US367496A - atkinson - Google Patents
atkinson Download PDFInfo
- Publication number
- US367496A US367496A US367496DA US367496A US 367496 A US367496 A US 367496A US 367496D A US367496D A US 367496DA US 367496 A US367496 A US 367496A
- Authority
- US
- United States
- Prior art keywords
- engine
- cylinder
- gas
- piston
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000007906 compression Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 6
- 238000010276 construction Methods 0.000 description 4
- 238000009432 framing Methods 0.000 description 4
- 241000731961 Juncaceae Species 0.000 description 2
- 241000005139 Lycium andersonii Species 0.000 description 2
- 230000000875 corresponding Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000002360 explosive Substances 0.000 description 2
- 230000002349 favourable Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/04—Engines with variable distances between pistons at top dead-centre positions and cylinder heads
- F02B75/048—Engines with variable distances between pistons at top dead-centre positions and cylinder heads by means of a variable crank stroke length
Definitions
- This invention is for the purpose of getting similar results with a different construction of engine.
- the engine has an inclined cylinder, A,
- the cylinder A is closed at its lower end by a cover, in which passages for the inlet of gas and air and outlet for the exhaust are formed.
- the other 5 3 end is left open, and a single-acting piston, B, is fitted.
- the piston is connectedby a link or links, 0, (hereinafter called the pistonlink,) to a pin, D, which is fixed in a connecting-rod, E, the connecting-rod E being attached to the crank F.
- the upper end of the rod E is fitted with another pin, G, forming a T-head to it.
- Fig. 1 shows the position of the crank-pin F, the various rods, and the piston at the end of the exhausting stroke, and while in this position the piston may be worked as close to the cover as is consistent with safety, so that the residuum may be thoroughly expelled, if desired.
- the crank F revolves in the direction shown by the arrow, the piston Bis S5 moved into the position shown in Fig. 2.
- the gas and air, forming an intimate and homogeneous explosive mixture are drawn into the cylinder A.
- the crank F continuing to revolve, w moves 0 the piston B back so as to compress the charge until the position shown in Fig.
- the relative proportions of the capacities in the cylinder A when in the position shown in Figs. 1 and 3 may be varied by altering the distance apart of the pins D and G,- or their relative positions to the crank-pin and the position of the main-shaft center. If these pins coincide, these capacities will be the same, and the fartherapart they are the greater their difference, provided that the maiu-shaft center is so placed that the T end of the connectingrod E, the piston-link C, and the vibrating links H are more in a straight line when in position shown in Fig. 1 than they are when in that shown in Fig. 3.
- the center-pin I may be placed on the axial line of the cylinder B; but I prefer to place it to one side, partly to get abetter action of the piston and partly to keep the angle of the piston-link C more favorable while the workingu stroke is being made.
- the relative proportions of the capacities in the cylinder A when in the position shown in Figs. 2 and 4 define the amount of expansion. These capacities are varied, chiefly, by moving the crankshaft center nearer to the axial line of the cylinder A, to increase the amount of expansion, or farther away to decrease the expansion.
- the center-pin I is placed on the axial line of the cylinder A, the centers D and G made to coincide,and the crank-shaft center so placed that the centers 1) and G are caused to work to the same distance on either side of the axial li ne,the engine would expand to original volume,and could be caused to work in either direction; also, if a pump fitted with a singleacting piston worked in the same manner for drawing in and compressing .the gas and air were combined with the working-cylinder, so that the pump drew in, compressed, and delivered into the working-cylinder two charges for each revolution of the crank v shaft, the working-cylinder would give two workingstrokes for each revolution, and the engine would be double-acting.
- the necessary valves for the admission of gas and air for governing the engine, for cansing the ignition, and letting out the exhaust may be variously arranged to suit the conditions under which the engine has to work.
- the admission and governor valve is shown in Fig. 8, Sheet III.
- the gas is drawn through a number of holes in the seating of the valve M, (hereinafter called the mixing-valve,) and the air through a greater number of holes, also in the seating ofthe valve M, and sometimes also in the inner area of this seating.
- This valve consists of a light metallic disk kept up to its seating by a light spring just strong enough to prevent gas passing the valve M when it is closed. A piece of india-rubher or other suitable material may be placed between the metallic disk of the valve and the seating, so as to make it perfectly tight.
- the gas and air are then drawn through the suction-valve N.
- This valve also operates as a governor in the following manner:
- the suction of the gas and air when being drawn into the cylinder opens the valve against the pressure of the light spring 0, when it is prevented opening any farther by the stronger spring,P. If, however, the speed of the engine increases beyond a predetermined amount, the increased pressure of the rush of gas and air past the suction-valve overcomes the stronger spring, P, and the valve N closes onto the lower seat, thus preventing the admission of any more gas and air into the cylinder, which makes the next working-stroke with a reduced charge and develops less power.
- the spring P is fun ther compressed to increase the speed of the engine and slackened to decrease the speed.
- the valve L in the exhanstpipe prevents exhaust being drawn back into the engine when the governor-valve cuts off some of the charge, and also if the spring on the exhaust-valve K should be too weak to hold it down against the partial vacuum in the cylinder during the time the charge is being drawn in.
- the ignition is caused by means of a small tube, Y, kept red-hot by means of an external flame, and is accurately timed by means of a small slide, Q, driven by a cam or eccentric on the main shaft. Just immediately before the de sired time of ignition-that is to say, when the engine is in the position shown in Fig.
- Sheet I-a small hole through the slide is made to coincidewith a hole in the outer slide-cover leading to the inside of the igniting-tube, which has its outer end closed, (see Fig. 9,) and another hole leading to the inside of the cylinder or the passage thereto from the inletvalve.
- the charge is compressed in the cylinder.
- the slide opens a passage from the inside of the tube to the atmosphere, and thus lets out any pressure that might otherwise be shut inside the tube and prevent the ignition taking place.
- the ignition may also be caused by electricity or any other known means.
- the cylinder may be placed vertically or horizontally, and more than one cylinder may be connected together, so as to form a combined engine.
- the rods and working-centers may be variously arranged, the essential part being the peculiar toggle movement, which enables the desired movement of the piston B to be obtained.
- a singleacting piston connected by means of rods and i levers to a single crank-pin F, said piston making two outward and two inward strokes for each revolution of the crankpin, the said crank-pin being the only revolving part of the mechanism, substantially as set forth.
- the singleacting cylinder A and piston B in combination with the rods 0 E H and the crank-pin F, substantially as and for the purpose set forth.
- the combination of the rods 0 E H. with the piston B and crank-pin F whereby the toggle motion is obtained, as described.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
Description
- (No Model.) '5 Sheets-Sheet 1. r
J. ATKINSON.
GAS ENGINE.
.No. 367,496. Patented Aug. 2, 1887.
(No Model.) 5 Sheets-Sheet 2.
J. ATKINSON.
GAS ENGINE.
No. 367.496. Patented Aug. 2,1887.
no Model.) 5 Sheets-Sheet a. J. ATKINSON.
GAS ENGINE,
.No. 367,496. Patented Aug. 2, 1887.
fig 6.
no Model.) V 5 Sheets-Sheet 4. J. ATKINSON.
GAS ENGINE. No. 367,496. Patented Aug. 2, 1887.,
(No Model.) 5 Sheets-Shet 5.
J. ATKINSON.
GAS ENGINE- No. 367,496. Patented Aug. 2,1887.
* MW fi UNITED STATES PATENT OFFICE.
JAMES ATKINSON, OF HAMPSTEAD, COUNTY OF MIDDLESEX, ENGLAND.
GAS-ENGINE.
SPECIFICATION forming part of Letters Patent No. 367,396, dated August 2, 1887.
Application filed October 13, 1886.
. 1 1 Serial No. 216,141. (No model.) Patented in England MarchlQ, 1886, No. 3,522; in France July 2, 1886, No. 177,151; in Belgium July-3, 1886; in Germany July 13, 1886, No. 36,083; in Sweden September-11,1886, and
in Norway February 16, 1887.
.To all whom it may concern:
Be it known that I, JAMES ATKINSON, a subject of the Queen of England, residing at Hampstead, in the county of Middlesex and Kingdom of England, have invented new and useful Improvementsin Gas-Engines, of which the following is a specification, the same having been patented in the following countries: England, March 12, 1886, No. 3,522, France, July 2, 1886, No. 177,151; Belgium, July 3, 1886; Norway, February 16, 1887 Sweden, September 11, 1886 Germany, July 13, 1886, No. 39,083.
The gas-engines constructed in accordance with my Letters Patent No. 336,505, dated February 16, 1886,, have in actual practice proved to be economical and reliable. There are, however, some conditions of working under which they might not be of the most suitable form.
This invention is for the purpose of getting similar results with a different construction of engine.
On referring to the specification to my Letters Patent No. 336,505 it will be seen that the power was developed in a very short spaceot time, and the expansion of the ignited compressed charge was continued to a larger volume than the original uncompressed charge. (In practice twice this volume has been found to give good results.) Owing to these advantages I have been able to obtain a more economieal result than has been previously attained, so far as I know, by any other construction of gas-engine. In this invention I retain these proved advantages.
I construct my improved engine as described in this specification, and as illustrated in the accompanying drawings, in which- Figures 1, 2, 3, 4, Sheet I, are diagrammatical views showing four positions of the moving parts of the engine corresponding to four positions of the crank-pin. Fig. 5, Sheet II, is asectional elevation. Fig. 6, Sheet III, is an elevation. Fig. 7, Sheet IV, is a plan; and Figs. 8 and 9, Sheet V, are separate views of details of the engine.
The engine has an inclined cylinder, A,
formed by forcinga cylindrical liner into a portion of the main framing of the engine, the space between this portion of the framing and the liner forming a water-jacket. The cylinder A is closed at its lower end by a cover, in which passages for the inlet of gas and air and outlet for the exhaust are formed. The other 5 3 end is left open, and a single-acting piston, B, is fitted. The piston is connectedby a link or links, 0, (hereinafter called the pistonlink,) to a pin, D, which is fixed in a connecting-rod, E, the connecting-rod E being attached to the crank F. The upper end of the rod E is fitted with another pin, G, forming a T-head to it. To thepin G one end of the links or link H is attached, the other ends or end being connected to a fixed center, I, (hereinafter called the center-pin, the links H, which vibrate round the center-pin, being called the vibrating links) A From an examination of Figs. 1, 2, 3, and 4, Sheet I, it will be seen that the piston B has a peculiar motion imparted to it by the revolution of the crank-pin F, and this peculiar motion enables the whole cycle of operations necessary to a compression gas-engine to be performed by one piston in a single-acting 7 cylinder, and gives a working-stroke for each revolution.
Fig. 1 shows the position of the crank-pin F, the various rods, and the piston at the end of the exhausting stroke, and while in this position the piston may be worked as close to the cover as is consistent with safety, so that the residuum may be thoroughly expelled, if desired. As the crank F revolves in the direction shown by the arrow, the piston Bis S5 moved into the position shown in Fig. 2. During this movement the gas and air, forming an intimate and homogeneous explosive mixture, are drawn into the cylinder A. The crank F, continuing to revolve, w moves 0 the piston B back so as to compress the charge until the position shown in Fig. 3 is reached, when the charge is ready for ignition, after which the increased pressure due to the ignition drives the piston 13 into the position 5 shown in Fig. 4, thus imparting power to the crank-shaft F, the stored-up energy carrying the shaft round during the rest of the revolution, the exhaust being driven out while the engine is passing from the position shown in Fig. 4. to that shown in Fig. 1.
The relative proportions of the capacities in the cylinder A when in the position shown in Figs. 1 and 3 may be varied by altering the distance apart of the pins D and G,- or their relative positions to the crank-pin and the position of the main-shaft center. If these pins coincide, these capacities will be the same, and the fartherapart they are the greater their difference, provided that the maiu-shaft center is so placed that the T end of the connectingrod E, the piston-link C, and the vibrating links H are more in a straight line when in position shown in Fig. 1 than they are when in that shown in Fig. 3.
The center-pin I may be placed on the axial line of the cylinder B; but I prefer to place it to one side, partly to get abetter action of the piston and partly to keep the angle of the piston-link C more favorable while the workingu stroke is being made.
The relative proportions of the capacities in the cylinder A when in the position shown in Figs. 2 and 4 define the amount of expansion. These capacities are varied, chiefly, by moving the crankshaft center nearer to the axial line of the cylinder A, to increase the amount of expansion, or farther away to decrease the expansion.
If the center-pin I is placed on the axial line of the cylinder A, the centers D and G made to coincide,and the crank-shaft center so placed that the centers 1) and G are caused to work to the same distance on either side of the axial li ne,the engine would expand to original volume,and could be caused to work in either direction; also, if a pump fitted with a singleacting piston worked in the same manner for drawing in and compressing .the gas and air were combined with the working-cylinder, so that the pump drew in, compressed, and delivered into the working-cylinder two charges for each revolution of the crank v shaft, the working-cylinder would give two workingstrokes for each revolution, and the engine would be double-acting.
The necessary valves for the admission of gas and air for governing the engine, for cansing the ignition, and letting out the exhaust may be variously arranged to suit the conditions under which the engine has to work.
I will now proceed to describe an engine embodying my improvements by reference to Sheets II, III, IV, andVof the accompanying drawings. In this engine the exhaust-valve K is of a form very commonly used for this purpose, and is shown worked by an eccentric through a wayshaft and levers. A simple nonreturn valve, L, is placed in the exhaust-pipe, which prevents any of the exhaust being drawn back into the cylinder when the governorvalve operates to prevent the admission of a full working-charge into the cylinder, as will be hereinafter explained.
The admission and governor valve is shown in Fig. 8, Sheet III. The gas is drawn through a number of holes in the seating of the valve M, (hereinafter called the mixing-valve,) and the air through a greater number of holes, also in the seating ofthe valve M, and sometimes also in the inner area of this seating. This valve consists of a light metallic disk kept up to its seating by a light spring just strong enough to prevent gas passing the valve M when it is closed. A piece of india-rubher or other suitable material may be placed between the metallic disk of the valve and the seating, so as to make it perfectly tight. The gas and air are then drawn through the suction-valve N. This valve also operates as a governor in the following manner: The suction of the gas and air when being drawn into the cylinder opens the valve against the pressure of the light spring 0, when it is prevented opening any farther by the stronger spring,P. If, however, the speed of the engine increases beyond a predetermined amount, the increased pressure of the rush of gas and air past the suction-valve overcomes the stronger spring, P, and the valve N closes onto the lower seat, thus preventing the admission of any more gas and air into the cylinder, which makes the next working-stroke with a reduced charge and develops less power. The spring P is fun ther compressed to increase the speed of the engine and slackened to decrease the speed. The valve L in the exhanstpipe prevents exhaust being drawn back into the engine when the governor-valve cuts off some of the charge, and also if the spring on the exhaust-valve K should be too weak to hold it down against the partial vacuum in the cylinder during the time the charge is being drawn in. The ignition is caused by means of a small tube, Y, kept red-hot by means of an external flame, and is accurately timed by means of a small slide, Q, driven by a cam or eccentric on the main shaft. Just immediately before the de sired time of ignition-that is to say, when the engine is in the position shown in Fig. 3, Sheet I-a small hole through the slide is made to coincidewith a hole in the outer slide-cover leading to the inside of the igniting-tube, which has its outer end closed, (see Fig. 9,) and another hole leading to the inside of the cylinder or the passage thereto from the inletvalve. At this time the charge is compressed in the cylinder. Some of it rushes into the redhot tube, is ignited, and fires the charge in the cylinder. During some other part of the stroke of the slide-valve, preferably shortly before the time of ignition, the slide opens a passage from the inside of the tube to the atmosphere, and thus lets out any pressure that might otherwise be shut inside the tube and prevent the ignition taking place. The ignition may also be caused by electricity or any other known means.
In some instances it may be desirable to use only one slide for the admission of gas and air and for causing the ignition.
The cylinder may be placed vertically or horizontally, and more than one cylinder may be connected together, so as to form a combined engine.
The rods and working-centers may be variously arranged, the essential part being the peculiar toggle movement, which enables the desired movement of the piston B to be obtained.
Having fully described my invention, what I desire to claim, and secure by Letters Patent, 1s-
1. In a compression gas-engine, a singleacting piston connected by means of rods and i levers to a single crank-pin F, said piston making two outward and two inward strokes for each revolution of the crankpin, the said crank-pin being the only revolving part of the mechanism, substantially as set forth. 2. In a compression gas-engine, the singleacting cylinder A and piston B, in combination with the rods 0 E H and the crank-pin F, substantially as and for the purpose set forth. 3. In a compression gas-engine, the combination of the rods 0 E H. with the piston B and crank-pin F, whereby the toggle motion is obtained, as described.
JAMES ATKINSON.
\Vitnesses:
GEORGE EDWARD PRIDDLE, J AMES PARTHENAY ROCK.
Publications (1)
Publication Number | Publication Date |
---|---|
US367496A true US367496A (en) | 1887-08-02 |
Family
ID=2436514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US367496D Expired - Lifetime US367496A (en) | atkinson |
Country Status (1)
Country | Link |
---|---|
US (1) | US367496A (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3021825A (en) * | 1957-10-01 | 1962-02-20 | Georges Jacques Marie Gasto De | Internal combustion engine |
US4057040A (en) * | 1976-04-12 | 1977-11-08 | Wax Archie E | Internal combustion engine system |
US4380972A (en) * | 1979-07-09 | 1983-04-26 | Parkins Malcolm Frederick | Internal combustion engines |
US4517931A (en) * | 1983-06-30 | 1985-05-21 | Nelson Carl D | Variable stroke engine |
US6526935B2 (en) | 2001-06-08 | 2003-03-04 | Ralph Shaw | Cardioid cycle internal combustion engine |
US20070044739A1 (en) * | 2005-08-30 | 2007-03-01 | Caterpillar Inc. | Machine with a reciprocating piston |
US20080047530A1 (en) * | 2006-04-18 | 2008-02-28 | Cleeves James M | Internal combustion engine |
US20100147269A1 (en) * | 2008-11-23 | 2010-06-17 | Cleeves Engines Inc. | Internal Combustion Engine With Optimal Bore-To-Stroke Ratio |
WO2014009745A1 (en) * | 2012-07-12 | 2014-01-16 | Milladale Limited | Piston arrangement and engine |
US9175609B2 (en) | 2010-10-08 | 2015-11-03 | Pinnacle Engines, Inc. | Control of combustion mixtures and variability thereof with engine load |
US9206749B2 (en) | 2009-06-04 | 2015-12-08 | Pinnacle Engines, Inc. | Variable compression ratio systems for opposed-piston and other internal combustion engines, and related methods of manufacture and use |
US9316150B2 (en) | 2012-07-02 | 2016-04-19 | Pinnacle Engines, Inc. | Variable compression ratio diesel engine |
US9650951B2 (en) | 2010-10-08 | 2017-05-16 | Pinnacle Engines, Inc. | Single piston sleeve valve with optional variable compression ratio capability |
DE112016004553T5 (en) | 2015-11-03 | 2018-06-21 | Scania Cv Ab | Four stroke internal combustion engine |
US10352233B2 (en) | 2017-09-12 | 2019-07-16 | James T. Ganley | High-efficiency two-stroke internal combustion engine |
DE102019128935B4 (en) | 2019-10-25 | 2021-10-28 | DKS Hublifter GmbH | Internal combustion engine and method for operating an internal combustion engine |
DE202022000471U1 (en) | 2022-02-16 | 2022-03-07 | Wolfgang Maier | rotary engine |
DE102022000663A1 (en) | 2022-02-16 | 2023-08-17 | Wolfgang Maier | rotary engine |
-
0
- US US367496D patent/US367496A/en not_active Expired - Lifetime
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3021825A (en) * | 1957-10-01 | 1962-02-20 | Georges Jacques Marie Gasto De | Internal combustion engine |
US4057040A (en) * | 1976-04-12 | 1977-11-08 | Wax Archie E | Internal combustion engine system |
US4380972A (en) * | 1979-07-09 | 1983-04-26 | Parkins Malcolm Frederick | Internal combustion engines |
US4517931A (en) * | 1983-06-30 | 1985-05-21 | Nelson Carl D | Variable stroke engine |
US6526935B2 (en) | 2001-06-08 | 2003-03-04 | Ralph Shaw | Cardioid cycle internal combustion engine |
US20070044739A1 (en) * | 2005-08-30 | 2007-03-01 | Caterpillar Inc. | Machine with a reciprocating piston |
US8365697B2 (en) | 2006-04-18 | 2013-02-05 | Pinnacle Engines, Inc. | Internal combustion engine |
US20090266329A1 (en) * | 2006-04-18 | 2009-10-29 | Cleeves Engines Inc. | Internal combustion engine |
US20090266339A1 (en) * | 2006-04-18 | 2009-10-29 | Cleeves Engines Inc. | Internal combustion engine |
US7921817B2 (en) | 2006-04-18 | 2011-04-12 | Cleeves Engines Inc. | Internal combustion engine |
US20080047530A1 (en) * | 2006-04-18 | 2008-02-28 | Cleeves James M | Internal combustion engine |
US9745915B2 (en) | 2006-04-18 | 2017-08-29 | Pinnacle Engines, Inc | Internal combustion engine |
US8651086B2 (en) | 2006-04-18 | 2014-02-18 | Pinnacle Engines, Inc. | Internal combustion engine |
US7559298B2 (en) | 2006-04-18 | 2009-07-14 | Cleeves Engines Inc. | Internal combustion engine |
US20100147269A1 (en) * | 2008-11-23 | 2010-06-17 | Cleeves Engines Inc. | Internal Combustion Engine With Optimal Bore-To-Stroke Ratio |
US9206749B2 (en) | 2009-06-04 | 2015-12-08 | Pinnacle Engines, Inc. | Variable compression ratio systems for opposed-piston and other internal combustion engines, and related methods of manufacture and use |
US9650951B2 (en) | 2010-10-08 | 2017-05-16 | Pinnacle Engines, Inc. | Single piston sleeve valve with optional variable compression ratio capability |
US9175609B2 (en) | 2010-10-08 | 2015-11-03 | Pinnacle Engines, Inc. | Control of combustion mixtures and variability thereof with engine load |
US9316150B2 (en) | 2012-07-02 | 2016-04-19 | Pinnacle Engines, Inc. | Variable compression ratio diesel engine |
US8960150B2 (en) | 2012-07-12 | 2015-02-24 | Milladale Limited | Piston arrangement and engine |
WO2014009745A1 (en) * | 2012-07-12 | 2014-01-16 | Milladale Limited | Piston arrangement and engine |
DE112016004553T5 (en) | 2015-11-03 | 2018-06-21 | Scania Cv Ab | Four stroke internal combustion engine |
US10352233B2 (en) | 2017-09-12 | 2019-07-16 | James T. Ganley | High-efficiency two-stroke internal combustion engine |
DE102019128935B4 (en) | 2019-10-25 | 2021-10-28 | DKS Hublifter GmbH | Internal combustion engine and method for operating an internal combustion engine |
DE202022000471U1 (en) | 2022-02-16 | 2022-03-07 | Wolfgang Maier | rotary engine |
DE102022000663A1 (en) | 2022-02-16 | 2023-08-17 | Wolfgang Maier | rotary engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US367496A (en) | atkinson | |
US6986329B2 (en) | Split-cycle engine with dwell piston motion | |
US1856048A (en) | Internal combustion engine | |
US2188630A (en) | Internal combustion engine | |
US2083808A (en) | Internal combustion engine | |
US691017A (en) | Gas or oil internal-combustion engine. | |
US1523341A (en) | Two-stroke engine | |
US3340854A (en) | Two-cycle engine | |
US1042505A (en) | Internal-combustion engine. | |
US1978335A (en) | Internal combustion engine | |
US578112A (en) | Lewis hallock nash | |
US1126332A (en) | Gas-motor. | |
US1037667A (en) | Explosive-engine. | |
US336505A (en) | atkinson | |
US2445720A (en) | Opposed cylinder two-cycle engine | |
US1469031A (en) | Internal-combustion engine | |
US386949A (en) | williams | |
US1968524A (en) | Internal combustion engine | |
US588672A (en) | wordsworth | |
US1006166A (en) | Explosive-engine. | |
US1060297A (en) | Rotary combustion-engine. | |
US1191368A (en) | Combustion-engine. | |
US1361390A (en) | Internal-combustion engine | |
US1146840A (en) | Compound internal-combustion engine. | |
US914566A (en) | Internal-combustion engine. |