JP2016001217A - Base material with antireflection film and coating liquid for forming antireflection film - Google Patents

Base material with antireflection film and coating liquid for forming antireflection film Download PDF

Info

Publication number
JP2016001217A
JP2016001217A JP2014120437A JP2014120437A JP2016001217A JP 2016001217 A JP2016001217 A JP 2016001217A JP 2014120437 A JP2014120437 A JP 2014120437A JP 2014120437 A JP2014120437 A JP 2014120437A JP 2016001217 A JP2016001217 A JP 2016001217A
Authority
JP
Japan
Prior art keywords
film
antireflection film
fine particles
silica
hard coat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014120437A
Other languages
Japanese (ja)
Other versions
JP2016001217A5 (en
JP6450531B2 (en
Inventor
夕子 箱嶋
Yuko Hakojima
夕子 箱嶋
政幸 松田
Masayuki Matsuda
政幸 松田
良 村口
Makoto Muraguchi
良 村口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2014120437A priority Critical patent/JP6450531B2/en
Priority to CN201580017788.XA priority patent/CN106164190B/en
Priority to PCT/JP2015/059981 priority patent/WO2015152171A1/en
Priority to KR1020167026821A priority patent/KR102379944B1/en
Priority to TW104110415A priority patent/TWI670335B/en
Publication of JP2016001217A publication Critical patent/JP2016001217A/en
Publication of JP2016001217A5 publication Critical patent/JP2016001217A5/en
Application granted granted Critical
Publication of JP6450531B2 publication Critical patent/JP6450531B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an antireflection film excellent in hardness and abrasion resistance even if a base material is resin.SOLUTION: Provided is an antireflection film-added base material including a hard coat film and an antireflection film formed on a base substrate, the hard coat film comprising surface treatment metal oxide fine particles whose mean particle size is in a range from 5 to 300 nm and a matrix component (M), the antireflection film comprising silica-based hollow fine particles (A) and a matrix component (M), (i) a content (W) of the surface treatment metal oxide fine particles being 50 to 90 wt%; (ii) a content (W) of the matrix component (M) being 10 to 50 wt%; (iii) a ratio (W)/(W) of (W) to (W) being 0.12 to 1.0; and (iv) a mean film thickness (T) is in a range from 1 to 100 μm, and (a) a content (W) of the silica-based hollow fine particles (A) being 5 to 80 wt%; (b) a content (W) of the matrix component (M) being 20 to 95 wt%; (c) a film thickness (T) of the antireflection film being 80 to 200 nm; (d) a mean particle size (Dpa) of the silica-based hollow fine particles (A) being 10 to 45 nm; and (e) (Dpa)/(T) being in a range from 0.05 to 0.56.

Description

本発明は、基材が樹脂基材であっても硬度が高く、膜厚であってもクラックが無くカーリングが抑制されたハードコート膜と、該ハードコート膜上に形成され、硬度、耐擦傷性、透明性、ヘーズに優れるとともに反射防止性能に優れた反射防止膜とからなる反射防止膜付基材および反射防止膜の形成に好適に用いることのできる反射防止膜形成用塗布液に関する。   The present invention provides a hard coat film having high hardness even when the base material is a resin base material, and has no cracks even when the thickness is reduced, and curling is suppressed. The present invention relates to a base material with an antireflection film comprising an antireflection film having excellent properties, transparency and haze as well as an antireflection film, and a coating liquid for forming an antireflection film that can be suitably used for forming an antireflection film.

従来、ガラス、プラスチックシート、プラスチックレンズ等の基材表面の耐擦傷性を向上させるため、基材表面にハードコート機能を有する透明被膜を形成することが知られており、このような透明被膜として有機樹脂膜あるいは無機膜をガラスやプラスチック等の表面に形成することが行われている。さらに、有機樹脂膜あるいは無機膜中に樹脂粒子あるいはシリカ等の無機粒子を配合してさらに耐擦傷性を向上させることが行われている。   Conventionally, in order to improve the scratch resistance of the substrate surface such as glass, plastic sheet, plastic lens, etc., it is known to form a transparent film having a hard coat function on the substrate surface. An organic resin film or an inorganic film is formed on the surface of glass or plastic. Furthermore, it is practiced to further improve the scratch resistance by blending resin particles or inorganic particles such as silica in an organic resin film or an inorganic film.

しかしながら、透明被膜を形成するための透明被膜形成用塗布液に微粒子を分散させると、マトリックス形成成分または分散媒と粒子の親和性が低い場合は粒子が凝集したり、塗布液の安定性が低下し、得られる透明被膜の透明性、ヘーズ等の他、耐擦傷性、強度、スクラッチ強度等が不充分となることがあった。   However, when fine particles are dispersed in a coating solution for forming a transparent coating to form a transparent coating, if the affinity between the matrix-forming component or the dispersion medium and the particles is low, the particles aggregate or the stability of the coating solution decreases. However, in addition to the transparency and haze of the resulting transparent film, the scratch resistance, strength, scratch strength, etc. may be insufficient.

このため、粒子の分散性を向上させて凝集を防止し、塗布液の安定性を向上させるために粒子をシランカップリング剤で表面処理して用いることが公知である。また、粒子にメカノケミカル法、グラフト重合法等で樹脂を被覆してマトリックス成分または分散媒との親和性を高めることが行われている。(特開平3−163172号公報(特許文献1)、特開平6−336558号公報(特許文献2)、特開平6−49251号公報(特許文献3)、特開2000−143230号公報(特許文献4))   For this reason, it is known that the particles are surface-treated with a silane coupling agent in order to improve the dispersibility of the particles to prevent aggregation and to improve the stability of the coating solution. In addition, a resin is coated on the particles by a mechanochemical method, a graft polymerization method, or the like to increase the affinity with a matrix component or a dispersion medium. (JP-A-3-163172 (Patent Document 1), JP-A-6-336558 (Patent Document 2), JP-A-6-49251 (Patent Document 3), JP-A 2000-143230 (Patent Document) 4))

また、特開2010−37534号公報(特許文献5)には、芳香族骨格と4個以上の原子が連なった芳香族骨格への結合構造とを含む有機成分を無機系微粒子表面に有する複合粒子は分散性に優れ、このような複合粒子と樹脂成分とを含んでなる樹脂組成物を用いると耐熱性、機械的強度に優れた硬化物が得られることが開示されている。このとき、前記複合粒子を熱および/または光硬化性樹脂、開始剤および分散媒に混合し、ついで、エバポレーター等で溶媒を脱気して樹脂組成物を調製することが記載されており、このとき、100℃以下の加熱下、減圧下で脱気することが好ましく、溶媒には高沸点成分共存下で脱気することが好ましいことが開示されている。   Japanese Patent Application Laid-Open No. 2010-37534 (Patent Document 5) discloses a composite particle having an organic component including an aromatic skeleton and a bond structure to an aromatic skeleton in which four or more atoms are linked on the surface of inorganic fine particles. Is excellent in dispersibility, and it is disclosed that when a resin composition comprising such composite particles and a resin component is used, a cured product excellent in heat resistance and mechanical strength can be obtained. At this time, it is described that the composite particles are mixed with heat and / or a photocurable resin, an initiator and a dispersion medium, and then the solvent is deaerated with an evaporator or the like to prepare a resin composition. It is disclosed that it is preferable to degas under reduced pressure under heating at 100 ° C. or lower, and that the solvent is preferably degassed in the presence of a high-boiling component.

本出願人は、予め加熱処理した平均二次粒子径がμmオーダーの金属酸化物粒子のエーテル類、エステル類、ケトン類を分散媒とする有機溶媒分散液に、アクリル系樹脂を添加し、ついで、メカノケミカル処理すると個々の金属酸化物粒子に均一に樹脂を被覆することができ、有機溶媒を分散媒とする固形分濃度50重量%程度までの高濃度の樹脂被覆金属酸化物粒子分散液が得られることを開示している(特開2010−077409号公報(特許文献6))。   The present applicant added an acrylic resin to an organic solvent dispersion in which ethers, esters, and ketones of metal oxide particles having an average secondary particle size of the order of μm, which had been heat-treated in advance, were used as a dispersion medium, When the mechanochemical treatment is performed, the resin can be uniformly coated on the individual metal oxide particles, and a high concentration resin-coated metal oxide particle dispersion liquid having a solid content concentration of about 50% by weight using an organic solvent as a dispersion medium is obtained. It is disclosed that it is obtained (Japanese Patent Laid-Open No. 2010-077409 (Patent Document 6)).

さらに、本出願人は、予め加熱処理した金属酸化物粒子の有機溶媒分散液に、芳香族環を有する(メタ)アクリレート系樹脂を添加し、ついで、メカノケミカル処理すると個々の粒子に均一に樹脂を被覆することができ、ついで、樹脂被覆粒子と親和性の高い低分子量の樹脂に分散させ、均一に分散させた後有機溶媒を除去すると、硬化することなく樹脂被覆粒子が高分散した、安定性に優れた樹脂被覆金属酸化物粒子樹脂分散組成物が得られ、この組成物に硬化剤を添加し、塗布し、乾燥することなく硬化させると、収縮が小さく厚膜形成が可能で、緻密で透明性、ヘーズ、耐擦傷性等に優れた透明被膜が得られることを開示している(特開2012−72288号公報(特許文献7))。   Furthermore, the present applicant added a (meth) acrylate resin having an aromatic ring to an organic solvent dispersion of metal oxide particles that had been heat-treated in advance, and then the resin was uniformly applied to the individual particles after mechanochemical treatment. Next, when dispersed in a low molecular weight resin having high affinity with the resin-coated particles, and uniformly dispersed, the organic solvent is removed, and the resin-coated particles are highly dispersed without curing. A resin-coated metal oxide particle resin dispersion composition having excellent properties can be obtained. When a curing agent is added to the composition, applied, and cured without drying, a thick film can be formed with little shrinkage. It is disclosed that a transparent film excellent in transparency, haze, scratch resistance and the like can be obtained (Japanese Patent Laid-Open No. 2012-72288 (Patent Document 7)).

本出願人は、平均分子量が特定の範囲にあるフルオレン骨格を有さない(メタ)アクリレート系樹脂と、フルオレン骨格を有する(メタ)アクリレート系樹脂と、(メタ)アクリレート樹脂被覆粒子からなる塗料はロータリーエバポレーターで有機溶媒を除去することにより高濃度の塗料を調製することができ、このような塗料を用いると厚膜で硬度に優れた光学薄膜が得られることを開示している(特開2013−10864号公報(特許文献8))。   The applicant of the present invention is a paint composed of a (meth) acrylate resin not having a fluorene skeleton having an average molecular weight in a specific range, a (meth) acrylate resin having a fluorene skeleton, and (meth) acrylate resin-coated particles. It is disclosed that a high-concentration paint can be prepared by removing an organic solvent with a rotary evaporator, and that an optical thin film having a thick film and excellent hardness can be obtained by using such a paint (Japanese Patent Laid-Open No. 2013). -10864 publication (patent document 8)).

また、本出願人は、官能基数が4以上のアクリレートと官能基数が2ないし3のアクリレート樹脂と、球状係数が所定範囲にある粒子または鎖状粒子である異型状粒子と分散媒とからなる塗料を用いると厚みの薄い基材であってもカーリングが抑制され、基材との密着性、硬度、耐擦傷性等に優れた透明被膜が得られることを開示している(特開2013−133444号公報(特許文献9))。   In addition, the applicant of the present invention provides a paint comprising an acrylate having 4 or more functional groups, an acrylate resin having 2 to 3 functional groups, particles having a spherical coefficient in a predetermined range or irregular particles that are chain particles, and a dispersion medium. Discloses that curling is suppressed even with a thin substrate, and a transparent film excellent in adhesion to the substrate, hardness, scratch resistance and the like can be obtained (Japanese Patent Laid-Open No. 2013-133444). Gazette (patent document 9)).

本出願人は、エチレンオキサイド変性骨格を有する界面活性剤で処理された金属酸化物微粒子と疎水性マトリックス形成成分と有機分散媒とからなるハードコート膜形成用塗布液を用いると、膜表面に凹凸を形成し、アンチブロッキング性が向上することを開示している。このとき、有機珪素化合物で表面処理した疎水性粒子を配合すると硬度が向上することも開示している(特開2013−136222号公報(特許文献10))。   The present applicant uses a coating liquid for forming a hard coat film composed of metal oxide fine particles treated with a surfactant having an ethylene oxide-modified skeleton, a hydrophobic matrix forming component, and an organic dispersion medium. It is disclosed that the anti-blocking property is improved. At this time, it is also disclosed that the hardness is improved when hydrophobic particles surface-treated with an organosilicon compound are blended (Japanese Patent Laid-Open No. 2013-136222 (Patent Document 10)).

また、本出願人は、疎水性有機樹脂マトリックス形成成分とポリマーシランカップリング剤を被覆した表面電荷量が所定の範囲にある金属酸化物粒子と分散媒とを含むハードコート膜形成用塗布液を用いると、耐アルカリ性に優れ、併せて、基材との密着性、耐擦傷性、硬度等に優れたハードコート膜を形成できることを開示している(特開2009−35595号公報(特許文献11))。   In addition, the applicant of the present invention provides a coating liquid for forming a hard coat film containing a metal oxide particle having a surface charge amount in a predetermined range and a dispersion medium coated with a hydrophobic organic resin matrix-forming component and a polymer silane coupling agent. When used, it is disclosed that it is possible to form a hard coat film that is excellent in alkali resistance, and also excellent in adhesion to a substrate, scratch resistance, hardness, and the like (Japanese Patent Laid-Open No. 2009-35595 (Patent Document 11). )).

また、本出願人は、3官能以上の官能基を有する樹脂と、2官能の有機樹脂モノマーまたはシリコン樹脂モノマーと1官能シリコン樹脂からなる塗料を用いるとブリードアウトを低減でき、撥水性、撥油性等に優れ指紋、マジック等の拭取性に優れた透明被膜を形成できることを開示している(特開2010−126675号公報(特許文献12))。   Further, the present applicant can reduce bleed-out by using a resin having a functional group of 3 or more and a bifunctional organic resin monomer or a silicone resin monomer and a monofunctional silicone resin, and is water and oil repellent. It is disclosed that a transparent film excellent in wiping properties such as fingerprints and magic can be formed (Japanese Patent Laid-Open No. 2010-126675 (Patent Document 12)).

特開平3−163172号公報Japanese Patent Laid-Open No. 3-163172 特開平6−336558号公報JP-A-6-336558 特開平6−049251号公報Japanese Patent Application Laid-Open No. 6-049251 特開2000−143230号公報JP 2000-143230 A 特開2010−037534号公報JP 2010-037534 A 特開2010−077409号公報JP 2010-077409 A 特開2012−072288号公報JP 2012-072288 A 特開2013−010864号公報JP 2013-010864 A 特開2013−133444号公報JP 2013-133444 A 特開2013−136222号公報JP 2013-136222 A 特開2009−035595号公報JP 2009-035595 A 特開2010−126675号公報JP 2010-126675 A

しかしながら、特許文献1〜4にあるような従来のメカノケミカル法、グラフト重合法等では、個々の粒子に均一に樹脂を被覆することが困難で、数個以上の凝集した粒子に樹脂が被覆され、得られた樹脂被覆粒子では樹脂が塗布液の溶媒に溶解することがあり、このため得られる透明被膜は、透明性の低下、ヘーズの上昇、耐擦傷性の低下等の問題があった。   However, in conventional mechanochemical methods and graft polymerization methods as described in Patent Documents 1 to 4, it is difficult to uniformly coat the resin on individual particles, and the resin is coated on several or more aggregated particles. In the obtained resin-coated particles, the resin may be dissolved in the solvent of the coating solution. For this reason, the obtained transparent film has problems such as a decrease in transparency, an increase in haze, and a decrease in scratch resistance.

さらに、特許文献5に開示した樹脂被覆金属酸化物粒子分散ゾルは有機溶媒を含み、濃度が固形分として概ね1〜60重量%の範囲にある塗布液は、濃度が60重量%を越えると安定性が低下し、凝集して沈降する場合があった。また、塗布液にする際に有機溶媒とともにマトリックス形成成分として樹脂成分を添加するが、得られる被膜の膜厚には限界があった。   Furthermore, the resin-coated metal oxide particle-dispersed sol disclosed in Patent Document 5 contains an organic solvent, and a coating solution having a concentration in the range of approximately 1 to 60% by weight as a solid content is stable when the concentration exceeds 60% by weight. In some cases, the properties deteriorated and aggregated and settled. In addition, a resin component is added as a matrix-forming component together with an organic solvent when preparing a coating solution, but there is a limit to the film thickness of the resulting film.

また、特許文献5で得られる透明被膜付基材は、膜厚が4μmの場合に鉛筆硬度が4Hを上回るものが無く、特許文献6で得られる透明被膜付基材では膜厚が35μmの場合に鉛筆硬度が3Hを上回るものが得られて無く、特許文献12においても、表面処理した粒子を膜中に50重量%、さらには70重量%と配合しても鉛筆硬度が向上することはなく4Hを上回るものは得られて無い。   In addition, the substrate with a transparent coating obtained in Patent Document 5 has no pencil hardness exceeding 4H when the film thickness is 4 μm, and the substrate with a transparent coating obtained in Patent Document 6 has a film thickness of 35 μm. No pencil hardness exceeding 3H was obtained, and even in Patent Document 12, even if the surface-treated particles were blended in the film at 50% by weight or even 70% by weight, the pencil hardness was not improved. Nothing over 4H has been obtained.

また、特許文献9において、異形粒子を用いた場合でも鉛筆硬度5以上の透明被膜は得られていない。
近年、各種表示装置、モバイル携帯、有機ELテレビ等で、樹脂基材を用いた場合でも、ガラスを基材として用いた場合と同程度の鉛筆硬度を有する透明被膜が求められている。
Further, in Patent Document 9, a transparent film having a pencil hardness of 5 or higher is not obtained even when irregularly shaped particles are used.
In recent years, there has been a demand for a transparent film having a pencil hardness comparable to that obtained when glass is used as a base material even when a resin base material is used in various display devices, mobile phones, organic EL televisions, and the like.

また、同時に表示装置等に用いる場合、反射防止性能が求められている。
しかしながら、反射防止膜の膜厚は通常50〜300nmと薄膜であることから、特に基材が樹脂である場合、硬度、耐擦傷性に優れた反射防止膜を得ることは困難であった。
Moreover, when using it for a display apparatus etc. simultaneously, the antireflection performance is calculated | required.
However, since the film thickness of the antireflection film is usually a thin film of 50 to 300 nm, it is difficult to obtain an antireflection film excellent in hardness and scratch resistance particularly when the substrate is a resin.

本発明者らは、このような要求に答えるべく鋭意検討した結果、基材上に、所望の特性を有するハードコート膜を形成したのち、かかるハードコート膜上に、さらに反射防止膜を形成する2層構造として、かかる課題を解決することを試みた。   As a result of intensive studies to meet such demands, the present inventors have formed a hard coat film having desired characteristics on the substrate, and then formed an antireflection film on the hard coat film. We tried to solve this problem with a two-layer structure.

先ず、ハードコート膜については、樹脂の割合を少なくして、粒子の割合を増やせば硬度を高めることができると考えた。しかし、単に粒子の割合を増やすことは、ハードコート膜形成用塗布液の安定性はもとより、ハードコート膜形成時の乾燥によるひび割れや収縮が大きいという課題がある。このような課題を解決すべく、さらに鋭意検討した結果、ハードコート膜形成用塗布液調製時の分散ゾルの媒体として、従来の溶媒の代わりに、紫外線硬化型樹脂モノマーを使用することで、最終的な樹脂の割合を少なくできることを見出した。   First, regarding the hard coat film, it was considered that the hardness can be increased by decreasing the resin ratio and increasing the particle ratio. However, simply increasing the ratio of the particles has a problem that cracks and shrinkage due to drying during the formation of the hard coat film are large as well as the stability of the coating liquid for forming the hard coat film. As a result of further diligent studies to solve such problems, as a dispersion sol medium at the time of preparing the coating liquid for forming the hard coat film, by using an ultraviolet curable resin monomer instead of the conventional solvent, the final It has been found that the proportion of typical resin can be reduced.

そして、有機珪素化合物で所定量表面処理したシリカ微粒子の有機分散媒分散液を調製し、当該有機分散媒を官能基数の少ない紫外線硬化型樹脂モノマーで置換することで安定な有機樹脂分散液(有機樹脂分散ゾルということがある)を得ることができことを見出した。そして、これに官能基数が3以上の紫外線硬化型樹脂モノマーを混合して塗布液とすると樹脂の割合を少なくすることが可能であり、ハードコート膜形成用塗布液を厚く塗布してもハードコート膜の収縮が小さく、またクラックも無く、カーリングが抑制され、膜の硬度が格段に向上することを見出した。   Then, an organic dispersion medium dispersion of silica fine particles surface-treated with a predetermined amount with an organosilicon compound is prepared, and the organic dispersion medium is replaced with an ultraviolet curable resin monomer having a small number of functional groups, whereby a stable organic resin dispersion (organic It was found that a resin dispersion sol may be obtained. And if this is mixed with an ultraviolet curable resin monomer having 3 or more functional groups to form a coating solution, the ratio of the resin can be reduced. Even if the coating solution for forming a hard coat film is applied thickly, It has been found that the shrinkage of the film is small, there are no cracks, curling is suppressed, and the hardness of the film is remarkably improved.

さらに、このようなハードコート膜上に設ける反射防止膜について、平均粒子径の小さいシリカ系中空微粒子を用い、マトリックス形成成分としてハードコート膜形成用と同様のマトリックス形成成分を含ませることによって、膜厚の薄い反射防止膜を設けても向上したハードコート膜の硬度を維持できることを見出して本発明を完成するに至った。   Further, for the antireflection film provided on such a hard coat film, a silica-based hollow fine particle having a small average particle diameter is used, and a matrix forming component similar to that for forming a hard coat film is included as a matrix forming component. It has been found that even if a thin antireflection film is provided, the improved hardness of the hard coat film can be maintained, and the present invention has been completed.

[1]基材上にハードコート膜および反射防止膜が形成されてなる反射防止膜付基材であって、
前記ハードコート膜が、平均粒子径が5〜300nmの範囲にある表面処理金属酸化物微粒子とマトリックス成分(MH)とからなり、
(i)表面処理金属酸化物微粒子(P)の固形分としての含有量(WPH)が50〜90重量%の範囲にあり、
(ii)マトリックス成分(MH)の固形分としての含有量(WRH)が10〜50重量%の範囲にあり、
(iii)含有量(WRH)と含有量(WPH)との比(WRH)/(WPH)が0.12〜1.0の範囲にあり、
(iv)平均膜厚(TH)が1〜100μmの範囲にあり、
前記反射防止膜がシリカ系中空微粒子(A)とマトリックス成分(ML)とからなり、
(a)シリカ系中空微粒子(A)の含有量(WPLA)が5〜80重量%の範囲にあり、
(b)マトリックス成分(ML)の含有量(WML)が20〜95重量%の範囲にあり、
(c)反射防止膜の膜厚(TL)が80〜200nmの範囲にあり、
(d)シリカ系中空微粒子(A)の平均粒子径(Dpa)が10〜45nmの範囲にあり、
(e)シリカ系中空微粒子(A)の平均粒子径(Dpa)と反射防止膜の膜厚(TL)との比(Dpa)/(TL)が0.05〜0.56の範囲にある
ことを特徴とする反射防止膜付基材。
[1] A base material with an antireflection film in which a hard coat film and an antireflection film are formed on a base material,
The hard coat film comprises surface-treated metal oxide fine particles having an average particle diameter in the range of 5 to 300 nm and a matrix component (M H ),
(i) The content (W PH ) of the surface-treated metal oxide fine particles (P) as a solid content is in the range of 50 to 90% by weight,
(ii) The content (W RH ) of the matrix component (M H ) as a solid content is in the range of 10 to 50% by weight,
(iii) the content (W RH) and the content (W PH) and the ratio of (W RH) / (W PH ) is in the range of 0.12 to 1.0,
(iv) The average film thickness (T H ) is in the range of 1 to 100 μm,
The antireflection film is from a silica-based hollow particles (A) and the matrix component (M L),
(a) The content of silica-based hollow fine particles (A) (W PLA ) is in the range of 5 to 80% by weight,
(b) The content (W ML ) of the matrix component (M L ) is in the range of 20 to 95% by weight,
(c) The thickness (T L ) of the antireflection film is in the range of 80 to 200 nm,
(d) The silica-based hollow fine particles (A) have an average particle diameter (Dpa) in the range of 10 to 45 nm,
(e) the ratio of the average particle diameter (Dpa) and the anti-reflection film having a film thickness of the silica-based hollow particles (A) (T L) ( Dpa) / (T L) is in the range of from 0.05 to 0.56 A base material with an antireflection film, characterized in that it exists.

[2]前記シリカ系中空微粒子(A)の屈折率が1.10〜1.40の範囲にあることを特徴とする[1]の反射防止膜付基材。
[3]前記反射防止膜が、さらに平均粒子径(Dpb)が4〜17nmの範囲にあるシリカ系微粒子(B)(中空微粒子、シリカ微粒子、これらの鎖状粒子)を含み、シリカ系微粒子(B)の平均粒子径(Dpb)とシリカ系中空微粒子(A)の平均粒子径(Dpa)との比(Dpb)/(Dpa)が0.1〜0.4の範囲にある[1]または[2]の反射防止膜付基材。
[4]前記反射防止膜中のシリカ系中空微粒子(A)とシリカ系微粒子(B)の合計の含有量が5〜80重量%の範囲にあり、全微粒子中のシリカ系微粒子(B)の割合が30重量%以下である[3]の反射防止膜付基材。
[2] The substrate with an antireflection film according to [1], wherein the refractive index of the silica-based hollow fine particles (A) is in the range of 1.10 to 1.40.
[3] The antireflection film further includes silica-based fine particles (B) (hollow fine particles, silica fine particles, and chain particles thereof) having an average particle diameter (Dpb) in the range of 4 to 17 nm. The ratio (Dpb) / (Dpa) of the average particle size (Dpb) of B) to the average particle size (Dpa) of the silica-based hollow fine particles (A) is in the range of 0.1 to 0.4 [1] or [2] A substrate with an antireflection film.
[4] The total content of the silica-based hollow fine particles (A) and the silica-based fine particles (B) in the antireflection film is in the range of 5 to 80% by weight, and the silica-based fine particles (B) in all the fine particles The base material with an antireflection film according to [3], wherein the ratio is 30% by weight or less.

[5]前記表面処理金属酸化物微粒子(P)が下記式(1)で表される有機珪素化合物で表面処理されている[1]〜[4]の反射防止膜付基材。
n-SiX4-n (1)
(但し、式中、Rは炭素数1〜10の非置換または置換炭化水素基であって、互いに同一であっても異なっていてもよい。X:炭素数1〜4のアルコキシ基、水酸基、ハロゲン、水素、n:1〜3の整数)
[6]前記シリカ系中空微粒子(A)およびシリカ系微粒子(B)が、下記式(2)表される有機珪素化合物で表面処理されている[1]〜[5]の反射防止膜付基材。
n-SiX4-n (2)
(但し、式中、Rは炭素数1〜10の非置換または置換炭化水素基であって、互いに同一であっても異なっていてもよい。X:炭素数1〜4のアルコキシ基、水酸基、ハロゲン、水素、n:1〜3の整数)
[5] The antireflection film-coated substrate according to [1] to [4], wherein the surface-treated metal oxide fine particles (P) are surface-treated with an organosilicon compound represented by the following formula (1).
R n -SiX 4-n (1 )
(In the formula, R is an unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, and may be the same or different from each other. X: an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, Halogen, hydrogen, n: an integer of 1 to 3)
[6] The antireflection film-coated base of [1] to [5], wherein the silica-based hollow fine particles (A) and the silica-based fine particles (B) are surface-treated with an organosilicon compound represented by the following formula (2): Wood.
R n -SiX 4-n (2)
(In the formula, R is an unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, and may be the same or different from each other. X: an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, Halogen, hydrogen, n: an integer of 1 to 3)

[7]前記マトリックス成分(MH)が、分散用有機樹脂(A)と硬化用有機樹脂(B)とからなる[1]〜[6]の反射防止膜付基材。
[8]前記マトリックス成分(ML)が有機樹脂系マトリックス成分である[1]〜[7]の反射防止膜付基材。
[9]前記マトリックス成分(ML)が分散用有機樹脂(A)および/または硬化用有機樹脂(B)を含む[8]の反射防止膜付基材。
[10]前記分散用有機樹脂(A)が1〜2個の官能基を有する紫外線硬化型樹脂モノマーないしオリゴマーであり、前記硬化用有機樹脂(B)が3個以上の官能基を有する紫外線硬化型樹脂モノマーないしオリゴマーである[8]または[9]の反射防止膜付基材。
[11]前記分散用有機樹脂(A)および前記硬化用有機樹脂(B)の有する官能基が(メタ)アクリレート基、ウレタン(メタ)アクリレート基、エポキシ変性(メタ)アクリレート基から選ばれる少なくとも1種である[10]の反射防止膜付基材。
[12]前記表面処理金属酸化物微粒子(P)の球状係数が0.2〜1.0の範囲にある[1]〜[11]の反射防止膜付基材。
[7] The substrate with an antireflection film according to any one of [1] to [6], wherein the matrix component (M H ) comprises a dispersing organic resin (A) and a curing organic resin (B).
[8] the matrix component (M L) is an organic resin matrix component [1] - antireflection film substrate with [7].
[9] The matrix component (M L) antireflective film substrate with [8] contained in the dispersion for organic resin (A) and / or curing an organic resin (B).
[10] The dispersing organic resin (A) is an ultraviolet curable resin monomer or oligomer having 1 to 2 functional groups, and the curing organic resin (B) is an ultraviolet curable having 3 or more functional groups. [8] or [9] A substrate with an antireflection film, which is a mold resin monomer or oligomer.
[11] At least one functional group of the organic resin for dispersion (A) and the organic resin for curing (B) selected from a (meth) acrylate group, a urethane (meth) acrylate group, and an epoxy-modified (meth) acrylate group [10] A substrate with an antireflection film as a seed.
[12] The substrate with antireflection film according to [1] to [11], wherein the spherical coefficient of the surface-treated metal oxide fine particles (P) is in the range of 0.2 to 1.0.

[13]前記ハードコート膜と前記反射防止膜との界面(接合面)が波状である[1]〜[12]の反射防止膜付基材。
[14]前記基材がアクリル、ポリカーボネート、シクロオレフィンポリマー(COP)、PET、TACから選ばれる少なくとも1種の樹脂基材である[1]〜[13]の反射防止膜付基材。
[15]鉛筆硬度が5H以上である[1]〜[14]の反射防止膜付基材。
[16](A)表面処理金属酸化物微粒子と、マトリックス形成形分とを含み、(i)表面処理金属酸化物微粒子の含有量(WPH)が50〜90重量%の範囲にあり、(ii)マトリックス成分(MH)の固形分としての含有量(WRH)が10〜50重量%の範囲にあり、固形分と濃度(CPH)は45〜85重量%にあるハードコート膜形成用塗布液を基材表面に塗布・乾燥してハードコート膜を形成したのち、
(B) シリカ系中空微粒子(A)とマトリックス形成成分と溶媒とからなり、シリカ系中空微粒子(A)の平均粒子径(Dpa)が10〜45nmの範囲にあり、全固形分濃度が1〜10重量%の範囲にあり、シリカ系中空微粒子(A)の濃度が固形分として0.25〜9重量%の範囲にあり、マトリックス形成成分の濃度が固形分として0.75〜9.5重量%の範囲にある反射防止膜形成用塗布液をハードコート膜表面に塗布し乾燥して、反射防止膜を形成する反射防止膜付基材の製造方法。
[13] The substrate with antireflection film according to [1] to [12], wherein an interface (bonding surface) between the hard coat film and the antireflection film is corrugated.
[14] The substrate with antireflection film according to [1] to [13], wherein the substrate is at least one resin substrate selected from acrylic, polycarbonate, cycloolefin polymer (COP), PET, and TAC.
[15] The substrate with antireflection film according to [1] to [14], wherein the pencil hardness is 5H or more.
[16] (A) a surface-treated metal oxide fine particle and a matrix-forming form; (i) a content (W PH ) of the surface-treated metal oxide fine particle is in the range of 50 to 90% by weight; ii) Hard coat film formation in which the content (W RH ) of the matrix component (M H ) as a solid content is in the range of 10 to 50 wt%, and the solid content and concentration (C PH ) is in the range of 45 to 85 wt% After applying and drying the coating liquid on the substrate surface to form a hard coat film,
(B) It consists of silica-based hollow fine particles (A), a matrix-forming component and a solvent, and the silica-based hollow fine particles (A) have an average particle diameter (Dpa) in the range of 10 to 45 nm, and the total solid content concentration is 1 to It is in the range of 10% by weight, the concentration of the silica-based hollow fine particles (A) is in the range of 0.25 to 9% by weight as the solid content, and the concentration of the matrix forming component is 0.75 to 9.5% as the solid content. % Antireflection film-forming coating solution is applied to the surface of the hard coat film and dried to form an antireflection film-coated substrate.

[17]前記ハードコート膜の下記条件で測定したときのカーリング特性が5mm以下である[16]の反射防止膜付基材の製造方法;
14cm×25cm×40μm(厚み)のTACフィルム基材上に厚みが12μmのハードコート膜が形成できるようにハードコート膜形成用塗布液を塗布し、20時間静置し、その後、フィルムを10cm×10cmサイズにカットし、塗布面を下にしてフィルムを平板上に置き、カーリング(湾曲)して浮上した基材の頂点の平板からの高さ。
[18]ハードコート膜形成用塗布液を塗布した後、乾燥したときの塗膜の収縮率が25%以下であり、硬化したときの塗膜の収縮率が10%以下であり、合計の収縮率が35%以下である[16]および[17]の反射防止膜付基材の製造方法。
[19]前記シリカ系中空微粒子(A)の屈折率が1.10〜1.40の範囲にある[16]の反射防止膜付基材の製造方法。
[20]さらに、平均粒子径(Dpb)が4〜17nmの範囲にあるシリカ系微粒子(B)を含み、シリカ系微粒子(B)の平均粒子径(Dpb)と前記シリカ系中空微粒子(A)の平均粒子径(Dpa)との比(Dpb)/(Dpa)が0.1〜0.4の範囲にある[16]の反射防止膜付基材の製造方法。
[21]前記シリカ系中空微粒子(A)およびシリカ系微粒子(B)が、下記式(3)で表される有機珪素化合物で表面処理されている[20]の反射防止膜付基材の製造方法。
n-SiX4-n (3)
(但し、式中、Rは炭素数1〜10の非置換または置換炭化水素基であって、互いに同一であっても異なっていてもよい。X:炭素数1〜4のアルコキシ基、水酸基、ハロゲン、水素、n:1〜3の整数)
[17] The method for producing a substrate with an antireflection film according to [16], wherein the curling property of the hard coat film is 5 mm or less when measured under the following conditions;
A coating liquid for forming a hard coat film was applied on a TAC film substrate having a thickness of 14 cm × 25 cm × 40 μm (thickness) so that a hard coat film having a thickness of 12 μm could be formed, and allowed to stand for 20 hours. The height from the flat plate at the apex of the substrate which was cut into a size of 10 cm, placed on a flat plate with the coating surface down, and curled (curved) and floated.
[18] After applying the coating liquid for forming a hard coat film, the shrinkage ratio of the coating film when dried is 25% or less, the shrinkage ratio of the coating film when cured is 10% or less, and the total shrinkage [16] and [17], wherein the rate is 35% or less.
[19] The process for producing a substrate with an antireflection film according to [16], wherein the silica-based hollow fine particles (A) have a refractive index in the range of 1.10 to 1.40.
[20] Further, silica-based fine particles (B) having an average particle size (Dpb) in the range of 4 to 17 nm are included, and the average particle size (Dpb) of the silica-based fine particles (B) and the silica-based hollow fine particles (A) [16] The method for producing a substrate with an antireflection film according to [16], wherein the ratio (Dpb) / (Dpa) to the average particle diameter (Dpa) is in the range of 0.1 to 0.4.
[21] The production of a substrate with an antireflection film according to [20], wherein the silica-based hollow fine particles (A) and the silica-based fine particles (B) are surface-treated with an organosilicon compound represented by the following formula (3): Method.
R n -SiX 4-n (3 )
(In the formula, R is an unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, and may be the same or different from each other. X: an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, Halogen, hydrogen, n: an integer of 1 to 3)

[22]前記マトリックス形成成分が有機樹脂系マトリックス形成成分である[16]の反射防止膜付基材の製造方法。
[23]前記マトリックス形成成分が分散用有機樹脂(A)および/または硬化用有機樹脂(B)を含む[22]の反射防止膜付基材の製造方法。
[24]前記分散用有機樹脂(A)が1〜2個の官能基を有する紫外線硬化型樹脂モノマーないしオリゴマーであり、前記硬化用有機樹脂(B)が3個以上の官能基を有する紫外線硬化型樹脂モノマーないしオリゴマーである[23]の反射防止膜付基材の製造方法。
[25]前記分散用有機樹脂(A)および前記硬化用有機樹脂(B)の有する官能基が(メタ)アクリレート基、ウレタン(メタ)アクリレート基、エポキシ変性(メタ)アクリレート基から選ばれる少なくとも1種であることを特徴とする請求項23または24に記載の反射防止膜付基材の製造方法。
[26]ハードコート膜形成用塗布液を塗布、乾燥し、反射防止膜形成用塗布液を塗布、乾燥し、ついで紫外線照射して同時に硬化することを特徴とする[16]の反射防止膜付基材の製造方法。
[22] The method for producing a substrate with an antireflection film according to [16], wherein the matrix forming component is an organic resin matrix forming component.
[23] The method for producing a substrate with an antireflection film according to [22], wherein the matrix-forming component contains an organic resin for dispersion (A) and / or an organic resin for curing (B).
[24] The dispersing organic resin (A) is an ultraviolet curable resin monomer or oligomer having 1 to 2 functional groups, and the curing organic resin (B) is an ultraviolet curable having 3 or more functional groups. [23] A method for producing a substrate with an antireflection film, which is a mold resin monomer or oligomer.
[25] At least one functional group of the organic resin for dispersion (A) and the organic resin for curing (B) selected from a (meth) acrylate group, a urethane (meth) acrylate group, and an epoxy-modified (meth) acrylate group The method for producing a substrate with an antireflection film according to claim 23 or 24, wherein the method is a seed.
[26] With an antireflection film according to [16], wherein the coating liquid for forming a hard coat film is applied and dried, the coating liquid for forming an antireflective film is applied, dried, and then simultaneously cured by ultraviolet irradiation. A method for producing a substrate.

本発明によれば、基材が樹脂基材であっても硬度が高く、膜厚であってもクラックが無くカーリングが抑制された硬度、耐擦傷性、透明性、ヘーズに優れるとともに反射防止性能に優れた反射防止膜付基材を提供できる。   According to the present invention, even if the substrate is a resin substrate, the hardness is high, and even if it is a film thickness, there is no crack, curling is suppressed, excellent hardness, scratch resistance, transparency, haze and antireflection performance It is possible to provide a base material with an antireflection film that is excellent in performance.

以下、先ず、本発明に係る反射防止膜付基材について説明する。
反射防止膜付基材
本発明に係る反射防止膜付基材は、基材上にハードコート膜および反射防止膜が順次形成された反射防止膜付基材である。
[基材]
本発明に用いる基材としては、樹脂基材を用いる。
樹脂基材としては、PET、TAC、アクリル、ポリカーボネート、シクロオレフィンポリマー(COP)から選ばれる少なくとも1種の透明性樹脂基材が好ましい。
Hereinafter, first, the substrate with antireflection film according to the present invention will be described.
The base material with an antireflection film according to the present invention is a base material with an antireflection film in which a hard coat film and an antireflection film are sequentially formed on the base material.
[Base material]
As the base material used in the present invention, a resin base material is used.
The resin substrate is preferably at least one transparent resin substrate selected from PET, TAC, acrylic, polycarbonate, and cycloolefin polymer (COP).

これらの樹脂基材は、ハードコート膜との密着性が高く、ハードコート膜と反射防止膜と組み合わせることで、硬度、耐擦傷性、透明性、ヘーズに優れるとともに反射防止性能に優れた反射防止膜付基材を得ることができる。   These resin base materials have high adhesion to the hard coat film, and in combination with the hard coat film and the antireflection film, the antireflection film has excellent hardness, scratch resistance, transparency, haze and antireflection performance. A substrate with a film can be obtained.

[ハードコート膜]
本発明のハードコート膜は、表面処理金属酸化物微粒子(P)とマトリックス成分(MH)とからなる。
[Hard coat film]
The hard coat film of the present invention comprises surface-treated metal oxide fine particles (P) and a matrix component (M H ).

表面処理金属酸化物微粒子(P
本発明に用いる金属酸化物微粒子としては、金属酸化物ゾルに由来する金属酸化物微粒子を用いることが好ましい。
金属酸化物ゾルとしては、従来公知のゾルを用いることができ、例えば、シリカゾル、ジルコニアゾル、チタニアゾル、アルミナゾル、五酸化アンチモンゾル、アンチモンドープ酸化錫(ATO)、リンドープ酸化錫(PTO)、インジウムドープ酸化錫(ITO)等が挙げられる。
Surface-treated metal oxide fine particles (P )
As the metal oxide fine particles used in the present invention, metal oxide fine particles derived from a metal oxide sol are preferably used.
As the metal oxide sol, a conventionally known sol can be used, for example, silica sol, zirconia sol, titania sol, alumina sol, antimony pentoxide sol, antimony doped tin oxide (ATO), phosphorus doped tin oxide (PTO), indium doped. Examples thereof include tin oxide (ITO).

金属酸化物微粒子の平均粒子径は5〜300nm、さらには10〜200nmの範囲にあることが好ましい。
金属酸化物微粒子の平均粒子径が前記下限未満のものは、後述する表面処理の有無によっても異なるが、金属酸化物微粒子が凝集する場合があり、ハードコート膜のヘーズが悪化したり、透明性が低下する場合がある。
The average particle diameter of the metal oxide fine particles is preferably in the range of 5 to 300 nm, more preferably 10 to 200 nm.
The average particle diameter of the metal oxide fine particles is less than the above lower limit, although depending on the presence or absence of the surface treatment described later, the metal oxide fine particles may aggregate, the haze of the hard coat film may deteriorate, or the transparency May decrease.

金属酸化物微粒子の平均粒子径が前記範囲を超えても、金属酸化物微粒子の含有量によっても異なるが得られるハードコート膜のヘーズが悪化したり、透明性が低下する場合がある。   Even if the average particle diameter of the metal oxide fine particles exceeds the above range, the haze of the obtained hard coat film may be deteriorated or the transparency may be lowered depending on the content of the metal oxide fine particles.

金属酸化物微粒子は球状係数が0.2〜1.0、さらには0.4〜1.0の範囲にあることが好ましい。
金属酸化物微粒子の球状係数が小さいと、塗布液中での分散性が不充分で、凝集することがあり、基材との密着性、スクラッチ強度等が不充分となったり、得られるハードコート膜にクラックを生じる場合がある。ここで、球状係数は下記式で表される。
球状係数=(DS)/(DL
(但し、(DL)は粒子の平均粒子最長径、(DS)は最長径の中点で最長径と直交する平均短径)
The metal oxide fine particles preferably have a spherical coefficient in the range of 0.2 to 1.0, more preferably 0.4 to 1.0.
If the spherical coefficient of the metal oxide fine particles is small, the dispersibility in the coating solution is insufficient and may aggregate, resulting in insufficient adhesion to the substrate, scratch strength, etc. Cracks may occur in the film. Here, the spherical coefficient is represented by the following equation.
Spherical coefficient = (D S ) / (D L )
(However, (D L ) is the average longest diameter of the particles, and (D S ) is the average short diameter perpendicular to the longest diameter at the midpoint of the longest diameter)

球状係数の測定方法は、透過型電子顕微鏡写真(TEM)を撮影し、100個の粒子について最長径および最長径の中点で直交する短径を測定し、短径の平均値(DS)と最長径の平均値(DL)との比として求めることができる。 The spherical coefficient is measured by taking a transmission electron micrograph (TEM), measuring the longest diameter and the shortest axis perpendicular to the midpoint of the longest diameter for 100 particles, and calculating the average value of the shortest diameter (D S ). And the average value of the longest diameter (D L ).

金属酸化物微粒子は下記式(1)で表される有機珪素化合物で表面処理されていることが好ましい。
n-SiX4-n (1)
但し、式中、Rは炭素数1〜10の非置換または置換炭化水素基であって、互いに同一であっても異なっていてもよい。X:炭素数1〜4のアルコキシ基、水酸基、ハロゲン、水素、n:1〜3の整数を示す。置換基は、エポキシ基、アルコキシ基、(メタ)アクリロイロキシ基、メルカプト基、ハロゲン原子、アミノ基、フェニルアミノ基などが挙げられる。
The metal oxide fine particles are preferably surface-treated with an organosilicon compound represented by the following formula (1).
R n -SiX 4-n (1 )
However, in formula, R is a C1-C10 unsubstituted or substituted hydrocarbon group, Comprising: You may mutually be same or different. X: An alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, halogen, hydrogen, n: an integer of 1 to 3 is shown. Examples of the substituent include an epoxy group, an alkoxy group, a (meth) acryloyloxy group, a mercapto group, a halogen atom, an amino group, and a phenylamino group.

例えば、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ジフェニルジエトキシシラン、イソブチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、3,3,3−トリフルオロプロピルトリメトキシシラン、メチル-3,3,3−トリフルオロプロピルジメトキシシラン、β−(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシメチルトリメトキシシラン、γ-グリシドキシメチルトリエトキシシラン、γ-グリシドキシエチルトリメトキシシラン、γ-グリシドキシエチルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ−(β−グリシドキシエトキシ)プロピルトリメトキシシラン、γ-(メタ)アクリロオキシメチルトリメトキシシラン、γ-(メタ)アクリロオキシメチルトリエキシシラン、γ-(メタ)アクリロオキシエチルトリメトキシシラン、γ-(メタ)アクリロオキシエチルトリエトキシシラン、γ-(メタ)アクリロオキシプロピルトリメトキシシラン、γ-(メタ)アクリロオキシプロピルトリエトキシシラン、ブチルトリメトキシシラン、イソブチルトリエトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリエトキシシラン、ブチルトリエトキシシラン、3-ウレイドイソプロピルプロピルトリエトキシシラン、パーフルオロオクチルエチルトリメトキシシラン、パーフルオロオクチルエチルトリエトキシシラン、パーフルオロオクチルエチルトリイソプロポキシシラン、トリフルオロプロピルトリメトキシシラン、N−β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、N−β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、トリメチルシラノール、メチルトリクロロシラン、γ-(メタ)アクリロオキシプロピルジメトキシシラン、γ-(メタ)アクリロオキシプロピルジエトキシシラン等およびこれらの混合物が挙げられる。   For example, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, diphenyldiethoxysilane, isobutyltrimethoxysilane, vinyltrimethoxysilane, Vinyltriethoxysilane, vinyltris (β-methoxyethoxy) silane, 3,3,3-trifluoropropyltrimethoxysilane, methyl-3,3,3-trifluoropropyldimethoxysilane, β- (3,4-epoxycyclohexyl) ) Ethyltrimethoxysilane, γ-glycidoxymethyltrimethoxysilane, γ-glycidoxymethyltriethoxysilane, γ-glycidoxyethyltrimethoxysilane, γ-glycidoxyethyltriethoxysilane, γ-g Sidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ- (β-glycidoxyethoxy) propyltrimethoxysilane, γ- (meth) acrylooxymethyltrimethoxysilane, γ- (meth) Acryloxymethyltriexylsilane, γ- (meth) acrylooxyethyltrimethoxysilane, γ- (meth) acryloxyethyltriethoxysilane, γ- (meth) acryloxypropyltrimethoxysilane, γ- ( (Meth) acryloxypropyltriethoxysilane, butyltrimethoxysilane, isobutyltriethoxysilane, hexyltriethoxysilane, octyltriethoxysilane, decyltriethoxysilane, butyltriethoxysilane, 3-ureidoisopropylpropyltriethoxysilane, perfluoroo Cutylethyltrimethoxysilane, perfluorooctylethyltriethoxysilane, perfluorooctylethyltriisopropoxysilane, trifluoropropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, N-β (amino Ethyl) γ-aminopropyltrimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, trimethylsilanol, methyltrichlorosilane, γ- (meth) acrylooxypropyldimethoxysilane, γ -(Meth) acrylooxypropyldiethoxysilane and the like and mixtures thereof.

前記有機珪素化合物は、前記Rが(メタ)アクリレート基を置換基として有する置換炭化水素基を少なくとも1個有する有機珪素化合物であることが好ましい。
前記Rが(メタ)アクリレート基を置換基として有する置換炭化水素基を有していると、表面処理金属酸化物微粒子と紫外線硬化型の分散用有機樹脂(A)および紫外線硬化型の硬化用有機樹脂(B)との相溶性が高く分散性が向上し、均一で基材との密着性に優れたハードコート膜を得ることができる。
The organosilicon compound is preferably an organosilicon compound in which R has at least one substituted hydrocarbon group having a (meth) acrylate group as a substituent.
When R has a substituted hydrocarbon group having a (meth) acrylate group as a substituent, the surface-treated metal oxide fine particles, an ultraviolet curable organic resin for dispersion (A), and an ultraviolet curable organic for curing A hard coat film having high compatibility with the resin (B) and improved dispersibility, and uniform and excellent adhesion to the substrate can be obtained.

加えて、マトリックス形成成分である各樹脂との結合性が向上することから、より硬度の向上したハードコート膜を得ることができる。
このようなRが(メタ)アクリレート基を置換基として有する置換炭化水素基を有する有機珪素化合物としては、γ-(メタ)アクリロオキシメチルトリメトキシシラン、γ-(メタ)アクリロオキシメチルトリエキシシラン、γ-(メタ)アクリロオキシエチルトリメトキシシラン、γ-(メタ)アクリロオキシエチルトリエトキシシラン、γ-(メタ)アクリロオキシプロピルトリメトキシシラン、γ-(メタ)アクリロオキシプロピルトリエトキシシラン、γ-(メタ)アクリロオキシプロピルジメトキシシラン、γ-(メタ)アクリロオキシプロピルジエトキシシラン等が好ましく挙げられる。
In addition, since the bondability with each resin that is a matrix forming component is improved, a hard coat film with improved hardness can be obtained.
Examples of organosilicon compounds having a substituted hydrocarbon group in which R has a (meth) acrylate group as a substituent include γ- (meth) acrylooxymethyltrimethoxysilane, γ- (meth) acrylooxymethyltrimethylsilane. Excisilane, γ- (meth) acrylooxyethyltrimethoxysilane, γ- (meth) acryloxyethyltriethoxysilane, γ- (meth) acryloxypropyltrimethoxysilane, γ- (meth) acrylooxy Preferable examples include propyltriethoxysilane, γ- (meth) acrylooxypropyldimethoxysilane, γ- (meth) acrylooxypropyldiethoxysilane, and the like.

表面処理金属酸化物微粒子の表面処理量は金属酸化物微粒子を100重量部に対し、有機珪素化合物をRn-SiO4-n/2として0.1〜50重量部、さらには1〜40重量部の範囲にあることが好ましい。 The surface treatment amount of the surface-treated metal oxide fine particles is 0.1 to 50 parts by weight, further 1 to 40 parts by weight, based on 100 parts by weight of the metal oxide fine particles and the organosilicon compound as R n —SiO 4 -n / 2. It is preferable to be in the range of parts.

表面処理量が少ないと、表面処理金属酸化物微粒子の分散性が不充分で凝集しやすく、得られるハードコート膜にヘーズが発生したり、基材との密着性や硬度が不十分となる場合がある。表面処理量が多すぎても、分散性がさらに向上することもなく、未反応の表面処理剤が残存する場合があり、表面処理金属酸化物微粒子の高密度充填を阻害して硬度や密着性が不充分となる場合がある。   When the amount of surface treatment is small, the dispersibility of the surface-treated metal oxide fine particles is insufficient and easily aggregated, and the resulting hard coat film is hazeed or the adhesion to the substrate and the hardness are insufficient. There is. Even if the amount of surface treatment is too much, dispersibility is not further improved, and unreacted surface treatment agent may remain, which inhibits high-density filling of surface-treated metal oxide fine particles, and hardness and adhesion May be insufficient.

表面処理金属酸化物微粒子の製造方法としては、従来公知の方法を採用することができる。例えば、金属酸化物ゾルが水分散ゾルである場合は、アルコールに溶媒置換したオルガノゾルとし、これに、前記した加水分解性の有機珪素化合物を必要量添加し、必要に応じて加熱したり、加水分解用触媒として酸あるいはアルカリを添加し、有機珪素化合物を加水分解する方法が挙げられる。   As a method for producing the surface-treated metal oxide fine particles, a conventionally known method can be employed. For example, when the metal oxide sol is a water-dispersed sol, an organosol obtained by substituting the solvent with alcohol is added, and a necessary amount of the hydrolyzable organosilicon compound is added to the sol and heated as necessary. Examples include a method of hydrolyzing an organosilicon compound by adding an acid or an alkali as a decomposition catalyst.

加水分解後、水あるいは副生物を含む分散媒を後述する有機分散媒に溶媒置換して用いることが好ましい。
ハードコート膜中の表面処理金属酸化物微粒子の固形分としての含有量(WPH)は50〜90重量%、さらには65〜85重量%の範囲にあることが好ましい。
After the hydrolysis, it is preferable to use the dispersion medium containing water or by-products after replacing the solvent with an organic dispersion medium described later.
The content (W PH ) of the surface-treated metal oxide fine particles in the hard coat film as a solid content is preferably in the range of 50 to 90% by weight, more preferably 65 to 85% by weight.

ハードコート膜中の表面処理金属酸化物微粒子が含有量(WPH)前記範囲にあれば、収縮の少ない、厚膜であっても緻密でクラック発生のない、硬度の高いハードコート膜が得られる。 If the content (W PH ) of the surface-treated metal oxide fine particles in the hard coat film is in the above range, a hard coat film with high hardness and less shrinkage, dense and free from cracks even with a thick film can be obtained. .

表面処理金属酸化物微粒子の含有量(WPH)が少ない場合、樹脂が多くなるため、緻密化が不充分であったり、ハードコート膜の硬度が低くなることがある。また、ハードコート膜表面が平滑化し、ハードコート膜上に設けられる反射防止膜との密着性(結合性)が不充分となるためか、最終的に得られる反射防止膜の硬度が不充分となる場合がある。 When the content (W PH ) of the surface-treated metal oxide fine particles is small, the amount of resin increases, so that densification may be insufficient or the hardness of the hard coat film may be lowered. Also, the surface of the hard coating film is smoothed, and the adhesion (bonding) with the antireflection film provided on the hard coating film is insufficient, or the hardness of the finally obtained antireflection film is insufficient. There is a case.

ハードコート膜中の表面処理金属酸化物微粒子の固形分としての含有量(WPH)が多すぎても、表面の波状の凹凸が大きくなり過ぎて外部散乱によりヘーズが悪化したり、透明性が低下する場合があり、さらに膜の緻密化が低下し、耐擦傷性、基材との密着性が不充分となる場合がある。 Even if the content (W PH ) of the surface-treated metal oxide fine particles in the hard coat film is too large, the wavy irregularities on the surface become too large and haze deteriorates due to external scattering, and the transparency is In some cases, the film density decreases, and the film densification decreases, resulting in insufficient scratch resistance and adhesion to the substrate.

ハードコート膜中の表面処理金属酸化物微粒子の固形分としての含有量(WPH)が多すぎても、表面の波状の凹凸が大きくなり過ぎて外部散乱によりヘーズが悪化したり、透明性が低下する場合があり、さらに膜の緻密化が低下し、耐擦傷性、基材との密着性が不充分となる場合がある。 Even if the content (W PH ) of the surface-treated metal oxide fine particles in the hard coat film is too large, the wavy irregularities on the surface become too large and haze deteriorates due to external scattering, and the transparency is In some cases, the film density decreases, and the film densification decreases, resulting in insufficient scratch resistance and adhesion to the substrate.

マトリックス成分(M H
ハードコート膜を構成するマトリックス成分(MH)は、分散用有機樹脂(A)と硬化用有機樹脂(B)とからなる。ハードコート膜中ではこれらのモノマーないしオリゴマーが重合して、硬化している。
Matrix component (M H )
The matrix component (M H ) constituting the hard coat film is composed of an organic resin for dispersion (A) and an organic resin for curing (B). In the hard coat film, these monomers or oligomers are polymerized and cured.

分散用有機樹脂(A)と硬化用有機樹脂(B)としてはいずれも紫外線硬化型樹脂が好ましく、後述する分散用有機樹脂(A)、硬化用有機樹脂(B)が用いられる。
これら有機樹脂が紫外線硬化型樹脂であると、PETやATC等の樹脂基材との密着性に優れ、硬度に優れたハードコート膜を得ることができる。
Both the dispersing organic resin (A) and the curing organic resin (B) are preferably ultraviolet curable resins, and the dispersing organic resin (A) and the curing organic resin (B) described later are used.
When these organic resins are ultraviolet curable resins, a hard coat film having excellent adhesion to a resin substrate such as PET or ATC and excellent hardness can be obtained.

分散用有機樹脂(A)および硬化用有機樹脂(B)
分散用有機樹脂(A)および硬化用有機樹脂(B)は、紫外線硬化型樹脂であることが好ましい。
分散用有機樹脂(A)とは、表面処理金属酸化物微粒子を安定に分散させるものであり、硬化用有機樹脂(B)とは、塗膜の硬度を高めるものである。
紫外線硬化型樹脂を分散用有機樹脂(A)として用いたときに、表面処理金属酸化物微粒子を安定に分散させることができ、高濃度で安定な表面処理金属酸化物微粒子の有機樹脂分散体を得ることができる。
Organic resin for dispersion (A) and organic resin for curing (B)
The dispersing organic resin (A) and the curable organic resin (B) are preferably ultraviolet curable resins.
The dispersing organic resin (A) is for stably dispersing the surface-treated metal oxide fine particles, and the curing organic resin (B) is for increasing the hardness of the coating film.
When UV curable resin is used as the organic resin for dispersion (A), the surface-treated metal oxide fine particles can be stably dispersed, and the organic resin dispersion of the surface-treated metal oxide fine particles can be stably dispersed at a high concentration. Can be obtained.

さらに、硬化用有機樹脂(B)を組み合わせることでより硬度に優れたハードコート膜を得ることができる。
紫外線硬化型樹脂のとしては、 (メタ)アクリレート基、ウレタン(メタ)アクリレート基、アルキレンオキサイド変性(メタ)アクリレート基から選ばれる少なくとも1種の官能基を有していることが好ましい。
Furthermore, a hard coat film having higher hardness can be obtained by combining the curable organic resin (B).
The ultraviolet curable resin preferably has at least one functional group selected from a (meth) acrylate group, a urethane (meth) acrylate group, and an alkylene oxide-modified (meth) acrylate group.

このような官能基を有していると、PETやTAC等の樹脂基材と結合しやすく、基材との密着性に優れている。また、マトリックス形成成分として互いに結合するために硬度に優れたハードコート膜を得ることができる。   When having such a functional group, it is easily bonded to a resin base material such as PET or TAC, and has excellent adhesion to the base material. Further, since they are bonded to each other as matrix forming components, a hard coat film having excellent hardness can be obtained.

分散用有機樹脂(A)は1〜2個の官能基を有する紫外線硬化型樹脂を用いることが好ましいが、官能基数が1〜2個であると、有機樹脂の粘度が低く、表面処理金属酸化物微粒子の有機分散媒分散液の有機分散媒を置換する際に有機樹脂を高濃度化しても粘度の上昇が小さく好適に用いることができる。   The dispersing organic resin (A) is preferably an ultraviolet curable resin having 1 to 2 functional groups, but if the number of functional groups is 1 to 2, the viscosity of the organic resin is low, and surface-treated metal oxidation Even when the concentration of the organic resin is increased when replacing the organic dispersion medium of the organic dispersion medium dispersion of the product fine particles, the increase in viscosity is small and the organic dispersion medium can be suitably used.

官能基数が1個の紫外線硬化型樹脂としては、
ブトキシエチルアクリレート、メトキシポリエチレングリコールアクリレート、フェノキシエチルアクリレート、2-ヒドロキシエチルアクリレート、2ヒドロキシプロピルアクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシエチルアクリレート、2ヒドロキシブチルアクリレート、エチレングルコールジグリシジルエーテルアクリレート、ポリエチレングルコールジグリシジルエーテルアクリレート、ジプロピレングリコールジグリシジルエーテルアクリレート、ポリプロピレングリコールジグリシジルエーテルアクリレート、1,6−ヘキサンジオールジグリシジルエーテルアクリレート、2-エチルヘキシルグリシジルエーテルアクリレート、ペンタエリスリトールポリグリシジルエーテルアクリレート、ネオペンチルグリコールジグリシジルエーテルアクリレート、エトキシ化ビスフェノールAメタクリレート、プロポキシ化ビスフェノールAジグリシジルエーテルアクリレート、O-フタル酸ジグリシジルエーテルアクリレート、シクロヘキサンジメタノールジグリシジルエーテルアクリレート、p−t−ブチルフェニルグリシジルエーテルアクリレート、O-フェニルフェノールグリシジルエーテルアクリレート、2−ヒドロキシ−3−フェノキシプロピルアクリレート、メチルメタクリレート、エチルメタクリレート、nブチルメタクリレート、イソブチルメタクリレート、2エチルヘキシルメタクリレート、イソデシルメタクリレート、ラウリルメタクリレート、nステアルルメタクリレート、n-ブトキシエチルメタクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、2-ヒドロキシブチルメタクリレート、グリシジルメタクリレート、2-メタクリロイロキシエチルアシッドホスフェート、2-アクリロイロオキシエチルアシッドホスフェート、2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート等の1官能の(メタ)アクリレート基を有するもの、
メタクリル酸、2−アクリロイルオキシエチルコハク酸、2−アクリロイルオキシテトラヒドロフタル酸、2−アクリロイルオキシヘキサヒドロフタル酸、2−アクリロイルオキシプロピルフタル酸、2−アクリロイルオキシプロピルテトラフタル酸、2−アクリロイルオキシプロピルヘキサフタル酸、メタクリロイルオキシエチルコハク酸、メタクリロイルオキシテトラヒドロフタル酸、メタクリロイルオキシエチルテトラヒドロフタル酸、メタクリロイルオキシエチルヘキサヒドロフタル酸、メタクリロイルオキシプロピルフタル酸、メタクリロイルオキシプロピルテトラフタル酸、メタアクリロイルオキシプロピルヘキサフタル酸などの1官能の(メタ)アクリル酸、
げられる。
As an ultraviolet curable resin with one functional group,
Butoxyethyl acrylate, methoxypolyethylene glycol acrylate, phenoxyethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxybutyl acrylate, ethylene glycol diglycidyl ether acrylate, polyethylene Glucol diglycidyl ether acrylate, dipropylene glycol diglycidyl ether acrylate, polypropylene glycol diglycidyl ether acrylate, 1,6-hexanediol diglycidyl ether acrylate, 2-ethylhexyl glycidyl ether acrylate, pentaerythritol polyglycidyl ether acrylate, neopentyl Recall diglycidyl ether acrylate, ethoxylated bisphenol A methacrylate, propoxylated bisphenol A diglycidyl ether acrylate, O-phthalic acid diglycidyl ether acrylate, cyclohexanedimethanol diglycidyl ether acrylate, pt-butylphenyl glycidyl ether acrylate, O- Phenylphenol glycidyl ether acrylate, 2-hydroxy-3-phenoxypropyl acrylate, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, 2-ethylhexyl methacrylate, isodecyl methacrylate, lauryl methacrylate, n-stearyl methacrylate, n-butoxyethyl methacrylate 2-hydroxyethyl ester Monofunctional such as tacrylate, 2-hydroxypropyl methacrylate, 2-hydroxybutyl methacrylate, glycidyl methacrylate, 2-methacryloyloxyethyl acid phosphate, 2-acryloyloxyethyl acid phosphate, 2-hydroxy-3-acryloyloxypropyl methacrylate Having a (meth) acrylate group of
Methacrylic acid, 2-acryloyloxyethylsuccinic acid, 2-acryloyloxytetrahydrophthalic acid, 2-acryloyloxyhexahydrophthalic acid, 2-acryloyloxypropylphthalic acid, 2-acryloyloxypropyltetraphthalic acid, 2-acryloyloxypropyl Hexaphthalic acid, methacryloyloxyethyl succinic acid, methacryloyloxy tetrahydrophthalic acid, methacryloyloxyethyl tetrahydrophthalic acid, methacryloyloxyethyl hexahydrophthalic acid, methacryloyloxypropyl phthalic acid, methacryloyloxypropyl tetraphthalic acid, methacryloyloxypropyl hexaphthalate Monofunctional (meth) acrylic acid such as acid,
I can get lost.

1官能のアルキレンオキサイド変性(メタ)アクリレート基を有するものとしては、メトキシトリエチレングリコールアクリレート、メトキシポリエチレングリコール#400モノアクリレート、メトキシポリエチレングリコール#600モノアクリレート、メトキシポリエチレングリコール#1000モノアクリレート、メトキシトリプロピレングリコールアクリレート、フェノキシエチレングリコールアクリレート、フェノキシジエチレングリコールアクリレート、2−ヒドロキシ−3−フェノキシプロピルアクリレート、エトキシ化α−フェニルフェノールプロピルアクリレート、メトキシジエチレングリコールメタクリレート、メトキシトリエチレングリコールメタクリレート、メトキシテトラエチレングリコールメタクリレート、メトキシポリエチレングリコールメタクリレート、メトキシトリプロピレングリコールメタクリレート、エトキシ化2-エチルヘキシルメタクリレート、ブトキシジエチレングリコールメタクリレート、ブトキシジエチレングリコールメタクリレート、ポリエチレングリコール変性ステアリルメタクリレート、フェノキシエチレングリコールメタクリレート、フェノキシジエチレングリコールメタクリレート、フェノキシエチルメタクリレートなどが挙げられる。   Monofunctional alkylene oxide-modified (meth) acrylate groups having methoxytriethylene glycol acrylate, methoxypolyethylene glycol # 400 monoacrylate, methoxypolyethylene glycol # 600 monoacrylate, methoxypolyethylene glycol # 1000 monoacrylate, methoxytripropylene Glycol acrylate, phenoxyethylene glycol acrylate, phenoxydiethylene glycol acrylate, 2-hydroxy-3-phenoxypropyl acrylate, ethoxylated α-phenylphenol propyl acrylate, methoxydiethylene glycol methacrylate, methoxytriethylene glycol methacrylate, methoxytetraethylene glycol methacrylate, Butoxy polyethylene glycol methacrylate, methoxy tripropylene glycol dimethacrylate, ethoxylated 2-ethylhexyl methacrylate, butoxy diethylene glycol methacrylate, butoxy diethylene glycol dimethacrylate, polyethylene glycol-modified stearyl methacrylate, phenoxy ethylene glycol methacrylate, phenoxy diethylene glycol methacrylate, phenoxyethyl methacrylate.

なお、アルキレンオキサイド変性(メタ)アクリレート基を有するものは、特開2005-92198号公報に示されるように、
[CH2=C(R1)COO(R2O)nm3 (1)
で表される。式中、R1は水素原子またはメチル基であり、R2はアルキレン基であり、R3は炭化水素残基である。mは1以上、nは1以上である。mが本発明の官能基数に相当する。
In addition, those having an alkylene oxide-modified (meth) acrylate group, as shown in JP-A-2005-92198,
[CH 2 ═C (R 1 ) COO (R 2 O) n ] m R 3 (1)
It is represented by In the formula, R 1 is a hydrogen atom or a methyl group, R 2 is an alkylene group, and R 3 is a hydrocarbon residue. m is 1 or more and n is 1 or more. m corresponds to the number of functional groups of the present invention.

2官能の紫外線硬化型樹脂としては、
ネオペンチルグリコールジアクリレート、1,6−ヘキサンジオールジアクレート、1.9−ノナンジオールジアクレート、イソノナンジオールジアクレート、1,10−デカンジオールジメタクリレート、グリセリンジメタクリレート、ジメチロール-トリシクロデカンジアクリレート、9,9−ビス[4−(2−ヒドロキシエトキシ)フェニル]フルオレンジアクリレート、2メタクリロイロキシエチルアシッドホスフェート、2アクリロイロオキシエチルアシッドホスフェート、1,4−ブタンジオールジメタクレート、1,6−ヘキサンジオールジメタクレート、1,9−ノナンジオールジメタクレート、1,10−デカンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、グリセリンジメタクリレートアクリレート、2-メタクリロイロキシエチルアシッドホスフェート、2-アクリロイロオキシエチルアシッドホスフェート等の2個の(メタ)アクリレート基を有するモノマーないしそのオリゴマー、
エトキシ化ビスフェノールAジアクリレート、プロポキシ化ビスフェノールAジアクリレート、プロポキシ化エトキシ化ビスフェノールAジアクリレート、エトキシ化ビスフェノールAジメタクリレート等の2官能アルコキシ化ビスフェノールA(メタ)アクリレート基を有するもの、
NKオリゴU−200PA、UA−W2、UA−W2A,UA−122P、UA−160TP、UA−2235PE、UA−4200,UA−4400、UA−7000、U−2HA、U−2PPAなどの2官能ウレタン(メタ)アクリレート基を有するもの、
トリプロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、ト、ポリエチレングリコール#200ジアクリレート、ポリプロピレングリコール#400ジアクリレート、ポリプロピレングリコール#700ジアクリレート、ポリテトラメチレングリコール#650ジアクリレート、ポリエチレンポリプロピレングリコールジアクリレート、ジオキサングリコールジアクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ポリエチレングリコール#200ジメタクリレート、ポリエチレングリコール#400ジメタクリレート、ポリエチレングリコール#600ジメタクリレート、ポリエチレングリコール#1000ジメタクリレート、トリプロピレングリコールジメタクリレート、ポリプロピレングリコールジメタクリレート、ネオペンチルグリコールジメタクリレート、ポリエチレンポリプロピレングリコールジアクリレート、エチレングリコールジメタクリレート等のグリコール系アクリレート等の2官能エチレンオキサイド変性(メタ)アクリレート基を有するものなどがあげられる。
As bifunctional UV curable resin,
Neopentyl glycol diacrylate, 1,6-hexanediol diacrylate, 1.9-nonanediol diacrylate, isononanediol diacrylate, 1,10-decanediol dimethacrylate, glycerol dimethacrylate, dimethylol-tricyclodecane diacrylate, 9,9-bis [4- (2-hydroxyethoxy) phenyl] full orange acrylate, 2 methacryloyloxyethyl acid phosphate, 2 acryloyloxyethyl acid phosphate, 1,4-butanediol dimethacrylate, 1,6- Hexanediol dimethacrylate, 1,9-nonanediol dimethacrylate, 1,10-decanediol dimethacrylate, neopentyl glycol dimethacrylate, glycerin dimethacrylate acrylate, 2-methyl Monomers or oligomers having two (meth) acrylate groups such as tacryloyloxyethyl acid phosphate and 2-acryloyloxyethyl acid phosphate;
Those having a bifunctional alkoxylated bisphenol A (meth) acrylate group such as ethoxylated bisphenol A diacrylate, propoxylated bisphenol A diacrylate, propoxylated ethoxylated bisphenol A diacrylate, ethoxylated bisphenol A dimethacrylate,
Bifunctional urethane such as NK Oligo U-200PA, UA-W2, UA-W2A, UA-122P, UA-160TP, UA-2235PE, UA-4200, UA-4400, UA-7000, U-2HA, U-2PPA Having a (meth) acrylate group,
Tripropylene glycol diacrylate, polypropylene glycol diacrylate, polyethylene glycol # 200 diacrylate, polypropylene glycol # 400 diacrylate, polypropylene glycol # 700 diacrylate, polytetramethylene glycol # 650 diacrylate, polyethylene polypropylene glycol diacrylate, dioxane Glycol diacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, polyethylene glycol # 200 dimethacrylate, polyethylene glycol # 400 dimethacrylate, polyethylene glycol # 600 dimethacrylate, poly Bifunctional ethylene oxide modified (meth) acrylate such as glycol acrylates such as Tylene glycol # 1000 dimethacrylate, tripropylene glycol dimethacrylate, polypropylene glycol dimethacrylate, neopentyl glycol dimethacrylate, polyethylene polypropylene glycol diacrylate, ethylene glycol dimethacrylate And those having a group.

前記した各官能基を有する有機樹脂の内、官能基数が1または2の有機樹脂を選択して用いることができる。
この紫外線硬化型樹脂のうち、
OH基を有するものは、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、2-ヒドロキシエチルアクリレート、2ヒドロキシプロピルアクリレート、2-ヒドロキシブチルアクリレート、2-ヒドロキシブチルメタクリレート、2-メタクリロイロキシエチルアシッドホスフェート、2-アクリロイロオキシエチルアシッドホスフェート、グリセリンメジタクリレート、2−ヒドロキシ−3−メタクリルプロピルアクリレート、2-ヒドロキシ-1,3-ジメタクリロキシプロパン、2−ヒドロキシ−3−フェノキシプロピルアクリレート等であり、
エーテル基を有するものは、メトキシトリエチレングリコールアクリレート、メトキシポリエチレングリコール#400モノアクリレート、メトキシポリエチレングリコール#600モノアクリレート、メトキシポリエチレングリコール#1000モノアクリレート、モトキシトリプロピレングリコールアクリレート、フェノキシエチレングリコールアクリレート、フェノキシジエチレングリコールアクリレート、2−ヒドロキシ−3−フェノキシプロピルアクリレート、エトキシ化α−フェニルフェノールプロピルアクリレート、メトキシジエチレングリコールメタクリレート、メトキシトリエチレングリコールメタクリレート、メトキシテトラエチレングリコールメタクリレート、メトキシポリエチレングリコールメタクリレート、メトキシトリプロピレングリコールメタクリレート、エトキシ化2エチルヘキシルメタクリレート、ブトキシジエチレングリコールメタクリレート、ブトキシジエチレングリコールメタクリレート、ポリエチレングリコール変性ステアリルメトクリレート、フェノキシエチレングリコールメタクリレート、フェノキシジエチレングリコールメタクリレート、フェノキシエチルメタクリレート、トリプロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、ト、ポリエチレングリコール#200ジアクリレート、ポリプロピレングリコール#400ジアクリレート、ポリプロピレングリコール#700ジアクリレート、ポリテトラメチレングリコール#650ジアクリレート、ポリエチレンポリプロピレングリコールジアクリレート、ジオキサングリコールジアクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ポリエチレングリコール#200ジメタクリレート、ポリエチレングリコール#400ジメタクリレート、ポリエチレングリコール#600ジメタクリレート、ポリエチレングリコール#1000ジメタクリレート、トリプロピレングリコールジメタクリレート、ポリプロピレングリコールジメタクリレート、ネオペンチルグリコールジメタクリレート、ポリエチレンポリプロピレングリコールジアクリレート、エチレングリコールジメタクリレート等であり、
アミノ基を有するものはジメチルアミノエチルメタクリレート、ジメチルアミノメチルメタクリレート、ジエチルアミノメチルメタクリレート、ジエチルアミノエチルメタクリレート等であり、
アミド基を有するものは、ジメチルアクリルアミド、アクリロイルモルホリン、ジメチルアミノプロピルアクリルアミド、イソプロピルアクリルアミド、ジエチルアクリルアミド、ヒドロキシエチルアクリルアミド等であり、
カルボキシル基を有するものは、メタクリル酸、2−アクリロイルオキシエチルコハク酸、2−アクリロイルオキシテトラヒドロフタル酸、2−アクリロイルオキシヘキサヒドロフタル酸、2−アクリロイルオキシプロピルフタル酸、2−アクリロイルオキシプロピルテトラフタル酸、2−アクリロイルオキシプロピルヘキサフタル酸、メタクリロイルオキシエチルコハク酸、メタクリロイルオキシテトラヒドロフタル酸、メタクリロイルオキシエチルテトラヒドロフタル酸、メタクリロイルオキシエチルヘキサヒドロフタル酸、メタクリロイルオキシプロピルフタル酸、メタクリロイルオキシプロピルテトラフタル酸、メタアクリロイルオキシプロピルヘキサフタル酸である。
Among the organic resins having each functional group described above, an organic resin having 1 or 2 functional groups can be selected and used.
Of this UV curable resin,
Those having an OH group are 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxybutyl acrylate, 2-hydroxybutyl methacrylate, 2-methacryloyloxyethyl acid phosphate. 2-acryloyloxyethyl acid phosphate, glycerin mediacrylate, 2-hydroxy-3-methacrylpropyl acrylate, 2-hydroxy-1,3-dimethacryloxypropane, 2-hydroxy-3-phenoxypropyl acrylate, etc. ,
Those having an ether group are methoxytriethylene glycol acrylate, methoxypolyethylene glycol # 400 monoacrylate, methoxypolyethylene glycol # 600 monoacrylate, methoxypolyethylene glycol # 1000 monoacrylate, motooxytripropylene glycol acrylate, phenoxyethylene glycol acrylate, phenoxydiethylene glycol Acrylate, 2-hydroxy-3-phenoxypropyl acrylate, ethoxylated α-phenylphenol propyl acrylate, methoxydiethylene glycol methacrylate, methoxytriethylene glycol methacrylate, methoxytetraethylene glycol methacrylate, methoxypolyethylene glycol methacrylate, metho Citripropylene glycol methacrylate, ethoxylated 2-ethylhexyl methacrylate, butoxydiethylene glycol methacrylate, butoxydiethylene glycol methacrylate, polyethylene glycol modified stearyl methacrylate, phenoxyethylene glycol methacrylate, phenoxydiethylene glycol methacrylate, phenoxyethyl methacrylate, tripropylene glycol diacrylate, polypropylene glycol diacrylate , Polyethylene glycol # 200 diacrylate, polypropylene glycol # 400 diacrylate, polypropylene glycol # 700 diacrylate, polytetramethylene glycol # 650 diacrylate, polyethylene polypropylene glycol diacrylate Relate, dioxane glycol diacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, polyethylene glycol # 200 dimethacrylate, polyethylene glycol # 400 dimethacrylate, polyethylene glycol # 600 dimethacrylate, polyethylene glycol # 1000 dimethacrylate, tripropylene glycol dimethacrylate, polypropylene glycol dimethacrylate, neopentyl glycol dimethacrylate, polyethylene polypropylene glycol diacrylate, ethylene glycol dimethacrylate, etc.
Those having an amino group are dimethylaminoethyl methacrylate, dimethylaminomethyl methacrylate, diethylaminomethyl methacrylate, diethylaminoethyl methacrylate and the like,
Those having an amide group are dimethylacrylamide, acryloylmorpholine, dimethylaminopropylacrylamide, isopropylacrylamide, diethylacrylamide, hydroxyethylacrylamide and the like,
Those having a carboxyl group are methacrylic acid, 2-acryloyloxyethyl succinic acid, 2-acryloyloxytetrahydrophthalic acid, 2-acryloyloxyhexahydrophthalic acid, 2-acryloyloxypropylphthalic acid, 2-acryloyloxypropyltetraphthalate. Acid, 2-acryloyloxypropylhexaphthalic acid, methacryloyloxyethylsuccinic acid, methacryloyloxytetrahydrophthalic acid, methacryloyloxyethyltetrahydrophthalic acid, methacryloyloxyethylhexahydrophthalic acid, methacryloyloxypropylphthalic acid, methacryloyloxypropyltetraphthalic acid , Methacryloyloxypropyl hexaphthalic acid.

前記官能基を有してないものは、1,4−ブタンジオールジメタクレート、1,6−ヘキサンジオールジメタクレート、1,9−ノナンジオールジメタクレート、1,10−デカンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、グリセリンジメタクリレート、ネオペンチルグリコールジアクリレート、1,6−ヘキサンジオールジアクレート、1,9−ノナンジオールジアクレート、イソノナンジオールジアクレート、1,10−デカンジオールジメタクリレート、グリセリンジメタクリレート、ジメチロール-トリシクロデカンジアクリレート、9,9−ビス[4−(2−ヒドロキシエトキシ)フェニル]フルオレンジアクリレート、ジメチロール-トリシクロデカンジアクリレート、メチルメタクリレート、エチルメタクリレート、nブチルメタクリレート、イソブチルメタクリレート、2エチルヘキシルメタクリレート、イソデシルメタクリレート、ラウリルメタクリレート、nステアルルメタクリレート等である。   Those having no functional group are 1,4-butanediol dimethacrylate, 1,6-hexanediol dimethacrylate, 1,9-nonanediol dimethacrylate, 1,10-decanediol dimethacrylate, Neopentyl glycol dimethacrylate, glycerin dimethacrylate, neopentyl glycol diacrylate, 1,6-hexanediol diacrylate, 1,9-nonanediol diacrylate, isononanediol diacrylate, 1,10-decanediol dimethacrylate, glycerin diacrylate Methacrylate, dimethylol-tricyclodecane diacrylate, 9,9-bis [4- (2-hydroxyethoxy) phenyl] full orange acrylate, dimethylol-tricyclodecane diacrylate, methyl methacrylate, ethyl methacrylate DOO, n-butyl methacrylate, isobutyl methacrylate, 2-ethylhexyl methacrylate, isodecyl methacrylate, lauryl methacrylate, n stearyl Arles methacrylate.

硬化用有機樹脂(B)としては、3個以上の官能基を有する紫外線硬化型樹脂を用いることが好ましいが、官能基数が3個以上であると、PETやTAC等の樹脂基材と結合しやすく、基材との密着性に優れている。また、マトリックス形成成分として互いに、結合するために硬度に優れたハードコート膜を得ることができる。   As the curable organic resin (B), it is preferable to use an ultraviolet curable resin having three or more functional groups. However, when the number of functional groups is three or more, it is bonded to a resin substrate such as PET or TAC. It is easy and has excellent adhesion to the substrate. Also, a hard coat film having excellent hardness can be obtained because they are bonded to each other as a matrix forming component.

3個以上の官能基を有する紫外線硬化型樹脂としては、
ペンタエリスリトールトリアクリレート、トリメチロールプロパントリアクリレート、エトキシ化トリメチロールプロパントリアクリレート、プロポキシ化トリメチロールプロパントリアクリレート等の3官能アクリレート樹脂、ペンタエリスリトールヘキサメチレンジイソシアネートウレタンプレポリマー等の3官能ウレタンアクリレート樹脂、クレゾールノボラック型エポキシアクリレート、ビスフェノールAジグリシジルエーテルアクリル酸付加物等のエポキシ基含有3官能アクリレート樹脂、トリメチロールプロパントリメタクリレート、エトキシ化トリメチロールプロパントリメタクリレート、プロポキシ化トリメチロールプロパントリメタクリレート、エトキシ化グリセリントリメタクリレート、エトキシ化ペンタエリスリトールトリメタクリレート、プロポキシ化ペンタエリスリトールトリメタクリレート等の3官能(メタ)アクリレート樹脂、
NKオリゴUA−31F、UA−7100、UA−32Pなどの3官能のウレタン(メタ)アクリレート基を有するもの、
トリス−(2−アクリロキシエチル)イソシアヌレート、カプロラクトン変性トリス−(2−アクリロキシエチル)イソシアヌレート等の3官能の(カプロラクトン変性)イソシアヌレート(メタ)アクリレート基を有するもの、
エトキシ化グリセリントリアクリレート、プロポキシ化グリセリントリアクリレート、プロポキシ化トリメチロールプロパントリアクリレート、エキシ化ジペンタエリスルトールポリアクリレート、プロポキシ化ジペンタエリスルトールポリアクリレート等の3官能のエポキシ変性(メタ)アクリレート基を有するもの、
ペンタエリストールテトラアクリレート等の4官能(メタ)アクリレート樹脂、
エトキシ化ペンタエリストールテトラアクリレート、プロポキシ化ペンタエリストールテトラアクリレート等のエポキシ基含有4官能(メタ)アクリレート樹脂、
ジペンタエリスルトールヘキサアクリレート等の6官能ア(メタ)アクリレート樹脂、
エキシ化ジペンタエリスルトールポリアクリレート、プロポキシ化ジペンタエリスルトールポリアクリレート等のエポキシ基含有6官能(メタ)アクリレート樹脂、
4官能ウレタン(メタ)アクレートオリゴマー樹脂、
6官能ウレタン(メタ)アクレートオリゴマー樹脂、
8官能ウレタン(メタ)アクレートオリゴマー樹脂、
9官能ウレタン(メタ)アクレートオリゴマー樹脂、
10官能ウレタン(メタ)アクレートオリゴマー樹脂、
12官能ウレタン(メタ)アクレートオリゴマー樹脂、
15官能ウレタン(メタ)アクレートオリゴマー樹脂等が挙げられる。ウレタン(メタ)アクリレート樹脂としては、市販されているNKオリゴUA−33H,UA−6LR,UA−8LR,UA−12LR、U−10PA,U−10HA、UA−1100H(新中村化学(株)製)等も好適に用いることができる。
As an ultraviolet curable resin having three or more functional groups,
Trifunctional acrylate resins such as pentaerythritol triacrylate, trimethylolpropane triacrylate, ethoxylated trimethylolpropane triacrylate, propoxylated trimethylolpropane triacrylate, trifunctional urethane acrylate resins such as pentaerythritol hexamethylene diisocyanate urethane prepolymer, cresol Epoxy group-containing trifunctional acrylate resin such as novolak type epoxy acrylate, bisphenol A diglycidyl ether acrylic acid adduct, trimethylolpropane trimethacrylate, ethoxylated trimethylolpropane trimethacrylate, propoxylated trimethylolpropane trimethacrylate, ethoxylated glycerin tri Methacrylate, ethoxylated pentaerythritol Trimethacrylate, trifunctional (meth) acrylate resins such as propoxylated pentaerythritol trimethacrylate,
Those having a trifunctional urethane (meth) acrylate group such as NK oligo UA-31F, UA-7100, UA-32P,
Having trifunctional (caprolactone-modified) isocyanurate (meth) acrylate group such as tris- (2-acryloxyethyl) isocyanurate, caprolactone-modified tris- (2-acryloxyethyl) isocyanurate,
Trifunctional epoxy-modified (meth) acrylates such as ethoxylated glycerin triacrylate, propoxylated glycerin triacrylate, propoxylated trimethylolpropane triacrylate, excited dipentaerythritol polyacrylate, propoxylated dipentaerythritol polyacrylate Having a group,
Tetrafunctional (meth) acrylate resins such as pentaerythritol tetraacrylate,
Epoxy group-containing tetrafunctional (meth) acrylate resins such as ethoxylated pentaerythritol tetraacrylate and propoxylated pentaerythritol tetraacrylate,
Hexafunctional a (meth) acrylate resins such as dipentaerythritol hexaacrylate,
Epoxy group-containing hexafunctional (meth) acrylate resins such as excitated dipentaerythritol polyacrylate and propoxylated dipentaerythritol polyacrylate,
Tetrafunctional urethane (meth) acrylate oligomer resin,
Hexafunctional urethane (meth) acrylate oligomer resin,
Octafunctional urethane (meth) acrylate oligomer resin,
9-functional urethane (meth) acrylate oligomer resin,
10-functional urethane (meth) acrylate oligomer resin,
12-functional urethane (meth) acrylate oligomer resin,
A 15-functional urethane (meth) acrylate oligomer resin and the like can be mentioned. As urethane (meth) acrylate resins, commercially available NK oligos UA-33H, UA-6LR, UA-8LR, UA-12LR, U-10PA, U-10HA, UA-1100H (manufactured by Shin-Nakamura Chemical Co., Ltd.) Etc.) can also be suitably used.

さらに、クレゾールノボラック型エポキシアクリレート、ビスフェノールAジグリシジルエーテルアクリル酸付加物等のエポキシ基を含有する4官能以上の(メタ)アクリレート樹脂等が挙げられ、このような樹脂としてはNKオリゴEA−6320、EA−6340、EA−7120、EA−7140、EA−7420(新中村化学(株)製)等も好適に用いることができる。   Furthermore, a tetrafunctional or higher functional (meth) acrylate resin containing an epoxy group such as a cresol novolac type epoxy acrylate, a bisphenol A diglycidyl ether acrylic acid adduct, and the like are listed. Examples of such a resin include NK oligo EA-6320, EA-6340, EA-7120, EA-7140, EA-7420 (manufactured by Shin-Nakamura Chemical Co., Ltd.) and the like can also be suitably used.

官能基数が4以上の(メタ)アクリレート樹脂のなかでも、官能基数が6〜12の(メタ)アクリレート樹脂は、カーリング抑制効果が高く、硬度にも優れているので好適に用いることができる。   Among (meth) acrylate resins having 4 or more functional groups, (meth) acrylate resins having 6 to 12 functional groups can be suitably used because they have a high curling suppression effect and excellent hardness.

本発明では、前記表面処理金属酸化物微粒子の表面処理量が0.1〜5重量部、とくには0.1〜3重量部の範囲にある場合、分散用有機樹脂(A)が水酸基(OH基)、エーテル基、アミノ基、カルボキシル基、スルホ基の少なくともいずれか1種を有する有機樹脂であることが好ましい。   In the present invention, when the surface-treated metal oxide fine particles have a surface treatment amount of 0.1 to 5 parts by weight, particularly 0.1 to 3 parts by weight, the dispersing organic resin (A) is a hydroxyl group (OH Group), an ether group, an amino group, a carboxyl group, and a sulfo group, and an organic resin having at least one of them is preferable.

分散用有機樹脂(A)がこれらの官能基を有する樹脂であると、表面処理金属酸化物微粒子の表面処理量が前記範囲にある場合、粒子表面に親水性基(OH基)が残存しており、前記官能基を有する分散用有機樹脂(A)との親和性が高く、ハードコート膜形成用塗布液を調製する際、表面処理金属酸化物微粒子が凝集することなく均一に分散した表面処理金属酸化物微粒子の分散用有機樹脂(A)分散体を得ることができる。   When the organic resin for dispersion (A) is a resin having these functional groups, when the surface treatment amount of the surface-treated metal oxide fine particles is in the above range, hydrophilic groups (OH groups) remain on the particle surface. Surface treatment in which the surface-treated metal oxide fine particles are uniformly dispersed without agglomeration when preparing a coating liquid for forming a hard coat film. An organic resin (A) dispersion for dispersing metal oxide fine particles can be obtained.

また、前記表面処理金属酸化物微粒子の表面処理量が5〜50重量部の範囲にある場合、分散用有機樹脂(A)が前記官能基を有してない有機樹脂が好ましいが、前記官能基を有する有機樹脂であってもよい。   Further, when the surface treatment amount of the surface-treated metal oxide fine particles is in the range of 5 to 50 parts by weight, the organic resin for dispersion (A) is preferably an organic resin having no functional group, but the functional group It may be an organic resin.

また、マトリックス成分は分散用有機樹脂(A)と硬化用有機樹脂(B)とからなっているが、マトリックス成分中の分散用有機樹脂(A)の固形分としての含有量は1〜80重量%、さらには5〜60重量%の範囲にあることが好ましい。   The matrix component is composed of the dispersing organic resin (A) and the curing organic resin (B). The content of the dispersing organic resin (A) in the matrix component as a solid content is 1 to 80 wt. %, More preferably in the range of 5 to 60% by weight.

マトリックス成分(MH)成分中の分散用有機樹脂(A)の含有量が少ないと、ハードコート膜表面の平滑性が低下したり、緻密化が不充分となり、ヘーズ、硬度、耐擦傷性、基材との密着性等が不充分となる場合がある。 If the content of the organic resin for dispersion (A) in the matrix component (M H ) component is small, the smoothness of the hard coat film surface is lowered or the densification is insufficient, and haze, hardness, scratch resistance, Adhesiveness with a substrate may be insufficient.

マトリックス成分(MH)中の分散用有機樹脂(A)の含有量が多いと、一方で硬化用樹脂(B)が少なくなり、ハードコート膜の緻密性が低く、硬度が不十分となる場合がある。
ハードコート膜中のマトリックス成分の固形分としての含有量(WRH)は10〜50重量%、さらには15〜40重量%の範囲にあることが好ましい。
When the content of the organic resin (A) for dispersion in the matrix component (M H ) is large, the curing resin (B) is reduced on the other hand, the hard coat film is low in density, and the hardness is insufficient. There is.
The content (W RH ) of the matrix component as a solid content in the hard coat film is preferably in the range of 10 to 50% by weight, more preferably 15 to 40% by weight.

ハードコート膜の表面(後述する反射防止膜との界面)は波状の凹凸を有することが好ましい。
波状の凹凸は、ハードコート膜に配合して用いるハードコート膜の表層に存在する表面処理金属酸化物微粒子により形成されると考えられ、ハードコート膜中の表面処理金属酸化物微粒子の含有量に依存する傾向が認められる。
The surface of the hard coat film (interface with the antireflection film described later) preferably has wavy irregularities.
The wavy unevenness is considered to be formed by the surface-treated metal oxide fine particles present in the surface layer of the hard coat film used by blending with the hard coat film. A tendency to depend is observed.

本発明ではハードコート膜中の表面処理金属酸化物微粒子(P)が相対的に多く、マトリックス成分が少ないので、マトリックス硬化時にハードコート膜が平坦化せずに、波状表面を形成して硬化するものと考えられ、また組み合わせるマトリックス成分の種類に応じて変動する。   In the present invention, since the surface-treated metal oxide fine particles (P) in the hard coat film are relatively large and the matrix component is small, the hard coat film is not flattened during the curing of the matrix, and forms a wavy surface and hardens. It depends on the type of matrix components to be combined.

ハードコート膜中のマトリックス成分が少ないと、表面の凹凸が大きくなり過ぎて外部散乱により膜のヘーズが悪化したり、透明性が低下する場合があり、また粒子が多くなってしまうため、かえってハードコート膜の緻密化が不充分であり、基材との密着性、耐擦傷性、硬度が不充分となる場合がある。   If there are few matrix components in the hard coat film, the surface irregularities will become too large, haze of the film may deteriorate due to external scattering, transparency may decrease, and the number of particles will increase. Insufficient densification of the coating film may result in insufficient adhesion to the substrate, scratch resistance, and hardness.

ハードコート膜中のマトリックス成分(MH)が多すぎても、表面の波状の凹凸が大きくなり過ぎて外部散乱によりヘーズが悪化したり、透明性が低下する場合があり、耐擦傷性、基材との密着性が不充分となる場合がある。また、膜の収縮が大きいため、厚膜(概ね10μm以上)にするとカーリングを伴ったり、場合によってはクラックが発生したり、また、緻密性が低いため硬度が不充分となる場合がある。 Even if there is too much matrix component (M H ) in the hard coat film, the wavy irregularities on the surface become too large, haze may deteriorate due to external scattering, and transparency may be lowered. Adhesion with the material may be insufficient. In addition, since the film shrinks greatly, when it is thick (approximately 10 μm or more), curling may occur, cracks may be generated in some cases, and the hardness may be insufficient due to low density.

ハードコート膜中のマトリックス成分の含有量(WRH)と表面処理金属酸化物微粒子の含有量(WPH)との比(WRH)/(WPH)は0.12〜1.0、さらには0.18〜0.8の範囲にあることが好ましい。 The ratio (W RH ) / (W PH ) between the content (W RH ) of the matrix component in the hard coat film and the content (W PH ) of the surface-treated metal oxide fine particles is 0.12 to 1.0, Is preferably in the range of 0.18 to 0.8.

前記比(WRH)/(WPH)が小さいと、表面処理金属酸化物微粒子の固形分としての含有量(WPH)が高く、ハードコート膜表面の波状凹凸が大きくなり過ぎる場合があり、外部散乱により膜のヘーズが悪化したり、透明性が低下する場合があり、さらに膜の緻密化が不充分となる場合があり、得られるハードコート膜と基材との密着性が不充分となる場合があり、また、最終的に得られる反射防止膜付基材の耐擦傷性が不充分となる場合がある。 When the ratio (W RH ) / (W PH ) is small, the content (W PH ) as the solid content of the surface-treated metal oxide fine particles is high, and the wavy unevenness on the surface of the hard coat film may become too large. The haze of the film may be deteriorated due to external scattering or the transparency may be lowered, and further the film may be insufficiently densified, and the adhesion between the obtained hard coat film and the substrate is insufficient. In addition, the scratch resistance of the finally obtained substrate with an antireflection film may be insufficient.

前記比(WRH)/(WPH)が大きすぎても、膜の収縮が大きくなり、厚膜にするとクラックが発生する場合がある。また、ハードコート膜の緻密化が不充分となり、このため硬度が不充分となる場合がある。 Even if the ratio (W RH ) / (W PH ) is too large, the shrinkage of the film increases, and cracks may occur when the film is thick. In addition, the hard coat film is insufficiently densified, and thus the hardness may be insufficient.

波状の凹凸は、表面粗さ(Ra)として1〜10nm、さらには1〜5nmの範囲にあることが好ましい。
上記したような、組成比の表面処理金属酸化物微粒子(P)とマトリックス成分(MH)とを組み合わせているので、所定の表面粗さの波状凹凸を有するハードコート膜が形成される。このような表面粗さを有すると、反射防止膜を形成した場合に、接合面積が高くなるため、密着性が高く、硬度、耐擦傷性に優れた被膜付基材が得られ、一方、反射防止膜の平滑性を阻害しないので、外部散乱により膜のヘーズの悪影響も少なく、透明性が低下することもない。
The wavy unevenness is preferably in the range of 1 to 10 nm, more preferably 1 to 5 nm, as the surface roughness (Ra).
Since the surface-treated metal oxide fine particles (P) having the composition ratio as described above and the matrix component (M H ) are combined, a hard coat film having wavy irregularities with a predetermined surface roughness is formed. With such a surface roughness, when an antireflection film is formed, the bonding area is increased, so that a coated substrate with high adhesion, excellent hardness, and scratch resistance can be obtained. Since the smoothness of the prevention film is not hindered, the adverse effect of the haze of the film due to external scattering is small, and the transparency is not lowered.

前記表面粗さ(Ra)は、原子間力顕微鏡(AFM)(Bruker(株)製:Dimension 3100)で測定することができる。
つぎに、ハードコート膜の平均膜厚(TH)は1〜100μm、さらには12〜80μmの範囲にあることが好ましい。
The surface roughness (Ra) can be measured with an atomic force microscope (AFM) (manufactured by Bruker, Inc .: Dimension 3100).
Next, the average thickness (T H ) of the hard coat film is preferably in the range of 1 to 100 μm, more preferably 12 to 80 μm.

平均膜厚(TH)がこの範囲にあれば、本発明の塗布液を用いることで、樹脂基材上に硬度が高く、カーリングの抑制されたハードコート膜を形成できる。
なお、ハードコート膜の平均膜厚(TH)は、ハードコート膜の断面の透過型電子顕微鏡写真(TEM)を撮影し、表面凹凸におけるハードコート膜の上部表面の凸部の頂点から直下底部間の距離(T凸)と、凸部の隣の凹部の最深部から直下底部間の距離(T凹)を測定し、その平均値として求める。なお、測定する凹凸数は一定間隔を置いた10組以上であることが好ましい。
If the average film thickness (T H ) is within this range, a hard coat film with high hardness and curling suppression can be formed on the resin substrate by using the coating liquid of the present invention.
The average thickness (T H ) of the hard coat film was taken from a transmission electron micrograph (TEM) of the cross section of the hard coat film, and the bottom portion immediately below the top of the convex portion of the upper surface of the hard coat film in the surface irregularities. The distance between them (T convex) and the distance (T concave) between the deepest part of the concave part adjacent to the convex part and the bottom part directly below (T concave) are obtained and obtained as an average value. In addition, it is preferable that the number of unevenness | corrugations to measure is 10 sets or more at regular intervals.

本発明によれば、前記樹脂基材を用いても鉛筆硬度は5H以上、さらには6H以上のハードコート膜を形成できる。
また、ハードコート膜付基材は、下記条件で測定した、カーリング特性が5mm以下である。
According to the present invention, even if the resin base material is used, a hard coat film having a pencil hardness of 5H or more, further 6H or more can be formed.
The base material with a hard coat film has a curling characteristic of 5 mm or less as measured under the following conditions.

14cm×25cm×40μm(厚み)のTACフィルム基材上に厚みが12μmのハードコート膜が形成できるように後述するハードコート膜形成用塗布液を塗布し、20時間静置し、その後、フィルムを10cm×10cmサイズにカットし、塗布面を下にしてフィルムを平板上に置き、カーリング(湾曲)して浮上した基材の頂点の平板からの高さ。   A coating liquid for forming a hard coat film, which will be described later, is applied on a TAC film substrate having a thickness of 14 cm × 25 cm × 40 μm (thickness) so that a hard coat film having a thickness of 12 μm can be formed. The height from the flat plate at the apex of the base material cut to a size of 10 cm × 10 cm, placed on a flat plate with the coating surface down, and curled (curved).

従来のハードコート膜を樹脂基材上に形成したものでは、本発明のようなカーリング特性や硬度を達成することは困難である。
このようなハードコート膜は、樹脂基材上に、ハードコート膜形成用塗布液を塗布し、乾燥し、硬化することで形成される。
In the case where a conventional hard coat film is formed on a resin substrate, it is difficult to achieve curling characteristics and hardness as in the present invention.
Such a hard coat film is formed by applying a coating liquid for forming a hard coat film on a resin substrate, drying, and curing.

塗布方法としては、ディップ法、スプレー法、スピナー法、ロールコート法、バーコート法、グラビア印刷法、マイクログラビア印刷法等の周知の方法が挙げられ、紫外線照射する等の常法によって硬化される。   Examples of the coating method include well-known methods such as a dipping method, a spray method, a spinner method, a roll coating method, a bar coating method, a gravure printing method, and a micro gravure printing method, and are cured by an ordinary method such as ultraviolet irradiation. .

なお、ハードコート膜形成用塗布液を塗布、乾燥し、後述の反射防止膜形成用塗布液を塗布、乾燥し、ついで紫外線照射して同時に硬化してもよく、これにより、より硬度、耐擦傷性等に優れた反射防止膜付基材を得ることができる。   In addition, the coating liquid for forming a hard coat film may be applied and dried, and the coating liquid for forming an antireflection film described later may be applied and dried, and then cured simultaneously by irradiation with ultraviolet rays. A substrate with an antireflection film excellent in properties and the like can be obtained.

所定の構成のハードコート膜形成用塗布液を塗布した後、乾燥したときの塗膜の収縮率(1)は25%以下、さらには20%以下となる。
なお、乾燥塗膜の収縮率(1)が前記範囲を超えて高いと、厚膜の場合にクラックが発生したり、緻密性が低いため硬度が不充分となる場合がある。
After the coating liquid for forming a hard coat film having a predetermined configuration is applied, the shrinkage ratio (1) of the coating film when dried is 25% or less, and further 20% or less.
If the shrinkage ratio (1) of the dried coating film is higher than the above range, cracks may occur in the case of a thick film, or the hardness may be insufficient due to low denseness.

乾燥後、ついで、硬化したときの塗膜の収縮率(2)は10%以下で、さらには5%以下となる。
硬化したときの塗膜の収縮率(2)が高いと、硬化時の膜の収縮が大きいため、厚膜の場合にクラックが発生したり、緻密性が低いため硬度が不充分となる場合がある。
After drying, the shrinkage ratio (2) of the coating film when cured is 10% or less, and further 5% or less.
If the shrinkage ratio of the coating film when cured (2) is high, the film shrinks greatly when cured, so cracks may occur in the case of a thick film, or the hardness may be insufficient due to low denseness. is there.

また、乾燥したときと硬化したときの合計の収縮率は35%以下、さらには30%以下であることが好ましい。
収縮率(1)は、下記式Aで表わされる。
体積収縮率(1)(%)=[1−(塗布液の密度/乾燥膜の密度)]×100・・・A
また、収縮率(2)は、下記式Bで表わされる。
体積収縮率(2)(%)=[1−(乾燥膜の密度/硬化膜の密度)]×100・・・B
Further, the total shrinkage when dried and cured is preferably 35% or less, more preferably 30% or less.
The shrinkage rate (1) is expressed by the following formula A.
Volume shrinkage (1) (%) = [1− (density of coating solution / density of dry film)] × 100... A
Further, the shrinkage rate (2) is expressed by the following formula B.
Volume shrinkage (2) (%) = [1− (density of dried film / density of cured film)] × 100... B

このような前記ハードコート膜の形成にはハードコート膜形成用塗布液が使用される。
ハードコート膜形成用塗布液は、前記表面処理金属酸化物微粒子(P)とマトリックス形成成分(MH)とを含む。
マトリックス形成成分(MH)は、前記マトリックス成分を構成する有機樹脂のモノマーないしオリゴマーである。このモノマーないしオリゴマーの分子量(ポリスチレン換算分子量)は5,000以下、さらには4,500以下であることが好ましい。
For the formation of the hard coat film, a hard coat film forming coating solution is used.
The coating liquid for forming a hard coat film contains the surface-treated metal oxide fine particles (P) and a matrix forming component (M H ).
The matrix forming component (M H ) is a monomer or oligomer of an organic resin that constitutes the matrix component. The molecular weight (polystyrene equivalent molecular weight) of this monomer or oligomer is preferably 5,000 or less, more preferably 4,500 or less.

有機樹脂のモノマーないしオリゴマーの分子量が大きすぎると、樹脂の粘度が高く、分散用有機樹脂(A)として使用した場合、表面処理金属酸化物微粒子の有機分散媒分散液を分散媒用有機樹脂(A)で有機分散媒またはその一部を置換した際に分散液の粘度が高くなり、高濃度化できない場合があり、このため、厚膜の形成が困難となったり、膜形成時の収縮が起きたり、クラックが発生したり、被膜付基材自体がカーリングしたりするため、所望の反射防止膜付基材が得られないことがある。また、硬化用有機樹脂(B)として使用した場合、樹脂の硬度が低下するため、硬度が発現し難くなる場合がある。   When the molecular weight of the monomer or oligomer of the organic resin is too large, the viscosity of the resin is high, and when used as a dispersion organic resin (A), the organic dispersion medium dispersion of the surface-treated metal oxide fine particles is used as the dispersion medium organic resin ( When the organic dispersion medium or a part thereof is replaced with (A), the viscosity of the dispersion becomes high and it may not be possible to increase the concentration.Therefore, it becomes difficult to form a thick film or shrinkage during film formation. Occurrence, cracking, or curling of the coated substrate itself may result in failure to obtain a desired substrate with an antireflection film. Further, when used as the curable organic resin (B), the hardness of the resin is lowered, so that it may be difficult to express the hardness.

ハードコート膜形成用塗布液には、必要に応じて、有機分散媒が含まれていてもよい。有機分散媒としては、従来公知の有機分散媒が挙げられる。なお、ハードコート膜形成用塗布液中の有機分散媒は、ハードコート膜形成用塗布液の調製時における表面処理金属酸化物微粒子の有機分散媒を分散用有機樹脂(A)と置換する際に残存する有機分散媒などの他に、塗布液のハンドリング性に鑑み、粘度調整のために添加されてもよい。また、樹脂(A)および(B)に含まれている希釈用の分散媒もここに含まれる。   The coating liquid for forming a hard coat film may contain an organic dispersion medium as necessary. A conventionally well-known organic dispersion medium is mentioned as an organic dispersion medium. The organic dispersion medium in the hard coat film forming coating liquid is used when the organic dispersion medium of the surface-treated metal oxide fine particles is replaced with the dispersing organic resin (A) at the time of preparing the hard coat film forming coating liquid. In addition to the remaining organic dispersion medium and the like, in view of the handling properties of the coating liquid, it may be added for viscosity adjustment. Further, the dispersion medium for dilution contained in the resins (A) and (B) is also included here.

ハードコート膜形成用塗布液中の有機分散媒の濃度は40重量%未満、さらには35重量%未満であることが好ましい。
例えば、メタノール、エタノール、プロパノール、2-プロパノール(IPA)、ブタノール、ジアセトンアルコール、フルフリルアルコール、テトラヒドロフルフリルアルコール等のアルコール類;エチレングリコール、ヘキシレングリコール等のグリコール類;ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールイソプルピルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のエーテル類;酢酸プルピル、酢酸イソブチル、酢酸ブチル、酢酸イソペンチル、酢酸ペンチル、酢酸3−メトキシブチル、酢酸2−エチルブチル、酢酸シクロヘキシル、エチレングリコールモノアセタート等のエステル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、ブチルメチルケトン、シクロヘキサノン、メチルシクロヘキサノン、ジプロピルケトン、メチルペンチルケトン、ジイソブチルケトン、イソホロン、アセチルアセトン、アセト酢酸エステル等のケトン類;トルエン、キシレン等が挙げられる。
The concentration of the organic dispersion medium in the hard coat film forming coating solution is preferably less than 40% by weight, and more preferably less than 35% by weight.
For example, alcohols such as methanol, ethanol, propanol, 2-propanol (IPA), butanol, diacetone alcohol, furfuryl alcohol, tetrahydrofurfuryl alcohol; glycols such as ethylene glycol and hexylene glycol; diethyl ether, ethylene glycol Ethers such as monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol isopropyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether; propyl acetate, isobutyl acetate , Butyl acetate, isopentyl acetate, pentyl acetate, 3-methyl acetate Esters such as xylbutyl, 2-ethylbutyl acetate, cyclohexyl acetate, ethylene glycol monoacetate; acetone, methyl ethyl ketone, methyl isobutyl ketone, butyl methyl ketone, cyclohexanone, methyl cyclohexanone, dipropyl ketone, methyl pentyl ketone, diisobutyl ketone, isophorone, Ketones such as acetylacetone and acetoacetate; toluene, xylene and the like.

なかでも、アルコール類、エーテル類、エステル類、ケトン類は、表面処理金属酸化物微粒子の分散性、前記有機樹脂の溶解性の点で好適に用いることができる。
また、有機分散媒の沸点は56.12℃〜200℃、さらには56.12〜180℃の範囲にあることが好ましい。
Among these, alcohols, ethers, esters, and ketones can be preferably used in terms of dispersibility of the surface-treated metal oxide fine particles and solubility of the organic resin.
Moreover, it is preferable that the boiling point of an organic dispersion medium exists in the range of 56.12 to 200 degreeC, Furthermore, 56.12 to 180 degreeC.

有機分散媒の沸点が低いものは、塗膜の乾燥が早い為、緻密化が不充分となったり、膜厚が不均一になりやすくなり、得られるハードコート膜の硬度が不充分となる場合がある。   If the organic dispersion medium has a low boiling point, the coating film will dry quickly, resulting in insufficient densification or a non-uniform film thickness, resulting in insufficient hardness of the resulting hard coat film. There is.

有機分散媒の沸点が高いものは、有機分散媒が残存する場合があり、膜の収縮が不十分となり、得られるハードコート膜の硬度が不充分となる場合がある。
塗布液には、必要に応じて光重合開始剤を含む。
When the organic dispersion medium has a high boiling point, the organic dispersion medium may remain, the film shrinks insufficiently, and the resulting hard coat film may have insufficient hardness.
A coating liquid contains a photoinitiator as needed.

重合開始剤としては、公知のものを特に制限なく使用することが可能であり、例えば、ビス(2、4、6−トリメチルベンゾイル)フェニルフォスフィンオキサイド、ビス(2、6−ジメトキシベンゾイル)2、4、4−トリメチル-ペンチルフォスフィンオキサイド、2−ヒドロキシ-メチル-2-メチル-フェニル-プロパン-1-ケトン、2、2-ジメトキシ-1、2-ジフェニルエタン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン等が挙げられる。   As the polymerization initiator, known ones can be used without particular limitation. For example, bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, bis (2,6-dimethoxybenzoyl) 2, 4,4-trimethyl-pentylphosphine oxide, 2-hydroxy-methyl-2-methyl-phenyl-propane-1-ketone, 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxy- Examples include cyclohexyl-phenyl-ketone and 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one.

重合開始剤の使用量は有機樹脂の固形分濃度の2〜20重量%、さらには4〜16重量%の範囲にあることが好ましい。
ハードコート膜形成用塗布液中の表面処理金属酸化物微粒子の固形分としての濃度(CPH)は45〜85重量%、さらには45〜80重量%の範囲にあることが好ましい。
The amount of the polymerization initiator used is preferably 2 to 20% by weight, more preferably 4 to 16% by weight, based on the solid content concentration of the organic resin.
The concentration (C PH ) of the surface-treated metal oxide fine particles in the coating liquid for forming a hard coat film as a solid content is preferably in the range of 45 to 85% by weight, more preferably 45 to 80% by weight.

固形分濃度(CPH)が前記範囲にあると、膜の収縮が小さく、厚膜にしてもクラックの発生が抑制され、緻密なハードコート膜を形成できる上に、所定の凹凸を形成することができる。 When the solid content concentration (C PH ) is within the above range, the shrinkage of the film is small, the generation of cracks is suppressed even when the film is thick, and a dense hard coat film can be formed, and predetermined irregularities are formed. Can do.

ハードコート膜形成用塗布液中のマトリックス形成成分の固形分としての濃度(CRH)は15〜50重量%、さらには15〜40重量%の範囲にあることが好ましい。
ハードコート膜形成用塗布液中のマトリックス形成成分の濃度(CRH)がこの範囲にあると、所定の凹凸を形成でき、外部散乱により膜のヘーズが悪化することもなく、また透明性が低下することもなく、緻密で硬度の高いハードコート膜を形成できる上に、得られるハードコート膜の耐擦傷性、基材との密着性にも優れている。
不充分となる場合がある。
The concentration (C RH ) as a solid content of the matrix forming component in the hard coat film forming coating solution is preferably in the range of 15 to 50% by weight, more preferably 15 to 40% by weight.
If the concentration (C RH ) of the matrix-forming component in the coating liquid for forming a hard coat film is within this range, predetermined irregularities can be formed, the haze of the film is not deteriorated by external scattering, and the transparency is lowered. In addition, a hard coat film having high density and high hardness can be formed, and the hard coat film obtained is excellent in scratch resistance and adhesion to a substrate.
It may be insufficient.

また、マトリックス形成成分は分散用有機樹脂(A)と硬化用有機樹脂(B)とからなっているが、マトリックス形成成分中の分散用有機樹脂(A)の固形分としての含有量は1〜80重量%、さらには5〜60重量%の範囲にあることが好ましい。この範囲にあると、ハードコート膜形成用塗布液を調製時に所定の表面処理金属酸化物微粒子の分散用有機樹脂(A)分散体を得ることが可能であり、平滑性、緻密性、ヘーズ、硬度、耐擦傷性、密着性等に優れたハードコート膜を形成できる。   The matrix-forming component is composed of the dispersing organic resin (A) and the curing organic resin (B), but the content of the dispersing organic resin (A) in the matrix-forming component as a solid content is 1 to 1. It is preferably in the range of 80% by weight, more preferably 5 to 60% by weight. Within this range, it is possible to obtain an organic resin (A) dispersion for dispersing predetermined surface-treated metal oxide fine particles when preparing a coating solution for forming a hard coat film, and smoothness, denseness, haze, A hard coat film excellent in hardness, scratch resistance, adhesion and the like can be formed.

マトリックス形成成分中の硬化用有機樹脂(B)は、前記分散用有機樹脂(A)との合計濃度(CRH)が前記範囲となるように用いる。
前記したマトリックス形成成分の濃度(CRH)と表面処理金属酸化物微粒子の濃度(CPH)との比(CRH)/(CPH)は0.12〜1.0、さらには0.18〜0.8の範囲にあることが好ましい。
The curable organic resin (B) in the matrix-forming component is used so that the total concentration (C RH ) with the organic resin for dispersion (A) is in the above range.
Concentration of Concentration (C RH) and surface-treated metal oxide fine particles of the above-described matrix-forming component (C PH) ratio of (C RH) / (C PH ) is from 0.12 to 1.0, more 0.18 It is preferable to be in the range of ~ 0.8.

前記比(CRH)/(CPH)がこの範囲にあると、、ハードコート膜に所望の表面凹凸が形成でき、外部散乱により膜のヘーズが悪化したり、透明性が低下することもなく、さらに、耐擦傷性、基材との密着性に優れた緻密なハードコート膜が形成できる。 When the ratio (C RH ) / (C PH ) is within this range, desired surface irregularities can be formed on the hard coat film, and haze of the film is not deteriorated or transparency is not deteriorated by external scattering. In addition, a dense hard coat film excellent in scratch resistance and adhesion to the substrate can be formed.

マトリックス形成成分中の分散用有機樹脂(A)の濃度(CRHA)と、表面処理金属酸化物微粒子(CPH)との比率(CRHA)/(CPH)は、0.17〜1.11、好ましくは0.19〜0.89の範囲にある。この範囲にあれば、表面処理金属酸化物を多く配合しても、膜の収縮が小さく、厚膜にすることが可能であり、クラック発生も抑制できる。最終的に得られるハードコート膜は緻密性が高く、このため硬度も高い。 The concentration of dispersing organic resin in the matrix-forming component (A) (C RHA), the ratio of the surface-treated metal oxide fine particles (C PH) (C RHA) / (C PH) is 0.17 to 1. 11, preferably in the range of 0.19 to 0.89. If it is in this range, even if a large amount of the surface-treated metal oxide is added, the shrinkage of the film is small, a thick film can be formed, and cracking can be suppressed. The finally obtained hard coat film has high density, and therefore has high hardness.

このようなハードコート膜形成用塗布液は、
(a)平均粒子径が5〜300nmの範囲にある表面処理金属酸化物微粒子の有機分散媒分散液の有機分散媒の一部または全部を分散用有機樹脂(A)で置換したのち、
(b)硬化用有機樹脂(B)を混合することによって調製される。
Such a coating liquid for forming a hard coat film is
(A) After replacing part or all of the organic dispersion medium of the organic dispersion medium dispersion of the surface-treated metal oxide fine particles having an average particle diameter in the range of 5 to 300 nm with the organic resin for dispersion (A),
(B) It is prepared by mixing a curing organic resin (B).

前記した表面処理金属酸化物微粒子を有機分散媒に分散させた分散液を調製する。そして、その分散液中の有機分散媒を分散用有機樹脂(A)で置換する。
有機分散媒分散液中の表面処理金属酸化物微粒子の濃度は、特に制限ないが、通常、固形分として30〜50重量%の範囲にある。濃度が低いと、溶媒置換量が増え、効率的でない。濃度が高すぎても、金属酸化物微粒子が凝集したり、凝集しないまでも粘度が上昇して安定性が不充分となる場合がある。このため、得られるハードコート膜にはヘーズが発生したり、膜の緻密化が不充分となり、このため硬度が不充分となる場合がある。
A dispersion is prepared by dispersing the surface-treated metal oxide fine particles in an organic dispersion medium. Then, the organic dispersion medium in the dispersion is replaced with the dispersing organic resin (A).
The concentration of the surface-treated metal oxide fine particles in the organic dispersion medium dispersion is not particularly limited, but is usually in the range of 30 to 50% by weight as the solid content. If the concentration is low, the amount of solvent substitution increases and it is not efficient. Even if the concentration is too high, the metal oxide fine particles may be aggregated or the viscosity may be increased even if the metal oxide fine particles are not aggregated, resulting in insufficient stability. For this reason, haze is generated in the obtained hard coat film, or the film is not sufficiently densified, and thus the hardness may be insufficient.

次に、分散用有機樹脂(A)で溶媒を置換するが、置換方法としては特に制限はなく従来公知の方法を採用することができる。
例えば、ロータリーエバポレーター法、蒸発缶法等の方法を採用することができる。このとき、必要に応じて減圧下で行うことができ、さらに加温下で行うこともできる。
分散用有機樹脂(A)で置換する割合は、後述するで硬化用有機樹脂(B)を混合し、最終的に得られるハードコート膜形成用塗布液中の有機分散媒の濃度が40重量%未満、さらには35重量%未満となるように行う。
Next, the solvent is substituted with the dispersing organic resin (A), and the substitution method is not particularly limited, and a conventionally known method can be employed.
For example, methods such as a rotary evaporator method and an evaporator method can be employed. At this time, it can carry out under reduced pressure as needed, and can also carry out under heating.
The ratio of substitution with the organic resin for dispersion (A) is as follows. The organic dispersion medium (B) is mixed as described later, and the concentration of the organic dispersion medium in the coating liquid for forming a hard coat film finally obtained is 40% by weight. To less than 35% by weight.

有機分散媒が多く残っていると、ハードコート膜形成用塗布液の全固形分濃度(CTH)が低くなり、塗布液を塗布してから乾燥するまでの収縮が大きい為、厚膜、特に10μm以上の厚膜を得る場合は収縮時にクラックが発生したり、カーリング性が大きくなる場合がある。 If a large amount of the organic dispersion medium remains, the total solid concentration (C TH ) of the coating liquid for forming the hard coat film will be low, and the shrinkage from applying the coating liquid to drying will be large. When a thick film having a thickness of 10 μm or more is obtained, cracks may occur during shrinkage or curling properties may increase.

ついで、硬化用有機樹脂(B)を混合する。
硬化用有機樹脂(B)の混合量は、前記分散用有機樹脂(A)と分散用有機樹脂(B)との合計量、すなわちマトリックス形成成分としての固形分濃度(CRH)が前記の範囲となるように混合することが好ましい。
Next, the curing organic resin (B) is mixed.
The mixing amount of the curing organic resin (B) is such that the total amount of the dispersing organic resin (A) and the dispersing organic resin (B), that is, the solid content concentration (C RH ) as a matrix forming component is within the above range. It is preferable to mix so that it becomes.

本発明では、必要に応じて前記した光重合開始剤を添加することも可能である。
このようにして得られるハードコート膜形成用塗布液は、前記した組成を有する。
全固形分濃度が高すぎる場合、前記した有機分散媒を混合することによって、粘度を調整したり、塗工性等を向上することができる。
In the present invention, the above-described photopolymerization initiator can be added as necessary.
The coating liquid for forming a hard coat film thus obtained has the above-described composition.
When the total solid content concentration is too high, the viscosity can be adjusted and the coating property and the like can be improved by mixing the organic dispersion medium.

[反射防止膜]
前記ハードコート膜上に反射防止膜が形成されてなり、該反射防止膜は、シリカ系中空微粒子(A)とマトリックス成分(ML)からなる。
シリカ系中空微粒子(A)
シリカ系中空微粒子(A)としては、本願出願人の出願による特開2001−233611号公報、特開2003−192994号公報に開示した内部に空洞を有するシリカ系微粒子は屈折率が低く、コロイド領域の微粒子であり、分散性等に優れているので好適に採用することができる。
[Antireflection film]
It is formed antireflection film on the hard coat layer, the antireflection film is formed of a silica-based hollow particles (A) and the matrix component (M L).
Silica-based hollow fine particles (A)
As silica-based hollow fine particles (A), silica-based fine particles having cavities therein disclosed in Japanese Patent Application Laid-Open Nos. 2001-233611 and 2003-192994 filed by the applicant of the present application have a low refractive index and a colloidal region. These fine particles are excellent in dispersibility and can be suitably used.

本発明に用いるシリカ系中空微粒子(A)の平均粒子径(Dpa) は10〜45nm、さらには15〜40nmの範囲にあることが好ましい。
シリカ系中空微粒子(A)の平均粒子径(DpA)が10nm未満の場合、内部に空洞を有しているが、この空洞の割合が小さく、屈折率が充分低くない粒子(屈折率が1.40以上)となることから、反射防止性能が不充分となる傾向にあり、また、後述する膜厚(TL)との関係で、シリカ系中空微粒子(A)が多層に配列したり、不規則に(凝集)配列し、反射率が不充分になるとともに膜の強度も不充分になる場合がある。
The average particle diameter (Dpa) of the silica-based hollow fine particles (A) used in the present invention is preferably in the range of 10 to 45 nm, more preferably 15 to 40 nm.
When the average particle diameter (DpA) of the silica-based hollow fine particles (A) is less than 10 nm, there are cavities inside, but the ratio of the cavities is small and the refractive index is not sufficiently low (refractive index is 1. 40) or more), the antireflection performance tends to be insufficient, and the silica-based hollow fine particles (A) are arranged in multiple layers due to the relationship with the film thickness (T L ) described later. There are cases where the layers are regularly (aggregated) and the reflectivity becomes insufficient and the strength of the film becomes insufficient.

シリカ系中空微粒子(A)の平均粒子径(DpA)が45nmを越えると、下層のハードコート膜との密着性が低下するととともに得られる反射防止膜付基材の硬度が低下する場合がある。これは、理由は必ずしも明らかではないが、シリカ系中空微粒子(A)の平均粒子径(DpA)が大きくなり過ぎると、下層のハードコート膜が前記した凹凸を有している場合で、凹凸の大きさを超えるため、反射防止膜との密着した接合ができないためと考えられる。   When the average particle diameter (DpA) of the silica-based hollow fine particles (A) exceeds 45 nm, the adhesion to the lower hard coat film may be lowered and the hardness of the obtained base material with an antireflection film may be lowered. The reason for this is not necessarily clear, but when the average particle diameter (DpA) of the silica-based hollow fine particles (A) becomes too large, the underlying hard coat film has the aforementioned irregularities, and the irregularities This is considered to be because the size exceeds the size, and the adhesion with the antireflection film cannot be performed.

シリカ系中空微粒子(A)の屈折率は1.10〜1.40、さらには1.10〜1.35の範囲にあることが好ましい。
シリカ系中空微粒子(A)の屈折率が1.10未満のものは得ることが困難であり、1.40を超えると基材あるいは下層膜(ハードコート膜)の屈折率にもよるが反射防止性能が不充分となったり、反射防止膜の反射率が高いために明所コントラストが不充分となることがある。
The refractive index of the silica-based hollow fine particles (A) is preferably in the range of 1.10 to 1.40, more preferably 1.10 to 1.35.
It is difficult to obtain silica-based hollow fine particles (A) having a refractive index of less than 1.10. When the refractive index exceeds 1.40, although it depends on the refractive index of the substrate or the lower layer film (hard coat film), antireflection is achieved. The performance may be insufficient, or the light contrast may be insufficient due to the high reflectance of the antireflection film.

前記反射防止膜の膜厚(TL)とシリカ系中空微粒子(A)の平均粒子径(Dpa)との比(Dpa)/(TL)は0.05〜0.56、さらには0.1〜0.45の範囲にあることが好ましい。
前記比(Dpa)/(TL)が0.05未満の場合は、前記したように粒子の屈折率が低くならず、このため反射防止膜の屈折率が高く反射防止膜としての機能が不充分となる場合がある。
前記比(Dpa)/(TL)が0.56を超えると、粒子の強度が低くなったり、反射防止膜表面の平滑性が低下するため、所望の膜強度、膜硬度が得られない場合がある。
The ratio (Dpa) / (T L ) between the film thickness (T L ) of the antireflection coating and the average particle diameter (Dpa) of the silica-based hollow fine particles (A) is 0.05 to 0.56, and It is preferable to be in the range of 1 to 0.45.
When the ratio (Dpa) / (T L ) is less than 0.05, the refractive index of the particles does not become low as described above. Therefore, the refractive index of the antireflection film is high and the function as an antireflection film is not good. May be sufficient.
When the ratio (Dpa) / (T L ) exceeds 0.56, the strength of the particles is lowered or the smoothness of the antireflection film surface is lowered, so that the desired film strength and film hardness cannot be obtained. There is.

シリカ系微粒子(B)
本発明では、前記シリカ系中空微粒子(A)に加えて、平均粒子径(Dpb)が4〜17nmの範囲にあるシリカ系微粒子(B)を含むことが好ましい。
このようなシリカ系微粒子(B)としては、シリカゾル、シリカ系中空微粒子、あるいはこれらが鎖状に連結した鎖状シリカ系微粒子等が挙げられる。
Silica-based fine particles (B)
In the present invention, in addition to the silica-based hollow fine particles (A), it is preferable to include silica-based fine particles (B) having an average particle diameter (Dpb) in the range of 4 to 17 nm.
Examples of such silica-based fine particles (B) include silica sol, silica-based hollow fine particles, and chain silica-based fine particles in which these are connected in a chain.

シリカ系微粒子(B)の平均粒子径(Dpb)が4nm未満の場合は、粒子自体を得ることが困難であり、また得られたとしても表面処理時に凝集して均一な分散液、塗布液が得られない場合があり、このため反射防止膜表面の平滑性が悪くなったり、膜中の粒子が緻密に充填しないために充分な膜強度、膜硬度が得られない場合がある。   When the average particle diameter (Dpb) of the silica-based fine particles (B) is less than 4 nm, it is difficult to obtain the particles themselves, and even if they are obtained, they are aggregated during the surface treatment to form a uniform dispersion or coating solution. In some cases, the smoothness of the surface of the antireflection film is deteriorated, and sufficient film strength and film hardness may not be obtained because particles in the film are not densely packed.

シリカ系微粒子(B)の平均粒子径(Dpb)が17nmを越えると、前記シリカ系中空微粒子(A)の粒子間隙に入らない場合があり、シリカ系中空微粒子(A)が不規則に配列あるいは凝集し、反射率が不充分になるとともに膜の強度も不充分になる場合がある。   If the average particle diameter (Dpb) of the silica-based fine particles (B) exceeds 17 nm, the silica-based hollow fine particles (A) may not enter the particle gaps, and the silica-based hollow fine particles (A) may be randomly arranged or Aggregation may result in insufficient reflectivity and insufficient film strength.

シリカ系微粒子(B)の好ましい平均粒子径(Dpb)は4〜12nmの範囲である。
また、シリカ系微粒子(B)の屈折率は1.15〜1.46、好ましくは1.15〜1.40の範囲である。
The preferable average particle diameter (Dpb) of the silica-based fine particles (B) is in the range of 4 to 12 nm.
The refractive index of the silica-based fine particles (B) is 1.15 to 1.46, preferably 1.15 to 1.40.

シリカ系微粒子(B)の平均粒子径(Dpb)とシリカ系中空微粒子(A)の平均粒子径(Dpa)との比(Dpb)/(Dpa)が0.1〜0.4、さらには0.1〜0.35の範囲にあることが好ましい。   The ratio (Dpb) / (Dpa) of the average particle size (Dpb) of the silica-based fine particles (B) to the average particle size (Dpa) of the silica-based hollow fine particles (A) is 0.1 to 0.4, further 0 It is preferable to be in the range of .1 to 0.35.

(Dpb)/(Dpa)が0.1未満の場合は、シリカ系中空微粒子(A)を凝集させたり、配列を不規則にすることがあり、反射率が不充分になるとともに膜の強度が不充分になる場合がある。   When (Dpb) / (Dpa) is less than 0.1, the silica-based hollow fine particles (A) may be agglomerated or the arrangement may be irregular, resulting in insufficient reflectivity and increased film strength. It may be insufficient.

(Dpb)/(Dpa)が0.4を越えると、前記シリカ系中空微粒子(A)の粒子間隙に入らないためにシリカ系中空微粒子(A)が不規則に配列したり凝集することがあり、反射率が不充分になるとともに膜の強度も不充分になる場合がある。   When (Dpb) / (Dpa) exceeds 0.4, the silica-based hollow fine particles (A) may be irregularly arranged or aggregated because they do not enter the particle gaps of the silica-based hollow fine particles (A). In some cases, the reflectivity becomes insufficient and the strength of the film becomes insufficient.

本発明では、シリカ系中空微粒子(A)およびシリカ系微粒子(B)の平均粒子径は透過型電子顕微鏡写真(TEM)を撮影し、100個の粒子について粒子径を測定し、その平均値とした。   In the present invention, the average particle diameter of the silica-based hollow fine particles (A) and the silica-based fine particles (B) is obtained by taking a transmission electron micrograph (TEM), measuring the particle diameter of 100 particles, did.

本発明に用いるシリカ系中空微粒子(A) およびシリカ系微粒子(B)は下記式(2)で表される有機珪素化合物で表面処理されていることが好ましい。
n-SiX4-n (2)
(但し、式中、Rは炭素数1〜10の非置換または置換炭化水素基であって、互いに同一であっても異なっていてもよい。X:炭素数1〜4のアルコキシ基、水酸基、ハロゲン、水素、n:1〜3の整数)
The silica-based hollow fine particles (A) and the silica-based fine particles (B) used in the present invention are preferably surface-treated with an organosilicon compound represented by the following formula (2).
R n -SiX 4-n (2)
(In the formula, R is an unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, and may be the same or different from each other. X: an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, Halogen, hydrogen, n: an integer of 1 to 3)

このような式(2)で表される有機珪素化合物としてはメチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ジフェニルジエトキシシラン、イソブチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(βメトキシエトキシ)シラン、3,3,3−トリフルオロプロピルトリメトキシシラン、メチル-3,3,3−トリフルオロプロピルジメトキシシラン、β−(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシメチルトリメトキシシラン、γ-グリシドキシメチルトリエキシシラン、γ-グリシドキシエチルトリメトキシシラン、γ-グリシドキシエチルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ−(β−グリシドキシエトキシ)プロピルトリメトキシシラン、γ-(メタ)アクリロオキシメチルトリメトキシシラン、γ-(メタ)アクリロオキシメチルトリエキシシラン、γ-(メタ)アクリロオキシエチルトリメトキシシラン、γ-(メタ)アクリロオキシエチルトリエトキシシラン、γ-(メタ)アクリロオキシプロピルトリメトキシシラン、γ-(メタ)アクリロオキシプロピルトリメトキシシラン、γ-(メタ)アクリロオキシプロピルトリエトキシシラン、γ-(メタ)アクリロオキシプロピルトリエトキシシラン、ブチルトリメトキシシラン、イソブチルトリエトキシシラン、ヘキシルトリエトキシシラオクチルトリエトキシシラン、デシルトリエトキシシラン、ブチルトリエトキシシラン、イソブチルトリエトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリエトキシシラン、3-ウレイドイソプロピルプロピルトリエトキシシラン、パーフルオロオクチルエチルトリメトキシシラン、パーフルオロオクチルエチルトリエトキシシラン、パーフルオロオクチルエチルトリイソプロポキシシラン、トリフルオロプロピルトリメトキシシラン、N−β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、N−β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、トリメチルシラノール、メチルトリクロロシラン、等が挙げられる。   Examples of the organosilicon compound represented by the formula (2) include methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, and diphenyl. Diethoxysilane, isobutyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (βmethoxyethoxy) silane, 3,3,3-trifluoropropyltrimethoxysilane, methyl-3,3,3-trifluoro Propyldimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxymethyltrimethoxysilane, γ-glycidoxymethyltriexylsilane, γ-glycidoxyethyltrimethoxysilane, γ -Guri Sidoxyethyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropyltriethoxysilane, γ- ( β-Glycidoxyethoxy) propyltrimethoxysilane, γ- (meth) acrylooxymethyltrimethoxysilane, γ- (meth) acrylooxymethyltrioxysilane, γ- (meth) acrylooxyethyltrimethoxysilane , Γ- (meth) acrylooxyethyltriethoxysilane, γ- (meth) acryloxypropyltrimethoxysilane, γ- (meth) acryloxypropyltrimethoxysilane, γ- (meth) acryloxypropyltrimethoxysilane Ethoxysilane, γ- (meth) acrylooxypropyltriethoxysilane, Butyltrimethoxysilane, isobutyltriethoxysilane, hexyltriethoxysilaoctyltriethoxysilane, decyltriethoxysilane, butyltriethoxysilane, isobutyltriethoxysilane, hexyltriethoxysilane, octyltriethoxysilane, decyltriethoxysilane, 3 -Ureidoisopropylpropyltriethoxysilane, perfluorooctylethyltrimethoxysilane, perfluorooctylethyltriethoxysilane, perfluorooctylethyltriisopropoxysilane, trifluoropropyltrimethoxysilane, N-β (aminoethyl) γ-amino Propylmethyldimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane Emissions, .gamma.-mercaptopropyltrimethoxysilane, trimethylsilanol, methyltrichlorosilane, and the like.

本発明では、前記式(2)のn=0の有機珪素化合物で表面処理し、ついでn=1,2,3のいずれかの有機珪素化合物で表面処理することが好ましい。
n=0の有機珪素化合物としては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシシラン、テトラブトキシシラン等が挙げられる。
In the present invention, it is preferable that the surface treatment is performed with the organic silicon compound of n = 0 in the formula (2), and then the surface treatment is performed with any of the organic silicon compounds of n = 1, 2, or 3.
Examples of the organic silicon compound with n = 0 include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane.

シリカ系中空微粒子(A)およびシリカ系微粒子(B)の表面処理は、従来公知の方法を採用することができ、例えば、これらシリカ系粒子のアルコール分散液に前記有機ケイ素化合物を所定量加え、これに水を加え、必要に応じて加水分解用触媒として酸またはアルカリを加えて加水分解する。   The surface treatment of the silica-based hollow fine particles (A) and the silica-based fine particles (B) can employ a conventionally known method.For example, a predetermined amount of the organosilicon compound is added to an alcohol dispersion of these silica-based particles, Water is added thereto, and if necessary, hydrolysis is carried out by adding an acid or alkali as a catalyst for hydrolysis.

この時、有機ケイ素化合物の使用量はシリカ系粒子と有機ケイ素化合物のRn-SiX(4-n)/2としての重量比(Rn-SiX(4-n)/2重量/シリカ系粒子の重量)が0.01〜0.5さらには0.02〜0.25の範囲にあることが好ましい。 At this time, the weight ratio of the R n -SiX (4-n) / 2 of the amount of the silica-based particles and an organic silicon compound of the organosilicon compound (R n -SiX (4-n ) / 2 wt / silica-based particles Is preferably in the range of 0.01 to 0.5, more preferably 0.02 to 0.25.

前記重量比が0.01未満の場合は、後述する反射防止膜形成用塗布液中のマトリックス形成性分あるいは分散媒との親和性が低く安定性が不充分で、塗布液中で均一に分散せず、場合によってはシリカ系粒子が凝集することがあり、反射防止膜の強度、耐擦傷性が低下し、ヘーズ値、反射率が高くなる場合がある。   When the weight ratio is less than 0.01, the affinity for the matrix-forming component or the dispersion medium in the coating solution for forming an antireflection film, which will be described later, is low and the stability is insufficient, and the coating solution is uniformly dispersed. In some cases, silica-based particles may agglomerate, the strength and scratch resistance of the antireflection film may be reduced, and the haze value and reflectance may be increased.

前記重量比が0.5を超えてもさらに分散性がさらに向上することもなく、屈折率が上昇し、高価な有機ケイ素化合物が増加するだけで経済性が低下する。
ついで、必要に応じて有機溶媒に置換することによって表面処理したシリカ系粒子の有機溶媒分散液を得ることができる。有機溶媒としては、後述する反射防止膜形成用塗布液と同様の有機溶媒を用いることが好ましい。
Even if the weight ratio exceeds 0.5, the dispersibility is not further improved, the refractive index is increased, and the cost is reduced only by increasing the expensive organosilicon compound.
Subsequently, the organic solvent dispersion liquid of the silica-type particle | grains surface-treated by substituting with an organic solvent as needed can be obtained. As the organic solvent, it is preferable to use the same organic solvent as the coating liquid for forming an antireflection film described later.

反射防止膜中のシリカ系中空微粒子(A)の含有量が5〜80重量%、さらには10〜75重量%の範囲にあることが好ましい。
反射防止膜中のシリカ系中空微粒子(A)の含有量が5重量%未満の場合は、ハードコート膜との密着性、膜強度、表面平坦性、耐擦傷性、スクラッチ強度等が不充分となることに加えて、反射防止膜の屈折率をさらに低下させることができないために反射防止性能をさらに向上させる効果が不充分となる場合がある。
The content of the silica-based hollow fine particles (A) in the antireflection film is preferably in the range of 5 to 80% by weight, more preferably 10 to 75% by weight.
When the content of silica-based hollow fine particles (A) in the antireflection film is less than 5% by weight, adhesion to the hard coat film, film strength, surface flatness, scratch resistance, scratch strength, etc. are insufficient. In addition, since the refractive index of the antireflection film cannot be further reduced, the effect of further improving the antireflection performance may be insufficient.

反射防止膜中のシリカ系中空微粒子(A)の含有量が80重量%を越えると、粒子が多すぎて膜強度、耐擦傷性、スクラッチ強度等が不充分となることに加えて、反射防止膜のヘーズ値が高くなる場合がある。   If the content of silica-based hollow fine particles (A) in the antireflection film exceeds 80% by weight, there are too many particles, resulting in insufficient film strength, scratch resistance, scratch strength, etc., and antireflection The haze value of the film may increase.

反射防止膜にシリカ系微粒子(B)を配合して用いる場合も、反射防止膜中のシリカ系中空微粒子(A)とシリカ系微粒子(B)の合計の含有量が5〜80重量%、さらには10〜75重量%の範囲となるように用いることが好ましい。   Even when the silica-based fine particles (B) are blended and used in the antireflection film, the total content of the silica-based hollow fine particles (A) and the silica-based fine particles (B) in the antireflection film is 5 to 80% by weight, Is preferably used in a range of 10 to 75% by weight.

シリカ系微粒子(B)を用いる場合、全シリカ系粒子中のシリカ系微粒子(B)の割合が30重量%、さらには20重量%以下であることが好ましい。
シリカ系微粒子(B)の割合が30重量%を越えると、前記シリカ系中空微粒子(A)の粒子間隙に入らないシリカ系微粒子(B)が増加し、シリカ系中空微粒子(A)が不規則に配列したり凝集することがあり、反射率が不充分になるとともに膜の強度も不充分になる場合がある。
When the silica-based fine particles (B) are used, the ratio of the silica-based fine particles (B) in the total silica-based particles is preferably 30% by weight, more preferably 20% by weight or less.
When the proportion of silica-based fine particles (B) exceeds 30% by weight, the number of silica-based fine particles (B) that do not enter the gap between the silica-based hollow fine particles (A) increases, and the silica-based hollow fine particles (A) are irregular. In some cases, the reflectance may be insufficient and the strength of the film may be insufficient.

前記範囲でシリカ系微粒子(B)を含んでいると、反射防止膜の表面部におけるシリカ系中空微粒子(A)の粒子間隙にシリカ系中空微粒子(B)が存在して表面を平坦化する効果により、耐擦傷性、スクラッチ強度に優れた反射防止膜を得ることができる。
また、シリカ系微粒子(B)が前記有機珪素化合物で表面処理されていると耐水性、撥水性、防汚性等に優れた反射防止膜を得ることができる。
When the silica-based fine particles (B) are contained in the above range, the silica-based hollow fine particles (B) are present in the interstices of the silica-based hollow fine particles (A) in the surface portion of the antireflection film, and the surface is flattened. Thus, an antireflection film excellent in scratch resistance and scratch strength can be obtained.
Further, when the silica-based fine particles (B) are surface-treated with the organosilicon compound, an antireflection film excellent in water resistance, water repellency, antifouling property and the like can be obtained.

マトリックス成分(M L
反射防止膜のマトリックス成分(ML)としては、有機樹脂系マトリックス成分が用いられる。
有機樹脂系マトリックス成分としては、塗料用樹脂として公知の熱硬化性樹脂、熱可塑性樹脂、電子線硬化樹脂等が挙げられる。
Matrix component (M L)
The matrix component of the antireflective film (M L), the organic resin matrix component is used.
Examples of the organic resin-based matrix component include known thermosetting resins, thermoplastic resins, electron beam curable resins, and the like as coating resins.

このような樹脂として、たとえば、従来から用いられているポリエステル樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリフェニレンオキサイド樹脂、熱可塑性アクリル樹脂、塩化ビニル樹脂、フッ素樹脂、酢酸ビニル樹脂、シリコーンゴムなどの熱可塑性樹脂、ウレタン樹脂、メラミン樹脂、ブチラール樹脂、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、熱硬化性アクリル樹脂、紫外線硬化型アクリル樹脂などの熱硬化性樹脂、紫外線硬化型アクリル樹脂などが挙げられる。さらにはこれら樹脂の2種以上の共重合体や変性体であってもよい。   Examples of such resins include conventionally used thermoplastic resins such as polyester resins, polycarbonate resins, polyamide resins, polyphenylene oxide resins, thermoplastic acrylic resins, vinyl chloride resins, fluororesins, vinyl acetate resins, and silicone rubbers. , Urethane resin, melamine resin, butyral resin, phenolic resin, epoxy resin, unsaturated polyester resin, thermosetting resin such as thermosetting acrylic resin and ultraviolet curable acrylic resin, and ultraviolet curable acrylic resin. Further, it may be a copolymer or modified body of two or more of these resins.

本発明では、マトリックス成分(ML)の少なくとも1部として前記ハードコート膜で用いた分散用有機樹脂(A)および/または硬化用有機樹脂(B)を含んでいることが好ましい。 In the present invention, preferably contains a matrix component (M L) of at least a portion as the hard coating dispersion organic resin used in the film (A) and / or curing an organic resin (B).

このような分散用有機樹脂(A)および/または硬化用有機樹脂(B)を含んでいると、ハードコート膜上に、反射防止膜を形成したときに、同一マトリックス成分を含むハードコート膜と反射防止膜との結合が増すためか硬度、耐擦傷性等に優れた反射防止膜付基材を得ることができる。   When such an organic resin for dispersion (A) and / or an organic resin for curing (B) is included, when an antireflection film is formed on the hard coat film, a hard coat film containing the same matrix component and A substrate with an antireflection film excellent in hardness, scratch resistance and the like can be obtained because of increased bonding with the antireflection film.

反射防止膜中のマトリックス成分(ML)の含有量は固形分として20〜95重量%、さらには 25〜90重量%の範囲にあることが好ましい。
反射防止膜中のマトリックス成分(ML)の含有量が固形分として20重量%未満の場合は反射防止膜の強度、基材との密着性、耐擦傷性等が不充分となることがある。
The content of the matrix component in the anti-reflective film (M L) is 20 to 95% by weight solids, more preferably in the range of 25 to 90 wt%.
The strength of the antireflection film, adhesion to a substrate, scratch resistance, etc. becomes insufficient when the content of the matrix component in the anti-reflective film (M L) is less than 20% by weight solids .

反射防止膜中のマトリックス成分(ML)の含有量が固形分として95重量%を超えると、シリカ系粒子の量が少ないために、均一な膜厚とならず、表面が平坦性に欠け、耐擦傷性、スクラッチ強度等が不充分となるとともに、屈折率が充分低下しないために反射防止性能が不充分となる場合がある。 When the content of the matrix component in the anti-reflective film (M L) is more than 95 wt% as solid content, due to the low amount of silica-based particles, not a uniform thickness, the surface lacking in flatness, In addition to insufficient scratch resistance, scratch strength and the like, the antireflective performance may be insufficient because the refractive index does not sufficiently decrease.

反射防止膜の膜厚(TL)は80〜200nm、さらには90〜150nmの範囲にあることが好ましい。
反射防止膜の膜厚(TL) が薄いと、膜の強度、耐擦傷性が不充分となる場合がある。
The film thickness (T L ) of the antireflection film is preferably in the range of 80 to 200 nm, more preferably 90 to 150 nm.
If the film thickness (T L ) of the antireflection film is thin, the strength and scratch resistance of the film may be insufficient.

反射防止膜の膜厚(TL) が厚すぎても、膜にクラックが入りやすくなるために膜の強度が不充分となる場合があり、また、膜が厚すぎて反射防止性能が低下する場合がある。
反射防止膜の膜厚(TL) が前記範囲にあれば、反射率(ボトム反射率、視感反射率)が低く、且つ、膜硬度等に優れた反射防止膜を得ることができる。
Even if the film thickness (T L ) of the antireflection film is too thick, cracks are likely to occur in the film, so that the film strength may be insufficient, and the antireflection performance deteriorates due to the film being too thick. There is a case.
When the film thickness (T L ) of the antireflection film is within the above range, an antireflection film having a low reflectance (bottom reflectance, luminous reflectance) and excellent film hardness can be obtained.

本発明では、反射防止膜の膜厚(TL) の測定は、ハードコート膜と反射防止膜の断面の透過型電子顕微鏡写真(TEM)を撮影し、全膜厚から前記ハードコート膜の平均膜厚(TH)を差し引いて求める。 In the present invention, the film thickness (T L ) of the antireflection film is measured by taking a transmission electron micrograph (TEM) of the cross section of the hard coat film and the antireflection film, and calculating the average of the hard coat film from the total film thickness. Obtained by subtracting the film thickness (T H ).

本発明によれば、反射防止膜付基材は前記樹脂基材を用いても鉛筆硬度は5H以上、さらには6H以上の反射防止膜を形成できる。これは、下層に設けたハードコート膜に由来し、ハードコート膜と同程度の高い鉛筆硬度を有する反射防止膜を形成できる。   According to the present invention, an antireflection film with an antireflection film having a pencil hardness of 5H or more, or even 6H or more can be formed even when the resin substrate is used. This is derived from the hard coat film provided in the lower layer, and an antireflection film having a pencil hardness as high as that of the hard coat film can be formed.

反射防止膜付基材の製造方法
ついで、本発明に係る反射防止膜付基材の製造方法について説明する。
本発明では、前記した(A)ハードコート膜形成用塗布液を基材表面に塗布・乾燥してハードコート膜を形成したのち、(B)反射防止膜形成用塗布液をハードコート膜表面に塗布し乾燥して、反射防止膜を形成することを特徴とする。
Next, a method for producing a substrate with an antireflection film according to the present invention will be described.
In the present invention, after (A) the coating liquid for forming a hard coat film is applied to the substrate surface and dried to form a hard coat film, (B) the coating liquid for forming an antireflection film is applied to the surface of the hard coat film. The antireflection film is formed by applying and drying.

ハード膜形成用塗布液としては前記した通りであり、また形成されるハードコート膜についても前記の通りである。
前記したようカーリング特性をハードコート膜は有し、また、ハードコート膜形成用塗布液を塗布・乾燥後および硬化後の収縮率が特定の範囲以下にあるものが望ましい。
ハードコート膜上に反射防止膜形成用塗布液を塗布・乾燥して、反射防止膜を形成する。
The hard film forming coating solution is as described above, and the hard coat film to be formed is also as described above.
As described above, it is desirable that the hard coat film has curling characteristics, and that the shrinkage ratio after coating / drying and curing of the hard coat film forming coating liquid is within a specific range.
An antireflection film-forming coating solution is applied and dried on the hard coat film to form an antireflection film.

反射防止膜形成用塗布液
反射防止膜形成用塗布液は、前記のシリカ系中空微粒子(A)とマトリックス形成成分と溶媒とからなり、シリカ系中空微粒子(A)の平均粒子径(Dpa)が10〜45nmの範囲にあり、全固形分濃度が1〜10重量%の範囲にあり、シリカ系中空微粒子(A)の濃度が固形分として0.25〜9重量%の範囲にあり、マトリックス形成成分の濃度が固形分として0.75〜9.5重量%の範囲にあることを特徴としている。
Antireflection film-forming coating solution The antireflection film-forming coating solution comprises the silica-based hollow fine particles (A), a matrix-forming component, and a solvent, and the silica-based hollow fine particles (A) have an average particle diameter (Dpa). In the range of 10 to 45 nm, the total solid content concentration is in the range of 1 to 10% by weight, the concentration of the silica-based hollow fine particles (A) is in the range of 0.25 to 9% by weight as the solid content, and matrix formation The component concentration is in the range of 0.75 to 9.5% by weight as solid content.

マトリックス形成成分
反射防止膜形成用塗布液に用いるマトリックス形成成分は有機樹脂系マトリックス形成成分であることが好ましい。
有機樹脂系マトリックス形成成分としては、前記マトリックス成分(ML)に用いたと同様の有機樹脂系マトリックス成分が用いられる。
Matrix-forming component The matrix-forming component used in the coating solution for forming the antireflection film is preferably an organic resin-based matrix-forming component.
As the organic resin matrix-forming component, similar organic resin matrix component and used in the matrix component (M L) is used.

さらに、マトリックス形成成分が前記ハードコート膜形成用塗布液に用いた分散用有機樹脂(A)および/または前記硬化用有機樹脂(B)を含むことが好ましい。なお、透明被膜形成用塗布液で使用されるマトリックス形成成分は、分散用有機樹脂(A)および/または前記硬化用有機樹脂(B)のいずれか一方を含むものであればよく、双方含むものであってもよい。   Furthermore, it is preferable that the matrix forming component contains the organic resin for dispersion (A) and / or the organic resin for curing (B) used in the coating liquid for forming the hard coat film. The matrix-forming component used in the coating solution for forming the transparent film only needs to contain either one of the organic resin for dispersion (A) and / or the organic resin for curing (B), or both. It may be.

このような分散用有機樹脂(A)および/または硬化用有機樹脂(B)を含んでいると、ハードコート膜形成用塗布液を塗布、乾燥し、硬化した後、反射防止膜形成用塗布液を塗布、乾燥し、ついで紫外線照射したときに、同一マトリックス成分を含むハードコート膜と反射防止膜との結合が増すためか硬度、耐擦傷性等に優れた反射防止膜付基材を得ることができる。   When such an organic resin for dispersion (A) and / or organic resin for curing (B) is contained, a coating liquid for forming a hard coat film is applied, dried and cured, and then a coating liquid for forming an antireflection film. Applying, drying, and then irradiating with ultraviolet rays, the bond between the hard coat film containing the same matrix component and the antireflection film is increased, or a substrate with an antireflection film excellent in hardness, scratch resistance, etc. is obtained. Can do.

さらに、分散用有機樹脂(A)が1〜2個の官能基を有する紫外線硬化型樹脂モノマーないしオリゴマーであり、前記硬化用有機樹脂(B)が3個以上の官能基を有する紫外線硬化型樹脂モノマーないしオリゴマーであることが好ましい。   Further, the dispersing organic resin (A) is an ultraviolet curable resin monomer or oligomer having 1 to 2 functional groups, and the curable organic resin (B) is an ultraviolet curable resin having 3 or more functional groups. Monomers or oligomers are preferred.

分散用有機樹脂(A)が1〜2個の官能基を有する紫外線硬化型樹脂のモノマーないしオリゴマーであると、反射防止膜形成用塗布液の安定性が高く、表面が平滑な反射防止膜が得られる。さらに、反射防止膜形成用塗布液に硬化用有機樹脂(B)を含む場合は硬化用有機樹脂(B)と、ハードコート膜に含まれる分散用有機樹脂(A)および硬化用有機樹脂(B)と容易に結合し、ハードコート膜と一体化した反射防止膜を得ることができる。   When the dispersion organic resin (A) is a monomer or oligomer of an ultraviolet curable resin having 1 to 2 functional groups, the antireflection film having a high stability and a smooth surface can be obtained. can get. Furthermore, when the coating liquid for forming the antireflection film contains the curing organic resin (B), the curing organic resin (B), the dispersing organic resin (A) and the curing organic resin (B) contained in the hard coat film are used. And an antireflection film integrated with the hard coat film can be obtained.

また、硬化用有機樹脂(B)が3個以上の官能基を有する紫外線硬化型樹脂モノマーないしオリゴマーであると、下層のハードコート膜に含まれる硬化用有機樹脂(B)と結合しやすく、ハードコート膜との密着性に優れ、ハードコート膜と一体化した反射防止膜を得ることができる。また、マトリックス形成成分として互いに結合するために硬度に優れた反射防止膜を得ることができる。   Further, when the curable organic resin (B) is an ultraviolet curable resin monomer or oligomer having three or more functional groups, it easily binds to the curable organic resin (B) contained in the lower hard coat film, It is possible to obtain an antireflection film that is excellent in adhesion to the coating film and integrated with the hard coating film. Moreover, since it couple | bonds together as a matrix formation component, the antireflection film excellent in hardness can be obtained.

重合開始剤
本発明の反射防止膜形成用塗布液には必要に応じて重合開始剤を用いることができる。
重合開始剤としては前記マトリックス形成性分を重合、硬化させることができれば特に制限はなく、樹脂によって適宜選択し、従来公知の重合開始剤を用いることができる。
例えば、アシルホスフィンオキシド類、アセトフェノン類、プロピオフェノン類、ベンジル類、ベンゾイン類、ベンゾフェノン類、チオキサントン類等の重合開始剤の他、カチオン系光重合開始剤等が挙げられる。
Polymerization initiator A polymerization initiator can be used in the coating solution for forming an antireflection film of the present invention, if necessary.
The polymerization initiator is not particularly limited as long as the matrix-forming component can be polymerized and cured, and can be appropriately selected depending on the resin, and conventionally known polymerization initiators can be used.
For example, in addition to polymerization initiators such as acylphosphine oxides, acetophenones, propiophenones, benzyls, benzoins, benzophenones, and thioxanthones, cationic photopolymerization initiators and the like can be mentioned.

さらに具体的には、前記ハードコート膜形成用塗布液に用いたと同じビス(2、4、6−トリメチルベンゾイル)フェニルフォスフィンオキサイド、ビス(2、6−ジメトキシベンゾイル)2、4、4−トリメチル-ペンチルフォスフィンオキサイド、2−ヒドロキシ-メチル-2-メチル-フェニル-プロパン-1-ケトン、2、2-ジメトキシ-1、2-ジフェニルエタン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン等を用いることができる。   More specifically, the same bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, bis (2,6-dimethoxybenzoyl) 2,4,4-trimethyl used in the hard coat film forming coating solution. -Pentylphosphine oxide, 2-hydroxy-methyl-2-methyl-phenyl-propane-1-ketone, 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxy-cyclohexyl-phenyl-ketone 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one and the like can be used.

反射防止膜形成用塗布液中の重合開始剤の濃度はマトリックス形成成分の種類によっても異なるが、マトリックス形成成分および重合開始剤を固形分としたとき、マトリックス形成成分の0.1〜20重量%、さらには0.5〜10重量%の範囲にあることが好ましい。   The concentration of the polymerization initiator in the coating solution for forming the antireflection film varies depending on the type of the matrix forming component, but 0.1 to 20% by weight of the matrix forming component when the matrix forming component and the polymerization initiator are solids. Furthermore, it is preferable to be in the range of 0.5 to 10% by weight.

重合開始剤の含有量が固形分としてマトリックス形成成分の0.1重量%未満の場合は、反射防止膜の硬化が不充分となることがある。
重合開始剤の含有量が固形分としてマトリックス形成成分の20重量%を超えると、塗布液の安定性が不充分となることがある。
When the content of the polymerization initiator is less than 0.1% by weight of the matrix forming component as a solid content, the antireflection film may be insufficiently cured.
When the content of the polymerization initiator exceeds 20% by weight of the matrix forming component as a solid content, the stability of the coating solution may be insufficient.

溶媒
反射防止膜形成用塗布液に用いる溶媒としてはマトリックス形成成分、重合開始剤を溶解あるいは分散できるとともにシリカ系中空微粒子(A)、シリカ系微粒子(B)を均一に分散することができれば特に制限はなく、従来公知の溶媒を用いることができる。
The solvent used in the coating solution for forming the solvent antireflective film is particularly limited as long as it can dissolve or disperse the matrix forming component and the polymerization initiator and can uniformly disperse the silica-based hollow fine particles (A) and the silica-based fine particles (B). However, a conventionally known solvent can be used.

具体的には、水、メタノール、エタノール、プロパノール、2-プロパノール(IPA)、ブタノール、ジアセトンアルコール、フルフリルアルコール、テトラヒドロフルフリルアルコール等のアルコール類;エチレングリコール、ヘキシレングリコール等のグリコール類;ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールイソプルピルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のエーテル類;酢酸プルピル、酢酸イソブチル、酢酸ブチル、酢酸イソペンチル、酢酸ペンチル、酢酸3−メトキシブチル、酢酸2−エチルブチル、酢酸シクロヘキシル、エチレングリコールモノアセタート等のエステル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、ブチルメチルケトン、シクロヘキサノン、メチルシクロヘキサノン、ジプロピルケトン、メチルペンチルケトン、ジイソブチルケトン、イソホロン、アセチルアセトン、アセト酢酸エステル等のケトン類;トルエン、キシレン等が挙げられる。   Specifically, alcohols such as water, methanol, ethanol, propanol, 2-propanol (IPA), butanol, diacetone alcohol, furfuryl alcohol, and tetrahydrofurfuryl alcohol; glycols such as ethylene glycol and hexylene glycol; Ethers such as diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol isopropyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether; Purpyl acetate, isobutyl acetate, butyl acetate, isopentyl acetate, pentyl acetate, vinegar Esters such as 3-methoxybutyl, 2-ethylbutyl acetate, cyclohexyl acetate, ethylene glycol monoacetate; acetone, methyl ethyl ketone, methyl isobutyl ketone, butyl methyl ketone, cyclohexanone, methyl cyclohexanone, dipropyl ketone, methyl pentyl ketone, diisobutyl ketone , Ketones such as isophorone, acetylacetone and acetoacetate; toluene, xylene and the like.

反射防止膜形成用塗布液の全固形分濃度は1〜10重量%、さらには1.5〜8重量%の範囲にあることが好ましい。
反射防止膜形成用塗布液の全固形分濃度が1重量%未満の場合は、膜厚の調整が難しく、また塗布ムラ、乾燥ムラを生じる場合がある。
The total solid concentration of the coating solution for forming an antireflection film is preferably in the range of 1 to 10% by weight, more preferably 1.5 to 8% by weight.
When the total solid concentration of the coating solution for forming an antireflection film is less than 1% by weight, it is difficult to adjust the film thickness, and coating unevenness and drying unevenness may occur.

反射防止膜形成用塗布液の全固形分濃度が固形分として10重量%を越えると、防止膜の膜厚が厚くなりすぎて十分な光学特性、及び反射防止能が得られなかったり、膜厚の制御し難しいため、表面平滑性が低下し、膜強度、膜硬度が低下する場合がある。   When the total solid concentration of the coating solution for forming the antireflection film exceeds 10% by weight as the solid content, the film thickness of the antireflection film becomes too thick, and sufficient optical characteristics and antireflection performance cannot be obtained. Since it is difficult to control the surface smoothness, the surface smoothness may decrease, and the film strength and film hardness may decrease.

反射防止膜形成用塗布液中のシリカ系中空微粒子(A)の濃度は固形分として0.25〜9重量%、さらには0.35〜8重量%の範囲にあることが好ましい。
反射防止膜形成用塗布液中のシリカ系中空微粒子(A)の濃度が固形分として0.25重量%未満の場合は、下層のハードコート膜との密着性、膜強度、表面平坦性、耐擦傷性、スクラッチ強度等が不充分となることに加えて、反射防止膜の屈折率を低下させることができないために反射防止性能が不充分となる場合がある。
The concentration of the silica-based hollow fine particles (A) in the coating solution for forming the antireflection film is preferably in the range of 0.25 to 9% by weight, more preferably 0.35 to 8% by weight as the solid content.
When the concentration of the silica-based hollow fine particles (A) in the coating solution for forming the antireflection film is less than 0.25% by weight as a solid content, adhesion with the lower hard coat film, film strength, surface flatness, In addition to insufficient scratch resistance, scratch strength, etc., the antireflective performance may be insufficient because the refractive index of the antireflective film cannot be lowered.

反射防止膜形成用塗布液中のシリカ系中空微粒子(A)の濃度が固形分として9重量%を越えると、粒子が多すぎて得られる反射防止膜の膜強度、耐擦傷性、スクラッチ強度等が不充分となることに加えて、反射防止膜のヘーズ値が高くなる場合がある。   When the concentration of the silica-based hollow fine particles (A) in the coating solution for forming the antireflection film exceeds 9% by weight as a solid content, the film strength, scratch resistance, scratch strength, etc. of the antireflection film obtained when there are too many particles May become insufficient, and the anti-reflection film may have a high haze value.

シリカ系微粒子(B)を用いる場合も反射防止膜形成用塗布液の全固形分濃度は前記範囲にあることが好ましい。
さらに、全シリカ系粒子中のシリカ系微粒子(B)の割合が30重量%、さらには20重量%以下であることが好ましい。
Even when the silica-based fine particles (B) are used, the total solid concentration of the coating solution for forming an antireflection film is preferably within the above range.
Furthermore, the ratio of the silica-based fine particles (B) in the total silica-based particles is preferably 30% by weight, more preferably 20% by weight or less.

このような範囲でシリカ系微粒子(B)を含んでいると、得られる反射防止膜の表面部におけるシリカ系中空微粒子(A)の粒子間隙にシリカ系中空微粒子(B)が存在して表面を平坦化する効果により、耐擦傷性、スクラッチ強度に優れた反射防止膜を得ることができる。また、マトリックス形成成分より屈折率の低いシリカ系微粒子(B)が用いられるので反射防止膜の屈折率を低くすることができ、より反射防止性能に優れた反射防止膜を得ることができる。   When silica-based fine particles (B) are contained in such a range, the silica-based hollow fine particles (B) are present in the gaps between the silica-based hollow fine particles (A) in the surface portion of the obtained antireflection film, and the surface is Due to the flattening effect, an antireflection film excellent in scratch resistance and scratch strength can be obtained. In addition, since silica-based fine particles (B) having a refractive index lower than that of the matrix-forming component are used, the refractive index of the antireflection film can be lowered, and an antireflection film having more excellent antireflection performance can be obtained.

反射防止膜形成用塗布液中のマトリックス形成成分の固形分としての濃度は0.75〜9.5重量%、さらには0.75〜8重量%の範囲にあることが好ましい。
反射防止膜形成用塗布液中マトリックス形成成分の濃度が固形分として0.75重量%未満の場合は、マトリックスに対し微粒子が多過ぎる場合が生じ、反射防止膜の膜強度、耐擦傷性、スクラッチ強度等が不充分となることに加えて、反射防止膜のヘーズ値が高くなる場合がある。
The concentration of the matrix forming component in the coating solution for forming an antireflection film as a solid content is preferably in the range of 0.75 to 9.5% by weight, more preferably 0.75 to 8% by weight.
When the concentration of the matrix-forming component in the coating solution for forming the antireflection film is less than 0.75% by weight as the solid content, there are cases where there are too many fine particles relative to the matrix, and the film strength of the antireflection film, scratch resistance, scratches, etc. In addition to insufficient strength and the like, the haze value of the antireflection film may increase.

反射防止膜形成用塗布液中のマトリックス形成成分の濃度が固形分として9.5重量%を超えると、マトリックスに対し微粒子が少な過ぎる場合が生じ、ハードコート膜との密着性、膜強度、表面平坦性、耐擦傷性、スクラッチ強度等が不充分となることに加えて、反射防止膜の屈折率を低下させることができないために反射防止性能が不充分となる場合がある。   If the concentration of the matrix-forming component in the coating solution for forming the anti-reflective film exceeds 9.5% by weight as the solid content, the amount of fine particles may be too small with respect to the matrix, resulting in adhesion to the hard coat film, film strength, surface In addition to insufficient flatness, scratch resistance, scratch strength, etc., the antireflective performance may be insufficient because the refractive index of the antireflective film cannot be lowered.

本発明にかかる反射防止膜付基材は、基材上に形成されたハードコート膜上に、以上の反射防止膜形成用塗布液を塗布した後、乾燥し、ついで、硬化することによって製造することができる。   The base material with an antireflection film according to the present invention is manufactured by applying the above antireflection film-forming coating solution onto the hard coat film formed on the base material, drying, and then curing. be able to.

反射防止膜形成用塗布液の塗布方法としては、ディップ法、スプレー法、スピナー法、ロールコート法、バーコート法、スリットコーター印刷法、グラビア印刷法、マイクログラビア印刷法等の周知の方法が挙げられる。   Examples of the coating method of the coating solution for forming the antireflection film include known methods such as a dipping method, a spray method, a spinner method, a roll coating method, a bar coating method, a slit coater printing method, a gravure printing method, and a micro gravure printing method. It is done.

ついで、乾燥するが反射防止膜形成用塗布液の溶媒を概ね除去できれば特に制限はなく従来公知の方法を採用することができる。
通常、概ね60〜120℃の温度で数分間加熱することによって乾燥することができる。
Then, although it is dried, there is no particular limitation as long as the solvent of the coating solution for forming the antireflection film can be substantially removed, and a conventionally known method can be employed.
Usually, it can be dried by heating at a temperature of about 60 to 120 ° C. for several minutes.

乾燥した後、硬化するが、硬化する方法としては紫外線照射、加熱処理あるいはこれらを併用して硬化させることによってハードコート膜および反射防止膜を形成することができる。
ハードコート膜形成用塗布液を塗布、乾燥し、反射防止膜形成用塗布液を塗布、乾燥し、ついで紫外線照射して同時に硬化することも可能である。
Although it hardens | cures after drying, as a hardening method, a hard-coat film | membrane and an antireflection film | membrane can be formed by making it harden | cure using ultraviolet irradiation, heat processing, or these together.
It is also possible to apply and dry the coating liquid for forming a hard coat film, apply and dry the coating liquid for forming an antireflection film, and then simultaneously cure by irradiating with ultraviolet rays.

[実施例]
以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
[実施例1]
ハードコート膜形成用塗布液(1)の調製
表面処理金属酸化物微粒子(1)の調製
シリカゾル水分散液(日揮触媒化成(株)製;カタロイド SI−50;平均粒子径25nm、SiO2濃度48.0重量%、分散媒:水、粒子屈折率1.46)1000gに陽イオン交換樹脂(三菱化学(株)製:SK−1BH)を960g添加して30分撹拌後、イオン交換樹脂を分離した。
ついで、陰イオン交換樹脂(三菱化学(株)製:SA−20A)を480g添加して30分撹拌後、イオン交換樹脂を分離した。
[Example]
EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited by these Examples.
[Example 1]
Preparation of coating liquid for hard coat film formation (1)
Preparation of surface-treated metal oxide fine particles (1) Silica sol aqueous dispersion (manufactured by JGC Catalysts &Chemicals; Cataloid SI-50; average particle size 25 nm, SiO 2 concentration 48.0 wt%, dispersion medium: water, particle refraction) (Rate 1.46) 960 g of cation exchange resin (manufactured by Mitsubishi Chemical Corporation: SK-1BH) was added to 1000 g and stirred for 30 minutes, and then the ion exchange resin was separated.
Subsequently, 480 g of an anion exchange resin (Mitsubishi Chemical Corporation: SA-20A) was added and stirred for 30 minutes, and then the ion exchange resin was separated.

ついで、陽イオン交換樹脂(三菱化学(株)製:SK−1BH)を480g添加して5分撹拌後、80℃で3時間Agingして室温まで冷ました後、イオン交換樹脂を分離し、濃度48重量%のシリカ微粒子(1)水分散液を調製した。
ついで、シリカ微粒子(1)水分散液2000gを限外濾過膜法により、メタノールに溶媒置換して、SiO2として濃度40重量%のシリカ微粒子(1) メタノール分散液を調製した。
Next, after adding 480 g of cation exchange resin (Mitsubishi Chemical Corporation: SK-1BH) and stirring for 5 minutes, after agitation at 80 ° C. for 3 hours and cooling to room temperature, the ion exchange resin was separated and concentrated. A 48% by weight silica fine particle (1) aqueous dispersion was prepared.
Subsequently, 2000 g of the silica fine particle (1) aqueous dispersion was replaced with methanol by an ultrafiltration membrane method to prepare a silica fine particle (1) methanol dispersion having a concentration of 40% by weight as SiO 2 .

シリカ微粒子(1) メタノール分散液100gにγ-メタアクリロオキシプロピルトリメトキシシラン7.48g(信越シリコ−ン株製:KBM−503、SiO2成分81.2%)を混合し超純水を3.1g添加し50℃で6時間攪拌して表面処理した25nmのシリカゾル分散液を得た(固形分濃度40.5重量%)。 Silica Fine Particles (1) 7.48 g of γ-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Silicone Co., Ltd .: KBM-503, SiO 2 component 81.2%) was mixed with 100 g of methanol dispersion and ultrapure water was added. 3.1 g was added and stirred at 50 ° C. for 6 hours to obtain a surface-treated 25 nm silica sol dispersion (solid content concentration 40.5 wt%).

その後、ロータリーエバポレーターで溶剤をプロピレングリコールモノメチルエーテル(PGME)に置換し、表面処理金属酸化物粒子(1)分散液を得た。
表面処理金属酸化物粒子(1)分散液2500gに分散用有機樹脂(A)としてジメチロール-トリシクロデカンジアクリレート(共栄社化学(株)製;ライトアクリレートDCP−A、官能基:アクリレート、官能基数:2、分子量:219)202.5gを添加し、+ロータリーエバポレーターで溶媒の一部を除去して固形分濃度76.0重量%の表面処理金属酸化物微粒子の分散用有機樹脂(A)分散液(1)を調製した。
Thereafter, the solvent was replaced with propylene glycol monomethyl ether (PGME) by a rotary evaporator to obtain a dispersion of surface-treated metal oxide particles (1).
Surface-treated metal oxide particles (1) 2,500 g of dispersion liquid dimethylol-tricyclodecanediacrylate (manufactured by Kyoeisha Chemical Co., Ltd .; light acrylate DCP-A, functional group: acrylate, number of functional groups: as organic resin for dispersion (A) 2, molecular weight: 219) 202.5 g was added, and + part of the solvent was removed with a rotary evaporator, and the organic resin (A) dispersion for dispersing the surface-treated metal oxide fine particles having a solid content concentration of 76.0% by weight (1) was prepared.

ついで、表面処理金属酸化物微粒子の分散用有機樹脂(A)分散液(1)75.31gと、硬化用有機樹脂(B)としてウレタンアクリレート(新中村化学(株)製:NKオリゴ UA−33H、官能基:ウレタンアクリレート、官能基数:9、分子量:4,000、固形分濃度100%)8.32gと、アクリルシリコーン系レベリング剤(楠本化成(株)製;ディスパロンNSH−8430HF)1.00gと光重合開始剤(チバジャパン(株)製:イルガキュア184)0.50gとPGME2.37gとアセトン12.50gを充分に混合して固形分濃度66.1重量%のハードコート膜形成用塗布液(1)を調製した。
得られたハードコート膜形成用塗布液(1)の組成を表に示す。
Next, 75.31 g of the organic resin (A) dispersion liquid (1) for dispersing the surface-treated metal oxide fine particles and urethane acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd .: NK Oligo UA-33H) as the curing organic resin (B). , Functional group: urethane acrylate, number of functional groups: 9, molecular weight: 4,000, solid content concentration 100%) 8.32 g, acrylic silicone leveling agent (manufactured by Enomoto Kasei Co., Ltd .; Disparon NSH-8430HF) 1.00 g And a photopolymerization initiator (Ciba Japan Co., Ltd .: Irgacure 184) 0.50 g, 2.37 g of PGME, and 12.50 g of acetone are sufficiently mixed to form a coating solution for forming a hard coat film having a solid content concentration of 66.1 wt%. (1) was prepared.
The composition of the obtained coating liquid for forming a hard coat film (1) is shown in the table.

シリカ系中空微粒子(A-1)分散液の調製
シリカゾル(日揮触媒化成(株)製:SI−550、平均粒子径5nm、SiO2濃度20重量%)5.0gと純水999.5gの混合物を80℃に加温し、この温度を保持しながら、SiO2として濃度3.0重量%の珪酸ナトリウム水溶液1575gとAl23としての濃度1.5重量%のアルミン酸ナトリウム水溶液1575gを添加して、SiO2・Al23一次粒子分散液を得た。このときのモル比MOX/SiO2(A)=0.25、平均粒子径は13nmであった。また、このときの反応液のpHは12.0であった。
Preparation of silica -based hollow fine particle (A-1) dispersion Silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: SI-550, average particle diameter 5 nm, SiO 2 concentration 20% by weight) 5.0 g and pure water 999.5 g While maintaining this temperature, 1575 g of a sodium silicate aqueous solution having a concentration of 3.0% by weight as SiO 2 and 1575 g of a sodium aluminate aqueous solution having a concentration of 1.5% by weight as Al 2 O 3 were added. Thus, a SiO 2 .Al 2 O 3 primary particle dispersion was obtained. At this time, the molar ratio MO X / SiO 2 (A) = 0.25, and the average particle size was 13 nm. Further, the pH of the reaction solution at this time was 12.0.

ついで、SiO2として濃度3.0重量%の珪酸ナトリウム水溶液8370gとAl23としての濃度1.5重量%のアルミン酸ナトリウム水溶液2790gを添加して複合酸化物微粒子(二次粒子)の分散液を得た。 Next, 8370 g of a 3.0 wt% sodium silicate aqueous solution as SiO 2 and 2790 g of a 1.5 wt% sodium aluminate aqueous solution as Al 2 O 3 were added to disperse the composite oxide fine particles (secondary particles). A liquid was obtained.

このときのモル比MOX/SiO2(B)=0.13、平均粒子径は30nmであった。また、このときの反応液のpHは12.0であった。
ついで、限外濾過膜で洗浄して固形分濃度13重量%になった複合酸化物微粒子の分散液500gに純水1,125gを加え、さらに濃塩酸(濃度35.5重量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離・洗浄して固形分濃度20重量%のシリカ系中空微粒子の水分散液を得た。
At this time, the molar ratio MO X / SiO 2 (B) = 0.13, and the average particle size was 30 nm. Further, the pH of the reaction solution at this time was 12.0.
Next, 1,125 g of pure water was added to 500 g of the dispersion of the composite oxide fine particles that had been washed with an ultrafiltration membrane to a solid content concentration of 13 wt%, and concentrated hydrochloric acid (concentration 35.5 wt%) was further added dropwise. The pH was adjusted to 1.0 and dealumination was performed. Subsequently, while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water, the aluminum salt dissolved in the ultrafiltration membrane was separated and washed to obtain an aqueous dispersion of silica-based hollow fine particles having a solid content concentration of 20% by weight.

つぎに、シリカ系中空微粒子分散液にアンモニア水を添加して分散液のpHを10.5に調整し、ついで200℃にて11時間熟成した後、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20重量%固形分濃度20重量%のシリカ系微粒子(A-1-3)の水分散液を得た。   Next, aqueous ammonia is added to the silica-based hollow fine particle dispersion to adjust the pH of the dispersion to 10.5, and after aging at 200 ° C. for 11 hours, the mixture is cooled to room temperature, and a cation exchange resin (Mitsubishi). Chemical Co., Ltd. (Diaion SK1B) 400 g was used for ion exchange for 3 hours, then anion exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SA20A) 200 g was used for ion exchange for 3 hours. Using 200 g of ion exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SK1B), it was washed by ion exchange at 80 ° C. for 3 hours to obtain silica-based fine particles having a solid content concentration of 20 wt% and a solid content concentration of 20 wt% (A An aqueous dispersion of 1-3-3) was obtained.

ついで限外濾過膜を用いて溶媒をメタノールに置換した固形分濃度20重量%のシリカ系中空微粒子(A-1)のメタノール分散液を調製した。得られたシリカ系中空微粒子(A-1)の平均粒子径、屈折率を測定し、結果を表に示す。   Subsequently, a methanol dispersion of silica-based hollow fine particles (A-1) having a solid content concentration of 20% by weight, in which the solvent was replaced with methanol using an ultrafiltration membrane, was prepared. The average particle diameter and refractive index of the obtained silica-based hollow fine particles (A-1) were measured, and the results are shown in the table.

ついで、固形分濃度20重量%のシリカ系中空微粒子(A-1)のメタノール分散液100gにメタクリルシランカップリング剤(信越化学(株)製:KBM-503)3.7gを添加し、50℃で加熱処理を行い、ロータリーエバポレーターで溶媒をMIBKに置換した固形分濃度20.5重量%の表面処理したシリカ系中空微粒子(A-1)のMIBK分散液を調製した。表面処理したシリカ系中空微粒子(A-1)の屈折率を測定し、結果を表に示した。   Next, 3.7 g of a methacrylsilane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503) was added to 100 g of a methanol dispersion of silica-based hollow fine particles (A-1) having a solid content concentration of 20% by weight, and 50 ° C. Then, a MIBK dispersion of silica-based hollow microparticles (A-1) having a solid content concentration of 20.5% by weight, in which the solvent was replaced with MIBK by a rotary evaporator, was prepared. The refractive index of the surface-treated silica-based hollow fine particles (A-1) was measured, and the results are shown in the table.

反射防止膜形成用塗布液(1)の調製
固形分濃度20.5重量%の表面処理したシリカ系中空微粒子分散液(A-1)8.05gにジペンタエリスリトールヘキサアクリレート(共栄社化学(株)製:DPE-6A、固形分濃度100重量%)1.07gと1,6−ヘキサンジオールジアクリレート(巴工業(株)製:SR−238F,固形分濃度100重量%)0.12gと撥水化材用反応性シリコンオイル(信越化学(株);X−22−174DX、固形分濃度100重量%)0.05gとシリコーン変性ポリウレタンアクリレート(日本合成化学工業(株)製;紫光UT−4314:固形分濃度30重量%)0.37gと光重合開始剤(ビ−エ−エスエフジャパン(株))製:ルシリンTPO,固形分濃度100重量%)0.09gとイソプロピルアルコール64.65g、メチルイソブチルケトン9.60g、イソプロピルグリコール16.00gを混合して、固形分濃度3.0重量%の反射防止膜形成用塗布液(1)を調製した。
Preparation of coating solution (1) for forming an antireflection film Dipentaerythritol hexaacrylate (Kyoeisha Chemical Co., Ltd.) was added to 8.05 g of a surface-treated silica-based hollow fine particle dispersion (A-1) having a solid content concentration of 20.5% by weight. Product: DPE-6A, solid content concentration 100% by weight) 1.07 g and 1,6-hexanediol diacrylate (manufactured by Sakai Kogyo Co., Ltd .: SR-238F, solid content concentration 100% by weight) 0.12 g and water repellency Reactive silicone oil for chemicals (Shin-Etsu Chemical Co., Ltd .; X-22-174DX, solid content concentration: 100% by weight) and silicone-modified polyurethane acrylate (manufactured by Nippon Synthetic Chemical Industry Co., Ltd .; Shikko UT-4314): (Solid content concentration 30 wt%) 0.37 g and photopolymerization initiator (BSF Japan Ltd.): Lucillin TPO, solid content concentration 100 wt%) 0.09 g and isopropyl Alcohol 64.65G, methyl isobutyl ketone 9.60 g, a mixture of isopropyl glycol 16.00 g, solid content concentration of 3.0% by weight of the antireflection film-forming coating liquid (1) was prepared.

ハードコート膜付基材(1)の調製
ハードコート膜形成用塗布液(1)を、TACフィルム(富士フィルム(株)製:FT−PB40UL−M、厚さ:40μm、屈折率:1.51)にバーコーター法#16で塗布し、80℃で120秒間乾燥した。透明被膜の膜厚は12μmであった。
次に、300mJ/cm2の紫外線を照射して硬化させてハードコート膜付基材(1)を製造した。ハードコート膜の膜厚は12μmであった。
得られたハードコート膜付基材(1)について、以下の評価を行い、結果を表に示す。
Preparation of Substrate with Hard Coat Film (1) A coating liquid for forming a hard coat film (1) was prepared from a TAC film (Fuji Film Co., Ltd .: FT-PB40UL-M, thickness: 40 μm, refractive index: 1.51). ) By a bar coater method # 16 and dried at 80 ° C. for 120 seconds. The film thickness of the transparent coating was 12 μm.
Next, the substrate (1) with a hard coat film was produced by irradiating and curing 300 mJ / cm 2 of ultraviolet rays. The film thickness of the hard coat film was 12 μm.
The obtained hard coat film-coated substrate (1) was evaluated as follows, and the results are shown in the table.

収縮率
収縮率は以下の(1)〜(3)で評価した。
(1)塗料から乾燥までの収縮率(体積収縮率(1))
1.ハードコート膜形成用塗布液の密度(比重)を測定する。
2.ハードコート膜成用塗布液を乾燥後の膜厚が10μm程度となるように塗布した後、80℃で2分間乾燥させて乾燥膜を作成する。ついで、乾燥膜の一部を採取し、密度(比重)を測定する。
3.下式(A)に従って、体積収縮率(1)を算出する。
体積収縮率(1)(%)=[1−(塗布液の密度/乾燥膜の密度)]×100・・・A
(2)乾燥後からUV硬化後の収縮率(硬化収縮率(2))
1.乾燥膜の比重は(1)−2を採用した。
2.硬化後のハードコート膜の一部を採取し、ハードコート膜の密度(比重)を測定する。
3.下式(B)に従って、体積収縮率(2)を算出する。
体積収縮率(2)(%)=[1−(乾燥膜の密度/硬化膜の密度)]×100・・・B
(3)全体収縮率(3)
下式(C)に従って、全体積収縮率(3)を算出する。
体積収縮率(3)(%)=[1−(塗布液の密度/硬化膜の密度)]×100・・・C
Shrinkage rate Shrinkage rate was evaluated by the following (1) to (3).
(1) Shrinkage from paint to drying (volume shrinkage (1))
1. The density (specific gravity) of the coating liquid for forming the hard coat film is measured.
2. The hard coat film forming coating solution is applied so that the film thickness after drying is about 10 μm, and then dried at 80 ° C. for 2 minutes to form a dry film. Next, a portion of the dried film is sampled and the density (specific gravity) is measured.
3. The volume shrinkage (1) is calculated according to the following formula (A).
Volume shrinkage (1) (%) = [1− (density of coating solution / density of dry film)] × 100... A
(2) Shrinkage after drying and UV curing (curing shrinkage (2))
1. The specific gravity of the dry film was (1) -2.
2. A part of the hard coat film after curing is collected, and the density (specific gravity) of the hard coat film is measured.
3. The volume shrinkage (2) is calculated according to the following formula (B).
Volume shrinkage (2) (%) = [1− (density of dried film / density of cured film)] × 100... B
(3) Overall shrinkage (3)
The total volume shrinkage rate (3) is calculated according to the following equation (C).
Volume shrinkage (3) (%) = [1− (density of coating solution / density of cured film)] × 100... C

また、全光線透過率およびヘイズは、ヘーズメーター(スガ試験機(株)製)により測定した。
また、ハードコート膜の屈折率は、エリプソメーター(ULVAC社製、EMS−1)により測定した。
なお、未塗布のTACフィルムは全光線透過率が93.2%、ヘイズが0.2%、波長550nmの光線の反射率が6. 0%であった。
さらに、クラックの有無を観察するとともに表面粗さ(Ra)、カーリング特性、耐擦傷性、鉛筆硬度を以下の方法で測定た。
The total light transmittance and haze were measured with a haze meter (manufactured by Suga Test Instruments Co., Ltd.).
Further, the refractive index of the hard coat film was measured with an ellipsometer (manufactured by ULVAC, EMS-1).
The uncoated TAC film had a total light transmittance of 93.2%, a haze of 0.2%, and a reflectance of light having a wavelength of 550 nm was 6.0%.
Furthermore, the presence or absence of cracks was observed, and the surface roughness (Ra), curling characteristics, scratch resistance, and pencil hardness were measured by the following methods.

表面粗さ(Ra)の測定
原子間力顕微鏡(AFM)(Bruker(株)製:Dimension 3100)で10μm×10μmで測定した。
Measurement of surface roughness (Ra) The surface roughness (Ra) was measured at 10 μm × 10 μm with an atomic force microscope (AFM) (manufactured by Bruker, Inc .: Dimension 3100).

カーリング性評価
カーリングテスト方法:14cm×25cmサイズのTACフィルムに塗布した透明被膜フィルムを20時間保管する。フィルムを10cm×10cmサイズにカットする。塗布面を下にしてフィルムを置き、床面からの基材の高さAを測定した。
Curling property evaluation Curling test method: A transparent coating film applied to a TAC film having a size of 14 cm × 25 cm is stored for 20 hours. Cut the film to 10 cm × 10 cm size. The film was placed with the coated surface down, and the height A of the base material from the floor surface was measured.

鉛筆硬度の測定
JIS−K−5600に準じて鉛筆硬度試験器により測定した。
Measurement of pencil hardness It measured with the pencil hardness tester according to JIS-K-5600.

耐擦傷性の測定
#0000スチールウールを用い、荷重2kg/cm2で10回摺動し、膜の表面を目視観察し、以下の基準で評価した。
評価基準:
筋条の傷が認められない :◎
筋条に傷が僅かに認められる:○
筋条に傷が多数認められる :△
面が全体的に削られている :×
Measurement of scratch resistance Using # 0000 steel wool, sliding 10 times with a load of 2 kg / cm 2 , visually observing the surface of the film, and evaluating according to the following criteria.
Evaluation criteria:
No streak injury is found: ◎
Slightly scratched streak: ○
Many scratches are found in the streak: △
The surface has been cut entirely: ×

反射防止膜付基材(1)の調製
前記と同様にしてハードコート膜付基材(1)を調製した後、ハードコート膜上に反射防止膜形成用塗布液(1)をバーコーター法(バー#4)で塗布し、80℃で120秒間乾燥した後、N2雰囲気下で400mJ/cm2の紫外線を照射して硬化させて反射防止膜付基材(1)を作製した。このときの反射防止膜の膜厚は100nmであった。
この反射防止膜付基材(1)の全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性、鉛筆硬度、耐擦傷性を表に示す。
なお、屈折率は、エリプソメーター(ULVAC社製、EMS−1)により測定した。
Preparation of base material with antireflection film (1) After preparing a base material with a hard coat film (1) in the same manner as described above, a coating solution for forming an antireflection film (1) was applied onto the hard coat film by the bar coater method ( After coating with bar # 4) and drying at 80 ° C. for 120 seconds, the substrate (1) with an antireflection film was prepared by irradiating with an ultraviolet ray of 400 mJ / cm 2 under an N 2 atmosphere and curing. At this time, the film thickness of the antireflection film was 100 nm.
The total light transmittance, haze, reflectance, film refractive index, adhesion, pencil hardness, and scratch resistance of this antireflection film-coated substrate (1) are shown in the table.
The refractive index was measured with an ellipsometer (manufactured by ULVAC, EMS-1).

[実施例2]
シリカ系中空微粒子(A-2)分散液の調製
シリカゾル(日揮触媒化成(株)製:SI−550、平均粒子径5nm、SiO2濃度20重量%)5.0gと純水999.5gの混合物を80℃に加温し、この温度を保持しながら、SiO2として濃度3.0重量%の珪酸ナトリウム水溶液650gとAl23としての濃度1.5重量%のアルミン酸ナトリウム水溶液650gを添加して、SiO2・Al23一次粒子分散液を得た。このときのモル比MOX/SiO2(A)=0.24、平均粒子径は13nmであった。また、このときの反応液のpHは12.0であった。
[Example 2]
Preparation of silica -based hollow fine particle (A-2) dispersion Silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: SI-550, average particle size 5 nm, SiO 2 concentration 20% by weight) 5.0 g and a mixture of 999.5 g of pure water While maintaining this temperature, 650 g of a sodium silicate aqueous solution having a concentration of 3.0% by weight as SiO 2 and 650 g of a sodium aluminate aqueous solution having a concentration of 1.5% by weight as Al 2 O 3 were added. Thus, a SiO 2 .Al 2 O 3 primary particle dispersion was obtained. At this time, the molar ratio MO X / SiO 2 (A) = 0.24, and the average particle size was 13 nm. Further, the pH of the reaction solution at this time was 12.0.

ついで、SiO2として濃度3.0重量%の珪酸ナトリウム水溶液2940gとAl23としての濃度1.5重量%のアルミン酸ナトリウム水溶液980gを添加して複合酸化物微粒子(二次粒子)の分散液を得た。 Next, 2940 g of a sodium silicate aqueous solution having a concentration of 3.0% by weight as SiO 2 and 980 g of a sodium aluminate aqueous solution having a concentration of 1.5% by weight as Al 2 O 3 were added to disperse the composite oxide fine particles (secondary particles). A liquid was obtained.

このときのモル比MOX/SiO2(B)=0.13、平均粒子径は20nmであった。また、このときの反応液のpHは12.0であった。
ついで、限外濾過膜で洗浄して固形分濃度13重量%になった複合酸化物微粒子の分散液500gに純水1,125gを加え、さらに濃塩酸(濃度35.5重量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離・洗浄して固形分濃度20重量%のシリカ系中空微粒子の水分散液を得た。
At this time, the molar ratio MO X / SiO 2 (B) = 0.13, and the average particle size was 20 nm. Further, the pH of the reaction solution at this time was 12.0.
Next, 1,125 g of pure water was added to 500 g of the dispersion of the composite oxide fine particles that had been washed with an ultrafiltration membrane to a solid content concentration of 13 wt%, and concentrated hydrochloric acid (concentration 35.5 wt%) was further added dropwise. The pH was adjusted to 1.0 and dealumination was performed. Subsequently, while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water, the aluminum salt dissolved in the ultrafiltration membrane was separated and washed to obtain an aqueous dispersion of silica-based hollow fine particles having a solid content concentration of 20% by weight.

つぎに、シリカ系中空微粒子分散液にアンモニア水を添加して分散液のpHを10.5に調整し、ついで200℃にて11時間熟成した後、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20重量%固形分濃度20重量%のシリカ系微粒子(A-2)の水分散液を得た。   Next, aqueous ammonia is added to the silica-based hollow fine particle dispersion to adjust the pH of the dispersion to 10.5, and after aging at 200 ° C. for 11 hours, the mixture is cooled to room temperature, and a cation exchange resin (Mitsubishi). Chemical Co., Ltd. (Diaion SK1B) 400 g was used for ion exchange for 3 hours, then anion exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SA20A) 200 g was used for ion exchange for 3 hours. Using 200 g of ion exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SK1B), it was washed by ion exchange at 80 ° C. for 3 hours to obtain silica-based fine particles having a solid content concentration of 20 wt% and a solid content concentration of 20 wt% (A An aqueous dispersion of -2) was obtained.

ついで限外濾過膜を用いて溶媒をメタノールに置換した固形分濃度20重量%のシリカ系中空微粒子(A-2)のメタノール分散液を調製した。得られたシリカ系中空微粒子(A-2)の平均粒子径、屈折率を測定し、結果を表に示す。固形分濃度20重量%のシリカ系中空微粒子(A-2)のメタノール分散液100gにメタクリルシランカップリング剤(信越化学(株)製:KBM-503)3.7ggを添加し、50℃で加熱処理を行い、ロータリーエバポレーターで溶媒をMIBKに置換した固形分濃度20.5 重量%の表面処理したシリカ系中空微粒子(A-2)のMIBK分散液を調製した。表面処理したシリカ系中空微粒子(A-2)の屈折率を測定し、結果を表に示す。   Then, a methanol dispersion of silica-based hollow fine particles (A-2) having a solid content concentration of 20% by weight, in which the solvent was replaced with methanol using an ultrafiltration membrane, was prepared. The average particle diameter and refractive index of the obtained silica-based hollow fine particles (A-2) were measured, and the results are shown in the table. 3.7 g of methacrylsilane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503) is added to 100 g of a methanol dispersion of silica-based hollow fine particles (A-2) having a solid content concentration of 20% by weight and heated at 50 ° C. After the treatment, a MIBK dispersion of silica-based hollow microparticles (A-2) having a solid content concentration of 20.5 wt%, in which the solvent was replaced with MIBK by a rotary evaporator, was prepared. The refractive index of the surface-treated silica-based hollow fine particles (A-2) was measured, and the results are shown in the table.

反射防止膜形成用塗布液(2)の調製
実施例1において、固形分濃度20.5重量%の表面処理したシリカ系中空微粒子分散液(A-2)を用いた以外は同様にして固形分濃度3.0重量%の反射防止膜形成用塗布液(2)を調製した。
Preparation of antireflection film-forming coating liquid (2) In Example 1, the solid content was the same except that the surface-treated silica-based hollow fine particle dispersion (A-2) having a solid content concentration of 20.5% by weight was used. A coating solution (2) for forming an antireflection film having a concentration of 3.0% by weight was prepared.

反射防止膜付基材(2)の調製
実施例1において、ハードコート膜形成後、固形分濃度3.0重量%の反射防止膜形成用塗布液(2)を用いた以外は同様にして反射防止膜付基材(2)を作製した。このときの反射防止膜の膜厚は100nmであった。
この反射防止膜付基材(2)の全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性、鉛筆硬度、耐擦傷性を表に示す。
Preparation of base material with antireflection film (2) In Example 1, after the hard coat film was formed, reflection was conducted in the same manner except that the antireflection film-forming coating liquid (2) having a solid content concentration of 3.0% by weight was used. A substrate (2) with a protective film was produced. At this time, the film thickness of the antireflection film was 100 nm.
The total light transmittance, haze, reflectance, film refractive index, adhesion, pencil hardness, and scratch resistance of this antireflection film-coated substrate (2) are shown in the table.

[実施例3]
シリカ系中空微粒子(A-3)分散液の調製
シリカ・アルミナゾル(触媒化成工業(株)製:USBB−120、平均粒子径25nm、SiO2・Al23濃度20重量%、固形分中Al23含有量27重量%)100gと純水3900gの混合物を98℃に加温し、この温度を保持しながら、SiO2として濃度1.5重量%の珪酸ナトリウム水溶液405gとAl23としての濃度0.5重量%のアルミン酸ナトリウム水溶液405gを添加して、SiO2・Al23一次粒子分散液を得た。このときのモル比MOX/SiO2(A)=0.2、平均粒子径は28nmであった。また、このときの反応液のpHは12.0であった。
[Example 3]
Preparation of silica -based hollow fine particle (A-3) dispersion Silica-alumina sol (Catalyst Kasei Kogyo Co., Ltd .: USBB-120, average particle size 25 nm, SiO 2 · Al 2 O 3 concentration 20% by weight, Al in solid content A mixture of 100 g of 2 O 3 content (27 wt%) and 3900 g of pure water was heated to 98 ° C., and while maintaining this temperature, 405 g of a sodium silicate aqueous solution having a concentration of 1.5 wt% as SiO 2 and Al 2 O 3 405 g of a sodium aluminate aqueous solution having a concentration of 0.5% by weight was added to obtain a SiO 2 .Al 2 O 3 primary particle dispersion. At this time, the molar ratio MO X / SiO 2 (A) = 0.2, and the average particle size was 28 nm. Further, the pH of the reaction solution at this time was 12.0.

ついで、SiO2として濃度1.5重量%の珪酸ナトリウム水溶液1607gとAl23としての濃度0.5重量%のアルミン酸ナトリウム水溶液535gを添加して複合酸化物微粒子(二次粒子)の分散液を得た。 Subsequently, 1607 g of a sodium silicate aqueous solution having a concentration of 1.5% by weight as SiO 2 and 535 g of a sodium aluminate aqueous solution having a concentration of 0.5% by weight as Al 2 O 3 were added to disperse the composite oxide fine particles (secondary particles). A liquid was obtained.

このときのモル比MOX/SiO2(B)=0.07、平均粒子径は40nmであった。また、このときの反応液のpHは12.0であった。
ついで、限外濾過膜で洗浄して固形分濃度13重量%になった複合酸化物微粒子の分散液500gに純水1,125gを加え、さらに濃塩酸(濃度35.5重量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離・洗浄して固形分濃度20重量%のシリカ系中空微粒子の水分散液を得た。
At this time, the molar ratio MO X / SiO 2 (B) = 0.07, and the average particle size was 40 nm. Further, the pH of the reaction solution at this time was 12.0.
Next, 1,125 g of pure water was added to 500 g of the dispersion of the composite oxide fine particles that had been washed with an ultrafiltration membrane to a solid content concentration of 13 wt%, and concentrated hydrochloric acid (concentration 35.5 wt%) was further added dropwise. The pH was adjusted to 1.0 and dealumination was performed. Subsequently, while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water, the aluminum salt dissolved in the ultrafiltration membrane was separated and washed to obtain an aqueous dispersion of silica-based hollow fine particles having a solid content concentration of 20% by weight.

つぎに、シリカ系中空微粒子分散液にアンモニア水を添加して分散液のpHを10.5に調整し、ついで200℃にて11時間熟成した後、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20重量%固形分濃度20重量%のシリカ系微粒子(A-3)の水分散液を得た。   Next, aqueous ammonia is added to the silica-based hollow fine particle dispersion to adjust the pH of the dispersion to 10.5, and after aging at 200 ° C. for 11 hours, the mixture is cooled to room temperature, and a cation exchange resin (Mitsubishi). Chemical Co., Ltd. (Diaion SK1B) 400 g was used for ion exchange for 3 hours, then anion exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SA20A) 200 g was used for ion exchange for 3 hours. Using 200 g of ion exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SK1B), it was washed by ion exchange at 80 ° C. for 3 hours to obtain silica-based fine particles having a solid content concentration of 20 wt% and a solid content concentration of 20 wt% (A -3) was obtained.

限外濾過膜を用いて溶媒をメタノールに置換した固形分濃度20重量%のシリカ系中空微粒子(A-3)のメタノール分散液を調製した。得られたシリカ系中空微粒子(A-3)の平均粒子径、屈折率を測定し、結果を表に示す。   A methanol dispersion of silica-based hollow fine particles (A-3) having a solid content concentration of 20% by weight, in which the solvent was replaced with methanol using an ultrafiltration membrane, was prepared. The average particle diameter and refractive index of the obtained silica-based hollow fine particles (A-3) were measured, and the results are shown in the table.

固形分濃度20重量%のシリカ系中空微粒子(A-3)のメタノール分散液100gにメタクリルシランカップリング剤(信越化学(株)製:KBM-503)3.7gを添加し、50℃で加熱処理を行い、ロータリーエバポレーターで溶媒をMIBKに置換した固形分濃度20.5重量%の表面処理したシリカ系中空微粒子(A-2)のMIBK分散液を調製した。表面処理したシリカ系中空微粒子(A-3)の屈折率を測定し、結果を表に示す。   3.7 g of a methacrylsilane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503) is added to 100 g of a methanol dispersion of silica-based hollow fine particles (A-3) having a solid content concentration of 20% by weight and heated at 50 ° C. After the treatment, a MIBK dispersion of silica-based hollow fine particles (A-2) having a solid content concentration of 20.5% by weight, in which the solvent was replaced with MIBK by a rotary evaporator, was prepared. The refractive index of the surface-treated silica-based hollow fine particles (A-3) was measured, and the results are shown in the table.

反射防止膜形成用塗布液(3)の調製
実施例1において、固形分濃度20.5重量%の表面処理したシリカ系中空微粒子分散液(A-3)を用いた以外は同様にして固形分濃度3.0重量%の反射防止膜形成用塗布液(3)を調製した。
Preparation of antireflection film-forming coating liquid (3) In Example 1, the solid content was the same except that the surface-treated silica-based hollow fine particle dispersion (A-3) having a solid content concentration of 20.5% by weight was used. A coating solution (3) for forming an antireflection film having a concentration of 3.0% by weight was prepared.

反射防止膜付基材(3)の調製
実施例1において、ハードコート膜形成後、固形分濃度3.0重量%の反射防止膜形成用塗布液(3)を用いた以外は同様にして反射防止膜付基材(3)を作製した。このときの反射防止膜の膜厚は100nmであった。
この反射防止膜付基材(3)の全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性、鉛筆硬度、耐擦傷性を表に示す。
[実施例4]
Preparation of base material with antireflection film (3) In Example 1, after the formation of the hard coat film, reflection was conducted in the same manner except that the antireflection film-forming coating solution (3) having a solid content concentration of 3.0% by weight was used. A substrate (3) with a protective film was produced. At this time, the film thickness of the antireflection film was 100 nm.
The total light transmittance, haze, reflectance, coating refractive index, adhesion, pencil hardness, and scratch resistance of the substrate with antireflection film (3) are shown in the table.
[Example 4]

シリカ系微粒子(B-1)分散液の調製
シリカゾル(日揮触媒化成(株)製:SI−550、平均粒子径5nm、SiO2 濃度20重量%)5.0gと純水999.5gの混合物を80℃に加温し、この温度を保持しながら、SiO2として濃度3.0重量%の珪酸ナトリウム水溶液321gとAl23としての濃度1.5重量%のアルミン酸ナトリウム水溶液321gを添加して、SiO2・Al23一次粒子分散液を得た。このときのモル比MOX/SiO2(A)=0.23、平均粒子径は7nmであった。また、このときの反応液のpHは12.0であった。
Preparation of dispersion of silica-based fine particles (B-1) Silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: SI-550, average particle diameter 5 nm, SiO 2 concentration 20 wt%) 5.0 g and a mixture of 999.5 g of pure water While maintaining the temperature at 80 ° C., 321 g of a sodium silicate aqueous solution having a concentration of 3.0% by weight as SiO 2 and 321 g of a sodium aluminate aqueous solution having a concentration of 1.5% by weight as Al 2 O 3 were added. Thus, a SiO 2 .Al 2 O 3 primary particle dispersion was obtained. At this time, the molar ratio MO X / SiO 2 (A) = 0.23, and the average particle size was 7 nm. Further, the pH of the reaction solution at this time was 12.0.

ついで、SiO2として濃度3.0重量%の珪酸ナトリウム水溶液1231gとAl23としての濃度1.5重量%のアルミン酸ナトリウム水溶液410gを添加して複合酸化物微粒子(二次粒子)の分散液を得た。 Next, 1231 g of a sodium silicate aqueous solution having a concentration of 3.0% by weight as SiO 2 and 410 g of a sodium aluminate aqueous solution having a concentration of 1.5% by weight as Al 2 O 3 were added to disperse the composite oxide fine particles (secondary particles). A liquid was obtained.

このときのモル比MOX/SiO2(B)=0.13、平均粒子径は14nmであった。また、このときの反応液のpHは12.0であった。
限外濾過膜で洗浄して固形分濃度13重量%になった複合酸化物微粒子の分散液500gに純水1,125gを加え、さらに濃塩酸(濃度35.5重量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離・洗浄して固形分濃度20重量%のシリカ系中空微粒子の水分散液を得た。
At this time, the molar ratio MO X / SiO 2 (B) = 0.13, and the average particle size was 14 nm. Further, the pH of the reaction solution at this time was 12.0.
1,125 g of pure water was added to 500 g of a dispersion of fine composite oxide particles having a solid content of 13% by weight washed with an ultrafiltration membrane, and concentrated hydrochloric acid (concentration 35.5% by weight) was added dropwise to adjust the pH to 1. 0.0, and dealumination was performed. Subsequently, while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water, the aluminum salt dissolved in the ultrafiltration membrane was separated and washed to obtain an aqueous dispersion of silica-based hollow fine particles having a solid content concentration of 20% by weight.

つぎに、シリカ系中空微粒子分散液にアンモニア水を添加して分散液のpHを10.5に調整し、ついで200℃にて11時間熟成した後、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20重量%固形分濃度20重量%のシリカ系微粒子(B-1)の水分散液を得た。
ついで限外濾過膜を用いて溶媒をメタノールに置換した固形分濃度20重量%のシリカ系中空微粒子(B-1)のメタノール分散液を調製した。得られたシリカ系中空微粒子(B-1)の平均粒子径、屈折率を測定し、結果を表に示す。
Next, aqueous ammonia is added to the silica-based hollow fine particle dispersion to adjust the pH of the dispersion to 10.5, and after aging at 200 ° C. for 11 hours, the mixture is cooled to room temperature, and a cation exchange resin (Mitsubishi). Chemical Co., Ltd. (Diaion SK1B) 400 g was used for ion exchange for 3 hours, then anion exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SA20A) 200 g was used for ion exchange for 3 hours. Using 200 g of ion exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SK1B), it was washed by ion exchange at 80 ° C. for 3 hours to obtain silica-based fine particles having a solid content concentration of 20 wt% and a solid content concentration of 20 wt% (B An aqueous dispersion of -1) was obtained.
Next, a methanol dispersion of silica-based hollow fine particles (B-1) having a solid content concentration of 20% by weight, in which the solvent was replaced with methanol using an ultrafiltration membrane, was prepared. The average particle diameter and refractive index of the obtained silica-based hollow fine particles (B-1) were measured, and the results are shown in the table.

固形分濃度20重量%のシリカ系中空微粒子(B-1)のメタノール分散液100gにメタクリルシランカップリング剤(信越化学(株)製:KBM-503)3.7gを添加し、50℃で加熱処理を行い、ロータリーエバポレーターで溶媒をMIBKに置換した固形分濃度20.5重量%の表面処理したシリカ系中空微粒子(B-1)のMIBK分散液を調製した。表面処理したシリカ系中空微粒子(B-1)の屈折率を測定し、結果を表に示す。   3.7 g of a methacrylsilane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503) is added to 100 g of a methanol dispersion of silica-based hollow fine particles (B-1) having a solid content of 20% by weight, and heated at 50 ° C. After the treatment, a MIBK dispersion of silica-based hollow fine particles (B-1) having a solid content concentration of 20.5% by weight, in which the solvent was replaced with MIBK by a rotary evaporator, was prepared. The refractive index of the surface-treated silica-based hollow fine particles (B-1) was measured, and the results are shown in the table.

反射防止膜形成用塗布液(4)の調製
実施例3と同様にして調製した固形分濃度20.5 20重量%の表面処理したシリカ系中空微粒子分散液(A-3)7.90gに、固形分濃度20.5 20重量%のシリカ系微粒子(B-1)のメタノール分散液0.15g、ジペンタエリスリトールヘキサアクリレート(共栄社化学(株)製:DPE-6A、固形分濃度100重量%)1.07gと1,6−ヘキサンジオールジアクリレート(巴工業(株)製:SR−238F,固形分濃度100重量%)0.12gと撥水化材用反応性シリコンオイル(信越化学(株);X−22−174DX、固形分濃度100重量%)0.05gとシリコーン変性ポリウレタンアクリレート(日本合成化学工業(株)製;紫光UT−4314:固形分濃度30重量%)0.37gと光重合開始剤(ビ−エ−エスエフジャパン(株))製:ルシリンTPO,固形分濃度100重量%)0.09gとイソプロピルアルコール64.65g、メチルイソブチルケトン9.60g、イソプロピルグリコール16.00gを混合して、固形分濃度3.0重量%の反射防止膜形成用塗布液(4)を調製した。
Preparation of antireflection film-forming coating liquid (4 ) To 7.90 g of a surface-treated silica-based hollow fine particle dispersion (A-3) having a solid concentration of 20.5 and 20% by weight prepared in the same manner as in Example 3, Solid content concentration 20.5 Silica fine particles (B-1) methanol dispersion 0.15 g of 20% by weight, dipentaerythritol hexaacrylate (manufactured by Kyoeisha Chemical Co., Ltd .: DPE-6A, solid content concentration 100% by weight) 1.07 g, 1,6-hexanediol diacrylate (manufactured by Sakai Kogyo Co., Ltd .: SR-238F, solid concentration 100% by weight) and reactive silicone oil for water repellent material (Shin-Etsu Chemical Co., Ltd.) X-22-174DX, solid content concentration 100% by weight) 0.05 g and silicone-modified polyurethane acrylate (manufactured by Nippon Synthetic Chemical Industry Co., Ltd .; purple light UT-4314: solid content concentration 30% by weight) 0.37 g and light 0.09 g of a polymerization initiator (B-S-Japan Co., Ltd.): lucillin TPO, solid content concentration 100% by weight), 64.65 g of isopropyl alcohol, 9.60 g of methyl isobutyl ketone, and 16.00 g of isopropyl glycol are mixed. Thus, an antireflection film-forming coating solution (4) having a solid content concentration of 3.0% by weight was prepared.

反射防止膜付基材(4)の調製
実施例1において、ハードコート膜形成後、固形分濃度3.0重量%の反射防止膜形成用塗布液(4)を用いた以外は同様にして反射防止膜付基材(4)を作製した。このときの反射防止膜の膜厚は100nmであった。
この反射防止膜付基材(4)の全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性、鉛筆硬度、耐擦傷性を表に示す。
Preparation of substrate with antireflection film (4) In Example 1, after the formation of the hard coat film, reflection was performed in the same manner except that the antireflection film-forming coating solution (4) having a solid content concentration of 3.0% by weight was used. A substrate (4) with a protective film was produced. At this time, the film thickness of the antireflection film was 100 nm.
The total light transmittance, haze, reflectance, coating refractive index, adhesion, pencil hardness, and scratch resistance of the substrate with antireflection film (4) are shown in the table.

[実施例5]
シリカ系微粒子(B-2)分散液の調製
シリカゾル(日揮触媒化成(株)製:カタロイドSI−30、SiO2濃度40.5重量%、平均粒子径23nm、屈折率1.46)1000gに陽イオン交換樹脂(三菱化学(株)製:SK−1BH)を960g添加して30分撹拌後、イオン交換樹脂を分離した。
[Example 5]
Preparation of silica -based fine particle (B-2) dispersion Silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: Cataloid SI-30, SiO 2 concentration 40.5 wt%, average particle diameter 23 nm, refractive index 1.46) After adding 960 g of ion exchange resin (Mitsubishi Chemical Corporation: SK-1BH) and stirring for 30 minutes, the ion exchange resin was separated.

陰イオン交換樹脂(三菱化学(株)製:SA−20A)を480g添加して30分撹拌後、イオン交換樹脂を分離した。
陽イオン交換樹脂(三菱化学(株)製:SK−1BH)を480g添加して5分撹拌後、80℃で3時間Agingして室温まで冷ました後、イオン交換樹脂を分離し、濃度48重量%のシリカ微粒子(1)水分散液を調製した。
After adding 480 g of an anion exchange resin (Mitsubishi Chemical Corporation: SA-20A) and stirring for 30 minutes, the ion exchange resin was separated.
After adding 480 g of cation exchange resin (Mitsubishi Chemical Corporation: SK-1BH) and stirring for 5 minutes, after agitation at 80 ° C. for 3 hours and cooling to room temperature, the ion exchange resin was separated and the concentration was 48 weight. % Silica fine particle (1) aqueous dispersion was prepared.

ついで、シリカ微粒子(1)水分散液2000gを限外濾過膜法により、メタノールに溶媒置換して、SiO2として濃度40重量%のシリカ系微粒子(B-2) メタノール分散液を調製した。 Subsequently, 2000 g of the silica fine particle (1) aqueous dispersion was replaced with methanol by an ultrafiltration membrane method to prepare a silica-based fine particle (B-2) methanol dispersion having a concentration of 40% by weight as SiO 2 .

固形分濃度20重量%のシリカ系微粒子(B-2)のメタノール分散液100gにメタクリルシランカップリング剤(信越化学(株)製:KBM-503)3.7gを添加し、50℃で加熱処理を行い、ロータリーエバポレーターで溶媒をMIBKに置換した固形分濃度20.5重量%の表面処理したシリカ系中空微粒子(B-2)のMIBK分散液を調製した。
表面処理したシリカ系微粒子(B-2)の屈折率を測定し、結果を表に示す。
3.7 g of methacrylsilane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503) is added to 100 g of a methanol dispersion of silica-based fine particles (B-2) having a solid content concentration of 20% by weight, and heat-treated at 50 ° C. Then, a MIBK dispersion of silica-based hollow fine particles (B-2) having a solid content concentration of 20.5% by weight, in which the solvent was replaced with MIBK by a rotary evaporator, was prepared.
The refractive index of the surface-treated silica-based fine particles (B-2) was measured, and the results are shown in the table.

反射防止膜形成用塗布液(5)の調製
実施例4において、固形分濃度20.5重量%のシリカ系微粒子(B-1)のメタノール分散液に代えて固形分濃度20.5重量%のシリカ系中空微粒子(B-2)のMIBK分散液を用いた以外は同様にして固形分濃度3.0重量%の反射防止膜形成用塗布液(5)を調製した。
Preparation of antireflection film-forming coating solution (5) In Example 4, instead of a methanol dispersion of silica-based fine particles (B-1) with a solid content concentration of 20.5 wt%, a solid content concentration of 20.5 wt% An antireflection film-forming coating solution (5) having a solid content concentration of 3.0% by weight was prepared in the same manner except that the MIBK dispersion of silica-based hollow fine particles (B-2) was used.

反射防止膜付基材(5)の調製
実施例1において、ハードコート膜形成後、固形分濃度3.0重量%の反射防止膜形成用塗布液(5)を用いた以外は同様にして反射防止膜付基材(5)を作製した。このときの反射防止膜の膜厚は100nmであった。
この反射防止膜付基材(5)の全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性、鉛筆硬度、耐擦傷性を表に示す。
Preparation of substrate with antireflection film (5) In Example 1, after the hard coat film was formed, the reflection was conducted in the same manner except that the antireflection film-forming coating solution (5) having a solid concentration of 3.0% by weight was used. A substrate with a protective film (5) was produced. At this time, the film thickness of the antireflection film was 100 nm.
The total light transmittance, haze, reflectance, film refractive index, adhesion, pencil hardness, and scratch resistance of this antireflection film-coated substrate (5) are shown in the table.

[実施例6]
反射防止膜形成用塗布液(6)の調製
実施例1と同様にして調製した固形分濃度20.5重量%の表面処理したシリカ系中空微粒子分散液(A-1)8.05gに分散用有機樹脂(A)としてジメチロール-トリシクロデカンジアクリレート(共栄社化学(株)製;ライトアクリレートDCP−A、官能基:アクリレート、官能基数:2、分子量:219)0.12gと硬化用有機樹脂(B)としてウレタンアクリレート(新中村化学(株)製:NKオリゴ UA−33H、官能基:ウレタンアクリレート、官能基数:9、分子量:4,000、固形分濃度100%)1.07gと撥水化材用反応性シリコンオイル(信越化学(株);X−22−174DX、固形分濃度100重量%)0.05gとシリコーン変性ポリウレタンアクリレート(日本合成化学工業(株)製;紫光UT−4314:固形分濃度30重量%)0.37gと光重合開始剤(ビ−エ−エスエフジャパン(株))製:ルシリンTPO)0.09gとイソプロピルアルコール64.65g、メチルイソブチルケトン9.60g、イソプロピルグリコール16.00gを混合して、固形分濃度3.0重量%の反射防止膜形成用塗布液(6)を調製した。
[Example 6]
Preparation of antireflection film-forming coating solution (6 ) Dispersed in 8.05 g of a surface-treated silica-based hollow fine particle dispersion (A-1) having a solid content concentration of 20.5% by weight prepared in the same manner as in Example 1. As organic resin (A), dimethylol-tricyclodecane diacrylate (manufactured by Kyoeisha Chemical Co., Ltd .; light acrylate DCP-A, functional group: acrylate, functional group number: 2, molecular weight: 219) 0.12 g and curing organic resin ( B) 1.07 g of urethane acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd .: NK Oligo UA-33H, functional group: urethane acrylate, number of functional groups: 9, molecular weight: 4,000, solid content concentration: 100%) and water repellency Reactive silicon oil for materials (Shin-Etsu Chemical Co., Ltd .; X-22-174DX, solid content concentration: 100% by weight) and silicone-modified polyurethane acrylate (Nippon Synthetic Chemical Industry Co., Ltd.) ); Purple light UT-4314: solid content concentration 30% by weight) 0.37 g and photopolymerization initiator (BSF Japan Ltd.): Lucirin TPO) 0.09 g, isopropyl alcohol 64.65 g, methyl 9.60 g of isobutyl ketone and 16.00 g of isopropyl glycol were mixed to prepare a coating solution (6) for forming an antireflection film having a solid content concentration of 3.0% by weight.

反射防止膜付基材(6)の調製
実施例1において、ハードコート膜形成後、固形分濃度3.0重量%の反射防止膜形成用塗布液(6)を用いた以外は同様にして反射防止膜付基材(6)を作製した。このときの反射防止膜の膜厚は100nmであった。
この反射防止膜付基材(6)の全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性、鉛筆硬度、耐擦傷性を表に示す。
Preparation of substrate with antireflection film (6) In Example 1, after the hard coat film was formed, the reflection was conducted in the same manner except that the antireflection film-forming coating solution (6) having a solid content concentration of 3.0% by weight was used. A substrate (6) with a protective film was produced. At this time, the film thickness of the antireflection film was 100 nm.
The total light transmittance, haze, reflectance, film refractive index, adhesion, pencil hardness, and scratch resistance of this antireflection film-coated substrate (6) are shown in the table.

[実施例7]
ハードコート膜付基材(7)の調製
実施例1と同様にして調製したハードコート膜形成用塗布液(1)を、TACフィルム(富士フィルム(株)製:FT−PB40UL−M、厚さ:40μm、屈折率:1.51)にバーコーター法#16で塗布し、80℃で120秒間乾燥した。ハードコート膜の膜厚は12μmであった。ハードコート膜の物理性状等は実施例1と同じと表記した。
[Example 7]
Preparation of substrate with hard coat film (7) A hard coat film-forming coating solution (1) prepared in the same manner as in Example 1 was prepared using a TAC film (Fuji Film Co., Ltd .: FT-PB40UL-M, thickness). : 40 μm, refractive index: 1.51) by bar coater method # 16 and dried at 80 ° C. for 120 seconds. The film thickness of the hard coat film was 12 μm. The physical properties and the like of the hard coat film are indicated as the same as in Example 1.

反射防止膜付基材(7)の調製
ついで、実施例1と同様にして調製した固形分濃度3.0重量%の反射防止膜形成用塗布液(1)を用いた以外は同様にして反射防止膜付基材(7)を作製した。このときの反射防止膜の膜厚は100nmであった。
この反射防止膜付基材(7)の全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性、鉛筆硬度、耐擦傷性を表に示す。
Preparation of base material with antireflection film (7) Subsequently, reflection was carried out in the same manner except that the coating liquid (1) for forming an antireflection film having a solid content concentration of 3.0% by weight prepared in the same manner as in Example 1 was used. A base material with a protective film (7) was produced. At this time, the film thickness of the antireflection film was 100 nm.
The total light transmittance, haze, reflectance, refractive index of the coating, adhesion, pencil hardness, and scratch resistance of this substrate with antireflection film (7) are shown in the table.

[実施例8]
ハードコート膜形成用塗布液(8)の調製
実施例1と同様にして調製した表面処理金属酸化物微粒子の分散用有機樹脂(A)分散液(1)80.38gと、硬化用有機樹脂(B)としてウレタンアクリレート(新中村化学(株)製:NKオリゴ UA−33H、官能基:ウレタンアクリレート、官能基数:9、分子量:4,000、固形分濃度100%)8.88gと、アクリルシリコーン系レベリング剤(楠本化成(株)製;ディスパロンNSH−8430HF)1.00gと光重合開始剤(チバジャパン(株)製:イルガキュア184)0.53gとPGME0.21gとアセトン9.0gを充分に混合して固形分濃度70.6重量%のハードコート膜形成用塗布液(8)を調製した。
得られたハードコート膜形成用塗布液(8)の組成を表に示す。
[Example 8]
Preparation of Hard Coat Film Forming Coating Liquid (8 ) 80.38 g of the surface-treated metal oxide fine particle dispersion organic resin (A) dispersion liquid (1) prepared in the same manner as in Example 1, and a curing organic resin ( B) urethane acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd .: NK Oligo UA-33H, functional group: urethane acrylate, functional group number: 9, molecular weight: 4,000, solid content concentration 100%) 8.88 g, acrylic silicone Leveling agent (manufactured by Enomoto Kasei Co., Ltd .; Disparon NSH-8430HF) 1.00 g, photopolymerization initiator (Ciba Japan Co., Ltd .: Irgacure 184) 0.53 g, 0.21 g of PGME and 9.0 g of acetone are sufficiently added. By mixing, a coating liquid (8) for forming a hard coat film having a solid content concentration of 70.6% by weight was prepared.
The composition of the obtained coating liquid for forming a hard coat film (8) is shown in the table.

ハードコート膜付基材(8)の調製
実施例1において、ハードコート膜形成用塗布液(8)を、バーコーター法#16で塗布した以外は同様にしてハードコート膜付基材(8)を製造した。透明被膜の膜厚は12μmであった。
Preparation of base material with hard coat film (8) In Example 1, the base material with hard coat film (8) was similarly applied except that the coating liquid for hard coat film formation (8) was applied by the bar coater method # 16. Manufactured. The film thickness of the transparent coating was 12 μm.

得られたハードコート膜付基材(8)について、収縮率、全光線透過率、ヘイズを測定し、結果を表に示す。また、クラックの有無を観察し、表面粗さ(Ra)、カーリング特性、耐擦傷性、鉛筆硬度を測定し、結果を表に示す。   For the obtained substrate (8) with a hard coat film, the shrinkage rate, the total light transmittance, and the haze were measured, and the results are shown in the table. Further, the presence or absence of cracks was observed, and the surface roughness (Ra), curling characteristics, scratch resistance, and pencil hardness were measured, and the results are shown in the table.

反射防止膜付基材(8)の調製
実施例1と同様にして調製した固形分濃度3.0重量%の反射防止膜形成用塗布液(1)を用いた以外は同様にして反射防止膜付基材(8)を作製した。このときの反射防止膜の膜厚は100nmであった。
この反射防止膜付基材(8)の全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性、鉛筆硬度、耐擦傷性を表に示す。
Preparation of substrate with antireflection film (8) Antireflection film was prepared in the same manner as in Example 1 except that coating solution (1) for forming an antireflection film having a solid content of 3.0% by weight was used. A base material (8) was prepared. At this time, the film thickness of the antireflection film was 100 nm.
The total light transmittance, haze, reflectance, coating refractive index, adhesion, pencil hardness, and scratch resistance of this substrate with antireflection film (8) are shown in the table.

[実施例9]
表面処理金属酸化物微粒子の分散用有機樹脂(A)分散液(9)の調製
シリカゾル分散液(日揮触媒化成(株)製;カタロイド SI−30;平均粒子径12nm、SiO2濃度40.5重量%、分散媒:イソプロパノ−ル、粒子屈折率1.46)100gにγ-メタアクリロオキシプロピルトリメトキシシラン7.48g(信越シリコ−ン株製:KBM−503、SiO2成分81.2%)を混合し超純水を3.1g添加し50℃で6時間攪拌して表面処理した12nmのシリカゾル分散液を得た(固形分濃度40.5重量%)。
[Example 9]
Preparation of organic resin (A) dispersion (9) for dispersion of surface-treated metal oxide fine particles Silica sol dispersion (manufactured by JGC Catalysts &Chemicals; Cataloid SI-30; average particle size 12 nm, SiO 2 concentration 40.5 wt. %, Dispersion medium: isopropanol, particle refractive index 1.46) to 7.48 g of γ-methacrylooxypropyltrimethoxysilane (manufactured by Shin-Etsu Silicone Co., Ltd .: KBM-503, SiO 2 component 81.2%) ), 3.1 g of ultrapure water was added, and the mixture was stirred at 50 ° C. for 6 hours to obtain a surface-treated 12 nm silica sol dispersion (solid content concentration: 40.5 wt%).

その後、ロータリーエバポレーターでプロピレングリコールモノメチルエーテル(PGME)に溶剤置換した(固形分濃度40.5重量%)。
表面処理金属酸化物粒子(1)分散液2500gに分散用有機樹脂(A)としてジメチロール-トリシクロデカンジアクリレート(共栄社化学(株)製;ライトアクリレートDCP−A、官能基:アクリレート、官能基数:2、分子量:219)202.5gを添加し、ロータリーエバポレーターで溶媒の一部を除去して固形分濃度85.0重量%の表面処理金属酸化物微粒子の分散用有機樹脂(A)分散液(9)を調製した。
Thereafter, the solvent was replaced with propylene glycol monomethyl ether (PGME) by a rotary evaporator (solid content concentration: 40.5% by weight).
Surface-treated metal oxide particles (1) 2,500 g of dispersion liquid dimethylol-tricyclodecanediacrylate (manufactured by Kyoeisha Chemical Co., Ltd .; light acrylate DCP-A, functional group: acrylate, number of functional groups: as organic resin for dispersion (A) 2, molecular weight: 219) Add 202.5 g, remove part of the solvent with a rotary evaporator, and disperse organic resin (A) dispersion liquid of surface-treated metal oxide fine particles having a solid content concentration of 85.0% by weight ( 9) was prepared.

ハードコート膜形成用塗布液(9)の調製
表面処理金属酸化物微粒子の分散用有機樹脂(A)分散液(9)79.99gと、硬化用有機樹脂(B)としてウレタンアクリレート(新中村化学(株)製:NKオリゴ UA−33H、官能基:ウレタンアクリレート、官能基数:9、分子量:4,000、固形分濃度100%)9.90gと、アクリルシリコーン系レベリング剤(楠本化成(株)製;ディスパロンNSH−8430HF)1.00gと光重合開始剤(チバジャパン(株)製:イルガキュア184)0.59gとPGME0.51gとアセトン8.00gを充分に混合して固形分濃度78.7重量%のハードコート膜形成用塗布液(9)を調製した。
得られたハードコート膜形成用塗布液(9)の組成を表に示す。
Preparation of Hard Coat Film Forming Coating Liquid (9) Surface Treatment Metal Oxide Fine Particle Dispersion Organic Resin (A) Dispersion Liquid (9) 79.99g and Curing Organic Resin (B) Urethane Acrylate (Shin Nakamura Chemical) Product: NK Oligo UA-33H, functional group: urethane acrylate, number of functional groups: 9, molecular weight: 4,000, solid content concentration 100%) and 9.90 g, acrylic silicone leveling agent (Enomoto Kasei Co., Ltd.) 1.00 g of Disparon NSH-8430HF), 0.59 g of a photopolymerization initiator (manufactured by Ciba Japan Co., Ltd .: Irgacure 184), 0.51 g of PGME, and 8.00 g of acetone are mixed thoroughly to obtain a solid content concentration of 78.7. A coating solution (9) for forming a hard coat film with a weight% was prepared.
The composition of the obtained coating liquid for forming a hard coat film (9) is shown in the table.

ハードコート膜付基材(9)の調製
実施例1において、ハードコート膜形成用塗布液(9)を、バーコーター法#16で塗布した以外は同様にしてハードコート膜付基材(9)を製造した。ハードコート膜の膜厚は12μmであった。
Preparation of substrate with hard coat film (9) In Example 1, the substrate with hard coat film (9) was prepared in the same manner as in Example 1, except that the coating liquid for forming a hard coat film (9) was applied by the bar coater method # 16. Manufactured. The film thickness of the hard coat film was 12 μm.

得られたハードコート膜付基材(9)について、収縮率、全光線透過率、ヘイズを測定し、結果を表に示す。また、クラックの有無を観察し、表面粗さ(Ra)、カーリング特性、耐擦傷性、鉛筆硬度を測定し、結果を表に示す。   For the obtained substrate (9) with a hard coat film, the shrinkage rate, the total light transmittance, and the haze were measured, and the results are shown in the table. Further, the presence or absence of cracks was observed, and the surface roughness (Ra), curling characteristics, scratch resistance, and pencil hardness were measured, and the results are shown in the table.

反射防止膜付基材(9)の調製
実施例1と同様にして調製した固形分濃度3.0重量%の反射防止膜形成用塗布液(1)を用いた以外は同様にして反射防止膜付基材(9)を作製した。このときの反射防止膜の膜厚は100nmであった。
この反射防止膜付基材(9)の全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性、鉛筆硬度、耐擦傷性を表に示す。
Preparation of substrate with antireflection film (9) Antireflection film was prepared in the same manner as in Example 1 except that coating solution (1) for forming an antireflection film having a solid content of 3.0% by weight was used. A base material (9) was prepared. At this time, the film thickness of the antireflection film was 100 nm.
The total light transmittance, haze, reflectance, coating refractive index, adhesion, pencil hardness, and scratch resistance of this antireflection film-coated substrate (9) are shown in the table.

[実施例10]
ハードコート膜形成用塗布液(10)の調製
表面処理金属酸化物粒子(1)分散液2500gに分散用有機樹脂(A)としてジメチロール-トリシクロデカンジアクリレート(共栄社化学(株)製;ライトアクリレートDCP−A、官能基:アクリレート、官能基数:2、分子量:219)267.7gを添加し、ロータリーエバポレーターで溶媒の一部を除去して固形分濃度72.1重量%の表面処理金属酸化物微粒子の分散用有機樹脂(A)分散液(10)を調製した。
[Example 10]
Preparation of coating liquid for forming hard coat film (10) Surface-treated metal oxide particles (1) 2,500 g of dispersion liquid as dimethylol-tricyclodecane diacrylate (Kyoeisha Chemical Co., Ltd .; light acrylate) as organic resin for dispersion (A) DCP-A, functional group: acrylate, functional group number: 2, molecular weight: 219) 267.7 g was added, a part of the solvent was removed by a rotary evaporator, and the surface-treated metal oxide having a solid content concentration of 72.1% by weight An organic resin (A) dispersion (10) for dispersing fine particles was prepared.

ついで、表面処理金属酸化物微粒子の分散用有機樹脂(A)分散液(10)66.61gと、硬化用有機樹脂(B)としてウレタンアクリレート(新中村化学(株)製:NKオリゴ UA−33H、官能基:ウレタンアクリレート、官能基数:9、分子量:4,000、固形分濃度100%)10.98gと、アクリルシリコーン系レベリング剤(楠本化成(株)製;ディスパロンNSH−8430HF1.00gと光重合開始剤(チバジャパン(株)製:イルガキュア184)0.70gとPGME8.21gとアセトン12.50gを充分に混合して固形分濃度66.1重量%のハードコート膜形成用塗布液(10)を調製した。
得られたハードコート膜形成用塗布液(10)の組成を表に示す。
Next, 66.61 g of the organic resin (A) dispersion liquid (10) for dispersing the surface-treated metal oxide fine particles and urethane acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd .: NK Oligo UA-33H) as the curing organic resin (B). , Functional group: urethane acrylate, number of functional groups: 9, molecular weight: 4,000, solid content concentration 100%) 10.98 g, acrylic silicone leveling agent (manufactured by Enomoto Kasei Co., Ltd .; Disparon NSH-8430HF 1.00 g and light Polymerization initiator (manufactured by Ciba Japan Co., Ltd .: Irgacure 184) 0.70 g, 8.21 g of PGME and 12.50 g of acetone were sufficiently mixed to form a coating solution for forming a hard coat film having a solid content concentration of 66.1% by weight (10 ) Was prepared.
The composition of the obtained coating liquid for forming a hard coat film (10) is shown in the table.

ハードコート膜付基材(10)の調製
実施例1において、ハードコート膜形成用塗布液(10)を、バーコーター法#16で塗布した以外は同様にしてハードコート膜付基材(10)を製造した。ハードコート膜の膜厚は12μmであった。
得られたハードコート膜付基材(4)について、収縮率、全光線透過率、ヘイズを測定し、結果を表に示す。また、クラックの有無を観察し、表面粗さ(Ra)、カーリング特性、耐擦傷性、鉛筆硬度を測定し、結果を表に示す。
Preparation of substrate with hard coat film (10) The substrate with hard coat film (10) was prepared in the same manner as in Example 1, except that the coating liquid for forming a hard coat film (10) was applied by the bar coater method # 16. Manufactured. The film thickness of the hard coat film was 12 μm.
For the obtained substrate (4) with a hard coat film, the shrinkage rate, the total light transmittance, and the haze were measured, and the results are shown in the table. Further, the presence or absence of cracks was observed, and the surface roughness (Ra), curling characteristics, scratch resistance, and pencil hardness were measured, and the results are shown in the table.

反射防止膜付基材(10)の調製
実施例1と同様にして調製した固形分濃度3.0重量%の反射防止膜形成用塗布液(1)を用いた以外は同様にして反射防止膜付基材(10)を作製した。このときの反射防止膜の膜厚は100nmであった。
この反射防止膜付基材(10)の全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性、鉛筆硬度、耐擦傷性を表に示す。
Preparation of substrate with antireflective coating (10) Antireflective coating in the same manner as in Example 1 except that the coating solution for forming an antireflective coating (1) having a solid concentration of 3.0% by weight was used. A base material (10) was prepared. At this time, the film thickness of the antireflection film was 100 nm.
The total light transmittance, haze, reflectance, film refractive index, adhesion, pencil hardness, and scratch resistance of this antireflection film-coated substrate (10) are shown in the table.

[実施例11]
ハードコート膜形成用塗布液(11)の調製
表面処理金属酸化物粒子(1)分散液2500gに分散用有機樹脂(A)としてジメチロール-トリシクロデカンジアクリレート(共栄社化学(株)製;ライトアクリレートDCP−A、官能基:アクリレート、官能基数:2、分子量:219)153.0gを添加し、ロータリーエバポレーターで溶媒の一部を除去して固形分濃度72.3重量%の表面処理金属酸化物微粒子の分散用有機樹脂(A)分散液(10)を調製した。
[Example 11]
Preparation of coating liquid for hard coat film formation (11) Surface-treated metal oxide particles (1) 2,500 g of dispersion liquid as dimethylol-tricyclodecane diacrylate (manufactured by Kyoeisha Chemical Co., Ltd.) as a dispersion organic resin (A); Light acrylate DCP-A, functional group: acrylate, functional group number: 2, molecular weight: 219) 153.0 g was added, a part of the solvent was removed by a rotary evaporator, and the solid content concentration was 72.3% by weight. An organic resin (A) dispersion (10) for dispersing fine particles was prepared.

表面処理金属酸化物微粒子の分散用有機樹脂(A)分散液(10)81.94gと、硬化用有機樹脂(B)としてウレタンアクリレート(新中村化学(株)製:NKオリゴ UA−33H、官能基:ウレタンアクリレート、官能基数:9、分子量:4,000、固形分濃度100%)6.27gと、アクリルシリコーン系レベリング剤(楠本化成(株)製;ディスパロンNSH−8430HF)1.00gと光重合開始剤(チバジャパン(株)製:イルガキュア184)0.46gとPGME0.33gとアセトン10.00gを充分に混合して固形分濃度66.1重量%のハードコート膜形成用塗布液(11)を調製した。
得られたハードコート膜形成用塗布液(11)の組成を表に示す。
Surface treatment metal oxide fine particle dispersion organic resin (A) 81.94 g dispersion (10) and curing organic resin (B) urethane acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd .: NK Oligo UA-33H, functional Group: urethane acrylate, number of functional groups: 9, molecular weight: 4,000, solid content concentration 100%) 6.27 g, acrylic silicone leveling agent (manufactured by Enomoto Kasei Co., Ltd .; Disparon NSH-8430HF) 1.00 g and light Polymerization initiator (manufactured by Ciba Japan Co., Ltd .: Irgacure 184) 0.46 g, 0.33 g of PGME, and 10.00 g of acetone are mixed well to form a coating solution for forming a hard coat film having a solid concentration of 66.1% by weight (11 ) Was prepared.
The composition of the obtained coating liquid for forming a hard coat film (11) is shown in the table.

ハードコート膜付基材(11)の調製
実施例1において、ハードコート膜形成用塗布液(11)を、バーコーター法#16で塗布した以外は同様にしてハードコート膜付基材(11)を製造した。ハードコート膜の膜厚は12μmであった。
このとき、乾燥時の塗膜の収縮率(1)および硬化の際の収縮率(2)を測定し、結果を表に示す。
Preparation of base material with hard coat film (11) In Example 1, the base material with hard coat film (11) was the same as in Example 1, except that the coating liquid for forming a hard coat film (11) was applied by the bar coater method # 16. Manufactured. The film thickness of the hard coat film was 12 μm.
At this time, the shrinkage ratio (1) of the coating film during drying and the shrinkage ratio (2) during curing were measured, and the results are shown in the table.

得られたハードコート膜付基材(11)について、全光線透過率、ヘイズを測定し、結果を表に示す。また、クラックの有無を観察し、表面粗さ(Ra)、カーリング特性、耐擦傷性、鉛筆硬度を測定し、結果を表に示す。   For the obtained substrate (11) with a hard coat film, the total light transmittance and haze were measured, and the results are shown in the table. Further, the presence or absence of cracks was observed, and the surface roughness (Ra), curling characteristics, scratch resistance, and pencil hardness were measured, and the results are shown in the table.

反射防止膜付基材(11)の調製
実施例1と同様にして調製した固形分濃度3.0重量%の反射防止膜形成用塗布液(1)を用いた以外は同様にして反射防止膜付基材(11)を作製した。このときの反射防止膜の膜厚は100nmであった。
この反射防止膜付基材(11)の全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性、鉛筆硬度、耐擦傷性を表に示す。
Preparation of substrate (11) with antireflection film Antireflection film was prepared in the same manner as in Example 1 except that coating solution (1) for forming an antireflection film having a solid content of 3.0% by weight was used. A base material (11) was prepared. At this time, the film thickness of the antireflection film was 100 nm.
The total light transmittance, haze, reflectance, film refractive index, adhesion, pencil hardness, and scratch resistance of this antireflection film-coated substrate (11) are shown in the table.

[実施例12]
ハードコート膜形成用塗布液(12)の調製
表面処理金属酸化物粒子(1)分散液2500gに分散用有機樹脂(A)としてジメチロール-トリシクロデカンジアクリレート(共栄社化学(株)製;ライトアクリレートDCP−A、官能基:アクリレート、官能基数:2、分子量:219)85.8gを添加し、ロータリーエバポレーターで溶媒の一部を除去して固形分濃度69.0重量%の表面処理金属酸化物微粒子の分散用有機樹脂(A)分散液(6)を調製した。
[Example 12]
Preparation of coating liquid for forming hard coat film (12) Surface-treated metal oxide particles (1) 2,500 g of dispersion liquid as dimethylol-tricyclodecane diacrylate (manufactured by Kyoeisha Chemical Co., Ltd.) as a dispersion organic resin (A); Light acrylate DCP-A, functional group: acrylate, functional group number: 2, molecular weight: 219) 85.8 g was added, and a part of the solvent was removed with a rotary evaporator to obtain a solid-treated metal oxide having a solid content concentration of 69.0% by weight. An organic resin (A) dispersion (6) for dispersing fine particles was prepared.

ついで、表面処理金属酸化物微粒子の分散用有機樹脂(A)分散液(6)75.31gと、硬化用有機樹脂(B)としてウレタンアクリレート(新中村化学(株)製:NKオリゴ UA−33H、官能基:ウレタンアクリレート、官能基数:9、分子量:4,000、固形分濃度100%)12.15gと、アクリルシリコーン系レベリング剤(楠本化成(株)製;ディスパロンNSH−8430HF)1.00gと光重合開始剤(チバジャパン(株))製:イルガキュア184)0.50gとPGME2.04gとアセトン9.00gを充分に混合して固形分濃度66.1重量%のハードコート膜形成用塗布液(12)を調製した。
得られたハードコート膜形成用塗布液(12)の組成を表に示す。
Next, 75.31 g of the dispersion-treated organic resin (A) dispersion (6) of the surface-treated metal oxide fine particles and urethane acrylate (made by Shin-Nakamura Chemical Co., Ltd .: NK Oligo UA-33H) as the curing organic resin (B). , Functional group: urethane acrylate, number of functional groups: 9, molecular weight: 4,000, solid content concentration 100%) 12.15 g, acrylic silicone leveling agent (manufactured by Enomoto Kasei Co., Ltd .; Disparon NSH-8430HF) 1.00 g And a photopolymerization initiator (Ciba Japan Co., Ltd .: Irgacure 184) 0.50 g, 2.04 g of PGME, and 9.00 g of acetone are sufficiently mixed to form a hard coat film having a solid concentration of 66.1% by weight. Liquid (12) was prepared.
The composition of the obtained coating liquid for forming a hard coat film (12) is shown in the table.

ハードコート膜付基材(12)の調製
実施例1において、ハードコート膜形成用塗布液(12)を、バーコーター法#16で塗布した以外は同様にしてハードコート膜付基材(12)を製造した。ハードコート膜の膜厚は12μmであった。
Preparation of substrate with hard coat film (12) In Example 1, the substrate with hard coat film (12) was prepared in the same manner as in Example 1, except that the coating liquid for forming a hard coat film (12) was applied by the bar coater method # 16. Manufactured. The film thickness of the hard coat film was 12 μm.

得られたハードコート膜付基材(12)について、収縮率、全光線透過率、ヘイズを測定し、結果を表に示す。また、クラックの有無を観察し、表面粗さ(Ra)、カーリング特性、耐擦傷性、鉛筆硬度を測定し、結果を表に示す。   For the obtained substrate (12) with a hard coat film, the shrinkage rate, the total light transmittance, and the haze were measured, and the results are shown in the table. Further, the presence or absence of cracks was observed, and the surface roughness (Ra), curling characteristics, scratch resistance, and pencil hardness were measured, and the results are shown in the table.

反射防止膜付基材(12)の調製
実施例1と同様にして調製した固形分濃度3.0重量%の反射防止膜形成用塗布液(1)を用いた以外は同様にして反射防止膜付基材(12)を作製した。このときの反射防止膜の膜厚は100nmであった。
この反射防止膜付基材(12)の全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性、鉛筆硬度、耐擦傷性を表に示す。
Preparation of substrate with antireflection film (12) Antireflection film was prepared in the same manner as in Example 1 except that coating solution (1) for forming an antireflection film having a solid concentration of 3.0% by weight was used. A base material (12) was prepared. At this time, the film thickness of the antireflection film was 100 nm.
The total light transmittance, haze, reflectance, coating refractive index, adhesion, pencil hardness, and scratch resistance of the substrate with antireflection film (12) are shown in the table.

[実施例13]
ハードコート膜形成用塗布液(13)の調製
表面処理金属酸化物粒子(1)分散液2500gに分散用有機樹脂(A)としてジメチロール-トリシクロデカンジアクリレート(共栄社化学(株)製;ライトアクリレートDCP−A、官能基;アクリレート、官能基数:2、分子量:219)272.1gを添加し、ロータリーエバポレーターで溶媒の一部を除去して固形分濃度80.1重量%の表面処理金属酸化物微粒子の分散用有機樹脂(A)分散液(7)を調製した。
[Example 13]
Preparation of coating liquid for forming hard coat film (13) Surface-treated metal oxide particles (1) 2,500 ml of dispersion liquid as dimethylol-tricyclodecane diacrylate (manufactured by Kyoeisha Chemical Co., Ltd.) as a dispersion organic resin (A); DCP-A, functional group: acrylate, functional group number: 2, molecular weight: 219) 272.1 g was added, and a part of the solvent was removed by a rotary evaporator to obtain a surface-treated metal oxide having a solid content concentration of 80.1% by weight. An organic resin (A) dispersion (7) for dispersing fine particles was prepared.

ついで、表面処理金属酸化物微粒子の分散用有機樹脂(A)分散液(7)75.31gと、硬化用有機樹脂(B)としてウレタンアクリレート(新中村化学(株)製:NKオリゴ UA−33H、官能基:ウレタンアクリレート、官能基数:9、分子量:4,000、固形分濃度100%)5.21gと、アクリルシリコーン系レベリング剤(楠本化成(株)製;ディスパロンNSH−8430HF)1.00gと光重合開始剤(チバジャパン(株)製:イルガキュア184)0.50gとPGME5.48gとアセトン12.50gを充分に混合して固形分濃度66.1重量%のハードコート膜形成用塗布液(13)を調製した。
得られたハードコート膜形成用塗布液(13)の組成を表に示す。
Next, 75.31 g of the organic resin (A) dispersion liquid (7) for dispersing the surface-treated metal oxide fine particles and urethane acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd .: NK Oligo UA-33H) as the curing organic resin (B). , Functional group: urethane acrylate, number of functional groups: 9, molecular weight: 4,000, solid content concentration 100%) 5.21 g, acrylic silicone leveling agent (manufactured by Enomoto Kasei Co., Ltd .; Disparon NSH-8430HF) 1.00 g And a photopolymerization initiator (Ciba Japan Co., Ltd .: Irgacure 184) 0.50 g, 5.48 g of PGME, and 12.50 g of acetone are thoroughly mixed to form a coating solution for forming a hard coat film having a solid content concentration of 66.1% by weight. (13) was prepared.
The composition of the obtained coating liquid for forming a hard coat film (13) is shown in the table.

ハードコート膜付基材(13)の調製
実施例1において、ハードコート膜形成用塗布液(13)を、バーコーター法#16で塗布した以外は同様にしてハードコート膜付基材(13)を製造した。ハードコート膜の膜厚は12μmであった。
Preparation of base material with hard coat film (13) In Example 1, the base material with hard coat film (13) was prepared in the same manner as in Example 1, except that the coating liquid for forming a hard coat film (13) was applied by the bar coater method # 16. Manufactured. The film thickness of the hard coat film was 12 μm.

得られたハードコート膜付基材(13)について、収縮率、全光線透過率、ヘイズを測定し、結果を表に示す。また、クラックの有無を観察し、表面粗さ(Ra)、カーリング特性、耐擦傷性、鉛筆硬度を測定し、結果を表に示す。   For the obtained substrate (13) with a hard coat film, the shrinkage rate, the total light transmittance, and the haze were measured, and the results are shown in the table. Further, the presence or absence of cracks was observed, and the surface roughness (Ra), curling characteristics, scratch resistance, and pencil hardness were measured, and the results are shown in the table.

反射防止膜付基材(13)の調製
実施例1と同様にして調製した固形分濃度3.0重量%の反射防止膜形成用塗布液(1)を用いた以外は同様にして反射防止膜付基材(13)を作製した。このときの反射防止膜の膜厚は100nmであった。
この反射防止膜付基材(13)の全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性、鉛筆硬度、耐擦傷性を表に示す。
Preparation of substrate with antireflection film (13) Antireflection film was prepared in the same manner as in Example 1 except that coating solution (1) for forming an antireflection film having a solid content of 3.0% by weight was used. A base material (13) was prepared. At this time, the film thickness of the antireflection film was 100 nm.
The total light transmittance, haze, reflectance, refractive index of the coating, adhesion, pencil hardness, and scratch resistance of this substrate with antireflection film (13) are shown in the table.

[実施例14]
ハードコート膜形成用塗布液(14)の調製
表面処理金属酸化物粒子(1)分散液2500gに分散用有機樹脂(A)として1,6−ヘキサジオールジメタクリレート(巴工業(株)製;SR−238F、官能基;アクリレート、官能基数:2、分子量:226)202.5gを添加し、ロータリーエバポレーターで溶媒の一部を除去して固形分濃度76.0重量%の表面処理金属酸化物微粒子の分散用有機樹脂(A)分散液(14)を調製した。
[Example 14]
Preparation of coating liquid for forming hard coat film (14) Surface treated metal oxide particles (1) 1,6-hexadiol dimethacrylate (manufactured by Sakai Kogyo Co., Ltd.) as dispersion organic resin (A) in 2500 g of dispersion -238F, functional group: acrylate, functional group number: 2, molecular weight: 226) 202.5 g was added, and part of the solvent was removed with a rotary evaporator to obtain a surface-treated metal oxide fine particle having a solid content concentration of 76.0% by weight. Dispersion organic resin (A) dispersion liquid (14) was prepared.

ついで、表面処理金属酸化物微粒子の分散用有機樹脂(A)分散液(14)75.31gと、硬化用有機樹脂(B)としてウレタンアクリレート(新中村化学(株)製:NKオリゴ U−6LPA、官能基:ウレタンアクリレート、官能基数:6、分子量:2,100,固形分濃度70%)11.89gと、アクリルシリコーン系レベリング剤(楠本化成(株)製;ディスパロンNSH−8430HF)1.00gと光重合開始剤(チバジャパン(株)製:イルガキュア184)0.50gとPGME0.30gとアセトン11.00gを充分に混合して固形分濃度66.1重量%のハードコート膜形成用塗布液(14)を調製した。
得られたハードコート膜形成用塗布液(14)の組成を表に示す。
Next, 75.31 g of the dispersion-treated organic resin (A) dispersion (14) of the surface-treated metal oxide fine particles and urethane acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd .: NK Oligo U-6LPA) as the curing organic resin (B) , Functional group: urethane acrylate, functional group number: 6, molecular weight: 2,100, solid content concentration 70%) 11.89 g, and acrylic silicone leveling agent (manufactured by Enomoto Kasei Co., Ltd .; Disparon NSH-8430HF) 1.00 g And a photopolymerization initiator (Ciba Japan Co., Ltd .: Irgacure 184) 0.50 g, 0.300 g of PGME, and 11.00 g of acetone are thoroughly mixed to form a coating solution for forming a hard coat film having a solid content concentration of 66.1% by weight. (14) was prepared.
The composition of the obtained coating liquid for forming a hard coat film (14) is shown in the table.

ハードコート膜付基材(14)の調製
実施例1において、ハードコート膜形成用塗布液(14)を、バーコーター法#16で塗布した以外は同様にしてハードコート膜付基材(14)を製造した。ハードコート膜の膜厚は12μmであった。
Preparation of base material with hard coat film (14) In Example 1, the base material with hard coat film (14) was similarly applied except that the coating liquid for forming a hard coat film (14) was applied by the bar coater method # 16. Manufactured. The film thickness of the hard coat film was 12 μm.

得られたハードコート膜付基材(14)について、収縮率、全光線透過率、ヘイズを測定し、結果を表に示す。また、クラックの有無を観察し、表面粗さ(Ra)、カーリング特性、耐擦傷性、鉛筆硬度を測定し、結果を表に示す。   For the obtained substrate (14) with a hard coat film, the shrinkage rate, the total light transmittance, and the haze were measured, and the results are shown in the table. Further, the presence or absence of cracks was observed, and the surface roughness (Ra), curling characteristics, scratch resistance, and pencil hardness were measured, and the results are shown in the table.

反射防止膜付基材(14)の調製
実施例1と同様にして調製した固形分濃度3.0重量%の反射防止膜形成用塗布液(1)を用いた以外は同様にして反射防止膜付基材(14)を作製した。このときの反射防止膜の膜厚は100nmであった。
この反射防止膜付基材(14)の全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性、鉛筆硬度、耐擦傷性を表に示す。
Preparation of substrate with antireflection film (14) Antireflection film was prepared in the same manner as in Example 1 except that coating solution (1) for forming an antireflection film with a solid content concentration of 3.0% by weight was used. A base material (14) was prepared. At this time, the film thickness of the antireflection film was 100 nm.
The total light transmittance, haze, reflectance, film refractive index, adhesion, pencil hardness, and scratch resistance of this antireflection film-coated substrate (14) are shown in the table.

[実施例15]
表面処理金属酸化物微粒子(15)の調製
シリカゾル分散液(日揮触媒化成(株)製;カタロイド SI−30;平均粒子径12nm、SiO2濃度40.5重量%、分散媒:イソプロパノ−ル、粒子屈折率1.46)100gにγ-メタアクリロオキシプロピルトリメトキシシラン3.74g(信越シリコ−ン株製:KBM−503、SiO2成分81.2%)を混合し超純水を3.1g添加し50℃で6時間攪拌して表面処理した12nmのシリカゾル分散液を得た(固形分濃度40.5重量%)。
[Example 15]
Preparation of surface-treated metal oxide fine particles (15) Silica sol dispersion (manufactured by JGC Catalysts &Chemicals; Cataloid SI-30; average particle size 12 nm, SiO 2 concentration 40.5% by weight, dispersion medium: isopropanol, particles Refractive index 1.46) 3.74 g of γ-methacryloxypropyltrimethoxysilane (Shin-Etsu Silicone Co., Ltd .: KBM-503, SiO 2 component 81.2%) was mixed with 100 g of ultrapure water. After adding 1 g and stirring at 50 ° C. for 6 hours, a surface-treated 12 nm silica sol dispersion was obtained (solid content concentration 40.5 wt%).

その後、ロータリーエバポレーターでプロピレングリコールモノメチルエーテル(PGME)に溶剤置換して固形分濃度40.5重量%表面処理金属酸化物粒子(15)分散液を得た。   Thereafter, the solvent was replaced with propylene glycol monomethyl ether (PGME) by a rotary evaporator to obtain a dispersion of surface-treated metal oxide particles (15) having a solid content concentration of 40.5% by weight.

ハードコート膜形成用塗布液(15)の調製
表面処理金属酸化物粒子(15)分散液2500gに分散用有機樹脂(A)としてジメチロール-トリシクロデカンジアクリレート(共栄社化学(株)製;ライトアクリレートDCP−A、官能基:アクリレート、官能基数:2、分子量:219、固形分濃度100%)202.5gを添加し、ロータリーエバポレーターで溶媒の一部を除去して固形分濃度76.0重量%の表面処理金属酸化物微粒子の分散用有機樹脂(A)分散液(15)を調製した。
Preparation of coating liquid for forming hard coat film (15) Surface-treated metal oxide particles (15) Dispersed in 2500 g of organic resin (A) for dimethylol-tricyclodecane diacrylate (Kyoeisha Chemical Co., Ltd .; light acrylate) 202.5 g of DCP-A, functional group: acrylate, functional group number: 2, molecular weight: 219, solid content concentration 100%) was added, and a part of the solvent was removed by a rotary evaporator to obtain a solid content concentration of 76.0% by weight. An organic resin (A) dispersion (15) for dispersing the surface-treated metal oxide fine particles was prepared.

ついで、表面処理金属酸化物微粒子の分散用有機樹脂(A)分散液(15)75.31gと、硬化用有機樹脂(B)としてウレタンアクリレート(新中村化学(株)製:NKオリゴ UA−33H、官能基:ウレタンアクリレート、官能基数:9、分子量:4,000、固形分濃度100%)8.32gと、アクリルシリコーン系レベリング剤(楠本化成(株)製;ディスパロンNSH−8430HF)1.00gと光重合開始剤(チバジャパン(株)製:イルガキュア184)0.50gとPGME2.37gとアセトン12.50gを充分に混合して固形分濃度63.9重量%のハードコート膜形成用塗布液(15)を調製した。
得られたハードコート膜形成用塗布液(15)の組成を表に示す。
Subsequently, 75.31 g of the dispersion-treated organic resin (A) dispersion (15) of the surface-treated metal oxide fine particles and urethane acrylate (made by Shin-Nakamura Chemical Co., Ltd .: NK Oligo UA-33H) as the curing organic resin (B) , Functional group: urethane acrylate, number of functional groups: 9, molecular weight: 4,000, solid content concentration 100%) 8.32 g, acrylic silicone leveling agent (manufactured by Enomoto Kasei Co., Ltd .; Disparon NSH-8430HF) 1.00 g And a photopolymerization initiator (Ciba Japan Co., Ltd .: Irgacure 184) 0.50 g, 2.37 g of PGME, and 12.50 g of acetone are sufficiently mixed to form a coating solution for forming a hard coat film having a solid content concentration of 63.9% by weight. (15) was prepared.
The composition of the obtained coating liquid for forming a hard coat film (15) is shown in the table.

ハードコート膜付基材(15)の調製
実施例1において、ハードコート膜形成用塗布液(15)を、バーコーター法#16で塗布した以外は同様にしてハードコート膜付基材(15)を製造した。ハードコート膜の膜厚は12μmであった。
Preparation of substrate with hard coat film (15) In Example 1, the substrate with hard coat film (15) was prepared in the same manner as in Example 1, except that the coating liquid for forming a hard coat film (15) was applied by the bar coater method # 16. Manufactured. The film thickness of the hard coat film was 12 μm.

得られたハードコート膜付基材(14)について、収縮率、全光線透過率、ヘイズを測定し、結果を表に示す。また、クラックの有無を観察し、表面粗さ(Ra)、カーリング特性、耐擦傷性、鉛筆硬度を測定し、結果を表に示す。   For the obtained substrate (14) with a hard coat film, the shrinkage rate, the total light transmittance, and the haze were measured, and the results are shown in the table. Further, the presence or absence of cracks was observed, and the surface roughness (Ra), curling characteristics, scratch resistance, and pencil hardness were measured, and the results are shown in the table.

反射防止膜付基材(15)の調製
実施例1と同様にして調製した固形分濃度3.0重量%の反射防止膜形成用塗布液(1)を用いた以外は同様にして反射防止膜付基材(15)を作製した。このときの反射防止膜の膜厚は100nmであった。
この反射防止膜付基材(15)の全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性、鉛筆硬度、耐擦傷性を表に示す。
Preparation of substrate with antireflection film (15) Antireflection film was prepared in the same manner as in Example 1 except that coating solution (1) for forming an antireflection film with a solid content of 3.0% by weight was used. A base material (15) was prepared. At this time, the film thickness of the antireflection film was 100 nm.
The total light transmittance, haze, reflectance, film refractive index, adhesion, pencil hardness, and scratch resistance of this antireflection film-coated substrate (15) are shown in the table.

[実施例16]
表面処理金属酸化物微粒子(16)の調製
シリカゾル分散液(日揮触媒化成(株)製;カタロイド SI−30;平均粒子径12nm、SiO2濃度40.5重量%、分散媒:イソプロパノ−ル、粒子屈折率1.46)100gにγ-メタアクリロオキシプロピルトリメトキシシラン14.96g(信越シリコ−ン株製:KBM−503、SiO2成分81.2%)を混合し超純水を3.1g添加し50℃で6時間攪拌して表面処理した12nmのシリカゾル分散液を得た(固形分濃度40.5重量%)。
[Example 16]
Preparation of surface-treated metal oxide fine particles (16) Silica sol dispersion (manufactured by JGC Catalysts &Chemicals; Cataloid SI-30; average particle size 12 nm, SiO 2 concentration 40.5% by weight, dispersion medium: isopropanol, particles (Refractive index 1.46) 14.96 g of γ-methacrylooxypropyltrimethoxysilane (manufactured by Shin-Etsu Silicone Co., Ltd .: KBM-503, SiO 2 component 81.2%) was mixed with 100 g of ultrapure water. After adding 1 g and stirring at 50 ° C. for 6 hours, a surface-treated 12 nm silica sol dispersion was obtained (solid content concentration 40.5 wt%).

その後、ロータリーエバポレーターでプロピレングリコールモノメチルエーテル(PGME)に溶剤置換して固形分濃度40.5重量%表面処理金属酸化物粒子(16)分散液を得た。   Thereafter, the solvent was replaced with propylene glycol monomethyl ether (PGME) by a rotary evaporator to obtain a dispersion of surface-treated metal oxide particles (16) having a solid content concentration of 40.5% by weight.

ハードコート膜形成用塗布液(16)の調製
表面処理金属酸化物粒子(16)分散液2500gに分散用有機樹脂(A)としてジメチロール-トリシクロデカンジアクリレート(共栄社化学(株)製;ライトアクリレートDCP−A、官能基:アクリレート、官能基数:2、分子量:219、固形分濃度100%)202.5gを添加し、ロータリーエバポレーターで溶媒の一部を除去して固形分濃度76.0重量%の表面処理金属酸化物微粒子の分散用有機樹脂(A)分散液(16)を調製した。工程(a)
Preparation of Hard Coat Film Forming Coating Liquid (16) Surface Treatment Metal Oxide Particles (16) Dispersion 2500g as Dispersion Organic Resin (A) Dimethylol-Tricyclodecane Diacrylate (Kyoeisha Chemical Co., Ltd .; Light Acrylate) 202.5 g of DCP-A, functional group: acrylate, functional group number: 2, molecular weight: 219, solid content concentration 100%) was added, and a part of the solvent was removed by a rotary evaporator to obtain a solid content concentration of 76.0% by weight. An organic resin (A) dispersion (16) for dispersing the surface-treated metal oxide fine particles was prepared. Step (a)

ついで、表面処理金属酸化物微粒子の分散用有機樹脂(A)分散液(16)75.31gと、硬化用有機樹脂(B)としてウレタンアクリレート(新中村化学(株)製:NKオリゴ UA−33H、官能基:ウレタンアクリレート、官能基数:9、分子量:4,000、固形分濃度100%)8.32gと、アクリルシリコーン系レベリング剤(楠本化成(株)製;ディスパロンNSH−8430HF)1.00gと光重合開始剤(チバジャパン(株)製:イルガキュア184)0.50gとPGME2.37gとアセトン12.50gを充分に混合して固形分濃度70.6重量%のハードコート膜形成用塗布液(16)を調製した。
得られたハードコート膜形成用塗布液(16)の組成を表に示す。
Next, 75.31 g of the organic resin (A) dispersion liquid (16) for dispersing the surface-treated metal oxide fine particles and urethane acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd .: NK Oligo UA-33H) as the curing organic resin (B). , Functional group: urethane acrylate, number of functional groups: 9, molecular weight: 4,000, solid content concentration 100%) 8.32 g, acrylic silicone leveling agent (manufactured by Enomoto Kasei Co., Ltd .; Disparon NSH-8430HF) 1.00 g And a photopolymerization initiator (Ciba Japan Co., Ltd .: Irgacure 184) 0.50 g, 2.37 g of PGME, and 12.50 g of acetone are thoroughly mixed to form a coating solution for forming a hard coat film having a solid content concentration of 70.6% by weight. (16) was prepared.
The composition of the obtained coating liquid for forming a hard coat film (16) is shown in the table.

ハードコート膜付基材(16)の調製
実施例1において、ハードコート膜形成用塗布液(16)を、バーコーター法#16で塗布した以外は同様にしてハードコート膜付基材(16)を製造した。ハードコート膜の膜厚は12μmであった。
Preparation of substrate with hard coat film (16) The substrate with hard coat film (16) was prepared in the same manner as in Example 1, except that the coating liquid for forming a hard coat film (16) was applied by the bar coater method # 16. Manufactured. The film thickness of the hard coat film was 12 μm.

得られたハードコート膜付基材(16)について、収縮率、全光線透過率、ヘイズを測定し、結果を表に示す。また、クラックの有無を観察し、表面粗さ(Ra)、カーリング特性、耐擦傷性、鉛筆硬度を測定し、結果を表に示す。   For the obtained substrate (16) with a hard coat film, the shrinkage rate, the total light transmittance, and the haze were measured, and the results are shown in the table. Further, the presence or absence of cracks was observed, and the surface roughness (Ra), curling characteristics, scratch resistance, and pencil hardness were measured, and the results are shown in the table.

反射防止膜付基材(16)の調製
実施例1と同様にして調製した固形分濃度3.0重量%の反射防止膜形成用塗布液(1)を用いた以外は同様にして反射防止膜付基材(16)を作製した。このときの反射防止膜の膜厚は100nmであった。
この反射防止膜付基材(16)の全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性、鉛筆硬度、耐擦傷性を表に示す。
Preparation of substrate with antireflection film (16) Antireflection film was prepared in the same manner as in Example 1 except that coating solution (1) for forming an antireflection film having a solid content concentration of 3.0% by weight was used. A base material (16) was prepared. At this time, the film thickness of the antireflection film was 100 nm.
The total light transmittance, haze, reflectance, film refractive index, adhesion, pencil hardness, and scratch resistance of this antireflection film-coated substrate (16) are shown in the table.

[実施例17]
表面処理金属酸化物微粒子(17)の調製
シリカゾル分散液(日揮触媒化成(株)製;カタロイド SI−30;平均粒子径12nm、SiO2濃度40.5重量%、分散媒:イソプロパノ−ル、粒子屈折率1.46)100gにγ-アクリロキシプロピルトリメトキシシラン(信越シリコ−ン株製:KBM−5103、SiO2成分86.1%)7.06gを混合し超純水を3.1g添加し50℃で6時間攪拌して表面処理した12nmのシリカゾル分散液を得た(固形分濃度40.5重量%)。
[Example 17]
Preparation of surface-treated metal oxide fine particles (17) Silica sol dispersion (manufactured by JGC Catalysts &Chemicals; Cataloid SI-30; average particle size 12 nm, SiO 2 concentration 40.5% by weight, dispersion medium: isopropanol, particles 7.06 g of γ-acryloxypropyltrimethoxysilane (Shin-Etsu Silicone Co., Ltd .: KBM-5103, SiO 2 component 86.1%) was mixed with 100 g of refractive index 1.46), and 3.1 g of ultrapure water was added. Then, a 12 nm silica sol dispersion surface-treated by stirring at 50 ° C. for 6 hours was obtained (solid content concentration 40.5 wt%).

その後、ロータリーエバポレーターでプロピレングリコールモノメチルエーテル(PGME)に溶剤置換して固形分濃度40.5重量%表面処理金属酸化物粒子(17)分散液を得た。   Thereafter, the solvent was replaced with propylene glycol monomethyl ether (PGME) by a rotary evaporator to obtain a dispersion of surface-treated metal oxide particles (17) having a solid content concentration of 40.5% by weight.

ハードコート膜形成用塗布液(17)の調製
表面処理金属酸化物粒子(4)分散液2500gに分散用有機樹脂(A)としてジメチロール-トリシクロデカンジアクリレート(共栄社化学(株)製;ライトアクリレートDCP−A、官能基:アクリレート、官能基数:2、分子量:219、固形分濃度100%)202.5gを添加し、ロータリーエバポレーターで溶媒の一部を除去して固形分濃度76.0重量%の表面処理金属酸化物微粒子の分散用有機樹脂(A)分散液(17)を調製した。工程(a)
Preparation of coating liquid for forming hard coat film (17) Surface-treated metal oxide particles (4) Dispersed in 2500 g of dimethylol-tricyclodecane diacrylate (Kyoeisha Chemical Co., Ltd.) as dispersion organic resin (A); Light acrylate 202.5 g of DCP-A, functional group: acrylate, functional group number: 2, molecular weight: 219, solid content concentration 100%) was added, and a part of the solvent was removed by a rotary evaporator to obtain a solid content concentration of 76.0% by weight. An organic resin (A) dispersion (17) for dispersing the surface-treated metal oxide fine particles was prepared. Step (a)

表面処理金属酸化物微粒子の分散用有機樹脂(A)分散液(17)75.31gと、硬化用有機樹脂(B)としてウレタンアクリレート(新中村化学(株)製:NKオリゴ UA−33H、官能基:ウレタンアクリレート、官能基数:9、分子量:4,000、固形分濃度100%)8.32gと、アクリルシリコーン系レベリング剤(楠本化成(株)製;ディスパロンNSH−8430HF)1.00gと光重合開始剤(チバジャパン(株)製:イルガキュア184)0.50gとPGME2.37gとアセトン12.50gを充分に混合して固形分濃度66.1重量%のハードコート膜形成用塗布液(17)を調製した。
得られたハードコート膜形成用塗布液(17)の組成を表に示す。
Surface treatment metal oxide fine particle dispersion organic resin (A) 75.31 g of dispersion liquid (17) and curing organic resin (B) as urethane acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd .: NK Oligo UA-33H, functional Group: urethane acrylate, number of functional groups: 9, molecular weight: 4,000, solid content concentration 100%) 8.32 g, acrylic silicone leveling agent (manufactured by Enomoto Kasei Co., Ltd .; Disparon NSH-8430HF) 1.00 g and light Polymerization initiator (manufactured by Ciba Japan Co., Ltd .: Irgacure 184) 0.50 g, 2.37 g of PGME and 12.50 g of acetone are sufficiently mixed to form a coating solution for forming a hard coat film having a solid content concentration of 66.1% by weight (17 ) Was prepared.
The composition of the obtained coating liquid for forming a hard coat film (17) is shown in the table.

ハードコート膜付基材(17)の調製
実施例1において、ハードコート膜形成用塗布液(17)を、バーコーター法#16で塗布した以外は同様にしてハードコート膜付基材(17)を製造した。ハードコート膜の膜厚は12μmであった。
Preparation of substrate with hard coat film (17) The substrate with hard coat film (17) was prepared in the same manner as in Example 1, except that the coating liquid for forming a hard coat film (17) was applied by the bar coater method # 16. Manufactured. The film thickness of the hard coat film was 12 μm.

得られたハードコート膜付基材(17)について、収縮率、全光線透過率、ヘイズを測定し、結果を表に示す。また、クラックの有無を観察し、表面粗さ(Ra)、カーリング特性、耐擦傷性、鉛筆硬度を測定し、結果を表に示す。   For the obtained substrate (17) with a hard coat film, the shrinkage rate, the total light transmittance, and the haze were measured, and the results are shown in the table. Further, the presence or absence of cracks was observed, and the surface roughness (Ra), curling characteristics, scratch resistance, and pencil hardness were measured, and the results are shown in the table.

反射防止膜付基材(17)の調製
実施例1と同様にして調製した固形分濃度3.0重量%の反射防止膜形成用塗布液(1)を用いた以外は同様にして反射防止膜付基材(17)を作製した。このときの反射防止膜の膜厚は100nmであった。
この反射防止膜付基材(17)の全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性、鉛筆硬度、耐擦傷性を表に示す。
Preparation of substrate with antireflection film (17) Antireflection film was prepared in the same manner as in Example 1 except that coating solution (1) for forming an antireflection film having a solid content concentration of 3.0% by weight was used. A base material (17) was prepared. At this time, the film thickness of the antireflection film was 100 nm.
The total light transmittance, haze, reflectance, coating refractive index, adhesion, pencil hardness, and scratch resistance of this antireflection film-coated substrate (17) are shown in the table.

[実施例18]
表面処理金属酸化物微粒子(18)の調製
SiO2濃度が24重量%の珪酸ナトリウム水溶液(SiO2/Na2Oモル比が3.1)33.4Kgを純水126.6Kgで希釈して、SiO2濃度が5重量%の珪酸ナトリウム水溶液(pH11)を160Kg調製した。この珪酸ナトリウム水溶液のpHが4.5になるように硫酸濃度25%の硫酸水溶液を加えて中和し、常温で5時間保持することにより、熟成して、シリカヒドロゲルを調製した。
[Example 18]
Preparation of surface-treated metal oxide fine particles (18 ) 33.4 kg of sodium silicate aqueous solution (SiO 2 / Na 2 O molar ratio: 3.1) having a SiO 2 concentration of 24% by weight was diluted with 126.6 kg of pure water, 160 kg of an aqueous sodium silicate solution (pH 11) having a SiO 2 concentration of 5% by weight was prepared. The aqueous solution of sodium silicate was neutralized by adding an aqueous sulfuric acid solution having a sulfuric acid concentration of 25% so that the pH of the aqueous solution of sodium silicate was 4.5.

このシリカヒドロゲルを、濾布を張った濾過機を用いて、SiO2固形分の約120倍相当量の純水で充分に洗浄した。
シリカヒドロゲルを純水に分散し、SiO2濃度3重量%の分散液を調製し、強力攪拌機を使用して、流動性のスラリー状態になるまで攪拌した。
This silica hydrogel was sufficiently washed with pure water equivalent to about 120 times the SiO 2 solid content using a filter equipped with a filter cloth.
Silica hydrogel was dispersed in pure water to prepare a dispersion having a SiO 2 concentration of 3% by weight, and stirred using a powerful stirrer until a fluid slurry was obtained.

このスラリー状のシリカヒドロゲル分散液のpHが10.5になるように濃度15重量%のアンモニア水を添加し、95℃で1時間かけて攪拌を続け、シリカヒドロゲルの解膠操作を行い、シリカゾルを得た。   Ammonia water having a concentration of 15% by weight was added so that the pH of the slurry-like silica hydrogel dispersion was 10.5, and stirring was continued at 95 ° C. for 1 hour to perform the deflocculation operation of the silica hydrogel. Got.

得られたシリカゾルを150℃で1時間加熱して、安定化させた後、シリカゾルを限外濾過膜(旭化成工業(株)製:SIP−1013)を用いて、SiO2濃度が13重量%になるまで濃縮し、ついで、ロータリーエバポレーターで濃縮し、44μmメッシュのナイロンフィルターで濾過してSiO2濃度30重量%のシリカゾル(18)を調製した。 After the obtained silica sol was stabilized by heating at 150 ° C. for 1 hour, the silica sol was made to have an SiO 2 concentration of 13% by weight using an ultrafiltration membrane (Asahi Kasei Kogyo Co., Ltd .: SIP-1013). Then, it was concentrated with a rotary evaporator and filtered through a 44 μm mesh nylon filter to prepare a silica sol (18) having a SiO 2 concentration of 30% by weight.

このときの、シリカゾル(18)のシリカ粒子の平均粒子最長径(DL)は48nm、平均短径(DS)は16nmであり、球状係数は0.33であった。
シリカゾル(18)600gと、純水5,955gおよびSiO2濃度が24重量%の珪酸ナトリウム水溶液(SiO2/Na2Oモル比が3.1)63.3gを混合し、87℃まで昇温し、0.5時間熟成した。ついで、SiO2濃度が3重量%の珪酸液1,120gを14時間かけて添加した。室温まで冷却した後、得られたシリカゾルを限外濾過膜(旭化成工業(株)製:SIP−1013)を用いて、SiO2濃度が12重量%になるまで濃縮し、ついで、ロータリーエバポレーターで濃縮し、44μmメッシュのナイロンフィルターで濾過して固形分濃度30重量%の非球状シリカからなる金属酸化物微粒子(18)分散液を得た。
At this time, the average particle longest diameter (D L ) of the silica particles of the silica sol (18) was 48 nm, the average short diameter (D S ) was 16 nm, and the spherical coefficient was 0.33.
600 g of silica sol (18) was mixed with 5,955 g of pure water and 63.3 g of an aqueous sodium silicate solution having a SiO 2 concentration of 24 wt% (SiO 2 / Na 2 O molar ratio: 3.1), and the temperature was raised to 87 ° C. And aged for 0.5 hour. Subsequently, 1,120 g of a silicic acid solution having a SiO 2 concentration of 3% by weight was added over 14 hours. After cooling to room temperature, the obtained silica sol was concentrated using an ultrafiltration membrane (Asahi Kasei Kogyo Co., Ltd .: SIP-1013) until the SiO 2 concentration became 12% by weight, and then concentrated on a rotary evaporator. Then, the mixture was filtered through a 44 μm mesh nylon filter to obtain a metal oxide fine particle (18) dispersion composed of non-spherical silica having a solid content concentration of 30% by weight.

濃度30重量%の金属酸化物微粒子(18)分散液400gに純水を添加し固形分濃度20重量%とし、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)240gを用い、80℃で3時間イオン交換して洗浄を行い、この分散液を限外濾過膜を用いてメタノールにて溶媒置換して固形分濃度20重量%のメタノール分散液を得た。   Pure water is added to 400 g of the dispersion of metal oxide fine particles (18) having a concentration of 30% by weight to obtain a solid concentration of 20% by weight, and 240 g of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation: Diaion SK1B) is used. Washing was performed by ion exchange at 3 ° C. for 3 hours, and this dispersion was subjected to solvent substitution with methanol using an ultrafiltration membrane to obtain a methanol dispersion having a solid content concentration of 20 wt%.

このメタノール分散液100gにメタクリル系シランカップリング剤(信越化学(株)製:KBM-503、γ−メタクロリロキシプロピルトリメトキシシラン)7.48gを加え、50℃で6時間加熱撹拌して固形分濃度40.5重量%の有機ケイ素化合物で表面処理した非球状シリカからなる金属酸化物微粒子(18)分散液を調製した。   7.48 g of a methacrylic silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503, γ-methacryloyloxypropyltrimethoxysilane) was added to 100 g of this methanol dispersion, and the mixture was heated and stirred at 50 ° C. for 6 hours to form a solid. A metal oxide fine particle (18) dispersion composed of non-spherical silica surface-treated with an organosilicon compound having a partial concentration of 40.5% by weight was prepared.

ロータリーエバポレーターにてPGMEに溶媒置換して固形分濃度40.5重量%の非球状シリカからなる表面処理金属酸化物微粒子(5)のPGME分散液とした。
得られた表面処理金属酸化物微粒子(18)の平均粒子最長径(DL)は50nm、平均短径(DS)は21nmであり、球状係数(DS)/(DL)は0.42であった。
The solvent was replaced with PGME by a rotary evaporator to obtain a PGME dispersion of surface-treated metal oxide fine particles (5) made of non-spherical silica having a solid concentration of 40.5% by weight.
The average particle longest diameter (D L ) of the obtained surface-treated metal oxide fine particles (18) is 50 nm, the average short diameter (D S ) is 21 nm, and the spherical coefficient (D S ) / (D L ) is 0. 42.

ハードコート膜形成用塗布液(18)の調製
固形分濃度40.5重量%の表面処理金属酸化物微粒子(18)分散液2500gに分散用有機樹脂(A)としてジメチロール-トリシクロデカンジアクリレート(共栄社化学(株)製;ライトアクリレートDCP−A、官能基:アクリレート、官能基数:2、分子量:219、固形分濃度100%)202.5gを添加し、ロータリーエバポレーターで溶媒の一部を除去して固形分濃度76.0重量%の表面処理金属酸化物微粒子の分散用有機樹脂(A)分散液(18)を調製した。工程(a)
Preparation of Hard Coat Film Forming Coating Liquid (18) Surface-treated metal oxide fine particles (18) with a solid content concentration of 40.5% by weight (18) Dispersed as an organic resin (A) for dimethylol-tricyclodecane diacrylate (A) 202.5 g of Kyoeisha Chemical Co., Ltd .; light acrylate DCP-A, functional group: acrylate, functional group number: 2, molecular weight: 219, solid content concentration 100%) is added, and a part of the solvent is removed with a rotary evaporator. Thus, an organic resin (A) dispersion liquid (18) for dispersing surface-treated metal oxide fine particles having a solid content concentration of 76.0% by weight was prepared. Step (a)

表面処理金属酸化物微粒子の分散用有機樹脂(A)分散液(18)75.31gと、硬化用有機樹脂(B)としてウレタンアクリレート(新中村化学(株)製:NKオリゴ UA−33H、官能基:ウレタンアクリレート、官能基数:9、分子量:4,000、固形分濃度100%)8.32gと、アクリルシリコーン系レベリング剤(楠本化成(株)製;ディスパロンNSH−8430HF)1.00gと光重合開始剤(チバジャパン(株)製:イルガキュア184)0.50gとPGE2.37gとアセトン12.50gを充分に混合して固形分濃度66.1重量%のハードコート膜形成用塗布液(18)を調製した。
得られたハードコート膜形成用塗布液(18)の組成を表に示す。
75.31 g of organic resin (A) dispersion liquid (18) for dispersion of surface-treated metal oxide fine particles, and urethane acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd .: NK Oligo UA-33H, functional as a curing organic resin (B) Group: urethane acrylate, number of functional groups: 9, molecular weight: 4,000, solid content concentration 100%) 8.32 g, acrylic silicone leveling agent (manufactured by Enomoto Kasei Co., Ltd .; Disparon NSH-8430HF) 1.00 g and light Polymerization initiator (manufactured by Ciba Japan Co., Ltd .: Irgacure 184) 0.50 g, 2.37 g of PGE and 12.50 g of acetone were sufficiently mixed to form a coating solution for forming a hard coat film having a solid content concentration of 66.1 wt% (18 ) Was prepared.
The composition of the resulting coating liquid for forming a hard coat film (18) is shown in the table.

ハードコート膜付基材(18)の調製
実施例1において、ハードコート膜形成用塗布液(18)を、バーコーター法#16で塗布した以外は同様にしてハードコート膜付基材(18)を製造した。ハードコート膜の膜厚は12μmであった。
Preparation of substrate with hard coat film (18) In Example 1, the substrate with hard coat film (18) was prepared in the same manner as in Example 1, except that the coating liquid for forming a hard coat film (18) was applied by the bar coater method # 16. Manufactured. The film thickness of the hard coat film was 12 μm.

得られたハードコート膜付基材(18)について、収縮率、全光線透過率、ヘイズを測定し、結果を表に示す。また、クラックの有無を観察し、表面粗さ(Ra)、カーリング特性、耐擦傷性、鉛筆硬度を測定し、結果を表に示す。   For the obtained substrate (18) with a hard coat film, the shrinkage rate, the total light transmittance, and the haze were measured, and the results are shown in the table. Further, the presence or absence of cracks was observed, and the surface roughness (Ra), curling characteristics, scratch resistance, and pencil hardness were measured, and the results are shown in the table.

反射防止膜付基材(18)の調製
実施例1と同様にして調製した固形分濃度3.0重量%の反射防止膜形成用塗布液(1)を用いた以外は同様にして反射防止膜付基材(18)を作製した。このときの反射防止膜の膜厚は100nmであった。
この反射防止膜付基材(18)の全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性、鉛筆硬度、耐擦傷性を表に示す。
Preparation of substrate with antireflection film (18) Antireflection film was prepared in the same manner as in Example 1 except that coating solution (1) for forming an antireflection film having a solid content of 3.0% by weight was prepared. A base material (18) was prepared. At this time, the film thickness of the antireflection film was 100 nm.
The total light transmittance, haze, reflectance, film refractive index, adhesion, pencil hardness, and scratch resistance of this antireflection film-coated substrate (18) are shown in the table.

[実施例19]
ハードコート膜付基材(19)の調製
実施例1において、ハードコート膜形成用塗布液(1)を、バーコーター法#20で塗布した以外は同様にしてハードコート膜付基材(19)を製造した。ハードコート膜の膜厚は15μmであった。
[Example 19]
Preparation of substrate with hard coat film (19) The substrate with hard coat film (19) was prepared in the same manner as in Example 1, except that the coating liquid for hard coat film formation (1) was applied by the bar coater method # 20. Manufactured. The film thickness of the hard coat film was 15 μm.

このとき、乾燥時の塗膜の収縮率(1)および硬化の際の収縮率(2)を測定し、結果を表に示す。
得られたハードコート膜付基材(19)について、全光線透過率、ヘイズを測定し、結果を表に示す。また、クラックの有無を観察し、表面粗さ(Ra)、カーリング特性、耐擦傷性、鉛筆硬度を測定し、結果を表に示す。
At this time, the shrinkage ratio (1) of the coating film during drying and the shrinkage ratio (2) during curing were measured, and the results are shown in the table.
With respect to the obtained base material with a hard coat film (19), the total light transmittance and haze were measured, and the results are shown in the table. Further, the presence or absence of cracks was observed, and the surface roughness (Ra), curling characteristics, scratch resistance, and pencil hardness were measured, and the results are shown in the table.

反射防止膜付基材(19)の調製
実施例1と同様にして調製した固形分濃度3.0重量%の反射防止膜形成用塗布液(1)を用いた以外は同様にして反射防止膜付基材(19)を作製した。このときの反射防止膜の膜厚は100nmであった。
この反射防止膜付基材(19)の全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性、鉛筆硬度、耐擦傷性を表に示す。
Preparation of substrate with antireflection film (19) Antireflection film was prepared in the same manner as in Example 1 except that coating solution (1) for forming an antireflection film having a solid content of 3.0% by weight was prepared. A base material (19) was prepared. At this time, the film thickness of the antireflection film was 100 nm.
The total light transmittance, haze, reflectance, coating refractive index, adhesion, pencil hardness, and scratch resistance of this substrate with antireflection film (19) are shown in the table.

[実施例20]
ハードコート膜付基材(20)の調製
実施例1において、ハードコート膜形成用塗布液(1)を、バーコーター法#40で塗布した以外は同様にしてハードコート膜付基材(20)を製造した。ハードコート膜の膜厚は30μmであった。
[Example 20]
Preparation of base material with hard coat film (20) In Example 1, the base material with hard coat film (20) was prepared in the same manner as in Example 1, except that the coating liquid for hard coat film formation (1) was applied by the bar coater method # 40. Manufactured. The film thickness of the hard coat film was 30 μm.

このとき、乾燥時の塗膜の収縮率(1)および硬化の際の収縮率(2)を測定し、結果を表に示す。
得られたハードコート膜付基材(20)について、全光線透過率、ヘイズを測定し、結果を表に示す。また、クラックの有無を観察し、表面粗さ(Ra)、カーリング特性、耐擦傷性、鉛筆硬度を測定し、結果を表に示す。
At this time, the shrinkage ratio (1) of the coating film during drying and the shrinkage ratio (2) during curing were measured, and the results are shown in the table.
For the obtained substrate (20) with a hard coat film, the total light transmittance and haze were measured, and the results are shown in the table. Further, the presence or absence of cracks was observed, and the surface roughness (Ra), curling characteristics, scratch resistance, and pencil hardness were measured, and the results are shown in the table.

反射防止膜付基材(20)の調製
実施例1と同様にして調製した固形分濃度3.0重量%の反射防止膜形成用塗布液(1)を用いた以外は同様にして反射防止膜付基材(20)を作製した。このときの反射防止膜の膜厚は100nmであった。
この反射防止膜付基材(20)の全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性、鉛筆硬度、耐擦傷性を表に示す。
Preparation of substrate with antireflection film (20) Antireflection film was prepared in the same manner as in Example 1 except that the coating solution for forming an antireflection film (1) having a solid content of 3.0% by weight was used. A base material (20) was prepared. At this time, the film thickness of the antireflection film was 100 nm.
The total light transmittance, haze, reflectance, coating refractive index, adhesion, pencil hardness, and scratch resistance of this substrate with antireflection film (20) are shown in the table.

[比較例1]
シリカ系中空微粒子(RA-1)分散液の調製
シリカ・アルミナゾル(触媒化成工業(株)製:USBB−120、平均粒子径25nm、SiO2・Al23濃度20重量%、固形分中Al23含有量27重量%)100gに純水3900gを加えて98℃に加温し、この温度を保持しながら、SiO2として濃度1.5重量%の珪酸ナトリウム水溶液1750gとAl23としての濃度0.5重量%のアルミン酸ナトリウム水溶液1750gを添加して、SiO2・Al23一次粒子分散液(平均粒子径35nm)を得た。このときのMOX/SiO2モル比(A)=0.2、であった。また、このときの反応液のpHは12.0であった。
[Comparative Example 1]
Preparation of silica-based hollow fine particle (RA-1) dispersion
100 g of silica / alumina sol (manufactured by Catalyst Kasei Kogyo Co., Ltd .: USBB-120, average particle size 25 nm, SiO 2 · Al 2 O 3 concentration 20 wt%, solid content Al 2 O 3 content 27 wt%) 3900 g was added and heated to 98 ° C. While maintaining this temperature, 1750 g of a sodium silicate aqueous solution having a concentration of 1.5% by weight as SiO 2 and an aqueous solution of sodium aluminate having a concentration of 0.5% by weight as Al 2 O 3 1750 g was added to obtain a SiO 2 .Al 2 O 3 primary particle dispersion (average particle size 35 nm). The MO X / SiO 2 molar ratio (A) at this time was 0.2. Further, the pH of the reaction solution at this time was 12.0.

ついで、SiO2として濃度1.5重量%の珪酸ナトリウム水溶液6,300gとAl23としての濃度0.5重量%のアルミン酸ナトリウム水溶液2,100gを添加して複合酸化物微粒子(2)(二次粒子)(平均粒子径50nm)の分散液を得た。 Next, 6,300 g of a 1.5 wt% sodium silicate aqueous solution as SiO 2 and 2,100 g of a 0.5 wt% sodium aluminate aqueous solution as Al 2 O 3 were added to form composite oxide fine particles (2). A dispersion of (secondary particles) (average particle size 50 nm) was obtained.

このときのMOX/SiO2モル比(B)=0.07であった。また、このときの反応液のpHは12.0であった。
ついで、限外濾過膜で洗浄して固形分濃度13重量%になった複合酸化物微粒子(2)の分散液500gに純水1,125gを加え、さらに濃塩酸(濃度35.5重量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離・洗浄して固形分濃度20重量%のシリカ系中空微粒子の水分散液を得た。
The MO X / SiO 2 molar ratio (B) at this time was 0.07. Further, the pH of the reaction solution at this time was 12.0.
Next, 1,125 g of pure water was added to 500 g of the dispersion of composite oxide fine particles (2) having a solid concentration of 13 wt% by washing with an ultrafiltration membrane, and concentrated hydrochloric acid (concentration 35.5 wt%). Was dropped to pH 1.0, and dealumination was performed. Subsequently, while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water, the aluminum salt dissolved in the ultrafiltration membrane was separated and washed to obtain an aqueous dispersion of silica-based hollow fine particles having a solid content concentration of 20% by weight.

つぎに、シリカ系中空微粒子分散液にアンモニア水を添加して分散液のpHを10.5に調整し、ついで200℃にて11時間熟成した後、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20重量%のシリカ系微粒子の水分散液を得た。   Next, aqueous ammonia is added to the silica-based hollow fine particle dispersion to adjust the pH of the dispersion to 10.5, and after aging at 200 ° C. for 11 hours, the mixture is cooled to room temperature, and a cation exchange resin (Mitsubishi). Chemical Co., Ltd. (Diaion SK1B) 400 g was used for ion exchange for 3 hours, then anion exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SA20A) 200 g was used for ion exchange for 3 hours. Using 200 g of ion exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SK1B), ion exchange was performed at 80 ° C. for 3 hours for washing to obtain an aqueous dispersion of silica-based fine particles having a solid content concentration of 20% by weight.

ついで限外濾過膜を用いて溶媒をメタノールに置換した固形分濃度20重量%のシリカ系中空微粒子(RA-1)メタノール分散液を調製した。得られたシリカ系中空微粒子(RA-1)の平均粒子径、屈折率を測定し、結果を表に示す。   Next, a silica-based hollow fine particle (RA-1) methanol dispersion having a solid content concentration of 20% by weight was prepared by replacing the solvent with methanol using an ultrafiltration membrane. The average particle diameter and refractive index of the obtained silica-based hollow fine particles (RA-1) were measured, and the results are shown in the table.

固形分濃度20重量%のシリカ系中空微粒子(RA-1)のメタノール分散液100gにアクリルシランカップリング剤(信越化学(株)製:KBM-5103)3gを添加し、50℃で加熱処理を行い、ロータリーエバポレーターで溶媒をMIBKに置換した固形分濃度20.5重量%のシリカ系中空微粒子(RA-1)のメタノール分散液を調製した。表面処理したシリカ系中空微粒子(RA-1)の屈折率を測定し、結果を表に示す。   Add 3 g of acrylic silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-5103) to 100 g of methanol dispersion of silica-based hollow fine particles (RA-1) with a solid content of 20% by weight, and heat-treat at 50 ° C. Then, a methanol dispersion of silica-based hollow fine particles (RA-1) having a solid content concentration of 20.5% by weight, in which the solvent was replaced with MIBK by a rotary evaporator, was prepared. The refractive index of the surface-treated silica-based hollow fine particles (RA-1) was measured, and the results are shown in the table.

反射防止膜形成用塗布液(R1)の調製
実施例1において、固形分濃度20重量%の表面処理したシリカ系中空微粒子(RA-1)分散液を用いた以外は同様にして固形分濃度3.0重量%の反射防止膜形成用塗布液(R1)を調製した。
Preparation of antireflection film-forming coating solution (R1) In Example 1, the solid content concentration was 3 except that a surface-treated silica-based hollow fine particle (RA-1) dispersion with a solid content concentration of 20% by weight was used. A coating solution (R1) for forming an antireflection film of 0.0% by weight was prepared.

反射防止膜付基材(R1)の調製
実施例1において、固形分濃度3.0重量%の反射防止膜形成用塗布液(R1)を用いた以外は同様にして反射防止膜付基材(R1)を作製した。このときの反射防止膜の膜厚は100nmであった。
この反射防止膜付基材(R1)の全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性、鉛筆硬度、耐擦傷性を表に示す。
Preparation of base material with antireflection film (R1) In Example 1, the base material with antireflection film (R1) was used in the same manner except that the coating solution (R1) for forming an antireflection film with a solid content concentration of 3.0% by weight was used. R1) was prepared. At this time, the film thickness of the antireflection film was 100 nm.
The total light transmittance, haze, reflectance, film refractive index, adhesion, pencil hardness, and scratch resistance of the substrate with antireflection film (R1) are shown in the table.

[比較例2]
ハードコート膜付基材(R2)の調製
実施例1と同様にして調製したハードコート膜形成用塗布液(1)をPGMEで固形分濃度30重量%に希釈して、TACフィルム(富士フィルム(株)製:FT−PB40UL−M、厚さ:40μm、屈折率:1.51)にバーコーター法#3で塗布し、80℃で120秒間乾燥した。
次に、N2雰囲気下、300mJ/cm2の紫外線を照射して硬化させてハードコート膜付基材(R2)を製造した。ハードコート膜の膜厚は1μmであった。
[Comparative Example 2]
Preparation of base material with hard coat film (R2) The coating liquid for hard coat film formation (1) prepared in the same manner as in Example 1 was diluted with PGME to a solid content concentration of 30% by weight, and TAC film (Fuji Film ( Co., Ltd .: FT-PB40UL-M, thickness: 40 μm, refractive index: 1.51) was applied by the bar coater method # 3 and dried at 80 ° C. for 120 seconds.
Next, the substrate (R2) with a hard coat film was manufactured by irradiating and curing ultraviolet rays of 300 mJ / cm 2 in an N 2 atmosphere. The film thickness of the hard coat film was 1 μm.

得られたハードコート膜付基材(R2)について、収縮率、全光線透過率、ヘイズを測定し、結果を表に示す。また、クラックの有無を観察し、表面粗さ(Ra)、カーリング特性、耐擦傷性、鉛筆硬度を測定し、結果を表に示す。   About the obtained base material (R2) with a hard coat film, the shrinkage rate, the total light transmittance, and the haze were measured, and the results are shown in the table. Further, the presence or absence of cracks was observed, and the surface roughness (Ra), curling characteristics, scratch resistance, and pencil hardness were measured, and the results are shown in the table.

反射防止膜付基材(R2)の調製
ついで、実施例1と同様にして調製した固形分濃度3.0重量%の反射防止膜形成用塗布液(1)を用いた以外は同様にして反射防止膜付基材(R2)を作製した。このときの反射防止膜の膜厚は100nmであった。
この反射防止膜付基材(R2)の全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性、鉛筆硬度、耐擦傷性を表に示す。
Preparation of base material with antireflection film (R2) Subsequently, reflection was conducted in the same manner except that the coating liquid (1) for forming an antireflection film having a solid content of 3.0% by weight prepared in the same manner as in Example 1 was used. A substrate (R2) with a protective film was prepared. At this time, the film thickness of the antireflection film was 100 nm.
The total light transmittance, haze, reflectance, film refractive index, adhesion, pencil hardness, and scratch resistance of the substrate with antireflection film (R2) are shown in the table.

[比較例3]
ハードコート膜形成用塗布液(R3)の調製
実施例1と同様にして調製した固形分濃度40.5重量%の表面処理金属酸化物粒子(1)分散液2500gに分散用有機樹脂(A)としてジメチロール-トリシクロデカンジアクリレート(共栄社化学(株)製;ライトアクリレートDCP−A、官能基:アクリレート、官能基数:2、分子量:219、固形分濃度100%)202.5gを添加し、ロータリーエバポレーターで溶媒の一部を除去して固形分濃度76.0重量%の表面処理金属酸化物微粒子の分散用有機樹脂(A)分散液(R3)を調製した。
[Comparative Example 3]
Preparation of coating liquid for forming hard coat film (R3) Surface-treated metal oxide particles (1) having a solid content concentration of 40.5% by weight prepared in the same manner as in Example 1 (1) Dispersing organic resin (A) 202.5 g of dimethylol-tricyclodecane diacrylate (manufactured by Kyoeisha Chemical Co., Ltd .; light acrylate DCP-A, functional group: acrylate, functional group number: 2, molecular weight: 219, solid content concentration: 100%) as a rotary A part of the solvent was removed by an evaporator to prepare an organic resin (A) dispersion (R3) for dispersing surface-treated metal oxide fine particles having a solid content concentration of 76.0% by weight.

ついで、表面処理金属酸化物微粒子の分散用有機樹脂(A)分散液(R3)75.31gと、分散用有機樹脂(A)であるジメチロール-トリシクロデカンジアクリレート(共栄社化学(株)製;ライトアクリレートDCP−A、官能基:アクリレート、官能基数:2、分子量:219、固形分濃度100%)8.32gと、アクリルシリコーン系レベリング剤(楠本化成(株)製;ディスパロンNSH−8430HF)1.00gと光重合開始剤(チバジャパン(株)製:イルガキュア184)0.50gとPGME2.37gとアセトン12.50gを充分に混合して固形分濃度66.1重量%のハードコート膜形成用塗布液(R3)を調製した。
得られたハードコート膜形成用塗布液(R3)の組成を表に示す。
Next, 75.31 g of an organic resin (A) dispersion (R3) for dispersing the surface-treated metal oxide fine particles, and dimethylol-tricyclodecane diacrylate (manufactured by Kyoeisha Chemical Co., Ltd.) as the organic resin for dispersion (A); Light acrylate DCP-A, functional group: acrylate, functional group number: 2, molecular weight: 219, solid content concentration 100%) 8.32 g, and acrylic silicone leveling agent (manufactured by Enomoto Kasei Co., Ltd .; Disparon NSH-8430HF) 1 0.000 g, 0.50 g of photopolymerization initiator (manufactured by Ciba Japan Co., Ltd .: Irgacure 184), 2.37 g of PGME, and 12.50 g of acetone are mixed well to form a hard coat film having a solid content concentration of 66.1% by weight. A coating solution (R3) was prepared.
The composition of the obtained coating liquid for forming a hard coat film (R3) is shown in the table.

ハードコート膜付基材(R3)の調製
実施例1において、ハードコート膜形成用塗布液(R3)を、バーコーター法(#16)で塗布した以外は同様にしてハードコート膜付基材(R3)を製造した。ハードコート膜の膜厚は12μmであった。
Preparation of base material with hard coat film (R3) In Example 1, the base material with hard coat film (R3) was applied in the same manner except that the coating liquid for forming a hard coat film (R3) was applied by the bar coater method (# 16). R3) was produced. The film thickness of the hard coat film was 12 μm.

得られたハードコート膜付基材(R3)について、収縮率、全光線透過率、ヘイズを測定し、結果を表に示す。また、クラックの有無を観察し、表面粗さ(Ra)、カーリング特性、耐擦傷性、鉛筆硬度を測定し、結果を表に示す。   About the obtained base material with a hard coat film (R3), the shrinkage rate, the total light transmittance, and the haze were measured, and the results are shown in the table. Further, the presence or absence of cracks was observed, and the surface roughness (Ra), curling characteristics, scratch resistance, and pencil hardness were measured, and the results are shown in the table.

反射防止膜付基材(R3)の調製
ついで、実施例1と同様にして調製した固形分濃度3.0重量%の反射防止膜形成用塗布液(1)を用いた以外は同様にして反射防止膜付基材(R3)を作製した。このときの反射防止膜の膜厚は100nmであった。
この反射防止膜付基材(R3)の全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性、鉛筆硬度、耐擦傷性を表に示す。
Preparation of substrate with antireflection film (R3) Subsequently, reflection was conducted in the same manner except that the coating solution (1) for forming an antireflection film having a solid content of 3.0% by weight prepared in the same manner as in Example 1 was used. A base material (R3) with a protective film was prepared. At this time, the film thickness of the antireflection film was 100 nm.
The total light transmittance, haze, reflectance, coating refractive index, adhesion, pencil hardness, and scratch resistance of the substrate with antireflection film (R3) are shown in the table.

[比較例4]
ハードコート膜形成用塗布液(R4)の調製
実施例1と同様にして調製した固形分濃度40.5重量%の表面処理金属酸化物粒子(1)分散液2500gに硬化用有機樹脂(B)としてウレタンアクリレート(新中村化学(株)製:NKオリゴ UA−33H、官能基:ウレタンアクリレート、官能基数:9、分子量:4,000、固形分濃度100%)202.5)gを添加し、ロータリーエバポレーターで溶媒の一部を除去して固形分濃度53.3重量%の表面処理金属酸化物微粒子の硬化用有機樹脂(B)分散液(R4)を調製した。
[Comparative Example 4]
Preparation of Hard Coat Film Forming Coating Liquid (R4) Surface-treated metal oxide particles (1) having a solid content concentration of 40.5% by weight prepared in the same manner as Example 1 As a urethane acrylate (Shin Nakamura Chemical Co., Ltd .: NK Oligo UA-33H, functional group: urethane acrylate, functional group number: 9, molecular weight: 4,000, solid content concentration 100%) 202.5) g is added, A part of the solvent was removed by a rotary evaporator to prepare an organic resin (B) dispersion (R4) for curing the surface-treated metal oxide fine particles having a solid content concentration of 53.3% by weight.

ついで、表面処理金属酸化物微粒子の硬化用有機樹脂(B)分散液(R4)82.96gと、アクリルシリコーン系レベリング剤(楠本化成(株)製;ディスパロンNSH−8430HF1.00gと光重合開始剤(チバジャパン(株)製:イルガキュア184)0.50gとPGME0.13gとアセトン9.00gを充分に混合して固形分濃度51.0重量%のハードコート膜形成用塗布液(R4)を調製した。
得られたハードコート膜形成用塗布液(R4)の組成を表に示す。
Next, 82.96 g of the organic resin (B) dispersion liquid (R4) for curing the surface-treated metal oxide fine particles, an acrylic silicone leveling agent (manufactured by Enomoto Kasei Co., Ltd .; 1.00 g of Disparon NSH-8430HF and a photopolymerization initiator) (Ciba Japan Co., Ltd .: Irgacure 184) 0.50 g, PGME 0.13 g, and acetone 9.00 g were mixed well to prepare a hard coat film forming coating solution (R4) having a solid content concentration of 51.0 wt%. did.
The composition of the obtained coating liquid for forming a hard coat film (R4) is shown in the table.

ハードコート膜付基材(R4)の調製
実施例1において、ハードコート膜形成用塗布液(R4)を、バーコーター法#16で塗布した以外は同様にしてハードコート膜付基材(R4)を製造した。ハードコート膜の膜厚は12μmであった。
このとき、乾燥時の塗膜の収縮率(1)および硬化の際の収縮率(2)を測定し、結果を表に示す。
Preparation of base material with hard coat film (R4) In Example 1, the base material with hard coat film (R4) was prepared in the same manner as in Example 1, except that the coating liquid for hard coat film formation (R4) was applied by the bar coater method # 16. Manufactured. The film thickness of the hard coat film was 12 μm.
At this time, the shrinkage ratio (1) of the coating film during drying and the shrinkage ratio (2) during curing were measured, and the results are shown in the table.

得られたハードコート膜付基材(R4)について、全光線透過率、ヘイズを測定し、結果を表に示す。また、クラックの有無を観察し、表面粗さ(Ra)、カーリング特性、耐擦傷性、鉛筆硬度を測定し、結果を表に示す。   For the obtained substrate with hard coat film (R4), the total light transmittance and haze were measured, and the results are shown in the table. Further, the presence or absence of cracks was observed, and the surface roughness (Ra), curling characteristics, scratch resistance, and pencil hardness were measured, and the results are shown in the table.

反射防止膜付基材(R4)の調製
ついで、実施例1と同様にして調製した固形分濃度3.0重量%の反射防止膜形成用塗布液(1)を用いた以外は同様にして反射防止膜付基材(R4)を作製した。このときの反射防止膜の膜厚は100nmであった。
この反射防止膜付基材(R4)の全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性、鉛筆硬度、耐擦傷性を表に示す。
Preparation of substrate with antireflection film (R4) Subsequently, reflection was conducted in the same manner except that the coating solution (1) for forming an antireflection film having a solid content of 3.0% by weight prepared in the same manner as in Example 1 was used. A substrate (R4) with a protective film was prepared. At this time, the film thickness of the antireflection film was 100 nm.
The total light transmittance, haze, reflectance, film refractive index, adhesion, pencil hardness, and scratch resistance of the substrate with antireflection film (R4) are shown in the table.

[比較例5]
ハードコート膜形成用塗布液(R5)の調製
実施例1と同様にして調製した固形分濃度40.5重量%の表面処理金属酸化物粒子(1)分散液に69.14gと、分散用有機樹脂(A)であるジメチロール-トリシクロデカンジアクリレート(共栄社化学(株)製;ライトアクリレートDCP−A、官能基:アクリレート、官能基数:2、分子量:219、固形分濃度100%)5.26gと、硬化用有機樹脂(B)である(新中村化学(株)製:NKオリゴ UA−33H、官能基:ウレタンアクリレート、官能基数:9、分子量:4,000)4.83gと、アクリルシリコーン系レベリング剤(楠本化成(株)製;ディスパロンNSH−8430HF)1.00gと光重合開始剤(チバジャパン(株)製:イルガキュア184)0.29gとPGME6.99gとアセトン12.50gを充分に混合して固形分濃度41.4重量%のハードコート膜形成用塗布液(R5)を調製した。
得られたハードコート膜形成用塗布液(R5)の組成を表に示す。
[Comparative Example 5]
Preparation of Hard Coat Film Forming Coating Liquid (R5) 69.14 g of the surface-treated metal oxide particle (1) dispersion having a solid content concentration of 40.5% by weight prepared in the same manner as in Example 1, and organic for dispersion Resin (A) dimethylol-tricyclodecane diacrylate (manufactured by Kyoeisha Chemical Co., Ltd .; light acrylate DCP-A, functional group: acrylate, functional group number: 2, molecular weight: 219, solid content concentration: 100%) 5.26 g And 4.83 g of curable organic resin (B) (manufactured by Shin-Nakamura Chemical Co., Ltd .: NK Oligo UA-33H, functional group: urethane acrylate, functional group number: 9, molecular weight: 4,000), and acrylic silicone Leveling agent (manufactured by Enomoto Kasei Co., Ltd .; Disparon NSH-8430HF) 1.00 g, photopolymerization initiator (Ciba Japan Co., Ltd .: Irgacure 184) 0.29 g and PGME 6.9 The g and acetone 12.50g thoroughly mixed solids concentration 41.4 wt% hard coat film-forming coating solution of the (R5) was prepared.
The composition of the obtained coating liquid for forming a hard coat film (R5) is shown in the table.

ハードコート膜付基材(R5)の調製
実施例1において、ハードコート膜形成用塗布液(R5)を、バーコーター法#16で塗布した以外は同様にしてハードコート膜付基材(R5)を製造した。ハードコート膜の膜厚は12μmであった。
Preparation of base material with hard coat film (R5) In Example 1, the base material with hard coat film (R5) was prepared in the same manner as in Example 1, except that the hard coat film forming coating solution (R5) was applied by the bar coater method # 16. Manufactured. The film thickness of the hard coat film was 12 μm.

得られたハードコート膜付基材(R5)について、収縮率、全光線透過率、ヘイズを測定し、結果を表に示す。また、クラックの有無を観察し、表面粗さ(Ra)、カーリング特性、耐擦傷性、鉛筆硬度を測定し、結果を表に示す。   About the obtained base material with a hard coat film (R5), the shrinkage rate, the total light transmittance, and the haze were measured, and the results are shown in the table. Further, the presence or absence of cracks was observed, and the surface roughness (Ra), curling characteristics, scratch resistance, and pencil hardness were measured, and the results are shown in the table.

反射防止膜付基材(R5)の調製
ついで、実施例1と同様にして調製した固形分濃度3.0重量%の反射防止膜形成用塗布液(1)を用いた以外は同様にして反射防止膜付基材(R5)を作製した。このときの反射防止膜の膜厚は100nmであった。
この反射防止膜付基材(R5)の全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性、鉛筆硬度、耐擦傷性を表に示す。
Preparation of substrate with antireflection film (R5) Subsequently, reflection was conducted in the same manner except that the coating solution (1) for forming an antireflection film having a solid content of 3.0% by weight prepared in the same manner as in Example 1 was used. A substrate (R5) with a protective film was prepared. At this time, the film thickness of the antireflection film was 100 nm.
The total light transmittance, haze, reflectance, coating refractive index, adhesion, pencil hardness, and scratch resistance of the substrate with antireflection film (R5) are shown in the table.

[比較例6]
ハードコート膜形成用塗布液(R6)の調製
シリカゾル分散液(日揮触媒化成(株)製;カタロイド SI−30;平均粒子径12nm、SiO2濃度40.5重量%、分散媒:イソプロパノ−ル、粒子屈折率1.46)2500gに分散用有機樹脂(A)であるジメチロール-トリシクロデカンジアクリレート(共栄社化学(株)製;ライトアクリレートDCP−A、官能基:アクリレート、官能基数:2、分子量:219、固形分濃度100%)202.5gを添加し、ロータリーエバポレーターで溶媒の一部を除去して固形分濃度53.3重量%のシリカからなる金属酸化物微粒子の分散用有機樹脂(A)分散液(R6)を調製した。
[Comparative Example 6]
Preparation of coating liquid for hard coat film formation (R6) Silica sol dispersion (manufactured by JGC Catalysts & Chemicals Co., Ltd .; Cataloid SI-30; average particle size 12 nm, SiO 2 concentration 40.5% by weight, dispersion medium: isopropanol, Dimethylol-tricyclodecane diacrylate (Kyoeisha Chemical Co., Ltd .; light acrylate DCP-A, functional group: acrylate, functional group number: 2, molecular weight), 2500 g of the organic resin (A) for dispersion : 219, solid content concentration 100%) 202.5 g was added, a part of the solvent was removed with a rotary evaporator, and the organic resin for dispersing metal oxide fine particles composed of silica with a solid content concentration of 53.3% by weight (A ) Dispersion (R6) was prepared.

金属酸化物微粒子の分散用有機樹脂(A)分散液(R6)75.31gと、硬化用有機樹脂(B)である(新中村化学(株)製:NKオリゴ UA−33H、官能基:ウレタンアクリレート、官能基数:9、分子量:4,000、固形分濃度100%)7.19gと、アクリルシリコーン系レベリング剤(楠本化成(株)製;ディスパロンNSH−8430HF)1.00gと光重合開始剤(チバジャパン(株)製:イルガキュア184)0.50gとPGME0.83gとアセトン8.00gを充分に混合して固形分濃度53.3重量%のハードコート膜形成用塗布液(R6)を調製した。
得られたハードコート膜形成用塗布液(R6)の組成を表に示す。
Organic resin (A) dispersion (R6) 75.31 g for dispersion of metal oxide fine particles and organic resin (B) for curing (Shin Nakamura Chemical Co., Ltd .: NK Oligo UA-33H, functional group: urethane Acrylate, number of functional groups: 9, molecular weight: 4,000, solid concentration 100%) 7.19 g, acrylic silicone leveling agent (manufactured by Enomoto Kasei Co., Ltd .; Disparon NSH-8430HF) 1.00 g and photopolymerization initiator (Ciba Japan Co., Ltd .: Irgacure 184) 0.50 g, 0.83 g of PGME, and 8.00 g of acetone were mixed well to prepare a coating solution (R6) for forming a hard coat film having a solid content concentration of 53.3% by weight. did.
The composition of the obtained coating liquid for forming a hard coat film (R6) is shown in the table.

ハードコート膜付基材(R6)の調製
実施例1において、ハードコート膜形成用塗布液(R6)を、バーコーター法#16で塗布した以外は同様にしてハードコート膜付基材(R6)を製造した。ハードコート膜の膜厚は12μmであった。
Preparation of base material with hard coat film (R6) In Example 1, the base material with hard coat film (R6) was prepared in the same manner as in Example 1, except that the coating liquid for hard coat film formation (R6) was applied by the bar coater method # 16. Manufactured. The film thickness of the hard coat film was 12 μm.

得られたハードコート膜付基材(R6)について、収縮率、全光線透過率、ヘイズを測定し、結果を表に示す。また、クラックの有無を観察し、表面粗さ(Ra)、カーリング特性、耐擦傷性、鉛筆硬度を測定し、結果を表に示す。   About the obtained base material with a hard coat film (R6), the shrinkage rate, the total light transmittance, and the haze were measured, and the results are shown in the table. Further, the presence or absence of cracks was observed, and the surface roughness (Ra), curling characteristics, scratch resistance, and pencil hardness were measured, and the results are shown in the table.

反射防止膜付基材(R6)の調製
ついで、実施例1と同様にして調製した固形分濃度3.0重量%の反射防止膜形成用塗布液(1)を用いた以外は同様にして反射防止膜付基材(R6)を作製した。このときの反射防止膜の膜厚は100nmであった。
この反射防止膜付基材(R6)の全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性、鉛筆硬度、耐擦傷性を表に示す。
Preparation of base material with antireflection film (R6) Subsequently, reflection was conducted in the same manner except that the coating liquid (1) for forming an antireflection film having a solid content of 3.0% by weight prepared in the same manner as in Example 1 was used. A substrate (R6) with a protective film was prepared. At this time, the film thickness of the antireflection film was 100 nm.
The total light transmittance, haze, reflectance, coating refractive index, adhesion, pencil hardness, and scratch resistance of the substrate with antireflection film (R6) are shown in the table.

[比較例7]
反射防止膜付基材(R7)の調製
実施例1と同様にして調製した固形分濃度3.0重量%の反射防止膜形成用塗布液(1)を、TACフィルム(富士フィルム(株)製:FT−PB40UL−M、厚さ:40μm、屈折率:1.51)にバーコーター法#4で塗布し、80℃で120秒間乾燥した後、N2雰囲気下で600mJ/cm2の紫外線を照射して硬化させて反射防止膜付基材(R7)を作製した。このときの反射防止膜の膜厚は100nmであった。
この反射防止膜付基材(R7)の全光線透過率、ヘイズ、反射率、被膜の屈折率、密着性、鉛筆硬度、耐擦傷性を表に示す。
[Comparative Example 7]
Preparation of base material with antireflection film (R7) A coating solution (1) for forming an antireflection film having a solid content concentration of 3.0% by weight prepared in the same manner as in Example 1 was prepared using a TAC film (Fuji Film Co., Ltd.). : FT-PB40UL-M, thickness: 40 μm, refractive index: 1.51), coated by bar coater method # 4, dried at 80 ° C. for 120 seconds, and then irradiated with ultraviolet rays of 600 mJ / cm 2 under N 2 atmosphere. Irradiated and cured to produce a substrate with antireflection film (R7). At this time, the film thickness of the antireflection film was 100 nm.
The total light transmittance, haze, reflectance, coating refractive index, adhesion, pencil hardness, and scratch resistance of this antireflection film-coated substrate (R7) are shown in the table.

[比較例8]
ハードコート膜付基材(R8)の調製
実施例1と同様にして調製したハードコート膜形成用塗布液(1)を、TACフィルム(富士フィルム(株)製:FT−PB40UL−M、厚さ:40μm、屈折率:1.51)にバーコーター法#16で塗布し、80℃で120秒間乾燥した後、N2雰囲気下、300mJ/cm2の紫外線を照射して硬化させてハードコート膜付基材(R8)を製造した。ハードコート膜の膜厚は12μmであった。
[Comparative Example 8]
Preparation of base material with hard coat film (R8) A coating liquid for hard coat film formation (1) prepared in the same manner as in Example 1 was prepared using a TAC film (Fuji Film Co., Ltd .: FT-PB40UL-M, thickness). : 40 μm, refractive index: 1.51) by bar coater method # 16, dried at 80 ° C. for 120 seconds, and then cured by irradiating with 300 mJ / cm 2 ultraviolet ray in N 2 atmosphere to hard coat film A base material (R8) was produced. The film thickness of the hard coat film was 12 μm.

得られたハードコート膜付基材(R8)について、収縮率、全光線透過率、ヘイズを測定し、結果を表に示す。また、クラックの有無を観察し、表面粗さ(Ra)、カーリング特性、耐擦傷性、鉛筆硬度を測定し、結果を表に示す。   For the obtained base material with a hard coat film (R8), the shrinkage rate, the total light transmittance, and the haze were measured, and the results are shown in the table. Further, the presence or absence of cracks was observed, and the surface roughness (Ra), curling characteristics, scratch resistance, and pencil hardness were measured, and the results are shown in the table.

Figure 2016001217
Figure 2016001217

Figure 2016001217
Figure 2016001217

Figure 2016001217
Figure 2016001217

Figure 2016001217
Figure 2016001217

Figure 2016001217
Figure 2016001217

Figure 2016001217
Figure 2016001217

Figure 2016001217
Figure 2016001217

Figure 2016001217
Figure 2016001217

Figure 2016001217
Figure 2016001217

Claims (26)

基材上にハードコート膜および反射防止膜が形成されてなる反射防止膜付基材であって、
前記ハードコート膜が、平均粒子径が5〜300nmの範囲にある表面処理金属酸化物微粒子とマトリックス成分(MH)とからなり、
(i)表面処理金属酸化物微粒子(P)の固形分としての含有量(WPH)が50〜90重量%の範囲にあり、
(ii)マトリックス成分(MH)の固形分としての含有量(WRH)が10〜50重量%の範囲にあり、
(iii)含有量(WRH)と含有量(WPH)との比(WRH)/(WPH)が0.12〜1.0の範囲にあり、
(iv)平均膜厚(TH)が1〜100μmの範囲にあり、
前記反射防止膜がシリカ系中空微粒子(A)とマトリックス成分(ML)とからなり、
(a)シリカ系中空微粒子(A)の含有量(WPLA)が5〜80重量%の範囲にあり、
(b)マトリックス成分(ML)の含有量(WML)が20〜95重量%の範囲にあり、
(c)反射防止膜の膜厚(TL)が80〜200nmの範囲にあり、
(d)シリカ系中空微粒子(A)の平均粒子径(Dpa)が10〜45nmの範囲にあり、
(e)シリカ系中空微粒子(A)の平均粒子径(Dpa)と反射防止膜の膜厚(TL)との比(Dpa)/(TL)が0.05〜0.56の範囲にある
ことを特徴とする反射防止膜付基材。
A base material with an antireflection film in which a hard coat film and an antireflection film are formed on a base material,
The hard coat film comprises surface-treated metal oxide fine particles having an average particle diameter in the range of 5 to 300 nm and a matrix component (M H ),
(i) The content (W PH ) of the surface-treated metal oxide fine particles (P) as a solid content is in the range of 50 to 90% by weight,
(ii) The content (W RH ) of the matrix component (M H ) as a solid content is in the range of 10 to 50% by weight,
(iii) the content (W RH) and the content (W PH) and the ratio of (W RH) / (W PH ) is in the range of 0.12 to 1.0,
(iv) The average film thickness (T H ) is in the range of 1 to 100 μm,
The antireflection film is from a silica-based hollow particles (A) and the matrix component (M L),
(a) The content of silica-based hollow fine particles (A) (W PLA ) is in the range of 5 to 80% by weight,
(b) The content (W ML ) of the matrix component (M L ) is in the range of 20 to 95% by weight,
(c) The thickness (T L ) of the antireflection film is in the range of 80 to 200 nm,
(d) The silica-based hollow fine particles (A) have an average particle diameter (Dpa) in the range of 10 to 45 nm,
(e) the ratio of the average particle diameter (Dpa) and the anti-reflection film having a film thickness of the silica-based hollow particles (A) (T L) ( Dpa) / (T L) is in the range of from 0.05 to 0.56 A base material with an antireflection film, characterized in that it exists.
前記シリカ系中空微粒子(A)の屈折率が1.10〜1.40の範囲にあることを特徴とする請求項1に記載の反射防止膜付基材。   The base material with an antireflection film according to claim 1, wherein the silica-based hollow fine particles (A) have a refractive index in the range of 1.10 to 1.40. 前記反射防止膜が、さらに平均粒子径(Dpb)が4〜17nmの範囲にあるシリカ系微粒子(B)(中空微粒子、シリカ微粒子、これらの鎖状粒子)を含み、シリカ系微粒子(B)の平均粒子径(Dpb)とシリカ系中空微粒子(A)の平均粒子径(Dpa)との比(Dpb)/(Dpa)が0.1〜0.4の範囲にあることを特徴とする請求項1または2に記載の反射防止膜付基材。   The antireflection film further contains silica-based fine particles (B) (hollow fine particles, silica fine particles, and chain particles thereof) having an average particle diameter (Dpb) in the range of 4 to 17 nm. The ratio (Dpb) / (Dpa) of the average particle size (Dpb) to the average particle size (Dpa) of the silica-based hollow fine particles (A) is in the range of 0.1 to 0.4. 3. A substrate with an antireflection film as described in 1 or 2. 前記反射防止膜中のシリカ系中空微粒子(A)とシリカ系微粒子(B)の合計の含有量が5〜80重量%の範囲にあり、全微粒子中のシリカ系微粒子(B)の割合が30重量%以下であることを特徴とする請求項3に記載の反射防止膜付基材。   The total content of silica-based hollow fine particles (A) and silica-based fine particles (B) in the antireflection film is in the range of 5 to 80% by weight, and the proportion of silica-based fine particles (B) in all the fine particles is 30. The base material with an antireflection film according to claim 3, wherein the base material has an antireflection film according to claim 3. 前記表面処理金属酸化物微粒子(P)が下記式(1)で表される有機珪素化合物で表面処理されていることを特徴とする請求項1〜4のいずれかに記載の反射防止膜付基材。
n-SiX4-n (1)
(但し、式中、Rは炭素数1〜10の非置換または置換炭化水素基であって、互いに同一であっても異なっていてもよい。X:炭素数1〜4のアルコキシ基、水酸基、ハロゲン、水素、n:1〜3の整数)
The surface-treated metal oxide fine particles (P) are surface-treated with an organosilicon compound represented by the following formula (1), wherein the antireflection film-attached base according to claim 1 is used. Wood.
R n -SiX 4-n (1 )
(In the formula, R is an unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, and may be the same or different from each other. X: an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, Halogen, hydrogen, n: an integer of 1 to 3)
前記シリカ系中空微粒子(A)およびシリカ系微粒子(B)が、下記式(2)表される有機珪素化合物で表面処理されていることを特徴とする請求項1〜5のいずれかに記載の反射防止膜付基材。
n-SiX4-n (2)
(但し、式中、Rは炭素数1〜10の非置換または置換炭化水素基であって、互いに同一であっても異なっていてもよい。X:炭素数1〜4のアルコキシ基、水酸基、ハロゲン、水素、n:1〜3の整数)
The silica-based hollow fine particles (A) and the silica-based fine particles (B) are surface-treated with an organosilicon compound represented by the following formula (2). Base material with antireflection film.
R n -SiX 4-n (2)
(In the formula, R is an unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, and may be the same or different from each other. X: an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, Halogen, hydrogen, n: an integer of 1 to 3)
前記マトリックス成分(MH)が、分散用有機樹脂(A)と硬化用有機樹脂(B)とからなることを特徴とする請求項1〜6のいずれかに記載の反射防止膜付基材。 The base material with an antireflection film according to any one of claims 1 to 6, wherein the matrix component (M H ) comprises a dispersing organic resin (A) and a curing organic resin (B). 前記マトリックス成分(ML)が有機樹脂系マトリックス成分であることを特徴とする請求項1〜7のいずれかに記載の反射防止膜付基材。 The matrix component (M L) is anti-reflection film with the base material according to claim 1, characterized in that the organic resin matrix component. 前記マトリックス成分(ML)が分散用有機樹脂(A)および/または硬化用有機樹脂(B)を含むことを特徴とする請求項8に記載の反射防止膜付基材。 The base material with an antireflection film according to claim 8, wherein the matrix component (M L ) contains an organic resin for dispersion (A) and / or an organic resin for curing (B). 前記分散用有機樹脂(A)が1〜2個の官能基を有する紫外線硬化型樹脂モノマーないしオリゴマーであり、前記硬化用有機樹脂(B)が3個以上の官能基を有する紫外線硬化型樹脂モノマーないしオリゴマーであることを特徴とする請求項8または9に記載の反射防止膜付基材。   The dispersing organic resin (A) is an ultraviolet curable resin monomer or oligomer having 1 to 2 functional groups, and the curing organic resin (B) is an ultraviolet curable resin monomer having 3 or more functional groups. It is thru | or an oligomer, The base material with an antireflection film of Claim 8 or 9 characterized by the above-mentioned. 前記分散用有機樹脂(A)および前記硬化用有機樹脂(B)の有する官能基が(メタ)アクリレート基、ウレタン(メタ)アクリレート基、エポキシ変性(メタ)アクリレート基から選ばれる少なくとも1種であることを特徴とする請求項10に記載の反射防止膜付基材。   The functional group possessed by the dispersing organic resin (A) and the curing organic resin (B) is at least one selected from a (meth) acrylate group, a urethane (meth) acrylate group, and an epoxy-modified (meth) acrylate group. The base material with an antireflection film according to claim 10. 前記表面処理金属酸化物微粒子(P)の球状係数が0.2〜1.0の範囲にあることを特徴とする請求項1〜11のいずれかに記載の反射防止膜付基材。   The base material with an antireflection film according to any one of claims 1 to 11, wherein the spherical coefficient of the surface-treated metal oxide fine particles (P) is in the range of 0.2 to 1.0. 前記ハードコート膜と前記反射防止膜との界面(接合面)が波状であることを特徴とする請求項1〜12のいずれかに記載の反射防止膜付基材。   The base material with an antireflection film according to claim 1, wherein an interface (bonding surface) between the hard coat film and the antireflection film is wavy. 前記基材がアクリル、ポリカーボネート、シクロオレフィンポリマー(COP)、PET、TACから選ばれる少なくとも1種の樹脂基材であることを特徴とする請求項1〜13のいずれかに記載の反射防止膜付基材。   The said base material is at least 1 sort (s) of resin base materials chosen from an acryl, a polycarbonate, a cycloolefin polymer (COP), PET, and TAC, With the antireflection film in any one of Claims 1-13 Base material. 鉛筆硬度が5H以上であることを特徴とする請求項1〜14のいずれかに記載の反射防止膜付基材。   Pencil hardness is 5H or more, The base material with an antireflection film in any one of Claims 1-14 characterized by the above-mentioned. (A)表面処理金属酸化物微粒子と、マトリックス形成形分とを含み、(i)表面処理金属酸化物微粒子の含有量(WPH)が50〜90重量%の範囲にあり、(ii)マトリックス成分(MH)の固形分としての含有量(WRH)が10〜50重量%の範囲にあり、固形分と濃度(CPH)は45〜85重量%にあるハードコート膜形成用塗布液を基材表面に塗布・乾燥してハードコート膜を形成したのち、
(B)シリカ系中空微粒子(A)とマトリックス形成成分と溶媒とからなり、シリカ系中空微粒子(A)の平均粒子径(Dpa)が10〜45nmの範囲にあり、全固形分濃度が1〜10重量%の範囲にあり、シリカ系中空微粒子(A)の濃度が固形分として0.25〜9重量%の範囲にあり、マトリックス形成成分の濃度が固形分として0.75〜9.5重量%の範囲にある反射防止膜形成用塗布液をハードコート膜表面に塗布し乾燥して、反射防止膜を形成することを特徴とする反射防止膜付基材の製造方法。
(A) a surface-treated metal oxide fine particle and a matrix-forming component, (i) a content (W PH ) of the surface-treated metal oxide fine particle is in the range of 50 to 90% by weight, and (ii) a matrix The coating liquid for forming a hard coat film in which the content (W RH ) of the component (M H ) as a solid content is in the range of 10 to 50% by weight and the solid content and concentration (C PH ) are in the range of 45 to 85% by weight. After coating and drying the substrate surface to form a hard coat film,
(B) It consists of silica-based hollow fine particles (A), a matrix-forming component, and a solvent, and the silica-based hollow fine particles (A) have an average particle diameter (Dpa) in the range of 10 to 45 nm, and the total solid content concentration is 1 to It is in the range of 10% by weight, the concentration of the silica-based hollow fine particles (A) is in the range of 0.25 to 9% by weight as the solid content, and the concentration of the matrix forming component is 0.75 to 9.5% as the solid content. %, A coating solution for forming an antireflective film is applied to the surface of the hard coat film and dried to form an antireflective film.
前記ハードコート膜の下記条件で測定したときのカーリング特性が5mm以下であることを特徴とする請求項16に記載の反射防止膜付基材の製造方法。
14cm×25cm×40μm(厚み)のTACフィルム基材上に厚みが12μmのハードコート膜が形成できるようにハードコート膜形成用塗布液を塗布し、20時間静置し、その後、フィルムを10cm×10cmサイズにカットし、塗布面を下にしてフィルムを平板上に置き、カーリング(湾曲)して浮上した基材の頂点の平板からの高さ。
The method for producing a substrate with an antireflection film according to claim 16, wherein the curling property of the hard coat film is 5 mm or less when measured under the following conditions.
A coating liquid for forming a hard coat film was applied on a TAC film substrate having a thickness of 14 cm × 25 cm × 40 μm (thickness) so that a hard coat film having a thickness of 12 μm could be formed, and allowed to stand for 20 hours. The height from the flat plate at the apex of the substrate which was cut into a size of 10 cm, placed on a flat plate with the coating surface down, and curled (curved) and floated.
ハードコート膜形成用塗布液を塗布した後、乾燥したときの塗膜の収縮率が25%以下であり、硬化したときの塗膜の収縮率が10%以下であり、合計の収縮率が35%以下であることを特徴とする請求項16および17に記載の反射防止膜付基材の製造方法。   After applying the coating liquid for forming a hard coat film, the shrinkage ratio of the coating film when dried is 25% or less, the shrinkage ratio of the coating film when cured is 10% or less, and the total shrinkage ratio is 35 The method for producing a substrate with an antireflection film according to claim 16 or 17, characterized in that the content is% or less. 前記シリカ系中空微粒子(A)の屈折率が1.10〜1.40の範囲にあることを特徴とする請求項16に記載の反射防止膜付基材の製造方法。   The method for producing a substrate with an antireflection film according to claim 16, wherein the refractive index of the silica-based hollow fine particles (A) is in the range of 1.10 to 1.40. さらに、平均粒子径(Dpb)が4〜17nmの範囲にあるシリカ系微粒子(B)を含み、シリカ系微粒子(B)の平均粒子径(Dpb)と前記シリカ系中空微粒子(A)の平均粒子径(Dpa)との比(Dpb)/(Dpa)が0.1〜0.4の範囲にあることを特徴とする請求項16に記載の反射防止膜付基材の製造方法。   In addition, silica-based fine particles (B) having an average particle size (Dpb) in the range of 4 to 17 nm are included. The average particle size (Dpb) of the silica-based fine particles (B) and the average particle of the silica-based hollow fine particles (A) The method for producing a substrate with an antireflection film according to claim 16, wherein the ratio (Dpb) / (Dpa) to the diameter (Dpa) is in the range of 0.1 to 0.4. 前記シリカ系中空微粒子(A)およびシリカ系微粒子(B)が、下記式(3)で表される有機珪素化合物で表面処理されていることを特徴とする請求項20に記載の反射防止膜付基材の製造方法。
n-SiX4-n (3)
(但し、式中、Rは炭素数1〜10の非置換または置換炭化水素基であって、互いに同一であっても異なっていてもよい。X:炭素数1〜4のアルコキシ基、水酸基、ハロゲン、水素、n:1〜3の整数)
The silica-based hollow fine particles (A) and the silica-based fine particles (B) are surface-treated with an organosilicon compound represented by the following formula (3). A method for producing a substrate.
R n -SiX 4-n (3 )
(In the formula, R is an unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, and may be the same or different from each other. X: an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, Halogen, hydrogen, n: an integer of 1 to 3)
前記マトリックス形成成分が有機樹脂系マトリックス形成成分であることを特徴とする請求項16に記載の反射防止膜付基材の製造方法。   The method for producing a substrate with an antireflection film according to claim 16, wherein the matrix forming component is an organic resin matrix forming component. 前記マトリックス形成成分が分散用有機樹脂(A)および/または硬化用有機樹脂(B)を含むことを特徴とする請求項22に記載の反射防止膜付基材の製造方法。   The method for producing a substrate with an antireflection film according to claim 22, wherein the matrix-forming component contains an organic resin (A) for dispersion and / or an organic resin (B) for curing. 前記分散用有機樹脂(A)が1〜2個の官能基を有する紫外線硬化型樹脂モノマーないしオリゴマーであり、前記硬化用有機樹脂(B)が3個以上の官能基を有する紫外線硬化型樹脂モノマーないしオリゴマーであることを特徴とする請求項23に記載の反射防止膜付基材の製造方法。   The dispersing organic resin (A) is an ultraviolet curable resin monomer or oligomer having 1 to 2 functional groups, and the curing organic resin (B) is an ultraviolet curable resin monomer having 3 or more functional groups. The method for producing a substrate with an antireflection film according to claim 23, wherein the substrate is an oligomer. 前記分散用有機樹脂(A)および前記硬化用有機樹脂(B)の有する官能基が(メタ)アクリレート基、ウレタン(メタ)アクリレート基、エポキシ変性(メタ)アクリレート基から選ばれる少なくとも1種であることを特徴とする請求項23または24に記載の反射防止膜付基材の製造方法。   The functional group possessed by the dispersing organic resin (A) and the curing organic resin (B) is at least one selected from a (meth) acrylate group, a urethane (meth) acrylate group, and an epoxy-modified (meth) acrylate group. The method for producing a substrate with an antireflection film according to claim 23 or 24. ハードコート膜形成用塗布液を塗布、乾燥し、反射防止膜形成用塗布液を塗布、乾燥し、ついで紫外線照射して同時に硬化することを特徴とする請求項16に記載の反射防止膜付基材の製造方法。   The base with antireflection film according to claim 16, wherein the coating liquid for forming a hard coat film is applied and dried, the coating liquid for forming an antireflection film is applied and dried, and then cured by irradiation with ultraviolet rays. A method of manufacturing the material.
JP2014120437A 2014-03-31 2014-06-11 Manufacturing method of substrate with antireflection film Active JP6450531B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014120437A JP6450531B2 (en) 2014-06-11 2014-06-11 Manufacturing method of substrate with antireflection film
CN201580017788.XA CN106164190B (en) 2014-03-31 2015-03-30 Coating liquid for forming transparent film and method for producing same, organic resin dispersion sol, substrate with transparent film and method for producing same
PCT/JP2015/059981 WO2015152171A1 (en) 2014-03-31 2015-03-30 Coating liquid for forming transparent coating and method for producing said coating liquid, organic resin-dispersed sol, and substrate with transparent coating and method for producing said substrate
KR1020167026821A KR102379944B1 (en) 2014-03-31 2015-03-30 Coating liquid for forming transparent coating and method for producing said coating liquid, organic resin-dispersed sol, and substrate with transparent coating and method for producing said substrate
TW104110415A TWI670335B (en) 2014-03-31 2015-03-31 Coating liquid for forming transparent coating film and method for producing the same, organic resin dispersant sol, and substrate with transparent coating film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014120437A JP6450531B2 (en) 2014-06-11 2014-06-11 Manufacturing method of substrate with antireflection film

Publications (3)

Publication Number Publication Date
JP2016001217A true JP2016001217A (en) 2016-01-07
JP2016001217A5 JP2016001217A5 (en) 2017-07-27
JP6450531B2 JP6450531B2 (en) 2019-01-09

Family

ID=55076848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014120437A Active JP6450531B2 (en) 2014-03-31 2014-06-11 Manufacturing method of substrate with antireflection film

Country Status (1)

Country Link
JP (1) JP6450531B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114517034A (en) * 2020-11-20 2022-05-20 荒川化学工业株式会社 Low reflection coating agent, coating agent set, cured product, and laminate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004143201A (en) * 2002-10-22 2004-05-20 Toyo Ink Mfg Co Ltd Active energy ray curing composition, method for forming cured film using the same and cured product thereof and antireflection body
JP2004258267A (en) * 2003-02-25 2004-09-16 Matsushita Electric Works Ltd Antireflection film, method for manufacturing antireflection film, and antireflection member
JP2010095569A (en) * 2008-10-14 2010-04-30 Mitsubishi Chemicals Corp Active energy ray-curable resin composition, cured material and article
JP2010128309A (en) * 2008-11-28 2010-06-10 Jgc Catalysts & Chemicals Ltd Base material with antireflection film, and application liquid for forming the antireflection film
JP2010189620A (en) * 2009-01-20 2010-09-02 Shin-Etsu Chemical Co Ltd Photocurable resin composition and article having cured coating
JP2011137097A (en) * 2009-12-28 2011-07-14 Jgc Catalysts & Chemicals Ltd Coating liquid for transparent film formation, substrate with transparent film, and method for producing hydrophobic metal oxide particle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004143201A (en) * 2002-10-22 2004-05-20 Toyo Ink Mfg Co Ltd Active energy ray curing composition, method for forming cured film using the same and cured product thereof and antireflection body
JP2004258267A (en) * 2003-02-25 2004-09-16 Matsushita Electric Works Ltd Antireflection film, method for manufacturing antireflection film, and antireflection member
JP2010095569A (en) * 2008-10-14 2010-04-30 Mitsubishi Chemicals Corp Active energy ray-curable resin composition, cured material and article
JP2010128309A (en) * 2008-11-28 2010-06-10 Jgc Catalysts & Chemicals Ltd Base material with antireflection film, and application liquid for forming the antireflection film
JP2010189620A (en) * 2009-01-20 2010-09-02 Shin-Etsu Chemical Co Ltd Photocurable resin composition and article having cured coating
JP2011137097A (en) * 2009-12-28 2011-07-14 Jgc Catalysts & Chemicals Ltd Coating liquid for transparent film formation, substrate with transparent film, and method for producing hydrophobic metal oxide particle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114517034A (en) * 2020-11-20 2022-05-20 荒川化学工业株式会社 Low reflection coating agent, coating agent set, cured product, and laminate

Also Published As

Publication number Publication date
JP6450531B2 (en) 2019-01-09

Similar Documents

Publication Publication Date Title
TWI670335B (en) Coating liquid for forming transparent coating film and method for producing the same, organic resin dispersant sol, and substrate with transparent coating film and method for producing the same
JP5558414B2 (en) Method for manufacturing antireflection laminate
JP5064649B2 (en) Anti-reflection laminate
JP5378771B2 (en) Base material with antireflection film and coating liquid for forming antireflection film
JP5700903B2 (en) Base material with hard coat film and coating liquid for forming hard coat film
JP5142617B2 (en) Surface treatment method for metal oxide particles, dispersion containing the surface treated metal oxide particles, coating liquid for forming a transparent film, and substrate with transparent film
JP5546239B2 (en) Base material with hard coat film and coating liquid for forming hard coat film
JP2013014506A (en) Hollow silica microparticle, composition for forming transparent coating film containing the same, and substrate with transparent coating film
WO2007145285A1 (en) Polymer-coated metal oxide microparticle and application thereof
JP2008291174A (en) Coating material for forming transparent coating film and substrate with transparent film
JP5839993B2 (en) Method for producing silica / alumina sol, silica / alumina sol, transparent film-forming coating material containing the sol, and substrate with transparent film
JP5815304B2 (en) Optical thin film forming paint and optical thin film
JP2009102628A (en) Ultraviolet radiation-curable coating composition and method for producing the same, and coated resin product coated with the same
JP2009056387A (en) Base material with hard coat film and coating solution for forming hard coat film
JP5530158B2 (en) Substrate with transparent film and coating liquid for forming transparent film
JP5159265B2 (en) Substrate with transparent film and coating liquid for forming transparent film
JP6470498B2 (en) Coating liquid for forming transparent film and method for producing substrate with transparent film
JP2013136222A (en) Substrate with hard coat film and coating liquid for forming hard coat film
JP6450531B2 (en) Manufacturing method of substrate with antireflection film
JP5466612B2 (en) Method for producing resin-coated metal oxide particle resin dispersion composition and substrate with transparent coating
JP2008291175A (en) Coating material for forming transparent coating film and substrate with transparent film
JP2011110787A (en) Base material with transparent film, and coating liquid for forming transparent film
JP5885500B2 (en) Paint for forming transparent film and substrate with transparent film
US20220186047A1 (en) Laminate for frost prevention, heat exchanger including the laminate, and coating agent for frost prevention
JP5503241B2 (en) Base material with hard coat film and coating liquid for forming hard coat film

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170609

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181210

R150 Certificate of patent or registration of utility model

Ref document number: 6450531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250