JP2015530925A - Materials nanofabricated by femtosecond pulsed laser technology to increase surface area and thermal energy dissipation - Google Patents

Materials nanofabricated by femtosecond pulsed laser technology to increase surface area and thermal energy dissipation Download PDF

Info

Publication number
JP2015530925A
JP2015530925A JP2015526505A JP2015526505A JP2015530925A JP 2015530925 A JP2015530925 A JP 2015530925A JP 2015526505 A JP2015526505 A JP 2015526505A JP 2015526505 A JP2015526505 A JP 2015526505A JP 2015530925 A JP2015530925 A JP 2015530925A
Authority
JP
Japan
Prior art keywords
pulsed laser
femtosecond
femtosecond pulsed
housing
processed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015526505A
Other languages
Japanese (ja)
Inventor
リヴァス,ヴィクター,エイ.
Original Assignee
リヴァス,ヴィクター,エイ.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リヴァス,ヴィクター,エイ. filed Critical リヴァス,ヴィクター,エイ.
Publication of JP2015530925A publication Critical patent/JP2015530925A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • H01L21/4878Mechanical treatment, e.g. deforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/20Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes with nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Theoretical Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Laser Beam Processing (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本発明では、マイクロプロセッサ、ミニプロセッサ及びヒートシンクの表面は、熱の散逸を増加させるように、フェムト秒パルスレーザにより加工されてその表面積を増加させる。フェムト秒パルスレーザ加工により前記表面に形成、創出されたナノ構造により、赤外線放射により熱が放射される表面積が増加することを特徴としている。In the present invention, the surfaces of the microprocessor, miniprocessor and heat sink are processed with a femtosecond pulsed laser to increase their surface area so as to increase heat dissipation. The nanostructure formed and created on the surface by femtosecond pulse laser processing increases the surface area from which heat is radiated by infrared radiation.

Description

本発明は、電子機器の冷却が向上するように表面積を増大させるフェムト秒パルスレーザ技術の使用に関する。   The present invention relates to the use of femtosecond pulsed laser technology to increase the surface area for improved cooling of electronic equipment.

本発明は、例えばマイクロプロセッサ及びミニプロセッサを冷却する改善された熱伝達表面を提供することを目的としている。本発明により、事業機会は前途有望となる。本発明による新たな熱伝達表面は、電子・電気部品及び機器の会社にとって有用であると考える。   The present invention seeks to provide an improved heat transfer surface that cools, for example, microprocessors and miniprocessors. With the present invention, business opportunities are promising. The new heat transfer surface according to the present invention is considered useful for electronic and electrical component and equipment companies.

課題は、フェムト秒パルスレーザを用いることにより解決され、本発明は新たな仕事及び人と技術の統合並びに新たな機会を提供する。   The problem is solved by using a femtosecond pulsed laser, and the present invention provides new work and integration of people and technology and new opportunities.

フェムト秒パルスレーザにより増大させた表面積は、例えばマイクロプロセッサを1000倍又はそれ以上の率で冷却を加速する。本発明は、部品の表面の加工、又はマイクロプロセッサ又は他の電子部品の表面に貼ったり剥がしたりする剥離シート上の箔の加工及び打抜きの工程において用いてもよい。電極を加工してスーパーキャパシタの容量を改善すること、ナノ加工によりバイオセンサの表面を増大させることにも用いられる。ナノ加工表面を宇宙に適用すると、見えない人工衛星ができる。   The surface area increased by the femtosecond pulse laser accelerates cooling, for example, at a rate 1000 times or more for the microprocessor. The present invention may be used in processing of the surface of a component, or processing and punching of a foil on a release sheet that is applied to or peeled off from the surface of a microprocessor or other electronic component. It can also be used to improve the capacity of supercapacitors by processing electrodes and to increase the surface of biosensors by nanoprocessing. When the nano-processed surface is applied to space, an invisible satellite is created.

フィラメントを加工すると表面積が増大し、放射率が1000倍又はそれ以上に増大する。60ワットの電球は、100%以上のルーメンを生成する。フェムト秒パルスレーザ技術により、表面からの熱及び光の送出が速まる。本発明では、効率の良い表面を提供でき。より低温において、より大きな輝度の光が放射される。   Processing the filament increases the surface area and increases the emissivity by a factor of 1000 or more. A 60 watt bulb produces over 100% lumens. Femtosecond pulsed laser technology accelerates heat and light delivery from the surface. In the present invention, an efficient surface can be provided. At lower temperatures, light of greater brightness is emitted.

本発明により、アークを創生して持続させる、より表面積が大きく材料の使用量の少ない蛍光電極が提供される。   The present invention provides a fluorescent electrode that creates and sustains an arc and has a higher surface area and less material usage.

本発明を用いると、1平方インチの材料が、1000平方インチの表面積を有することができる。表面を微小ナノの大きさに破壊すると面積が増大する。新たなフェムト秒パルスレーザ技術は、10−15秒(フェムト秒)レーザパルスを用いて、増大した表面積を生成する。マイクロプロセッサの大きさは、生成する熱により制限される。あらゆる場所及び状況おいて、エネルギーの有効利用が必要となっている。照明用の電球及び管は、より多くのルーメン出力、より大きな効率及びより長い寿命が要求される。熱エネルギーを良好に且つ迅速に送出するマイクロプロセッサは、より大きく且つ速い演算を可能とする。10−15秒パルスレーザ技術により、材料が彫刻されて波動エネルギーが放出される。フェムト秒パルスレーザは、彫刻により金属、箔及び樹脂に設定された深さ及び幅のナノ表面を形成して表面積を増大させる。 Using the present invention, a square inch material can have a surface area of 1000 square inches. When the surface is destroyed to the size of a small nano, the area increases. New femtosecond pulsed laser technology uses 10-15 second (femtosecond) laser pulses to produce increased surface area. The size of the microprocessor is limited by the heat it generates. Effective use of energy is required in all places and situations. Lighting bulbs and tubes are required to have more lumen output, greater efficiency and longer life. A microprocessor that delivers thermal energy well and quickly allows for larger and faster computations. With 10-15 second pulsed laser technology, the material is engraved and wave energy is released. The femtosecond pulsed laser increases the surface area by engraving to form nanosurfaces of depth and width set in metal, foil and resin.

本発明により、エレクトロニクスにおいて熱及びエネルギーを管理できる新たなナノ表面が創出される。フェムト秒レーザ技術を用いて、ナノ加工された金属及び非金属材料が創出される。フェムト秒レーザ技術により形成されたナノ表面は、熱及びエネルギー管理の改善にも適用される。   The present invention creates new nanosurfaces that can manage heat and energy in electronics. Using femtosecond laser technology, nanofabricated metallic and non-metallic materials are created. Nanosurfaces formed by femtosecond laser technology are also applied to improve thermal and energy management.

赤外線及び波動エネルギーの熱損失は次の様に表わされる。
放射されるエネルギー:P=c・a・A・T
The heat loss of infrared and wave energy is expressed as follows.
Radiated energy: P = c · a · A · T 4

この式において、c=放射率、a=普遍定数、A=面積、T=ケルビン温度(273K=0℃)である。放射率は、c=1の完全放射体及び吸収体である黒体の放射されるエネルギーに関連する。面積が増加すると放射されるエネルギーも増加する。温度に関しては4乗となるので、温度が少し上昇しても放射されるエネルギーは大きく増加する。   In this equation, c = emissivity, a = universal constant, A = area, T = Kelvin temperature (273 K = 0 ° C.). The emissivity is related to the emitted energy of a c = 1 perfect radiator and an absorber black body. As the area increases, the emitted energy also increases. Since the temperature is the fourth power, the radiated energy greatly increases even if the temperature rises a little.

新たなフェムト秒レーザ機能により、顧客の材料及び応用に適ったナノ表面を提供できる。最近は、幾つかの用途への応用が開発されている。   New femtosecond laser capability can provide a nano-surface suitable for customer materials and applications. Recently, applications for several uses have been developed.

マイクロプロセッサでは、エネルギーの散逸を改善してより良好な熱管理を実現している。   Microprocessors improve energy dissipation and achieve better thermal management.

上記を含む明細書の記載、請求の範囲、図面により、上記の目的に加えて他の目的及び特徴は明らかにする。   In addition to the above objects, other objects and features will become apparent from the description of the specification including the above, the claims, and the drawings.

フェムト秒レーザ加工によりステンレススチール上に形成したナノ表面を示す図Diagram showing nano-surface formed on stainless steel by femtosecond laser processing レーザ加工の前と後のステンレススチールの走査型電子顕微鏡像を示す図Diagram showing scanning electron microscope images of stainless steel before and after laser processing 1平方インチのナノ加工域を有するステンレススチール板を示す図Diagram showing a stainless steel plate with a nano-working area of 1 square inch フェムト秒パルスレーザ加工よるサブミクロン以下の凹凸を有する迅速な熱散逸表面を備えた電子部品、ハウジング及び箔を示す図Diagram showing electronic components, housing and foil with rapid heat dissipation surface with sub-micron irregularities by femtosecond pulsed laser processing 電磁波の周波数目盛を示す図Diagram showing frequency scale of electromagnetic wave フェムト秒を含んだ時間目盛を示す図Diagram showing time scale including femtoseconds フェムト秒レーザ再生増幅器を示す図Diagram showing femtosecond laser regenerative amplifier 赤外線カメラ及びその仕様を示す図Diagram showing infrared camera and its specifications フェムト秒パルスの特徴を示す図Diagram showing femtosecond pulse characteristics 物体の赤外線像を示す図Figure showing an infrared image of an object ヒートシンクを示す図Diagram showing heat sink ヒートシンクの加工及びヒートシンクの赤外線像を示す図Diagram showing heat sink processing and infrared image of heat sink レーザ加工後のヒートシンクの走査型電子顕微鏡像を示す図The figure which shows the scanning electron microscope image of the heat sink after laser processing 加工前後のミニプロセッサを示す図Diagram showing mini-processor before and after processing 加工前後のミニプロセッサの赤外線像を示す図The figure which shows the infrared image of the mini processor before and after processing 加工後のミニプロセッサ及びその赤外線像を示す図The figure which shows the mini processor after processing and the infrared image

図1には、フェムト秒レーザ加工によりステンレススチール上に形成したナノ表面を示す。走査型電子顕微鏡像は、フェムト秒レーザ加工により形成されたナノ構造を示している。右側の像は、10mm以下の脚を有する「ナノ人間」を示す。   FIG. 1 shows a nanosurface formed on stainless steel by femtosecond laser processing. The scanning electron microscope image shows a nanostructure formed by femtosecond laser processing. The image on the right shows “nano-humans” with legs of 10 mm or less.

図2には、レーザ加工前後のステンレススチールの走査型電子顕微鏡像を示す。左側の像は加工前であり、右側の像はフェムト秒レーザ加工後の像である。右側の像に置ける微小構造の不明瞭な外観は、レーザ加工により形成されたナノ表面構造によるものである。   FIG. 2 shows scanning electron microscope images of stainless steel before and after laser processing. The image on the left is before processing, and the image on the right is an image after femtosecond laser processing. The unclear appearance of the microstructure in the right image is due to the nano-surface structure formed by laser processing.

図3には、中心にフェムト秒レーザ加工された方形を有するステンレススチール板を示す。2平方インチの板の内。1平方インチが加工された(暗い部分)。出来る限り黒色の表面を得るため、1つの条件(試料と焦光レンズの間の距離)のみを最適化した。   FIG. 3 shows a stainless steel plate having a square femtosecond laser machined in the center. Within a 2 square inch plate. One square inch was processed (dark area). In order to obtain as black a surface as possible, only one condition (distance between the sample and the focal lens) was optimized.

図3Aには、フェムト秒パルスレーザ加工よるサブミクロン以下の凹凸3を有する迅速な熱散逸表面を備えた電子部品1、ハウジング2及び箔4を示す。   FIG. 3A shows an electronic component 1, housing 2 and foil 4 with a rapid heat dissipation surface having sub-micron irregularities 3 from femtosecond pulsed laser processing.

図4には、電磁波スペクトル7の周波数目盛を示す。全ての物体は温度に応じて異なった波長の光を放射する。室温において、物体は赤外線を放射する。電磁波スペクトルにおいて、赤外線の波長は、1μmから1000μmである。物体の温度が華氏1112度(600℃)に近付くと赤く輝き始める。   In FIG. 4, the frequency scale of the electromagnetic wave spectrum 7 is shown. All objects emit different wavelengths of light depending on the temperature. At room temperature, the object emits infrared light. In the electromagnetic wave spectrum, the wavelength of infrared rays is 1 μm to 1000 μm. When the temperature of the object approaches 1112 degrees Fahrenheit (600 ° C.), it begins to glow red.

図5には、フェムト秒を含んだ時間目盛を示す。   FIG. 5 shows a time scale including femtoseconds.

図6には、フェムト秒レーザ再生増幅器を示す。この増幅器に仕様は以下の通りである。
平均出力: 750mW
パルス繰り返し周波数: 1KHz
パルス幅: 50フェムト秒以下
波長: 780−820nm
ビーム径: 7mm
パルス当たりの出力: 750μm
エネルギー安定性: 1%
空間モデル: TEM00
偏光: 直線偏光/水平偏光
FIG. 6 shows a femtosecond laser regenerative amplifier. The specifications of this amplifier are as follows.
Average power: 750mW
Pulse repetition frequency: 1KHz
Pulse width: 50 femtoseconds or less Wavelength: 780-820 nm
Beam diameter: 7mm
Output per pulse: 750 μm
Energy stability: 1%
Spatial model: TEM 00
Polarization: Linear polarization / Horizontal polarization

図7には、赤外線カメラ9及びその仕様を示す。ThermaCAM S65HSV 赤外線カメラの価格は70,000$である。
温度は4つの区域に分けられる。区域1:−40℃〜120℃、区域2:0℃〜250℃、区域3:100℃〜500℃、区域4:250℃〜1,500℃。
検出器のスペクトル域は、7.5μm〜13μmで深赤外線(deep infrared)である。
読取り精度:+2℃又は±2%
放射率の補正は0.1〜1.0の間で変動させるか、又は予め物質毎の規定値をリストから選択する。
熱感度は0.05℃である。
カメラは、画素数が640×480のフルカラーで高解像度14ビットの熱画像を撮影できる。
FIG. 7 shows the infrared camera 9 and its specifications. The price of the ThermoCAM S65HSV infrared camera is $ 70,000.
The temperature is divided into four zones. Zone 1: -40 ° C to 120 ° C, Zone 2: 0 ° C to 250 ° C, Zone 3: 100 ° C to 500 ° C, Zone 4: 250 ° C to 1,500 ° C.
The spectral range of the detector is 7.5 μm to 13 μm and deep infrared.
Reading accuracy: + 2 ° C or ± 2%
The correction of the emissivity is varied between 0.1 and 1.0, or a predetermined value for each substance is selected from a list in advance.
The thermal sensitivity is 0.05 ° C.
The camera can take a full color 14-bit thermal image with 640 × 480 pixels.

図8には、フェムト秒パルスの特徴を示す。フェムト秒パルスとナノ秒パルスの比較は次の通りである。ナノ秒パルスでは、特有のナノ表面構造は生成できない。ナノ秒パルスは、溶融物の飛び散り及び応力亀裂の形で多量の熱損傷を生成する。フェムト秒パルスは、材料がプラズマ化する前に停止する。フェムト秒パルスは、ナノ秒パルスよりも繰返し精度が改善される。   FIG. 8 shows the characteristics of the femtosecond pulse. A comparison between femtosecond pulses and nanosecond pulses is as follows. A nanosecond pulse cannot produce a unique nanosurface structure. Nanosecond pulses generate a large amount of thermal damage in the form of melt splashes and stress cracks. The femtosecond pulse stops before the material becomes plasma. Femtosecond pulses have improved repeatability over nanosecond pulses.

図8に示すように、プラズマは、以下のように生成される。最初の100フェムト秒において、電子の加熱及び熱化(thermalization)が起こる。熱電子ガス冷却されてエネルギーが材料の格子に伝達されるのに数フェムト秒を要する。数十ピコ秒後に、試料への熱拡散が起こる。数ナノ秒後に、熱熔融及び浸食が始まる。   As shown in FIG. 8, the plasma is generated as follows. In the first 100 femtoseconds, electron heating and thermalization occurs. It takes several femtoseconds for thermionic gas cooling to transfer energy to the lattice of materials. After tens of picoseconds, thermal diffusion to the sample occurs. After a few nanoseconds, heat melting and erosion begin.

図9には、物体の赤外線像を示し、温度を測定している。左側は装置、測定対象のホットドッグ及び金鏡の配置を示す。右側は装置によるホットドッグ自体及び金鏡に写った赤外線像を示す。   FIG. 9 shows an infrared image of the object and measures the temperature. The left side shows the arrangement of the device, the hot dog to be measured, and the gold mirror. The right side shows the infrared image reflected on the hot dog itself and the metal mirror.

図10には、ヒートシンク10のデジタルカメラ像を示す。   FIG. 10 shows a digital camera image of the heat sink 10.

図11は、フェムト秒パルスレーザによる加工域13、15を有するヒートシンク10の像、並びに加工域13、15の方がヒートシンクの他の部分よりも温度が高いこと示す赤外線像である。   FIG. 11 is an image of the heat sink 10 having the processing regions 13 and 15 by the femtosecond pulse laser, and an infrared image showing that the processing regions 13 and 15 have a higher temperature than the other portions of the heat sink.

図12には、レーザ加工後のヒートシンク10の走査型電子顕微鏡像を示す。加工域13は、左側の像の右上部に倍率45で示されている。図12の右側の上下の像のそれぞれの倍率は、362と11,590である。   FIG. 12 shows a scanning electron microscope image of the heat sink 10 after laser processing. The processing area 13 is shown at a magnification of 45 in the upper right part of the left image. The magnifications of the upper and lower images on the right side of FIG. 12 are 362, 11,590.

図13には、中心部21にステンレススチール角板23を有するミニプロセッサ20のフェムト秒パルスレーザ加工前後の像を示す。   FIG. 13 shows images before and after the femtosecond pulse laser processing of the mini processor 20 having the stainless steel square plate 23 in the center portion 21.

図14には、加工前後のミニプロセッサ30の赤外線像を示す。レーザ加工前は、ミニプロセッサの赤外線像は黒く、温度が低くミニプロセッサからの熱伝達の可能性が低いことを示している。レーザ加工後は、ミニプロセッサの像33は明るく、温度が高くミニプロセッサ30から熱が流出し易いことを示している。   FIG. 14 shows infrared images of the miniprocessor 30 before and after processing. Before laser processing, the infrared image of the miniprocessor is black, indicating that the temperature is low and the possibility of heat transfer from the miniprocessor is low. After laser processing, the miniprocessor image 33 is bright, indicating that the temperature is high and heat tends to flow out of the miniprocessor 30.

図15には、加工後のミニプロセッサ及びそのデジタル赤外線像を示す。この図の画像では、暗くここでは反射する高い面35を有するミニプロセッサ30を示す。右側の画像37は、赤外線像であり、加工された部分はより明るく、すなわちより高温であり熱伝達の可能性が高いことを示している。   FIG. 15 shows the miniprocessor after processing and its digital infrared image. The image in this figure shows a miniprocessor 30 having a high surface 35 that is dark and here reflective. The image 37 on the right is an infrared image, indicating that the processed part is brighter, i.e. hotter and more likely to transfer heat.

以上、特定の実施例に関して述べたが、以下に規定する特許請求項の範囲により規定される発明の範囲を逸脱することなく、本発明の改造及び変形を構成することができる。   While specific embodiments have been described above, modifications and variations of the present invention may be made without departing from the scope of the invention as defined by the scope of the claims defined below.

1 電子部品
2 ハウジング
3 表面
4 箔
5 サブミクロン以下の凹凸
7 電磁スペクトル
9 赤外線カメラ
10 ヒートシンク
13 フェムト秒パルスレーザ加工域
15 フェムト秒パルスレーザ加工域
20 ミニプロセッサ
21 (ミニプロセッサの)中心部
23 ステンレススチール角板
30 ミニプロセッサ
31 ミニプロセッサの赤外線像
33 ミニプロセッサの像
35 暗く反射する高い表面35
37 赤外線像
DESCRIPTION OF SYMBOLS 1 Electronic component 2 Housing 3 Surface 4 Foil 5 Concavity and convexity below submicron 7 Electromagnetic spectrum 9 Infrared camera 10 Heat sink 13 Femtosecond pulse laser processing area 15 Femtosecond pulse laser processing area 20 Mini processor 21 (mini processor) central part 23 Stainless steel Steel square plate 30 Miniprocessor 31 Miniprocessor infrared image 33 Miniprocessor image 35 Dark reflective high surface 35
37 Infrared image

Claims (13)

電子部品及びハウジングから成る装置であって、
前記電子部品及びハウジングは、フェムト秒パルスレーザにより加工されたサブミクロンの凹凸を有する迅速に熱を散逸する表面を有することを特徴とする装置。
An apparatus comprising an electronic component and a housing,
The electronic component and housing have a rapidly dissipating surface with submicron irregularities machined by a femtosecond pulsed laser.
前記電子部品は、マイクロプロセッサを含み、
前記熱を散逸する表面は、フェムト秒パルスレーザにより加工された表面を有するマイクロプロセッサのハウジングを含み、
フェムト秒パルスレーザにより加工された前記表面は、電磁放射及び前記ハウジング及びハウジング内の電子部品の冷却による熱の放射を増加させることを特徴とする請求項1に記載の装置。
The electronic component includes a microprocessor;
The heat dissipating surface comprises a microprocessor housing having a surface machined by a femtosecond pulsed laser;
The apparatus of claim 1, wherein the surface processed by a femtosecond pulsed laser increases electromagnetic radiation and heat radiation due to cooling of the housing and electronic components in the housing.
フェムト秒パルスレーザにより加工された前記表面は、マイクロプロセッサに連結された箔上に在ることを特徴とする請求項2に記載の装置。   The apparatus of claim 2, wherein the surface processed by a femtosecond pulsed laser is on a foil coupled to a microprocessor. 前記電子部品は、ミニプロセッサを含み、
前記熱を散逸する表面は、フェムト秒パルスレーザにより加工された表面を有するミニプロセッサのハウジングを含み、
フェムト秒パルスレーザにより加工された前記表面は、電磁放射及び前記ハウジング及びハウジング内の電子部品の冷却による熱の放射を増加させることを特徴とする請求項1に記載の装置
The electronic component includes a mini processor,
The heat dissipating surface comprises a miniprocessor housing having a surface machined by a femtosecond pulsed laser;
The apparatus of claim 1, wherein the surface processed by a femtosecond pulsed laser increases electromagnetic radiation and heat radiation due to cooling of the housing and electronic components within the housing.
フェムト秒パルスレーザにより加工された前記表面は、ミニプロセッサに連結された箔上に在ることを特徴とする請求項4に記載の装置。   The apparatus of claim 4, wherein the surface processed by a femtosecond pulsed laser resides on a foil coupled to a miniprocessor. 前記電子部品及びハウジングは、ヒートシンクを含み、
前記ヒートシンクの表面がフェムト秒パルスレーザにより加工されていることを特徴とする請求項1に記載の装置。
The electronic component and the housing include a heat sink,
The apparatus according to claim 1, wherein a surface of the heat sink is processed by a femtosecond pulse laser.
前記ヒートシンク上の平らな中心面が、フェムト秒パルスレーザにより加工されていることを特徴とする請求項6に記載の装置。   The apparatus according to claim 6, wherein a flat center plane on the heat sink is machined by a femtosecond pulse laser. 前記ヒートシンク上の前記平らの中心面及びフィンが、フェムト秒パルスレーザにより加工されていることを特徴とする請求項6に記載の装置。   The apparatus of claim 6, wherein the flat central surface and fins on the heat sink are machined with a femtosecond pulsed laser. 前記ヒートシンク上のフィンが、フェムト秒パルスレーザにより加工されていることを特徴とする請求項6に記載の装置。   The apparatus according to claim 6, wherein the fin on the heat sink is processed by a femtosecond pulse laser. 加工された前記表面は、フェムト秒パルスレーザにより加工されたナノ構造を有することを特徴とする請求項1に記載の装置。   The apparatus of claim 1, wherein the machined surface has nanostructures machined by a femtosecond pulsed laser. 加工された前記表面は、加工前の表面の1000倍の表面積を有することを特徴とする請求項1に記載の装置。   The apparatus of claim 1, wherein the processed surface has a surface area that is 1000 times that of the surface before processing. 前記表面は、マイクロプロセッサの外部表面であることを特徴とする請求項11に記載の装置。   The apparatus of claim 11, wherein the surface is an external surface of a microprocessor. フェムト秒パルスレーザにより加工された前記表面は、前記電子部品に連結された箔上に在ることを特徴とする請求項1に記載の装置。   The apparatus of claim 1, wherein the surface processed by a femtosecond pulsed laser is on a foil connected to the electronic component.
JP2015526505A 2012-08-06 2012-08-06 Materials nanofabricated by femtosecond pulsed laser technology to increase surface area and thermal energy dissipation Pending JP2015530925A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2012/049694 WO2014025332A1 (en) 2012-08-06 2012-08-06 Nano-machined materials using femtosecond pulse-laser technologies for increased surface area and heat-power dissipation

Publications (1)

Publication Number Publication Date
JP2015530925A true JP2015530925A (en) 2015-10-29

Family

ID=50068435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015526505A Pending JP2015530925A (en) 2012-08-06 2012-08-06 Materials nanofabricated by femtosecond pulsed laser technology to increase surface area and thermal energy dissipation

Country Status (8)

Country Link
JP (1) JP2015530925A (en)
KR (1) KR20150046015A (en)
CN (1) CN104603714A (en)
BR (1) BR112015002627A2 (en)
CA (1) CA2880490A1 (en)
DE (1) DE112012006782T5 (en)
GB (1) GB2519253A (en)
WO (1) WO2014025332A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102194694B1 (en) * 2019-12-31 2020-12-24 한국과학기술원 Integrated inspection system using thermography and laser ultrasonic in 3D printing process and 3D printing system having the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10106880B2 (en) 2013-12-31 2018-10-23 The United States Of America, As Represented By The Secretary Of The Navy Modifying the surface chemistry of a material
US10189117B2 (en) 2013-12-31 2019-01-29 The United States Of America, As Represented By The Secretary Of The Navy Adhesion improvement via material nanostructuring or texturizing
US11999013B2 (en) 2021-12-29 2024-06-04 PlasmaTex, LLC Pulsed laser processing of medical devices

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003211400A (en) * 2002-01-22 2003-07-29 Japan Science & Technology Corp Refining method using ultra-short pulse laser and workpiece therefor
JP2009255141A (en) * 2008-04-18 2009-11-05 Osaka Univ High-efficiency hydrogen-storing metallic material and method for manufacturing the same
JP2011049281A (en) * 2009-08-26 2011-03-10 Stanley Electric Co Ltd Heat radiation material and method for manufacturing the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH705707B1 (en) * 2004-06-08 2013-05-15 Lvmh Swiss Mft Sa A method of manufacturing components of synchronous and asynchronous transmission and components of synchronous and asynchronous transmission obtained according to this method.
CN2713533Y (en) * 2004-06-11 2005-07-27 庆扬资讯股份有限公司 Radiating device for micro-computer
US20060157234A1 (en) * 2005-01-14 2006-07-20 Honeywell International Inc. Microchannel heat exchanger fabricated by wire electro-discharge machining
US7642205B2 (en) * 2005-04-08 2010-01-05 Mattson Technology, Inc. Rapid thermal processing using energy transfer layers
US20080299408A1 (en) * 2006-09-29 2008-12-04 University Of Rochester Femtosecond Laser Pulse Surface Structuring Methods and Materials Resulting Therefrom
CN101380693A (en) * 2008-10-14 2009-03-11 南开大学 Micro-nano structure preparation method on metallic material surface using femtosecond laser
CN101531335A (en) * 2009-04-08 2009-09-16 西安交通大学 Method for preparing metal surface superhydrophobic microstructure by femto-second laser
CN102036534A (en) * 2009-09-30 2011-04-27 吴献桐 Device with heat dissipation element and manufacturing method thereof
TWM395570U (en) * 2010-08-19 2011-01-01 guo-ren Zheng Woodworking planer structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003211400A (en) * 2002-01-22 2003-07-29 Japan Science & Technology Corp Refining method using ultra-short pulse laser and workpiece therefor
JP2009255141A (en) * 2008-04-18 2009-11-05 Osaka Univ High-efficiency hydrogen-storing metallic material and method for manufacturing the same
JP2011049281A (en) * 2009-08-26 2011-03-10 Stanley Electric Co Ltd Heat radiation material and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102194694B1 (en) * 2019-12-31 2020-12-24 한국과학기술원 Integrated inspection system using thermography and laser ultrasonic in 3D printing process and 3D printing system having the same

Also Published As

Publication number Publication date
KR20150046015A (en) 2015-04-29
CN104603714A (en) 2015-05-06
CA2880490A1 (en) 2014-02-13
WO2014025332A1 (en) 2014-02-13
GB2519253A (en) 2015-04-15
GB201500847D0 (en) 2015-03-04
DE112012006782T5 (en) 2015-09-10
BR112015002627A2 (en) 2017-07-04

Similar Documents

Publication Publication Date Title
Strek et al. Laser induced white lighting of graphene foam
Stuart et al. Optical ablation by high-power short-pulse lasers
Hong et al. Femtosecond laser fabrication of large-area periodic surface ripple structure on Si substrate
JP2015530925A (en) Materials nanofabricated by femtosecond pulsed laser technology to increase surface area and thermal energy dissipation
Gubko et al. Enhancement of ultrafast electron photoemission from metallic nanoantennas excited by a femtosecond laser pulse
JP5689934B2 (en) light source
Yuspeh et al. Dynamics of laser-produced Sn microplasma for a high-brightness extreme ultraviolet light source
Hodgson et al. Ultrafast laser machining: process optimization and applications
US8238098B1 (en) Nano machined materials using femtosecond pulse laser technologies to enhanced thermal and optical properties for increased surface area to enhanced heat dissipation and emissivity and electromagnetic radiation
Ivanov et al. Enhanced relativistic laser–plasma coupling utilizing laser-induced micromodified target
Shen et al. Design and development of a high-performance LED-side-pumped Nd: YAG rod laser
Li et al. Photothermal Optimization of Quantum Dot Converters for High‐Power Solid‐State Light Sources
Benavides et al. A comparative study on reflection of nanosecond Nd-YAG laser pulses in ablation of metals in air and in vacuum
TW201710621A (en) Wavelength converting module and light source module using the same
Malinskii et al. Plastic deformation of copper and its alloys under the action of nanosecond UV laser pulse
Salimian et al. Investigating the emission characteristics of single crystal YAG when activated by high power laser beams
JP2007067123A (en) Laser pulse compressor
Carrasco-García et al. Monitoring the dynamics of the surface deformation prior to the onset of plasma emission during femtosecond laser ablation of noble metals by time-resolved reflectivity microscopy
Zhang et al. Observation and measurement of temperature rise and distribution on GaAs photo-cathode wafer with a 532 nm drive laser and a thermal imaging camera
TW201821255A (en) Processes for making light extraction substrates for an organic light emitting diode and products including the same
Yuspeh et al. Heating dynamics and extreme ultraviolet radiation emission of laser-produced Sn plasmas
Fang et al. CO2 laser mitigation of the ultraviolet laser damage site on a fused silica surface
Ruffino et al. Metal nanostructures with complex surface morphology: The case of supported lumpy Pd and Pt nanoparticles produced by laser processing of metal films
Benavides et al. Reflection of high-intensity nanosecond Nd: YAG laser pulses by metals
Nigo et al. Surface roughness and crystallinity of silicon solar cells irradiated by ultraviolet femtosecond laser pulses

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160412

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161108