JP2015522122A5 - - Google Patents

Download PDF

Info

Publication number
JP2015522122A5
JP2015522122A5 JP2015520665A JP2015520665A JP2015522122A5 JP 2015522122 A5 JP2015522122 A5 JP 2015522122A5 JP 2015520665 A JP2015520665 A JP 2015520665A JP 2015520665 A JP2015520665 A JP 2015520665A JP 2015522122 A5 JP2015522122 A5 JP 2015522122A5
Authority
JP
Japan
Prior art keywords
engine
compression ratio
combustion chamber
opposed
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015520665A
Other languages
Japanese (ja)
Other versions
JP2015522122A (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/US2013/049160 external-priority patent/WO2014008309A2/en
Publication of JP2015522122A publication Critical patent/JP2015522122A/en
Publication of JP2015522122A5 publication Critical patent/JP2015522122A5/ja
Pending legal-status Critical Current

Links

Claims (18)

第1のエンジン負荷に応じてエンジン出力を供給するために第1の圧縮比で対向ピストン式ディーゼルエンジンを運転するステップを有し、
該対向ピストン式ディーゼルエンジンは、それぞれが個々に2つのクランクシャフトのうちの1つに連結され、それぞれが1つまたは複数のスワール相殺機構(202、204)を含むピストンクラウンを有する2つのピストン(302、304)のクラウンによって少なくとも部分的に規定された燃焼室(306)を備え、
第2のエンジン負荷に応じてエンジン出力を供給するために第1の圧縮比を第2の圧縮比に変更するステップをさらに有し、
第2のエンジン負荷は第1のエンジン負荷よりも大きく、第2の圧縮比は第1の圧縮比よりも小さい
ことを特徴とする方法。
Operating an opposed piston diesel engine at a first compression ratio to provide engine power in response to a first engine load;
The opposed-piston diesel engine includes two pistons each having a piston crown , each individually connected to one of two crankshafts, each including one or more swirl offset mechanisms (202, 204). 302, 304) comprising a combustion chamber (306) defined at least in part by the crown of
Changing the first compression ratio to the second compression ratio to provide engine power in response to the second engine load;
A method wherein the second engine load is greater than the first engine load and the second compression ratio is less than the first compression ratio.
1つまたは複数のスワール相殺機構によって、燃焼室への吸気は、大きなスワールが発生し、燃焼室に燃料を供給する各インジェクタの前方に形成される少なくとも2つの共回転スワールに分割される
ことを特徴とする請求項に記載の方法。
One or more swirl offset mechanisms cause the intake air to the combustion chamber to be divided into at least two co-rotating swirls that are formed in front of each injector that generates a large swirl and supplies fuel to the combustion chamber. The method of claim 1 , characterized in that:
スワール相殺機構(202、204)は、各々のピストンクラウンに隆起突出部を備え、隆起突出部により吸気の吸気流を燃焼室に対して2つの共回転スワールに分割するように、対向ピストンの上死点位置で隆起突出部が重なり合う  The swirl offset mechanism (202, 204) has a raised protrusion on each piston crown, and the raised protrusions separate the intake air intake flow into two co-rotating swirls with respect to the combustion chamber. Raised protrusions overlap at the dead center position
ことを特徴とする請求項2に記載の方法。The method according to claim 2.
圧縮比の変更は、2つのピストンの位相の位相変更と、2つのクランクシャフトの間隔の変更と、のうちの少なくとも一方を用いて行われる
ことを特徴とする請求項1から3のいずれか1項に記載の方法。
Changing the compression ratio, and changes two pistons phase phase, either a change of the two crankshafts intervals claim 1, characterized in that it is carried out using at least one of the 3 1 The method according to item .
供給空気の圧力を周囲圧力よりも上昇させるターボ過給機(510)を介して燃焼室に吸気が供給される
ことを特徴とする請求項1から4のいずれか1項に記載の方法。
The method according to claim 1, any one of 4 to the intake pressure of the feed air to the combustion chamber via a turbocharger to increase (510) than the ambient pressure, characterized in that it is supplied.
ターボ過給機(510)は、第2の圧縮比の使用時は第2の圧力で、第1の圧縮比の使用時は第1の圧力で吸気し、第2の圧力は第1の圧力よりも大きい
ことを特徴とする請求項に記載の方法。
The turbocharger (510) inhales at the second pressure when using the second compression ratio, and at the first pressure when using the first compression ratio, and the second pressure is the first pressure. 6. The method of claim 5 , wherein the method is greater than.
エンジン運転情報に基づいて、燃焼室(306)で発生すると予測される予測ピーク燃焼室温度を決定するステップと、
許容レベルの窒素酸化物の汚染物質(NOx)が燃焼室内に形成されることが予測される閾値温度を予測ピーク燃焼室温度が超えた際に一連の目標エンジン運転パラメータを特定するステップと、
1つまたは複数の現在のエンジンパラメータを変更することにより、ピーク燃焼室温度を閾値温度以下に維持するために一連の目標エンジン運転パラメータを適用するステップと、をさらに有する
ことを特徴とする請求項1から6のいずれか1項に記載の方法。
Determining a predicted peak combustion chamber temperature predicted to occur in the combustion chamber (306) based on engine operating information;
Identifying a set of target engine operating parameters when the predicted peak combustion chamber temperature exceeds a threshold temperature at which an acceptable level of nitrogen oxide contaminant (NOx) is predicted to form in the combustion chamber;
Applying a series of target engine operating parameters to maintain the peak combustion chamber temperature below a threshold temperature by changing one or more current engine parameters. The method according to any one of 1 to 6.
エンジン運転情報は、ターボ過給機(510)によって圧縮された空気を受け取り、冷却するインタークーラ(506)の出口またはその付近で測定されたインタークーラ出口温度と、エンジン内の圧縮比と、を含む
ことを特徴とする請求項7に記載の方法。
The engine operating information includes the intercooler outlet temperature measured at or near the outlet of the intercooler (506) that receives and cools the air compressed by the turbocharger (510) , and the compression ratio in the engine. 8. The method of claim 7, comprising:
一連の目標エンジンパラメータは、燃料供給パラメータ(524)を含む
ことを特徴とする請求項7または8に記載の方法。
9. A method according to claim 7 or 8 , wherein the set of target engine parameters includes a fuel supply parameter (524) .
燃料供給パラメータは、所定のエンジンサイクル中に燃焼室内に噴射される燃料噴射量、1エンジンサイクル中の1回または複数回の燃料噴射タイミング、エンジンサイクル中に生じる燃料噴射回数、のうちの1つまたは複数を含む
ことを特徴とする請求項7からのいずれか1項に記載の方法。
The fuel supply parameter is one of a fuel injection amount injected into the combustion chamber during a predetermined engine cycle, one or more fuel injection timings during the engine cycle, and the number of fuel injections occurring during the engine cycle. 10. The method according to any one of claims 7 to 9 , comprising a plurality.
一連の目標エンジンパラメータは、燃焼室内のエネルギ密度を減少させることによってピーク温度を低下させるための、現在の圧縮比からより小さな圧縮比への変動を含む
ことを特徴とする請求項7から10のいずれか1項に記載の方法。
A series of target engine parameters, to reduce the peak temperature by reducing the energy density of the combustion chamber, claim 7, characterized in that it comprises a variation from the current compression ratio to a smaller compression ratio 10 The method according to any one of the above.
エンジン制御装置によって前記決定ステップ、前記特定ステップおよび前記適用ステップが実行される
ことを特徴とする請求項7から11のいずれか1項に記載の方法。
The method according to any one of claims 7 to 11 , wherein the determining step, the specifying step, and the applying step are performed by an engine control device.
それぞれが個々に2つのクランクシャフトのうちの1つに連結され、それぞれが1つまたは複数のスワール相殺機構(202、204)を含むピストンクラウンを有する2つのピストン(302、304)のクラウンによって少なくとも部分的に規定された燃焼室(306)、およびエンジン制御装置(502)を備え、
エンジン制御装置(502)は、
第1のエンジン負荷に応じてエンジン出力を供給するために第1の圧縮比で対向ピストン式ディーゼルエンジンを運転させ、
第2のエンジン負荷に応じてエンジン出力を供給するために第1の圧縮比を第2の圧縮比に変更する、オペレーションを行い
第2のエンジン負荷は第1のエンジン負荷よりも大きく、第2の圧縮比は第1の圧縮比よりも小さい
ことを特徴とする対向ピストン式ディーゼルエンジン。
At least by the crowns of the two pistons (302, 304), each individually connected to one of the two crankshafts, each having a piston crown comprising one or more swirl offset mechanisms (202, 204) A partially defined combustion chamber (306), and an engine controller (502);
The engine control device (502)
Operating an opposed piston diesel engine at a first compression ratio to provide engine power in response to a first engine load;
To change the first compression ratio to a second compression ratio to provide the engine output in accordance with the second engine load, provides operations,
The opposed-piston diesel engine characterized in that the second engine load is larger than the first engine load and the second compression ratio is smaller than the first compression ratio.
1つまたは複数のスワール相殺機構(202、204)によって、燃焼室への吸気は、大きなスワールが発生し、燃焼室に燃料を供給する各インジェクタの前方に形成される少なくとも2つの共回転スワールに分割される
ことを特徴とする請求項13に記載の対向ピストン式ディーゼルエンジン。
One or more swirl offset mechanisms (202, 204) cause the intake air to the combustion chamber to generate at least two co-rotating swirls formed in front of each injector where a large swirl is generated and fuels the combustion chamber. The opposed-piston diesel engine according to claim 13 , which is divided.
スワール相殺機構(202、204)は、各々のピストンクラウンに隆起突出部を備え、隆起突出部により吸気の吸気流を燃焼室に対して2つの共回転スワールに分割するように、対向ピストンの上死点位置で隆起突出部が重なり合う  The swirl offset mechanism (202, 204) has a raised protrusion on each piston crown, and the raised protrusions separate the intake air intake flow into two co-rotating swirls with respect to the combustion chamber. Raised protrusions overlap at the dead center position
ことを特徴とする請求項14に記載の対向ピストン式ディーゼルエンジン。The opposed-piston diesel engine according to claim 14, wherein:
さらに、圧縮比変更機構(522)を備え、
該圧縮比変更機構は、2つのピストンの位相を変更するための少なくとも1つの位相器と、2つのクランクシャフトの間隔を変更するための移動機構と、を有する
ことを特徴とする請求項13から15のいずれか1項に記載の対向ピストン式ディーゼルエンジン。
Furthermore, a compression ratio changing mechanism (522) is provided,
The compression ratio changing mechanism includes at least one phase shifter for changing the two pistons of the phase, a moving mechanism for changing the distance between the two crankshafts, claim 13, characterized in that it has a The opposed piston type diesel engine according to any one of 15 .
さらに、燃焼室に供給される吸気の圧力を上昇させるターボ過給機(510)を備える
ことを特徴とする請求項13から16のいずれか1項に記載の対向ピストン式ディーゼルエンジン。
The opposed piston type diesel engine according to any one of claims 13 to 16, further comprising a turbocharger (510) for increasing a pressure of intake air supplied to the combustion chamber.
一連の目標エンジンパラメータは、燃焼室内のエネルギ密度を減少させることによってピーク温度を低下させるための、現在の圧縮比からより小さな圧縮比への変動を含む
ことを特徴とする請求項13から17のいずれか1項に記載の対向ピストン式ディーゼルエンジン。
18. The set of target engine parameters includes a change from a current compression ratio to a smaller compression ratio to reduce peak temperature by reducing energy density in the combustion chamber . The opposed piston type diesel engine according to any one of the preceding claims.
JP2015520665A 2012-07-02 2013-07-02 Variable compression ratio diesel engine Pending JP2015522122A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261667369P 2012-07-02 2012-07-02
US61/667,369 2012-07-02
PCT/US2013/049160 WO2014008309A2 (en) 2012-07-02 2013-07-02 Variable compression ratio diesel engine

Publications (2)

Publication Number Publication Date
JP2015522122A JP2015522122A (en) 2015-08-03
JP2015522122A5 true JP2015522122A5 (en) 2016-08-18

Family

ID=48795949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015520665A Pending JP2015522122A (en) 2012-07-02 2013-07-02 Variable compression ratio diesel engine

Country Status (7)

Country Link
US (1) US9316150B2 (en)
EP (1) EP2872765B1 (en)
JP (1) JP2015522122A (en)
KR (1) KR20150023908A (en)
CN (1) CN104583565A (en)
BR (1) BR112015000026A2 (en)
WO (1) WO2014008309A2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7559298B2 (en) 2006-04-18 2009-07-14 Cleeves Engines Inc. Internal combustion engine
US8413619B2 (en) 2010-10-08 2013-04-09 Pinnacle Engines, Inc. Variable compression ratio systems for opposed-piston and other internal combustion engines, and related methods of manufacture and use
US9650951B2 (en) 2010-10-08 2017-05-16 Pinnacle Engines, Inc. Single piston sleeve valve with optional variable compression ratio capability
US8881708B2 (en) 2010-10-08 2014-11-11 Pinnacle Engines, Inc. Control of combustion mixtures and variability thereof with engine load
DE102011111761A1 (en) * 2011-08-24 2013-02-28 Meta Motoren- Und Energie-Technik Gmbh Method for operating a reciprocating internal combustion engine with internal Abgasenergierekuperation and reciprocating internal combustion engine
WO2015013696A1 (en) 2013-07-26 2015-01-29 Pinnacle Engines, Inc. Early exhaust valve opening for improved catalyst light off
KR101646384B1 (en) * 2014-11-21 2016-08-05 현대자동차주식회사 Turbocharger Control Duty Compensation Method
KR101894693B1 (en) * 2015-04-20 2018-09-04 닛산 지도우샤 가부시키가이샤 Engine control device and engine control method
DE102016203436B4 (en) * 2016-03-02 2017-11-30 Continental Automotive Gmbh Method and device for determining an injection time for injecting a fuel
US9816454B1 (en) * 2016-06-30 2017-11-14 GM Global Technology Operations LLC System and method for controlling an engine based on piston temperature deviation
US10500000B2 (en) * 2016-08-16 2019-12-10 Ethicon Llc Surgical tool with manual control of end effector jaws
GB2565050B (en) * 2017-07-27 2020-06-17 Dolphin N2 Ltd Split cycle engine with peak combustion temperature control
EP3748144A1 (en) * 2019-06-03 2020-12-09 Winterthur Gas & Diesel AG Large motor and method for operating a large motor
US11598259B2 (en) 2019-08-29 2023-03-07 Achates Power, Inc. Hybrid drive system with an opposed-piston, internal combustion engine
NL2024838B1 (en) * 2020-02-05 2021-09-13 Andreas Van Oosten Mattheus Internal combustion engine
CN112632867B (en) * 2020-12-21 2022-08-23 北京理工大学 Design method and control method for minimum compression ratio of diesel engine

Family Cites Families (126)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US367496A (en) 1887-08-02 atkinson
US1082004A (en) 1913-12-23 Gen Electric Governing internal-combustion engines.
US1472549A (en) 1923-10-30 Internal-combustion engine
US1459819A (en) 1923-06-26 Clarence e
US1097947A (en) 1914-05-26 Allan D Shaw Internal-combustion engine.
US1316977A (en) 1919-09-23 Cardo
FR348575A (en) 1903-12-05 1905-04-17 Francis Lyst Internal combustion machine and petroleum engine
GB190902015A (en) 1909-01-27 1909-08-05 Eugene Guy Euston Beaumont Improved Method of and Means for Automatically Varying the Volume of the Compression Chamber in Internal Combustion Engines.
US1140987A (en) 1913-09-19 1915-05-25 Frederick E Kube Engine-cooling system.
US1258524A (en) 1915-11-02 1918-03-05 John Franklin Berry Internal-combustion engine.
FR497282A (en) 1918-04-04 1919-12-02 Georges Rene Eugene Briens Explosion engine without valves
US1453304A (en) 1919-08-15 1923-05-01 James A Charter Explosive engine
US1497206A (en) 1919-12-23 1924-06-10 John G Booton Regulating valve control for internal-combustion engines
US1502291A (en) 1920-09-07 1924-07-22 George E Conway Valve for motors
US1377798A (en) 1920-12-22 1921-05-10 Berckenhoff Hemke Cylindrical or sleeve valve
US1550643A (en) 1923-07-12 1925-08-18 Bullington Motors Reciprocatory internal-combustion engine
US1644954A (en) 1924-11-12 1927-10-11 Shearer James Reciprocating engine
US1634768A (en) 1925-05-15 1927-07-05 Bonner Charter Corp Engine lubrication
US1673340A (en) 1925-06-16 1928-06-12 Panhard & Levassor Sleeve-valve engine
US1773971A (en) 1927-08-25 1930-08-26 William C Dunn Slide-valve motor
US1856242A (en) 1927-09-30 1932-05-03 Aix Fritz C L D Internal combustion engine
US1823770A (en) 1928-11-26 1931-09-15 Tartrais Eugene Henri Engine of the two-stroke type
US1837870A (en) 1928-12-03 1931-12-22 Johnston Tractors Company Ltd Double piston single cylinder internal combustion engine
US1812323A (en) 1929-06-10 1931-06-30 Davison Engineering Corp Internal combustion engine
US1819897A (en) 1929-10-26 1931-08-18 Johnson Hamilton Internal combustion engine
US1889946A (en) 1930-01-15 1932-12-06 Headless Multiple Motor Corp Gas engine
GB382670A (en) 1930-08-09 1932-10-31 Adolphe Kegresse Improvements in or relating to the feeding of two- or more-cylinder internal combustion engines
US2121409A (en) 1934-10-19 1938-06-21 Ricardo Harry Ralph Two-stroke internal-combustion engine
DE643470C (en) 1935-02-06 1937-04-08 Ernst Schmid Internal combustion engine
FR805866A (en) 1935-04-06 1936-12-02 United Aircraft Corp Improvements relating to engines of the distribution sleeve type
US2090889A (en) 1935-05-16 1937-08-24 Howald Werner Internal combustion engine
US2199625A (en) 1937-06-11 1940-05-07 Fiala-Fernbrugg Benno Double-piston internal combustion engine
GB534161A (en) 1939-01-03 1941-02-28 Milo Ab Improvements in or relating to internal combustion engines of the four-stroke cycle type
GB542009A (en) 1940-06-18 1941-12-22 Arthur John Rowledge Improvements in or relating to liquid-cooling systems for sleevevalve internal-combustion engines
US2273179A (en) 1940-08-30 1942-02-17 Davison Douglas Corp Rotary valve and lubrication thereof
US2401188A (en) 1943-03-01 1946-05-28 Gen Electric Internal-combustion engine with variable compression ratio
US2409761A (en) 1945-02-24 1946-10-22 Gen Motors Corp Sleeve valve engine
GB635664A (en) 1948-01-23 1950-04-12 George Urban Leonard Sartoris Improvements in high-speed air and gas compressors
US2686507A (en) 1952-03-06 1954-08-17 Lombardi Leo Sleeve valve system
US2773490A (en) 1952-09-23 1956-12-11 Miller Ralph High expansion, spark ignited, gas burning, internal combustion engines
GB746820A (en) 1953-11-06 1956-03-21 English Electric Co Ltd Improvements in and relating to two-stroke cycle internal combustion engines
US2937631A (en) 1956-04-18 1960-05-24 Charles A Coyle High efficiency internal combustion engine
US2817322A (en) 1956-04-30 1957-12-24 Miller Ralph Supercharged engine
US2858816A (en) 1957-10-08 1958-11-04 Leon A Prentice Internal combustion engines of the variable compression type
US3533429A (en) 1967-11-22 1970-10-13 Stanford Research Inst Pneumatically operated valve
US3485221A (en) 1967-12-11 1969-12-23 Ralph S Feeback Omnitorque opposed piston engine
US3780719A (en) 1971-07-30 1973-12-25 A Weiertz Internal combustion engine
US3961607A (en) 1972-05-12 1976-06-08 John Henry Brems Internal combustion engine
JPS5930899B2 (en) 1973-02-01 1984-07-30 隆弘 上野 Braking method and device for internal combustion engine
US3948241A (en) 1973-08-02 1976-04-06 Melchior Frederick C Lubricating and sealing system for internal combustion engines
IT1055604B (en) 1975-08-27 1982-01-11 Grandi Motori Trieste Spa CYLINDER SHIRT WITH INTERNAL COOLING PIPES FOR INTERNAL COMBUSTION ALTERNATIVE ENGINES
GB1516982A (en) 1975-09-15 1978-07-05 Jones R Reciprocating piston heat engines
US4057040A (en) 1976-04-12 1977-11-08 Wax Archie E Internal combustion engine system
US4104995A (en) 1976-12-15 1978-08-08 Rolf Steinbock Variable compression engine
US4187807A (en) 1978-02-22 1980-02-12 Caterpillar Tractor Co. Cooled engine valve with improved heat transfer
JPS56106040A (en) 1980-01-29 1981-08-24 Nippon Denso Co Ltd Engine controlling method
JPS627909Y2 (en) 1981-01-12 1987-02-24
JPS57185689A (en) 1981-05-09 1982-11-15 Nippon Soken Multipoint ignition plug
US4516537A (en) 1982-03-24 1985-05-14 Daihatsu Motor Company Variable compression system for internal combustion engines
US4928658A (en) 1985-10-02 1990-05-29 Ferrenberg Allan J Regenerative internal combustion engine
JP2545357Y2 (en) * 1986-11-13 1997-08-25 日産自動車 株式会社 Combustion chamber of a swirl chamber type diesel engine
US5058536A (en) * 1987-01-28 1991-10-22 Johnston Richard P Variable-cycle reciprocating internal combustion engine
WO1988005862A1 (en) * 1987-01-28 1988-08-11 Johnston Richard P Variable-cycle reciprocating internal combustion engine
US4856463A (en) 1987-01-28 1989-08-15 Johnston Richard P Variable-cycle reciprocating internal combustion engine
JPH0517455Y2 (en) 1987-03-31 1993-05-11
US4815421A (en) 1987-05-18 1989-03-28 Paul Marius A Internal combustion engine with adjustable flow exhaust system
US4838214A (en) 1987-06-18 1989-06-13 Barrett George M Internal combustion engine assembly
JPH0658046B2 (en) 1988-06-10 1994-08-03 孝夫 高草 Reciprocating piston engine sleeve end valve
US4876992A (en) 1988-08-19 1989-10-31 Standard Oil Company Crankshaft phasing mechanism
US5113805A (en) 1989-12-12 1992-05-19 Isuzu Ceramics Research Institute Co., Ltd. Variable-cycle engine
US5025757A (en) 1990-09-13 1991-06-25 Larsen Gregory J Reciprocating piston engine with a varying compression ratio
US5054438A (en) 1990-09-19 1991-10-08 Jiro Takashima Floating cylinder internal combustion engine
US5127375A (en) 1991-04-04 1992-07-07 Ford Motor Company Hydraulic valve control system for internal combustion engines
US5159906A (en) 1991-05-03 1992-11-03 Ford Motor Company Adjustable valve system for an internal combustion engine
US5255637A (en) 1992-04-30 1993-10-26 Ford Motor Company Internal combustion engine with adaptive control of compression ratio
US5803042A (en) 1992-07-27 1998-09-08 Bortone; Cesare Valves and valve timing for internal combustion engine
RU2136918C1 (en) 1993-06-26 1999-09-10 Ковентри Юниверсити Internal combustion engine and method of its operation
US5507253A (en) 1993-08-27 1996-04-16 Lowi, Jr.; Alvin Adiabatic, two-stroke cycle engine having piston-phasing and compression ratio control system
US5445117A (en) 1994-01-31 1995-08-29 Mendler; Charles Adjustable valve system for a multi-valve internal combustion engine
US5623894A (en) 1995-11-14 1997-04-29 Caterpillar Inc. Dual compression and dual expansion engine
JPH09280370A (en) 1996-04-08 1997-10-28 Nabco Ltd Cylinder device
JPH1038083A (en) 1996-07-25 1998-02-13 Akebono Brake Ind Co Ltd Boot for fitted part
US6230683B1 (en) 1997-08-22 2001-05-15 Cummins Engine Company, Inc. Premixed charge compression ignition engine with optimal combustion control
US6039011A (en) 1997-03-05 2000-03-21 The American University Of Baku Internal combustion engine with opposed pistons
JPH10311231A (en) 1997-05-12 1998-11-24 Toyota Motor Corp Output controller for internal combustion engine
US6125801A (en) 1997-11-25 2000-10-03 Mendler; Edward Charles Lean-burn variable compression ratio engine
DE19813398C1 (en) 1998-03-26 1999-09-09 Blodig Compression ratio and timing setting device for i.c engine e.g. 2-stroke engine
JP2002529635A (en) 1998-10-30 2002-09-10 ポーレット メルモス ウォルターズ,クリストファー Valve control mechanism
US6230671B1 (en) * 1998-11-02 2001-05-15 Raymond C. Achterberg Variable compression and asymmetrical stroke internal combustion engine
US6205963B1 (en) 1999-04-06 2001-03-27 Jim W Davies High power density, low emission internal combustion engine
JP3059162B1 (en) * 1999-06-02 2000-07-04 三菱電機株式会社 Valve timing control device for internal combustion engine
JP4149621B2 (en) 1999-09-03 2008-09-10 邦彦 奥平 Opposed piston type 2-cycle uniflow type engine
KR100404291B1 (en) 1999-12-03 2003-11-05 닛산 지도우샤 가부시키가이샤 Intake-air quantity control apparatus for internal combustion engines
JP4053201B2 (en) 1999-12-21 2008-02-27 株式会社日立製作所 Variable valve operating device for internal combustion engine
DE10023442A1 (en) 2000-05-12 2001-11-15 Ullrich Meyer Reciprocating engine; has two cylinders arranged at obtuse angle, which form common combustion chamber and pistons moving in cylinders in opposite directions
AU2001221068A1 (en) * 2000-12-15 2002-06-24 Halimi, Edward Mayer Internal combustion engine with a single crankshaft and having opposed cylinderswith opposed pistons
JP2004239182A (en) 2003-02-06 2004-08-26 Toyota Motor Corp Engine piston drive mechanism
US7004119B2 (en) 2003-04-09 2006-02-28 Dimitrios Dardalis Apparatus and method for rotating sleeve engine hydrodynamic seal
US20040244758A1 (en) 2003-06-06 2004-12-09 Cummins Inc. Method for increasing the displacement of an internal combustion engine and engine having increased displacement thereby
JP4325492B2 (en) 2003-06-17 2009-09-02 トヨタ自動車株式会社 Control apparatus and method for variable valve
JP2005113839A (en) 2003-10-09 2005-04-28 Toyota Motor Corp Variable compression ratio internal combustion engine
DE102004032452A1 (en) 2004-07-05 2006-01-26 Daude, Otto, Dr.-Ing. Gas exchange control for piston engines
DE202006020546U1 (en) 2005-07-08 2009-01-08 Daude, Otto, Dr.-Ing. Piston engines with sliding bushes and gas exchange control
GB2428450B (en) 2005-07-15 2007-08-01 Lotus Car Opposed piston engine with variable timing
SE529094C2 (en) * 2005-09-06 2007-05-02 Hcci Technology Ab 2-stroke variable compression engine
GB0521960D0 (en) * 2005-10-28 2005-12-07 Leonard Gregory L Improved internal combustion engine
GB2432398B (en) 2005-11-18 2008-08-13 Lotus Car Reciprocating piston sleeve valve engine
GB2438206B (en) 2006-01-23 2009-02-04 Lotus Car A two-stroke internal combustion engine with variable compression ratio and an exhaust port shutter
US7559298B2 (en) 2006-04-18 2009-07-14 Cleeves Engines Inc. Internal combustion engine
FR2900683A1 (en) * 2006-05-05 2007-11-09 Max Louis Maurice Hostache Internal combustion engine e.g. petrol spark ignition engine, has pistons independently connected to crankshafts by connecting rods, where cumulative strokes of pistons during pressure relief phase are higher than during intake phase
FR2900974B1 (en) 2006-05-15 2008-08-08 Renault Sas METHOD FOR DETECTING COMBUSTION LOSS AND APPLICATION TO CONTROL OF A VARIABLE COMPRESSION RATE (VCR) ENGINE
US20080127947A1 (en) * 2006-11-30 2008-06-05 Advanced Propulsion Technologies, Inc. OPOC engine
US7584724B2 (en) 2007-10-30 2009-09-08 Ford Global Technologies, Llc Variable compression ratio dual crankshaft engine
MY165334A (en) * 2007-11-08 2018-03-21 Two Heads Llc Monoblock valveless opposing piston internal combustion engine
US8210147B2 (en) 2008-07-18 2012-07-03 Grace Capital partners, LLC Sliding valve aspiration system
US20100147269A1 (en) 2008-11-23 2010-06-17 Cleeves Engines Inc. Internal Combustion Engine With Optimal Bore-To-Stroke Ratio
US8573178B2 (en) 2009-02-24 2013-11-05 Pinnacle Engines, Inc. Sleeve valve assembly
US8544445B2 (en) * 2010-03-09 2013-10-01 Pinnacle Engines, Inc. Over-compressed engine
US8413619B2 (en) * 2010-10-08 2013-04-09 Pinnacle Engines, Inc. Variable compression ratio systems for opposed-piston and other internal combustion engines, and related methods of manufacture and use
TWI460347B (en) 2009-08-20 2014-11-11 Pinnacle Engines Inc High swirl engine
JP5540729B2 (en) * 2010-01-27 2014-07-02 マツダ株式会社 Control method and control apparatus for supercharged engine
CN102844540A (en) * 2010-02-13 2012-12-26 麦卡利斯特技术有限责任公司 Methods and systems for adaptively cooling combustion chambers in engines
EP2547868B1 (en) * 2010-04-27 2016-08-03 Achates Power, Inc. Combustion chamber constructions for opposed-piston engines
US9163505B2 (en) * 2010-08-16 2015-10-20 Achates Power, Inc. Piston constructions for opposed-piston engines
US9650951B2 (en) 2010-10-08 2017-05-16 Pinnacle Engines, Inc. Single piston sleeve valve with optional variable compression ratio capability
GB2493061A (en) * 2011-07-15 2013-01-23 Ecomotors Internat Inc Opposed piston engine with toroidal combustion chamber

Similar Documents

Publication Publication Date Title
JP2015522122A5 (en)
US9988991B2 (en) Cylinder pressure based control of dual fuel engines
JP6315005B2 (en) Control device for internal combustion engine
US9677495B2 (en) Fuel rail pressure control systems and methods
Wu et al. Three-dimensional CFD (computational fluid dynamics) analysis of scavenging process in a two-stroke free-piston engine
JP6414152B2 (en) Control device for internal combustion engine
DE102014217955A1 (en) Systems and methods for injecting gaseous fuel during an exhaust stroke to reduce the turbo lag
EP2511505B1 (en) Combustion control device
US10309325B2 (en) Control device for internal combustion engine
JP2015183599A5 (en)
JP2013064387A5 (en)
PH12014502105A1 (en) Controller of internal combustion engine with supercharger
US10570840B2 (en) System and method generating an exotherm in an exhaust system
JP2018040264A (en) Control device for internal combustion engine
JP6081248B2 (en) Ignition control device for internal combustion engine
CN106321270A (en) Control method of coupling fuel injection timing strategy based on heavy-duty diesel engine variable valve timing technology
JP2018040263A (en) Control device for internal combustion engine
JP2013036462A5 (en)
JP2010530934A (en) Controlling method of controlled automatic ignition (CAI) combustion process
JP2013057268A5 (en)
JP2013015023A (en) Control device for direct-injection engine
US10907567B2 (en) System and method for operating a fuel injector
MY170774A (en) Fuel injection control device and fuel injection control method
JP6057022B2 (en) Diesel engine control device and control method
JP6452816B2 (en) Engine control device