the clamp that moves in the return process is guided by the power supply rail for peeling. The plating power supply rail and the peeling power supply rail are connected in a state where they are not electrically connected via a resin insulating rail, while being in sliding contact with each other. Provided is an electroplating apparatus using clamp power feeding, in which a stripping power supply rail and an insulating rail are connected to each other to form a continuous path rail, and electrolytically peel off a metal adhering to a clamp in the same tank.

本発明の電解メッキ装置によれば、同一の電解槽内でクランプ給電による被メッキ体への電解メッキと、電解メッキ行程でクランプの給電接点部に付着した金属の電解剥離を同時並行的にできる。よって、本発明の電解メッキ装置は、槽形状を単純化でき、搬送機械及び搬送機器を単純化でき、剥離薬品液が不要で、装置の管理が容易である。しかも、電解メッキ行程と戻り行程(電解剥離行程)を周回移動するクランプの給電接点部は、電解剥離行程を通過した電解メッキ行程の始部位置では、常に付着金属が剥離された状態となるため、クランプ給電による電解メッキの品質を向上できる。   According to the electroplating apparatus of the present invention, the electroplating of the object to be plated by clamp feeding in the same electrolytic bath and the electrolytic peeling of the metal attached to the power feeding contact portion of the clamp in the electroplating process can be performed simultaneously. . Therefore, the electrolytic plating apparatus of the present invention can simplify the tank shape, simplify the transport machine and transport equipment, does not require a stripping chemical solution, and is easy to manage the apparatus. In addition, since the feeding contact portion of the clamp that moves around the electrolytic plating process and the return process (electrolytic peeling process) is always in a state where the attached metal is peeled off at the start position of the electrolytic plating process that has passed through the electrolytic peeling process. The quality of electrolytic plating by clamp power supply can be improved.

また、本発明(請求項3の発明)によれば、クランプの給電接点部をチタンで形成してあるため、メッキ行程ではチタンの給電接点部から被メッキ体へ陰極の電流を給電でき、戻り行程(電解剥離行程)においても陽極を構成するチタンの給電接点部それ自体は電解によって溶解されず、メッキ行程で給電接点部に付着した金属(例えば、銅メッキの場合は銅)のみを電解によって効率良く溶解し剥離できる。   Further, according to the present invention (invention of claim 3), since the feeding contact portion of the clamp is formed of titanium, in the plating process, the cathode current can be fed from the titanium feeding contact portion to the object to be plated, and the return Even in the process (electrolytic peeling process), the titanium power supply contact part itself constituting the anode is not melted by electrolysis, and only the metal (for example, copper in the case of copper plating) attached to the power supply contact part in the plating process is electrolyzed. Can dissolve and peel efficiently.

また、本発明(請求項4、5の発明)によれば、チタン製の給電接点部に白金又はイリジウムを被覆して形成したものであれば、給電接点部をチタンで形成した場合に比べ低い電圧(三分の一程度の電圧)でも同等の大きさの電流を供給できるため、メッキ行程では給電接点部から被メッキ体へ陰極の電流を効率良く給電でき、戻り行程(電解剥離行程)においても陽極を構成する給電接点部それ自体は電解によって溶解されず、メッキ行程で給電接点部に付着した金属(例えば、銅メッキの場合は銅)のみを電解によって更に効率良く溶解し剥離できる。   Further, according to the present invention (inventions of claims 4 and 5), if the power feeding contact portion made of titanium is coated with platinum or iridium, it is lower than the case where the power feeding contact portion is made of titanium. Since a current of the same magnitude can be supplied even with a voltage (about one third of the voltage), the cathode current can be supplied efficiently from the power supply contact point to the object to be plated in the plating process, and in the return process (electrolytic peeling process) However, the power supply contact portion itself constituting the anode is not melted by electrolysis, and only the metal (for example, copper in the case of copper plating) adhering to the power supply contact portion in the plating process can be dissolved and peeled more efficiently by electrolysis.

さらに、本発明(請求項6の発明)によれば、陽極の電流を給電された戻り行程(電解剥離行程)を移動するクランプは、反対の極性の電流を供給されているメッキ行程を移動するクランプから給電される陰極の被メッキ体を対極として、陽極を構成するクランプの給電接点部に付着された金属を電解によって溶解し剥離できるようにした。このように、対極としての陰極を電解メッキ行程と電解剥離行程で共有(兼用)しているため、戻り行程(電解剥離行程)で給電接点部から溶解剥離された溶解金属(例えば、溶解Cu)はメッキ行程を移動する被メッキ体に向け電解液中を移動し、メッキ行程を移動する被メッキ体に電着される。よって、戻り行程(電解剥離行程)でクランプの給電接点部から剥離された溶解金属(例えば、溶解Cu)を有効活用でき、電解メッキ及び電解剥離の効率を向上させることができる。これは、電解メッキ行程と電解剥離行程を同一の電解槽内で行うことに起因した大きなメリットである。   Furthermore, according to the present invention (the invention of claim 6), the clamp that moves the return stroke (electrolytic stripping stroke) fed with the anode current moves the plating stroke that is supplied with the current of the opposite polarity. Using the cathode to be plated fed from the clamp as a counter electrode, the metal attached to the feeding contact portion of the clamp constituting the anode can be dissolved and peeled off by electrolysis. Thus, since the cathode as the counter electrode is shared (shared) in the electrolytic plating process and the electrolytic stripping process, the molten metal (for example, dissolved Cu) that has been melted and stripped from the power supply contact portion in the return process (electrolytic stripping process) Moves in the electrolyte toward the object to be plated that moves in the plating process, and is electrodeposited on the object to be plated that moves in the plating process. Therefore, the molten metal (for example, molten Cu) peeled off from the power supply contact portion of the clamp in the return stroke (electrolytic peeling stroke) can be effectively used, and the efficiency of electrolytic plating and electrolytic peeling can be improved. This is a great advantage resulting from performing the electrolytic plating process and the electrolytic stripping process in the same electrolytic cell.

本装置の概略平面図である。It is a schematic plan view of this apparatus. 本装置の概略側面図である。It is a schematic side view of this apparatus. クランプの実施例を示す、(A)は側面図、(B)は正面図である。The Example of a clamp is shown, (A) is a side view, (B) is a front view. クランプの給電接点部の説明図である。It is explanatory drawing of the electric power feeding contact part of a clamp.

本発明の好ましい実施形態を図1〜図4に基づき説明する。図1,2の電解メッキ装置は、周回経路を複数のクランプ3が連続して移動するクランプ移動手段2をメッキ行程Aの被メッキ体P(例えばプリント配線基板)の搬送通路を間にした両側に設け、同一の電解槽1内の電解液W中を前記クランプ3の給電接点部4(図3,図4に示したように、この給電接点部4を除いたクランプ3の下部は電解液Wの液面の上まで絶縁体5で被覆してある。)がメッキ行程Aを移動した後に戻り行程Bを経て再び前記メッキ行程Aに入る周回経路Cを連続して移動するように構成し、メッキ行程Aを移動する前記クランプ3は、空中に配設され且つ陰極の電流を供給されたメッキ用給電レール6に沿って該クランプ3の上部が空中でスライド接触されながら移動し、前記メッキ用給電レール6から電解液W中の給電接点部4に陰極の電流を供給し、陰極の電流が供給された給電接点部4でメッキ処理される被メッキ体Pの左右両端部を掴持し、この給電接点部4で掴持され陰極の電流を給電された被メッキ体Pがメッキ行程Aの電解液W中に配設した上下対のメッキ用陽極(不溶性陽極)7(上部陽極7A、下部陽極7B)の間を一方向に水平搬送され、この搬送過程で上下対のメッキ用陽極(不溶性陽極)7から析出された金属を陰極の極性を給電された被メッキ体Pの表面に電着するものである。   A preferred embodiment of the present invention will be described with reference to FIGS. The electrolytic plating apparatus shown in FIGS. 1 and 2 has both sides of a clamp moving means 2 in which a plurality of clamps 3 continuously move along a circulation path, with a conveyance path of a plating object P (for example, a printed wiring board) in the plating process A in between. The power supply contact 4 of the clamp 3 is disposed in the electrolyte W in the same electrolytic cell 1 (as shown in FIGS. 3 and 4, the lower part of the clamp 3 excluding the power supply contact 4 is the electrolyte. Is covered with the insulator 5 over the liquid level of W.) After moving in the plating process A, the circuit moves continuously through the return path B, and then enters the plating process A again. The clamp 3 that moves in the plating step A moves along the plating power supply rail 6 that is disposed in the air and supplied with a cathode current, while the upper portion of the clamp 3 is in sliding contact in the air. From electrolyte rail 6 for electrolyte W A cathode current is supplied to the power supply contact portion 4, and the left and right ends of the object P to be plated are gripped by the power supply contact portion 4 to which the cathode current is supplied. An object between the upper and lower pairs of plating anodes (insoluble anodes) 7 (upper anode 7A, lower anode 7B) disposed in the electrolytic solution W in the plating process A is unidirectionally provided by the object P to which the cathode current is supplied. The metal which is horizontally transported and deposited from the upper and lower plating anodes (insoluble anodes) 7 in this transport process is electrodeposited on the surface of the object to be plated P to which the polarity of the cathode is fed.

前記クランプ移動手段2は、エンドレスに周回駆動される駆動チェーン8(図3を参照)に等間隔をおいて多数のクランプ3(図1ではクランプ3を周回経路Cの一部範囲のみで表示したが、周回経路Cの全範囲に亘り等間隔に取付けてある。)を取付けてある。駆動チェーン8は、スプロケット(図示せず。)に掛けられ、搬送駆動用モータ(図示せず。)によって一方のスプロケットを回転駆動させて、エンドレスに周回駆動されるように成っている。メッキ行程Aの搬送通路を間にした両側に設けたクランプ移動手段2,2は、同じ速度で周回駆動されるように成っている。このクランプ移動手段2,2による被メッキ体Pの搬送速度は、1分当たり0.5m〜2mとしてあり、被メッキ体Pのメッキ処理条件によって搬送速度を変更可能にしてある。   The clamp moving means 2 displays a large number of clamps 3 (in FIG. 1, the clamp 3 is shown only in a partial range of the circulation path C) at equal intervals to a drive chain 8 (see FIG. 3) driven endlessly. Are attached at equal intervals over the entire range of the circulation path C.). The drive chain 8 is hung on a sprocket (not shown), and one of the sprockets is rotationally driven by a conveyance drive motor (not shown) to be driven endlessly. The clamp moving means 2 and 2 provided on both sides of the conveying path of the plating process A are configured to be driven around at the same speed. The conveyance speed of the object P to be plated by the clamp moving means 2 and 2 is 0.5 m to 2 m per minute, and the conveyance speed can be changed depending on the plating process conditions of the object P to be plated.

図1は、被メッキ体(プリント配線基板)Pが板面を上下にした水平状態で左側から搬入駆動ローラなどの搬入手段で電解槽1に供給され、該電解槽1を水平状態で連続的に矢印の方向に搬送させて通過し、電解メッキ処理後に電解槽1から搬出駆動ローラなどの搬出手段で右方向へ搬出される、装置の概略平面図を示している。なお、水平状態の被メッキ体Pを電解槽1に搬入する横長の搬入口(図示せず。)、水平状態の被メッキ体Pを電解槽1から搬出する横長の搬出口(図示せず。)には、この搬入口と搬出口に対応する電解槽1の内側に上下のシールローラ(図示せず。)を水平に配設し、電解液Wが搬入口や搬出口から流出しないようにシールしている。   FIG. 1 shows that an object to be plated (printed wiring board) P is supplied to the electrolytic cell 1 from the left side by a loading means such as a loading drive roller in a horizontal state with the plate surface up and down, and the electrolytic cell 1 is continuously in a horizontal state. FIG. 2 shows a schematic plan view of the apparatus which is transported in the direction of the arrow and passed to the right from the electrolytic cell 1 by an unloading means such as an unloading drive roller after the electrolytic plating process. In addition, a horizontally long inlet (not shown) for carrying the object P to be plated in the horizontal state into the electrolytic cell 1 and a horizontally long outlet (not shown) for carrying out the object P to be plated in the horizontal state from the electrolytic cell 1. ), Upper and lower seal rollers (not shown) are horizontally disposed inside the electrolytic cell 1 corresponding to the carry-in port and the carry-out port so that the electrolyte W does not flow out from the carry-in port or the carry-out port. It is sealed.

図1,2に二点鎖線の枠で囲んで示した戻り行程(電解剥離行程)Bを移動するクランプ3は、空中に配設され且つ陽極の電流を供給された剥離用給電レール10に沿って該クランプ3の上部が空中でスライド接触されながら移動し、前記剥離用給電レール10から電解液W中の給電接点部4に陽極の電流を供給し、メッキ行程Aで給電接点部4に付着した析出金属を戻り行程(電解剥離行程)Bを移動する陽極のクランプ接点部4から電解によって溶解し剥離できるようにした。   A clamp 3 that moves in a return stroke (electrolytic stripping stroke) B surrounded by a two-dot chain line in FIGS. 1 and 2 is disposed in the air and is along the peeling power supply rail 10 that is supplied with an anode current. Thus, the upper part of the clamp 3 moves while being in sliding contact with the air, and the anode current is supplied from the peeling power supply rail 10 to the power supply contact part 4 in the electrolyte W, and adheres to the power supply contact part 4 in the plating process A. The deposited metal was dissolved and separated from the clamp contact portion 4 of the anode moving in the return stroke (electrolytic peeling stroke) B by electrolysis.

本発明では、前記クランプ3は、電解液W中に入れられる給電接点部4を含むクランプ下部の通電部の材質をチタンで形成したことを特徴とし、図3,図4に示したように、チタンの給電接点部4を除いたクランプ下部の通電部を絶縁体5で被覆(好ましくは、塩ビゾルコーティング処理)してある。よって、電解液W中に入れられたクランプ下部はチタンの給電接点部4のみ電解液Wと触れることになる。給電接点部4としては、チタン製の給電接点部に白金を塗布し被覆したものがさらに好ましく、チタン製の給電接点部にイリジウムを塗布し被覆したものがさらに好ましい。クランプ3の給電接点部4(掴持面)は、図4に示したように、クランプの移動方向に細長く形成し、メッキ処理される被メッキ体Pの側縁部を的確に掴持できるようにすると共に、被メッキ体Pのメッキ面を広く確保できるようにしてある。   In the present invention, the clamp 3 is characterized in that the material of the current-carrying part at the lower part of the clamp including the power feeding contact part 4 put in the electrolyte W is formed of titanium, as shown in FIGS. The current-carrying portion under the clamp excluding the titanium power supply contact portion 4 is coated with an insulator 5 (preferably, a PVC sol coating process). Therefore, the lower part of the clamp placed in the electrolytic solution W comes into contact with the electrolytic solution W only at the feeding contact portion 4 made of titanium. The feed contact portion 4 is more preferably a titanium feed contact portion coated with platinum and coated, and a titanium feed contact portion coated with iridium is more preferred. As shown in FIG. 4, the power supply contact portion 4 (grip surface) of the clamp 3 is formed in an elongated shape in the direction of movement of the clamp so that the side edge portion of the plating target P to be plated can be accurately grasped. In addition, a wide plating surface of the object to be plated P can be secured.

本発明ではクランプ3の給電接点部4をチタンで形成してあるため、メッキ行程Aではチタンの給電接点部4から被メッキ体Pへ陰極の電流を給電でき、戻り行程(電解剥離行程)Bにおいても陽極を構成するチタンの給電接点部4それ自体は電解によって溶解されず、メッキ行程Aで給電接点部4に付着した金属(例えば銅メッキの場合は銅)のみを電解によって効率良く溶解し剥離できる。   In the present invention, since the power supply contact portion 4 of the clamp 3 is formed of titanium, in the plating process A, the cathode current can be supplied from the titanium power supply contact portion 4 to the object to be plated P, and the return process (electrolytic peeling process) B However, the titanium feed contact portion 4 itself constituting the anode is not melted by electrolysis, but only the metal (for example, copper in the case of copper plating) attached to the feed contact portion 4 in the plating process A is efficiently dissolved by electrolysis. Can peel.

また、チタン製の給電接点部4に白金やイリジウムを被覆して形成したものであれば、給電接点部4をチタンで形成した場合に比べ低い電圧(三分の一程度の電圧)でも同等の大きさの電流を供給できるため、メッキ行程Aでは給電接点部4から被メッキ体Pへ陰極の電流を効率良く給電でき、戻り行程(電解剥離行程)Bにおいても陽極を構成する給電接点部4それ自体は電解によって溶解されず、メッキ行程Aで給電接点部4に付着した金属(例えば銅メッキの場合は銅)のみを電解によって更に効率良く溶解し剥離できる。   In addition, if the feed contact portion 4 made of titanium is formed by coating platinum or iridium, the voltage is equivalent to a lower voltage (about one third of the voltage) than when the feed contact portion 4 is formed of titanium. Since a large amount of current can be supplied, in the plating process A, the cathode current can be efficiently supplied from the power supply contact part 4 to the object to be plated P, and in the return process (electrolytic peeling process) B, the power supply contact part 4 constituting the anode. As such, it is not dissolved by electrolysis, and only the metal (for example, copper in the case of copper plating) adhering to the power supply contact portion 4 in the plating process A can be more efficiently dissolved and separated by electrolysis.

メッキ行程Aを移動するクランプ3は前記メッキ用給電レール6にガイドされスライド接触されながら移動し、戻り行程(電解剥離行程)Bを移動するクランプ3は前記剥離用給電レール10にガイドされスライド接触されながら反対方向に平行に移動する。メッキ用給電レール6は、断面矩形状の導電金属材から成り、メッキ行程における被メッキ体の搬送方向で分離した複数本(図1の実施例では、二等分した2本のレール6A,6Bとしたが、これに限定されないことは勿論である。)の給電レールで形成した。分離した給電レール6の分離幅はクランプがレールに沿ってスムーズに移動するのに支障のないものとしてある。なお、このメッキ用給電レール6はメッキ行程Aの全範囲にわたって直線状に延ばした1本のレールで形成しても良い。剥離用給電レール10はメッキ用給電レール6と同形な断面矩形状の導電金属材から成り、図1に二点鎖線の枠で囲んだ直線の戻り行程(電解剥離行程)Bの全範囲にわたって延ばして固定的に設けてある。図1に示したように、平行な前記メッキ用給電レール6と前記剥離用給電レール10は半環状の樹脂製の絶縁レール11を介して電気的には接続されない状態で連結され、前記メッキ用給電レール6と前記剥離用給電レール10と前記絶縁レール11で連続する周回経路レールを構成してある。半環状の樹脂製の絶縁レール11はクランプの旋回移動を助けるため前記給電レール6,10に比べ幅の狭い断面矩形状にしてある。   The clamp 3 that moves in the plating process A moves while being guided and slid by the plating power supply rail 6, and the clamp 3 that moves in the return process (electrolytic separation process) B is guided and slid by the power supply rail 10 for separation. In parallel, it moves parallel to the opposite direction. The feeding rail 6 for plating is made of a conductive metal material having a rectangular cross section, and a plurality of rails 6A and 6B divided in two in the embodiment shown in FIG. However, the present invention is not limited to this.). The separation width of the separated power supply rail 6 is set so as not to hinder the clamp from moving smoothly along the rail. The plating power supply rail 6 may be formed by a single rail extending linearly over the entire range of the plating process A. The peeling power supply rail 10 is made of a conductive metal material having a rectangular cross section similar to the plating power supply rail 6 and extends over the entire range of the straight return stroke (electrolytic peeling stroke) B surrounded by a two-dot chain line in FIG. And fixedly provided. As shown in FIG. 1, the parallel feeding rail 6 for plating and the feeding rail 10 for peeling are connected in a state where they are not electrically connected via a semi-annular resin insulating rail 11, The power supply rail 6, the separation power supply rail 10, and the insulating rail 11 form a continuous path rail. The semi-annular resin-made insulating rails 11 have a rectangular cross section that is narrower than the power supply rails 6 and 10 in order to assist the pivot movement of the clamps.

前記メッキ用陽極(不溶性陽極)7は、板状(ラス板などの有孔板状を含む)の不溶性の陽極(上部陽極7A、下部陽極7B)を用いている。板状の不溶性陽極(上部陽極7A、下部陽極7B)は、それぞれ複数の単位から構成され、複数の板状の上部陽極7Aと下部陽極7Bは、電解液Wの液中を水平搬送される板状の被メッキ体Pの水平な搬送通過面の上下位置に該被メッキ体Pの板面と平行に配設され、かつ該被メッキ体Pの搬送方向に一定の間隔を空けて並べて配設されている。図1ではメッキ用陽極(不溶性陽極)を一部のみ示したが、メッキ行程Aの全範囲にわたって配設してある。   The plating anode (insoluble anode) 7 is a plate-like (including a perforated plate such as a lath plate) insoluble anode (upper anode 7A, lower anode 7B). The plate-like insoluble anodes (upper anode 7A and lower anode 7B) are each composed of a plurality of units, and the plurality of plate-like upper anodes 7A and lower anodes 7B are horizontally transported in the electrolyte solution W. Are arranged in parallel with the plate surface of the object to be plated P and arranged side by side at a certain interval in the conveying direction of the object to be plated P. Has been. Although only a part of the plating anode (insoluble anode) is shown in FIG. 1, it is arranged over the entire range of the plating process A.

図2に示したように、メッキ用整流器(供給電源)12の負極(マイナス電極)とメッキ用給電レール6を電気的に接続し、このメッキ用整流器(供給電源)12の正極(プラス電極)とメッキ用陽極(不溶性陽極)7をそれぞれ電気的に接続し、このメッキ用給電レール6にスライド接触されながらメッキ行程Aを移動するクランプ3(被メッキ体P)に陰極の電流を供給し、剥離用整流器(供給電源)13の正極(プラス電極)と前記剥離用給電レール10を電気的に接続し、この剥離用整流器13の負極(マイナス電極)とメッキ用給電レール6を電気的に接続し、この剥離用給電レール10にスライド接触されながら戻り行程(電解剥離行程)Bを移動するクランプに陽極の電流を供給、陽極の電流を給電された戻り行程(電解剥離行程)Bを移動するクランプ3は、反対の極性の電流を供給されているメッキ行程Aを移動するクランプ3から給電される陰極の被メッキ体Pを対極として、陽極を構成するクランプ3の給電接点部4に付着された金属を電解によって溶解し剥離できるようにした。   As shown in FIG. 2, the negative electrode (negative electrode) of the plating rectifier (supply power source) 12 and the feeding rail 6 for plating are electrically connected, and the positive electrode (positive electrode) of the plating rectifier (supply power source) 12. And a plating anode (insoluble anode) 7 are electrically connected to each other, and a cathode current is supplied to a clamp 3 (a body to be plated P) that moves in the plating process A while being in sliding contact with the plating power supply rail 6. The positive electrode (plus electrode) of the peeling rectifier (power supply) 13 and the peeling power supply rail 10 are electrically connected, and the negative electrode (negative electrode) of the peeling rectifier 13 and the plating power supply rail 6 are electrically connected. Then, the anode current is supplied to the clamp that moves in the return stroke (electrolytic peeling stroke) B while being in sliding contact with the peeling power supply rail 10, and the return stroke (electrolytic peeling is supplied with the anode current). The clamp 3 that moves B) is fed by the clamp 3 that constitutes the anode, with the negative electrode P being fed from the clamp 3 that moves the plating process A being supplied with the current of the opposite polarity. The metal adhering to the contact portion 4 was dissolved and peeled off by electrolysis.

図1の実施例では、分離したメッキ用給電レール6A,6B(図1では、左右2本ずつ合計4本)に対応させてメッキ用整流器(供給電源)12(12A,12B,12C,12D)をそれぞれ配設し、前記メッキ用陽極(不溶性陽極)7をメッキ行程Aにおける被メッキ体Pの搬送方向に一定の間隔を空け複数並べて配設してある。図1、図2に示したように、各メッキ用整流器(供給電源)12(12A,12B,12C,12D)の負極(マイナス電極)と対応する各メッキ用給電レール6(6A,6B)をそれぞれ電気的に接続し、この各メッキ用整流器(供給電源)12(12A,12B,12C,12D)の正極(プラス電極)と対応する各メッキ用給電レール6(6A,6B)の近くに配設した各メッキ用陽極(不溶性陽極)7をそれぞれ電気的に接続し、このメッキ用給電レール6にスライド接触されながらメッキ行程Aを移動するクランプ3(被メッキ体P)に陰極の電流を供給し、剥離用整流器(供給電源)13の正極(プラス電極)と前記剥離用給電レール10を電気的に接続し、この剥離用整流器13の負極(マイナス電極)と各メッキ用給電レール6(6A,6B)をそれぞれ電気的に接続し、この剥離用給電レール10にスライド接触されながら戻り行程(電解剥離行程)Bを移動するクランプに陽極の電流を供給、陽極の電流を給電された戻り行程(電解剥離行程)Bを移動するクランプ3は、反対の極性の電流を供給されているメッキ行程Aを移動するクランプ3から給電される陰極の被メッキ体Pを対極として、陽極を構成するクランプ3の給電接点部4に付着された金属を電解によって溶解し剥離できるようにした。   In the embodiment shown in FIG. 1, plating rectifiers (supply power sources) 12 (12A, 12B, 12C, 12D) corresponding to the separated plating power supply rails 6A, 6B (four in total in FIG. A plurality of the above-mentioned plating anodes (insoluble anodes) 7 are arranged side by side at a predetermined interval in the conveying direction of the object to be plated P in the plating process A. As shown in FIGS. 1 and 2, each plating power supply rail 6 (6A, 6B) corresponding to the negative electrode (minus electrode) of each plating rectifier (power supply) 12 (12A, 12B, 12C, 12D) is connected. They are electrically connected to each other, and are arranged in the vicinity of the plating power supply rails 6 (6A, 6B) corresponding to the positive electrodes (positive electrodes) of the plating rectifiers (supply power supplies) 12 (12A, 12B, 12C, 12D). Each of the provided plating anodes (insoluble anodes) 7 is electrically connected, and the cathode current is supplied to the clamp 3 (the object to be plated P) that moves in the plating process A while being in sliding contact with the plating power supply rail 6. Then, the positive electrode (plus electrode) of the stripping rectifier (supply power source) 13 and the stripping power supply rail 10 are electrically connected, and the negative electrode (negative electrode) of the stripping rectifier 13 and each plating feed rail are connected. 6 (6A, 6B) are electrically connected to each other, and the anode current is supplied to the clamp that moves in the return stroke (electrolytic peeling stroke) B while being in sliding contact with the peeling feeding rail 10, and the anode current is fed. The clamp 3 that moves in the return stroke (electrolytic separation stroke) B uses the cathode to be plated P fed from the clamp 3 that moves in the plating stroke A to which the current of the opposite polarity is supplied as a counter electrode, The metal adhering to the power feed contact portion 4 of the constituting clamp 3 was dissolved and peeled off by electrolysis.

このように、対極としての陰極を電解メッキ行程Aと電解剥離行程Bで共有(兼用)しているため、戻り行程(電解剥離行程)Bで給電接点部4から溶解剥離された溶解金属(例えば、溶解Cu)はメッキ行程Aを移動する被メッキ体Pに向け電解液中を矢印Fのように移動し、メッキ行程Aを移動する被メッキ体Pに電着される。よって、戻り行程(電解剥離行程)Bでクランプ3の給電接点部4から剥離された溶解金属(例えば、溶解Cu)を有効活用でき、電解メッキ及び電解剥離の効率を向上させることができる。これは、電解メッキ行程Aと電解剥離行程Bを同一の電解槽1内で行うことに起因した大きなメリットである。   As described above, since the cathode as the counter electrode is shared (shared) by the electrolytic plating process A and the electrolytic stripping process B, the dissolved metal (for example, melted and stripped from the feeding contact portion 4 in the return process (electrolytic stripping process) B) (for example, , Dissolved Cu) moves in the electrolyte as indicated by arrow F toward the object P to be moved in the plating process A, and is electrodeposited on the object P to be moved in the plating process A. Therefore, the molten metal (for example, molten Cu) peeled off from the power supply contact portion 4 of the clamp 3 in the return stroke (electrolytic peeling stroke) B can be effectively used, and the efficiency of electrolytic plating and electrolytic peeling can be improved. This is a great merit resulting from performing the electrolytic plating step A and the electrolytic stripping step B in the same electrolytic cell 1.

また、図1の実施例では、分離したメッキ用給電レール6A,6B(図1では、左右2本ずつ合計4本)に対応させてメッキ用整流器(供給電源)12(12A,12B,12C,12D)をそれぞれ配設してあるため、メッキ行程Aを搬送されながら電解メッキされる被メッキ体Pの電解メッキの均一化を図ることができる。   Further, in the embodiment of FIG. 1, the plating rectifiers (supply power sources) 12 (12A, 12B, 12C, 12D) are arranged, it is possible to make the electroplating of the body P to be electroplated while being transported through the plating process A uniform.

前記クランプ3は、図2にその概略構成を示し、図3及び図4に詳細な実施例を示したように、上方部分が空中で電流を給電され、下方部分が電解槽1の電解液Wの液中を移動可能な位置に配される上下方向に長い構造を有し、下端部に板状の被メッキ体Pの端部を上下方向において掴持及び開放する給電接点部4(上接点部4bと下接点部4a)を備えている。この給電接点部4を除く通電材から成るクランプ3の電解液中での接触部分は前述したように絶縁体5で被覆処理してある。図2,3に示したクランプ3は、エンドレスに周回駆動される駆動チェーン8に取付けられる共に前記メッキ用給電レール6又は前記剥離用給電レール10にスライド係合されるスライド係合部14を持つ固定側クランプ杆15(この固定側クランプ杆15の下端部に下接点部4aを形成してある。)と、この固定側クランプ杆15に上下動自在に保持される可動側クランプ杆16を備え、この可動側クランプ杆16の下端部に形成した上接点部4bは、圧縮バネ17のバネ圧によって下動され、常態において給電接点部4(上接点部4bと下接点部4a)を上下方向に閉じた状態に制御してある。メッキ行程Aの始部位置と終部位置におけるクランプ移動経路に高低差のあるクランプ開閉ガイド18を配設し、クランプ3がクランプ開閉ガイド18の位置を通過する際に、クランプ3の上方部分に設けたクランプ開閉制御手段19がクランプ開閉ガイド18の高位ガイド面部に係合され、前記圧縮バネ17のバネ圧に抗して前記可動側クランプ杆16の上接点部4bを固定側クランプ杆15の下接点部4aから離間されるように上動させ、給電接点部4を上下方向に離間させた開状態に制御できるようにしてある。これによって、メッキ行程Aの始部を通過するクランプ3を開状態から被メッキ体Pの側端部を掴持可能な閉状態に制御し、メッキ行程Aの終部を通過するクランプ3を閉状態から被メッキ体Pの側端部を開放可能な開状態に制御できるようにしている。   The clamp 3 is schematically shown in FIG. 2, and as shown in FIGS. 3 and 4 in detail, the upper portion is supplied with current in the air and the lower portion is the electrolyte W in the electrolytic cell 1. The power supply contact portion 4 (upper contact) has a vertically long structure arranged at a position where it can move in the liquid, and grips and releases the end portion of the plate-like object P in the vertical direction at the lower end portion. Part 4b and lower contact part 4a). The contact portion in the electrolyte of the clamp 3 made of a current-carrying material excluding the feeding contact portion 4 is coated with the insulator 5 as described above. The clamp 3 shown in FIGS. 2 and 3 is attached to a drive chain 8 that is driven endlessly and has a slide engagement portion 14 that is slidably engaged with the plating power supply rail 6 or the peeling power supply rail 10. A fixed-side clamp rod 15 (the lower contact portion 4a is formed at the lower end of the fixed-side clamp rod 15) and a movable-side clamp rod 16 that is held by the fixed-side clamp rod 15 so as to be movable up and down are provided. The upper contact portion 4b formed at the lower end portion of the movable clamp rod 16 is moved downward by the spring pressure of the compression spring 17, and the power supply contact portion 4 (upper contact portion 4b and lower contact portion 4a) is moved vertically in the normal state. The closed state is controlled. A clamp opening / closing guide 18 having a height difference is disposed in the clamp movement path at the start position and the end position of the plating process A, and when the clamp 3 passes the position of the clamp opening / closing guide 18, The provided clamp opening / closing control means 19 is engaged with the higher guide surface portion of the clamp opening / closing guide 18, and the upper contact portion 4 b of the movable clamp rod 16 is moved against the spring pressure of the compression spring 17. The power supply contact portion 4 is moved up so as to be separated from the lower contact portion 4a, and can be controlled to an open state in which the power supply contact portion 4 is separated in the vertical direction. As a result, the clamp 3 passing through the beginning of the plating process A is controlled from the open state to the closed state in which the side end of the object P can be gripped, and the clamp 3 passing through the end of the plating process A is closed. From the state, the side end portion of the object to be plated P can be controlled to be openable.

電解剥離の全行程に前記したクランプ開閉ガイド18を直線状に延ばして配設し、図2に示したように、戻り行程(電解剥離行程)Bを移動するクランプ3の給電接点部4は電解剥離の全行程で上下接点部4a,4bを上下方向に離間させた開状態となるようにしてある。戻り行程(電解剥離行程)Bにおいて給電接点部4の上下接点部4a,4bを離間させたことによって、給電接点部4に付着した金属の電解剥離を促進できる。   The above-described clamp opening / closing guide 18 is disposed so as to extend linearly throughout the entire process of electrolytic stripping. As shown in FIG. 2, the feed contact portion 4 of the clamp 3 that moves in the return stroke (electrolytic stripping process) B is electrolyzed. In the entire peeling process, the upper and lower contact portions 4a and 4b are opened in the vertical direction. By separating the upper and lower contact portions 4a and 4b of the power supply contact portion 4 in the return stroke (electrolytic separation step) B, the electrolytic separation of the metal attached to the power supply contact portion 4 can be promoted.

図3に示したように、前記クランプ開閉制御手段19は、略L字型の反転レバー20の屈曲部を支点部として固定側(この実施例では前記スライド係合部14の外側面)に支点軸21によって反転自在に軸着し、この反転レバー20の下方アーム部20bの先端を可動側クランプ杆16の上部にピン軸を介して回動自在に連結し、反転レバー20の上方アーム部20aの先端に回転ローラ22を取付けて構成し、この回転ローラ22がクランプ3の周回経路に沿うクランプ開位置に設けたクランプ開閉ガイド18の上面部に沿って転動する係合状態において、上方アーム部20aが前記支点軸21を軸心として上方向に反転し、下方アーム部20bに連結された可動側クランプ杆16を圧縮バネ17のバネ圧に抗して上動させ、可動側クランプ杆16の上接点部4bと固定側クランプ杆15の下接点部4aを上下方向に離間させた開状態に制御できるように構成してある。   As shown in FIG. 3, the clamp opening / closing control means 19 has a bent portion of a substantially L-shaped reversing lever 20 as a fulcrum portion, which is a fulcrum on the fixed side (in this embodiment, the outer surface of the slide engagement portion 14). The shaft 21 is pivotably attached to the shaft 21, the tip of the lower arm portion 20 b of the reversing lever 20 is rotatably connected to the upper portion of the movable clamp rod 16 via a pin shaft, and the upper arm portion 20 a of the reversing lever 20. In the engaged state in which the rotating roller 22 rolls along the upper surface portion of the clamp opening / closing guide 18 provided at the clamp opening position along the circulation path of the clamp 3, the upper arm is mounted. The portion 20a reverses upward with the fulcrum shaft 21 as an axis, and the movable side clamp rod 16 connected to the lower arm portion 20b is moved up against the spring pressure of the compression spring 17 to move the movable side clamp It is configured to be able to control the contact portion 4b on the rod 16 the lower contact portion 4a of the fixed clamp rod 15 to the open state of being spaced apart in the vertical direction.

1 電解槽
W 電解液
P 被メッキ体(プリント配線基板)
A メッキ行程
B 戻り行程(電解剥離行程)
2 クランプ移動手段
3 クランプ
4 クランプの給電接点部
5 クランプの絶縁体
6 メッキ用給電レール
7 メッキ用陽極(不溶性陽極)
10 剥離用給電レール
11 絶縁レール
12 メッキ用整流器
13 剥離用整流器
1 Electrolytic tank W Electrolyte P Plating body (printed wiring board)
A plating process B return process (electrolytic peeling process)
2 Clamp Moving Means 3 Clamp 4 Clamp Feed Contact 5 Clamp Insulator 6 Plating Feed Rail 7 Plating Anode (Insoluble Anode)
DESCRIPTION OF SYMBOLS 10 Feeding rail for peeling 11 Insulating rail 12 Rectifier for plating 13 Rectifier for peeling

Claims (7)

周回経路を複数のクランプが連続して移動するクランプ移動手段を設け、同一の電解槽内の電解液中を前記クランプの給電接点部がメッキ行程を移動した後に戻り行程を経て再び前記メッキ行程に入る周回経路を連続して移動するように構成し、メッキ行程を移動する前記クランプは、空中に配設され且つ陰極の電流を供給されたメッキ用給電レールに該クランプの上部が空中で接触されながら移動し、前記メッキ用給電レールから電解液中の給電接点部に陰極の電流を供給し、陰極の電流が供給された給電接点部でメッキ処理される被メッキ体の端部を掴持し、この給電接点部で掴持され陰極の電流を給電された被メッキ体がメッキ行程の電解液中に配設した対のメッキ用陽極の間を一方向に搬送され、この搬送過程でメッキ用陽極から析出された金属を陰極の極性が給電された被メッキ体の表面に電着する電解メッキ装置であり、戻り行程を移動する前記クランプは、空中に配設され且つ陽極の電流を供給された剥離用給電レールに該クランプの上部が空中で接触されながら移動し、前記剥離用給電レールから電解液中の給電接点部に陽極の電流を供給し、メッキ行程で給電接点部に付着した析出金属を戻り行程を移動する陽極の給電接点部から電解によって溶解し剥離できるようにした、同一槽内でクランプ付着金属を電解剥離するクランプ給電による電解メッキ装置。   A clamp moving means for continuously moving a plurality of clamps through a circulation path is provided, and after the feeding contact portion of the clamp moves through the plating process in the electrolytic solution in the same electrolytic cell, it returns to the plating process again through a return process. The clamp that moves around the plating path is configured to move continuously in the circulation path to enter, and the upper part of the clamp is contacted in the air with the feeding rail for plating that is disposed in the air and supplied with the cathode current. The cathode current is supplied from the power supply rail for plating to the power supply contact portion in the electrolyte, and the end of the object to be plated is gripped by the power supply contact portion supplied with the cathode current. The object to be plated, which is held by the power supply contact portion and supplied with the cathode current, is transported in one direction between the pair of plating anodes disposed in the electrolyte during the plating process. Deposit from anode Is an electroplating apparatus for electrodepositing the applied metal on the surface of the object to be plated with the polarity of the cathode fed, and the clamp for moving the return stroke is disposed in the air and is supplied with anode current The upper part of the clamp moves in contact with the power supply rail in the air, the anode current is supplied from the peeling power supply rail to the power supply contact part in the electrolyte, and the deposited metal attached to the power supply contact part in the plating process is returned. An electroplating apparatus by clamp power feeding that electrolytically peels off the metal adhering to the clamp in the same tank so that it can be dissolved and peeled off by electrolysis from the power feeding contact portion of the anode moving in the process. 周回経路を複数のクランプが連続して移動するクランプ移動手段をメッキ行程の被メッキ体の搬送通路を間にした両側に設け、同一の電解槽内の電解液中を前記クランプの給電接点部がメッキ行程を移動した後に戻り行程を経て再び前記メッキ行程に入る周回経路を連続して移動するように構成し、メッキ行程を移動する前記クランプは、空中に配設され且つ陰極の電流を供給されたメッキ用給電レールに該クランプの上部が空中で接触されながら移動し、前記メッキ用給電レールから電解液中の給電接点部に陰極の電流を供給し、陰極の電流が供給された給電接点部でメッキ処理される被メッキ体の左右両端部を掴持し、この給電接点部で掴持され陰極の電流を給電された被メッキ体がメッキ行程の電解液中に配設した上下対のメッキ用陽極の間を一方向に水平搬送され、この搬送過程でメッキ用陽極から析出された金属を陰極の極性が給電された被メッキ体の表面に電着する電解メッキ装置であり、戻り行程を移動する前記クランプは、空中に配設され且つ陽極の電流を供給された剥離用給電レールに該クランプの上部が空中で接触されながら移動し、前記剥離用給電レールから電解液中の給電接点部に陽極の電流を供給し、メッキ行程で給電接点部に付着した析出金属を戻り行程を移動する陽極の給電接点部から電解によって溶解し剥離できるようにした、同一槽内でクランプ付着金属を電解剥離するクランプ給電による電解メッキ装置。   Clamp moving means for continuously moving a plurality of clamps in the circulation path are provided on both sides of the plating path for the object to be plated in the plating process. After moving the plating process, it is configured to continuously move the circuit path that enters the plating process again through the return process, and the clamp that moves the plating process is disposed in the air and supplied with the cathode current. The upper part of the clamp is moved in contact with the plating power supply rail in the air, the cathode current is supplied from the plating power supply rail to the power supply contact portion in the electrolyte, and the cathode current is supplied. The left and right ends of the object to be plated are gripped, and a pair of upper and lower plates are disposed in the electrolytic solution during the plating process by the object to be plated which is gripped by the power supply contact part and fed with the cathode current. Yang This is an electroplating apparatus that electrodeposits the metal deposited from the plating anode in this transport process in one direction onto the surface of the object to be plated, to which the polarity of the cathode is fed, and moves in the return stroke. The clamp moves while the upper part of the clamp is in air contact with the peeling power supply rail that is disposed in the air and supplied with the anode current, and the anode moves from the peeling power supply rail to the power supply contact portion in the electrolyte. In this way, the deposited metal attached to the power supply contact part during the plating process can be dissolved and peeled off by electrolysis from the power supply contact part of the anode moving in the return process. Electroplating equipment with clamp feeding. 前記クランプは、電解液中に入れられる給電接点部を含むクランプ下部の通電部の材質をチタンで形成し、該クランプのチタンの給電接点部を除いたクランプ下部の通電部を絶縁体で被覆して構成し、該クランプの給電接点部をチタンで形成した、請求項1又は2に記載の同一槽内でクランプ付着金属を電解剥離するクランプ給電による電解メッキ装置。   The clamp is made of titanium as the material of the current-carrying part under the clamp including the power supply contact part to be put in the electrolyte, and the current-carrying part under the clamp except for the titanium power supply contact part is covered with an insulator. The electroplating apparatus by clamp electric power feeding which carries out the electrolytic peeling of the metal adhering to a clamp in the same tank of Claim 1 or 2 which comprised it, and formed the feed contact part of this clamp with the titanium. 前記クランプは、電解液中に入れられる給電接点部を含むクランプ下部の通電部の材質をチタンで形成し、該クランプのチタンの給電接点部を除いたクランプ下部の通電部を絶縁体で被覆して構成し、このクランプのチタンの給電接点部に白金を被覆し、この白金を給電接点部とした、請求項1又は2に記載の同一槽内でクランプ付着金属を電解剥離するクランプ給電による電解メッキ装置。   The clamp is made of titanium as the material of the current-carrying part under the clamp including the power supply contact part to be put in the electrolyte, and the current-carrying part under the clamp except for the titanium power supply contact part is covered with an insulator. 3. Electrolysis by clamp power supply for electrolytically peeling the clamp adhering metal in the same tank according to claim 1 or 2, wherein the titanium power supply contact part of the clamp is coated with platinum and the platinum is used as the power supply contact part. Plating equipment. 前記クランプは、電解液中に入れられる給電接点部を含むクランプ下部の通電部の材質をチタンで形成し、該クランプのチタンの給電接点部を除いたクランプ下部の通電部を絶縁体で被覆して構成し、このクランプのチタンの給電接点部にイリジウムを被覆し、このイリジウムを給電接点部とした、請求項1又は2に記載の同一槽内でクランプ付着金属を電解剥離するクランプ給電による電解メッキ装置。   The clamp is made of titanium as the material of the current-carrying part under the clamp including the power supply contact part to be put in the electrolyte, and the current-carrying part under the clamp except for the titanium power supply contact part is covered with an insulator. 3. Electrolysis by clamp power feeding in which the metal attached to the clamp is electrolytically peeled off in the same tank according to claim 1 or 2, wherein the titanium feeding contact portion of the clamp is coated with iridium and the iridium is used as the feeding contact portion. Plating equipment. メッキ用整流器の正極と不溶性陽極から成る前記メッキ用陽極を電気的に接続し、このメッキ用整流器の負極と前記メッキ用給電レールを電気的に接続し、このメッキ用給電レールに接触されながらメッキ行程を移動するクランプに陰極の電流を供給し、剥離用整流器の正極と前記剥離用給電レールを電気的に接続し、この剥離用整流器の負極と前記メッキ用給電レールを電気的に接続し、この剥離用給電レールに接触されながら戻り行程を移動するクランプに陽極の電流を供給し、陽極の電流を給電された戻り行程を移動するクランプは、反対の極性の電流を供給されているメッキ行程を移動するクランプから給電される陰極の被メッキ体を対極として、陽極を構成するクランプの給電接点部に付着された金属を電解によって溶解し剥離できるようにした、請求項1又は2に記載の同一槽内でクランプ付着金属を電解剥離するクランプ給電による電解メッキ装置。   The plating rectifier positive electrode and the plating anode composed of an insoluble anode are electrically connected, the plating rectifier negative electrode and the plating power supply rail are electrically connected, and the plating rectifier is plated while being in contact with the plating power supply rail. Supply the cathode current to the clamp that moves the stroke, electrically connect the positive electrode of the stripping rectifier and the power supply rail for stripping, electrically connect the negative electrode of the stripping rectifier and the power supply rail for plating, An anode current is supplied to the clamp that moves in the return stroke while being in contact with the peeling power supply rail, and the clamp that moves in the return stroke that is fed with the anode current is supplied with a current of the opposite polarity. The metal attached to the power supply contact part of the clamp that constitutes the anode is dissolved by electrolysis using the cathode to be plated fed from the clamp moving as a counter electrode. Was so that, electrolytic plating apparatus by the clamp feed for electrolytic stripping clamp deposit metal in the same vessel according to claim 1 or 2. メッキ行程を移動する前記クランプは前記メッキ用給電レールにガイドされスライド接触されながら移動し、戻り行程を移動するクランプは前記剥離用給電レールにガイドされスライド接触されながら反対方向に平行に移動し、前記メッキ用給電レールと前記剥離用給電レールが樹脂製の絶縁レールを介して電気的に接続されない状態で連結され、前記メッキ用給電レールと前記剥離用給電レールと前記絶縁レールで連続する周回経路レールを構成した、請求項1又は2に記載の同一槽内でクランプ付着金属を電解剥離するクランプ給電による電解メッキ装置。   The clamp that moves in the plating process moves while being guided and slid by the power supply rail for plating, and the clamp that moves in the return process moves in parallel in the opposite direction while being guided and slid by the power supply rail for peeling, The plating power supply rail and the peeling power supply rail are connected in a state where they are not electrically connected via a resin-made insulating rail, and the circulation path is continuous with the plating power supply rail, the peeling power supply rail, and the insulating rail. The electroplating apparatus by the clamp electric power feeding which carries out the electrolytic peeling of the metal adhering clamp in the same tank of Claim 1 or 2 which comprised the rail.
JP2014127371A 2014-06-20 2014-06-20 Electrolytic plating equipment with clamp power supply for electrolytic peeling of clamp-attached metal Expired - Fee Related JP6162079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014127371A JP6162079B2 (en) 2014-06-20 2014-06-20 Electrolytic plating equipment with clamp power supply for electrolytic peeling of clamp-attached metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014127371A JP6162079B2 (en) 2014-06-20 2014-06-20 Electrolytic plating equipment with clamp power supply for electrolytic peeling of clamp-attached metal

Publications (2)

Publication Number Publication Date
JP2016006216A true JP2016006216A (en) 2016-01-14
JP6162079B2 JP6162079B2 (en) 2017-07-12

Family

ID=55224790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014127371A Expired - Fee Related JP6162079B2 (en) 2014-06-20 2014-06-20 Electrolytic plating equipment with clamp power supply for electrolytic peeling of clamp-attached metal

Country Status (1)

Country Link
JP (1) JP6162079B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112210814A (en) * 2019-07-10 2021-01-12 丸仲工业株式会社 Horizontal circulating continuous moving type plating device for clamps

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6376898A (en) * 1986-07-19 1988-04-07 シエ−リング・アクチエンゲゼルシヤフト Apparatus for electrolytic treatment of plate body
JPH10513504A (en) * 1995-02-11 1998-12-22 アトーテヒ ドイッチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and apparatus for electroplating plate-shaped processing material in a horizontal continuous installation
JP2002523626A (en) * 1998-08-19 2002-07-30 アトーテヒ ドイッチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Contact element
JP2013249527A (en) * 2012-06-04 2013-12-12 Marunaka Kogyo Kk Horizontal continuous plating treatment apparatus with clamp conveyance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6376898A (en) * 1986-07-19 1988-04-07 シエ−リング・アクチエンゲゼルシヤフト Apparatus for electrolytic treatment of plate body
JPH10513504A (en) * 1995-02-11 1998-12-22 アトーテヒ ドイッチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and apparatus for electroplating plate-shaped processing material in a horizontal continuous installation
JP2002523626A (en) * 1998-08-19 2002-07-30 アトーテヒ ドイッチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Contact element
JP2013249527A (en) * 2012-06-04 2013-12-12 Marunaka Kogyo Kk Horizontal continuous plating treatment apparatus with clamp conveyance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112210814A (en) * 2019-07-10 2021-01-12 丸仲工业株式会社 Horizontal circulating continuous moving type plating device for clamps

Also Published As

Publication number Publication date
JP6162079B2 (en) 2017-07-12

Similar Documents

Publication Publication Date Title
CA1329792C (en) Device for the electrolytic treatment of board-shaped objects
WO2018000779A1 (en) Electroplating clamp conductive-type reel-to-reel vertical continuous electroplating device
TWI586848B (en) Method and apparatus for electrolytically depositing a deposition metal on a workpiece
CN102084036B (en) Stripping apparatus and method for removing electrodeposited metal layer from cathode plate
KR20210007802A (en) Clamp horizontal cycle continuous movable plating apparatus
US7767065B2 (en) Device and method for electrolytically treating an at least superficially electrically conducting work piece
CN1267341A (en) Device and method for evening out thickness of metal layers on electrical contact points on items that are to be treated
JP6038492B2 (en) Horizontal continuous plating equipment by clamp conveyance
CN112663119A (en) Device and method for preventing conductive roller from being plated with copper
JP6162079B2 (en) Electrolytic plating equipment with clamp power supply for electrolytic peeling of clamp-attached metal
CN213977940U (en) Auxiliary groove for preventing copper plating of conductive roller at lower side of coating film
JP5805055B2 (en) Horizontal conveyance type electroplating equipment
KR20070077870A (en) Apparatus for perpendicular type coating and method thereof
US8715481B2 (en) Apparatus and method for electroplating
KR101943403B1 (en) Roll-to-roll electroplating equipment with plating peeling function for clamp
KR20190140811A (en) Roll-to-roll electroplating equipment with plating peeling function for clamp
KR20180089731A (en) Horizontal plating line and the plating method using the same
JP2013091821A (en) Plating apparatus
TW201809368A (en) Suction plating apparatus
USRE28174E (en) Apparatus for liquid treatment of flat materials
CN116971019A (en) Automatic deplating device for electroplated cathode contact and continuous electroplating operation method
JPH1060684A (en) Spray electroplating method
KR20020064483A (en) Continuous horizontal plating line with roller type cathodes
KR19980014625A (en) Two-stage electroplating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170614

R150 Certificate of patent or registration of utility model

Ref document number: 6162079

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees