JP2015509305A - 直交周波数分割多重システムにおける基準シンボル送信のための装置及び方法 - Google Patents

直交周波数分割多重システムにおける基準シンボル送信のための装置及び方法 Download PDF

Info

Publication number
JP2015509305A
JP2015509305A JP2014548656A JP2014548656A JP2015509305A JP 2015509305 A JP2015509305 A JP 2015509305A JP 2014548656 A JP2014548656 A JP 2014548656A JP 2014548656 A JP2014548656 A JP 2014548656A JP 2015509305 A JP2015509305 A JP 2015509305A
Authority
JP
Japan
Prior art keywords
symbol
csi
base station
symbols
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014548656A
Other languages
English (en)
Other versions
JP6250549B2 (ja
Inventor
コーシク・ジョシアム
シャディ・アブ−スラ
イン・リ
シュリダール・ラジャゴパル
ジョウユエ・ピ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JP2015509305A publication Critical patent/JP2015509305A/ja
Application granted granted Critical
Publication of JP6250549B2 publication Critical patent/JP6250549B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0697Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using spatial multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Abstract

基地局は互いに異なる時間インスタンス(time instances)でビームを可変させるビームフォーミング技法を使用して複数の加入者端末と通信できる。前記基地局はN個の空間ビームを送信し、特定の空間ビームに対応する基準シンボルを伝達するように構成された複数のアンテナアレイを含む。また、前記基地局は、前記複数のアンテナアレイのうち各アレイに接続されたNRF個の無線周波数(radio frequency、RF)処理チェーンを含み、ここで、空間ビームの数NはRF処理チェーンの数NRFより大きい(N>>NRF)。加入者端末は基地局からM個のビームを受信するように構成されたMRF個の処理受信経路を含む。

Description

本発明は、一般に基準シンボルの送信に関し、より具体的には、OFDMシステムにおける基準シンボル送信のためのシステム及び方法に関する。
移動通信は、現代史における最も成功した技術革新の一つである。近年、移動通信サービスの加入者の数は50億人を超え、さらに急速に増加している。それとともに、新しい移動通信技術は増加する要求を満足させ、より多くのより良質の移動通信アプリケーション及びサービスを提供するために発展している。このようなシステムのいくらかの例は、3GPP2によって開発されたcdma2000 1xEV−DOシステム、3GPPによって開発されたWCDMA(登録商標)、HSPA及びLTEシステム、そしてIEEEによって開発された移動WiMAXシステムである。
したがって、本発明の実施形態は、OFDMシステムにおける基準シンボルを送信するための装置及び方法を提供することを目的とする。
ビームフォーミング技法を使用して複数の加入者端末と通信できる基地局が提供される。前記基地局は、N個の空間ビームを送信するように構成された複数のアンテナアレイを含む。また、前記基地局は、前記複数のアンテナアレイのうち各アレイに接続されたNRF個の無線周波数(radio frequency、RF)処理チェーンを含む。この時、空間ビームの数NはRF処理チェーンの数NRFより大きい。
ビームフォーミングのための方法が提供される。前記方法は、NRF個の無線周波数(radio frequency、RF)処理チェーンによってN個の空間ビームを送信する段階を含む。この時、空間ビームの数NはRF処理チェーンの数NRFより大きい。
ビームフォーミング技法を使用して少なくとも1つの基地局と通信できる加入者端末が提供される。前記加入者端末は、M個の空間ビームを受信するように構成された複数のアンテナアレイを含む。また、前記加入者端末は、前記複数のアンテナアレイのうち各アレイに接続されたMRF個の無線周波数(radio frequency、RF)処理チェーンを含む。この時、空間ビームの数MはRF処理チェーンの数MRFより大きい。
このような本発明の実施形態は、OFDMシステムで基準シンボルを送信する時、基準シンボルを伝達するOFDMシンボルの区間をデータ送信のために使用されたOFDMシンボルの区間より減少させることによって、少ないFFT/IFFT長さを利用できるようにする。また、本発明の実施形態によれば、基準シンボルに対するOFDMシンボルは、データ送信のために使用されたOFDMシンボルに比べてより少ない副搬送波を有することができるようにする。
下記の発明の具体的な説明の記載に先立ち、本特許文献全般にわたって用いられるワード(words)及び句(phrases)について定義することが効果的であろう。用語「含む(include)」及び「含む(comprise)」だけでなく、それらの派生語らは制限なく含む(inclusion without limitation)ことを意味する。用語「又は」は包括的な(inclusive)意味であって、「及び/又は」を意味する。「…と関連付けられた(associated with)」、「それとともに関連付けられた(associated therewith)」、及びそれらの派生語らは「含む(include)」、「何かの内部に含まれる(be included within)」、「何かに互いに接続する(interconnect with)」、「含まれる(contain)」、「何かの内部に含まれる(be contained within)、」、「何に、あるいは何かと接続される(connect to or with)」、「何かに、あるいは何かと結合される(couple to or with)」、「何かと通信可能である(be communicable with)」、「何かと協力する(cooperate with)」、「挟まれる(interleave)」、「並置される(juxtapose)」、「何かに隣接する(be proximate to)」、「何かに、あるいは何かと縛られる(be bound to or with)」、「持つ(have)」、「ある特性を有する(have a property of)」などを意味し得る。そして、用語「制御器(controller)」は、少なくとも1つの動作を制御する任意の機器(device)、システム、またはその一部(system or part thereof)を意味し、そのような装置は、ハードウェア、ファームウェアもしくはソフトウェア(hardware、firmware orsoftware)、又はそれらの少なくとも2つの組み合わせで具現化することができる。任意の特定の制御部に関連づけられた機能は、ローカル又はリモート(locally or remotely)であるかによって集中化又は分散化する(be centralized or distribute
d)ことができる。特定の単語及び句に対する定義は、本明細書全般にわたって提供されるものであって、当業者であれば、ほとんどの場合ではないとしても、多くの場合、そのように定義された単語及び句の今後の使用だけでなく、従来にも適用されるということを理解すべきである。
本発明及びその効果に対するより完壁な理解のために、添付される図面を参照して下記の説明が行われ、ここで、同じ符号は同じ部分を示す。
本発明の実施形態による5Gシステムに対するフレーム構造を示す図である。 本発明の実施形態による基地局を示す図である。 本発明の実施形態による基地局を示す図である。 本発明の実施形態による送信インスタンス(instance)における4個の空間ビームに対応する多重化されたチャネル状態情報−基準信号(Channel State Information−Reference Signal、CSI−RS)シンボルを示す図である。 本発明の実施形態による短い直交周波数分割多重(Orthogonal Frequency Division Multiplexing、OFDM)を示す図である。 本発明の実施形態によるサイクリックプレフィックス形式(scheme)600を示す図である。 本発明の実施形態によるスーパーフレーム(super−frame)、フレーム、サブフレーム(sub−frame)及びスロット区間が維持されるフレームにおける短いOFDMシンボルを示す図である。 本発明の実施形態によるチャネル状態情報−基準信号(CSI−RS)送信のための短いOFDMシンボルにおける基準シンボル配置を示す図である。 本発明の実施形態による基準シンボルを符号化して送信できる送信機を示す図である。 本発明の実施形態による基準シンボルの電力及び帯域幅を可変させることができる送信機を示す図である。 本発明の実施形態による短いOFDMにおけるチャネル状態情報のための基準シンボルの循環動作を示す図である。 本発明の実施形態によるCSI−RSを伝達する短いOFDMシンボルの非隣接配置を示す図である。 本発明の実施形態によるパイロット多重化のためのロジックを含む送信機を示す図である。 本発明の実施形態による基地局におけるCSI−RSシンボルを送信するためのプロセスを示す図である。 本発明の実施形態によるサンプリング周波数の増加によってOFDMシンボルを短くする動作を示す図である。 本発明の実施形態による移動端末を示す図である。 本発明の実施形態による基地局と移動端末との間の信号送信動作を示す図である。 本発明の実施形態による移動端末によるCSI−RS処理のためのプロセスを示す図である。 本発明の実施形態による基地局から移動端末への多重経路チャネルを示す図である。 本発明の実施形態による基準シンボルを用いた基準方向の第1送信インスタンスを示す図である。 本発明の実施形態による基地局と移動端末における空間的に差(staggered)を有する互いに異なる基準シンボルのビームを示す図である。 本発明の実施形態による空間差(spatial staggering)を有するスキャンされた角度の解像度を示す図である。 本発明の実施形態による周波数、時間及び空間差を用いたチャネルパラメータ推定及び微細調整プロセスを示す図である。 本発明の実施形態による空間的に差を有するパイロットに対して共有された時間−周波数位置を示す図である。 本発明の実施形態による空間的に差を有する送信及び受信のためのビーム幅を有して基準シンボルを送信する動作を示す図である。 本発明の実施形態によるチャネル推定プロセスを示す図である。
本特許文書で本発明の原理を記述するために使用される、以下で論議される図1乃至図26及び様々な実施形態は単に例示のためのものであって、開示の範囲を制限するものとして解釈されてはならない。当該分野における熟練された者は、本発明の原理が適切に配置された任意の無線通信システムで具現化され得ることを理解するはずである。
ミリ波(millimeter waves)は、30GHz−300GHzの無線周波数に対応する1mm−10mm範囲の波長を有する無線波をいう。このような無線周波数は、ここで参照としてその内容が含まれる(the contents of which are hereby incorporated by reference)、“Millimeter wave propagation:Spectrum management implications”、Federal Communication Commission、Office of Engineering and Technology、Bulletin Number 70、July、1997で論議されたように独特の電波特性を表す。例えば、低い周波数の無線波に比べ、ミリ波は大きな電波損失が発生し、ビルディング、壁、木の葉のようなオブジェクトを通過する能力に乏しく、空気中の粒子(例えば、雨粒)によって大気中の吸収、屈折及び吸収により影響を受けやすい。一方、ミリ波は小さい波長を有するため、より多くのアンテナが相対的に少ない領域に構成されることができ(can be packed)、その結果、高い利得のアンテナを小さいフォームファクタ(small form factor)で具現化できる。しかし、上記の不利点が原因で、ミリ波の無線波は低い周波数の無線波に比べあまり使用されてこなかった。これは少ないコストでミリ波帯域のスペクトルを獲得するための新しい事業のための独特な機会があることを意味する。3GHz−30GHzにおける周波数は超高周波(Super High Frequency、SHF)と定義される。SHF帯域でいくつかの高周波数は大きな電波損失及び高い利得のアンテナを小さいフォームファクタで具現する可能性のように、EHF帯域(すなわち、ミリ波)における無線波と類似した性質を表す。
膨大な量のスペクトルがミリ波帯域で使用可能である。例えば、典型的には60GHz帯域と呼ばれる約60GHzにおける周波数が大部分の国で無認可スペクトルとして使用可能である。米国において、60GHz周辺スペクトルの7GHz(57GHz−64GHz)は無認可使用領域として割り当てられた。2003年10月16日、連邦通信委員会(Federal Communications Commission、FCC)は、米国における高密度固定型無線サービスのためのスペクトルに12.9GHz(71−76GHz、81−86GHz及び連邦政府の使用のための94.0−94.1GHzを除く92−95GHz)を割り当てた。71−76GHz、81−86GHz及び92−95GHzにおける周波数割り当てはまとめてE−帯域と呼ばれる。E−帯域はFCCによる最大のスペクトル割り当てであって、全体セルラースペクトルに比べ50倍も大きい。
特定のシステムは、コンポーネント電子装置(component electronics)を用いたミリ波無線通信を使用する。様々なシステムはギガ(giga)−bpsのデータレートを達成することもできる。例えば、特定のシステム(システム1)は、数キロメートルの距離上で10Gbpsデータの伝達を可能にするミリ波通信システムを含む。このようなシステムで、送受信機は140GHz(F−band)、94GHz(W−band)、70/80GHz(E−band)、及び35GHz(Ka−band)のような様々なミリ波帯域における動作の柔軟性を提供する光学技術(photonics)に基づく。別の例として、第2システム(システム2)は、70GHz及び80GHz帯域に対するマルチ−ギガビット無線技術を含む。しかし、このような技術はコスト、複雑度及びフォームファクタのような問題のため、商用の移動通信には適しない。例えば、二点間リンク品質のために要求されるアンテナ利得を達成するためには、システム2で2番目の無線高周波数を使用する場合1.25ギガビットデータ送信のためには2フィートのアンテナ(2−foot antenna)が必要である。このようなシステムで使用される、電力増幅器、低雑音増幅器、ミキサ、発振器、周波数合成器、導波管を含むコンポーネント電子装置は、長さが過度に大きく多くの電力を消費するため、移動通信に適用することは容易ではない。
近年、短距離(short−range)の無線通信のためのミリ波を使用するために多くの工学技術及び企業の努力が行われており、投資もされている。特定のシステムで、ギガ−bpsレートでデータを送信するために数メートル内の(最大10メートル)で無認可の60GHz帯域を利用する技術及び標準が使用されている。Zhouyue Pi、Farooq Khan、“an introduction to millimeter−wave mobile broadband systems”、IEEE Communications Magazine、June 2011(その内容は全体的に参照として含まれる)で言及される無線HD技術(Wireless HD technology)、3GPP TS 36.201:“Evolved Universal Terrestrial Radio Access(E−UTRA);Physical Layer−General Description”(その内容は全体的に参照として含まれる)で言及されるECMA−387、そして、3GPP TS 36.211:“Evolved Universal Terrestrial Radio Access(E−UTRA);Physical channels and modulation”(その内容は全体的に参照として含まれる)で言及されるIEEE 802.15.3cのような様々な産業標準が、Wireless Gigabit Alliance(WGA)及びIEEE 802.11 task group ad(TGad)のような競争の短距離60GHzギガ−bps接続技術を活発に発展させている複数の機構と共に発展している。集積回路(Integrated circuit、IC)に基づく送受信機はこのような技術のいくつかののために使用可能である。短距離60GHz接続技術の最も大きなチャレンジはRFICであるというのが通説である。電力面でより効率的な60GHz RFICを発展させるために多くの工学技術の努力が費やされてきた。多くの設計及び技術は70−80−90GHz帯域のようなミリ波帯域のためのRFIC設計に移行され得る。現在の60GHzRFICは低効率及び高コストの短所があるが、ミリ波RFIC技術は高効率及び低コストの方向に発展しているので
、このような発展の推移は窮極的にはミリ波RFICを用いた広い距離における通信を可能にするはずである。
本発明の実施形態は、無線通信のためにミリメートル電波を使用する通信システム並びに関連した装置及び方法を示す。実施形態はミリ波を使用する通信という面において図示されているが、実施形態はミリ波と類似した特性を表す、例えば10GHz−30GHzの周波数を有する無線電波のような他の通信媒体にも確実に適用され得る。場合によっては、実施形態は、テラヘルツ(terahertz)周波数を有する電波、赤外線、可視光線及び他の光媒体に適用されることができる。例示の目的上、用語「セルラー帯域(cellular band)」は、数百メガヘルツから数ギガヘルツ周辺の周波数を意味するものであって、「ミリ波帯域(millimeter wave band)」は、数十ギガヘルツから数百ギガヘルツ周辺の周波数を意味するものである。セルラー帯域で無線電波は電波損失が少なく、より良好なカバレッジの目的のために使用されることができるが、大きなアンテナを必要とする。代わりに、ミリ波帯域における無線電波は大きな電波損失が発生するが、少ないフォームファクタで高利得アンテナ又はアンテナアレイの設計することには非常に適している。
図1は、本発明の実施形態による5Gシステムに対するフレーム構造を示す。図1に示す5Gフレーム100の実施形態は単に例示のためのものである。他の実施形態が本発明の範囲から逸脱することなく使用されることができる。図1に示す例で、数値は単に例示のために提供されるものであって、他の数値が使用されることができる。
直交周波数分割多重(Orthogonal Frequency Division Multiplexing、OFDM)シンボル105は、スケジューリングの単位化(scheduling granularity)のためにスロット110にグループ化される。例えば、5Gシステムで30個のOFDMシンボル105がスロット110を形成する。8個のスロットはサブフレーム115を形成し、5個のサブフレームがフレーム100を形成する。このようにシンボル105、スロット110、サブフレーム115及びフレーム100の互いに異なる単位化はデータ、制御及び基準シンボルを送信するための単位化を示す。図示の例で、各OFDMシンボル105は4.16マイクロ秒(μs)の長さを有する。30個のOFDMシンボルで構成されたスロット110は125μsの長さを有する。サブフレーム115は1ミリ秒(ms)の長さを有し、フレーム100は5msの長さを有する。ビームフォーミングは5Gシステムの中心になることが期待されているが、これは制御とデータ両方の送信時に指向的な特性を有することを意味する。指向性(directivity)は、他の様々な特性の中でも基地局(base station、BS)に対する移動端末(mobile station、MS)(ここで「加入者端末(subscriber station)」として言及される)の位置と、シャドーイング(shadowing)の量、そして、近隣の反射器の存在に影響を受ける。よって、移動端末と基地局との間の送信のための最適の方向を確認(identify)するために、いくつかのトレーニング(training)の形態が要求される。送信のための互いに異なる方向はビームと呼ばれる。移動端末は移動端末と基地局との間の送信をサポートする最適のビーム(best beam)を確認すべきである。本発明の実施形態は、最適のビームフォーミング方向に対するトレーニングを示す。基準シンボルは、特定の方向におけるビームフォーミングを使用して送信される。移動端末は基準シンボルを受信し、基準シンボルを処理して、もし前記送信機が最適のビーム/方向に送信されると送信機が使用すべき最適のビーム/方向を確認する。
図2は、本発明の実施形態による基地局を示す。図2のBS200はRFチェーンの数がサポートされる空間ビームの数より少なく、それによってRFが制限される送信方式を使用するように構成される。特定の実施形態が図2のBS200の構成要素を参照して提供されるが、より多い、より少ない、または互いに異なる構成要素を含む他の実施形態が具現化できることが理解されるべきである。BS200は、この議論で、RFチェーン又はデジタルチェーンと呼ばれる複数のデジタル処理(NRF)チェーン205を含む。各RFチェーン205は、各基底帯域+RF処理ブロック210、ビームフォーミング部215及びアンテナアレイ220を含む。各基底帯域+RF処理ブロック210は、送信のための信号を処理するための処理回路を含む。送信されるデータはブロック210でチャネル符号化、変調コンステレーション(constellation)マッピング、MIMO処理方式、デジタル−アナログ変換、などのための互いに異なるモジュールを用いて処理される。各基底帯域+RF処理ブロック210は、ビームフォーミング部215に結合されるが、ビームフォーミング部215は、アンテナアレイ220にさらに結合される。各ビームフォーミング部215は、各基底帯域+RF処理ブロック210から情報を受信するように構成され、アンテナアレイ220を介してビームフォーミング送信を行うための情報を構成する。
実施形態1:制限的なRFミリ波モバイルブロードバンド(Millimeter−wave Mobile Broadband、MMB)システムのための基準シンボル送信
特定の実施形態において、基準シンボルは、BS200で周波数と時間の両方で多重化されるが、このBS200は、無線周波数処理チェーン205の数より多くのアンテナ220を具備するOFDM送受信機システムを含む。基底帯域及び無線周波数(RF)処理チェーン205の数はBS200における送受信機システムの処理能力を表す。RFチェーン205の数より多くの送信アンテナ220及び/又はサポートされる空間方向を所有する送受信機システムで、多重シンボルは受信機におけるチャネル状態情報(channel state information、CSI)を測定するために使用される基準シンボルを送信するように使用される。CSIは送信機(例えば、BS200)から受信機(例えば、加入者端末)へのチャネル品質を示し、送信機における送信アンテナ220又は空間ビームから受信機における受信アンテナ又は空間ビームへのチャネルを特定したものである。特定の空間ビーム上の又は特定の送信アンテナ220から受信機へのチャネル品質は受信機に知らされ、送信機BS200と受信機との間に暗黙的に同意された予め定義された時間区間で送信された基準シンボルを用いて測定される。NRF個の送信RFチェーン205及びN個の空間ビーム225を具備するシステムで、最大NRF個の基準シンボルは1つの送信インスタンス(transmission instance)で送信され、NRF個より大きい基準シンボルは1つの送信インスタンスで送信されない。したがって、N個の全ての空間ビームに対する基準シンボルを送信するために、少なくともN/NRF回の送信動作が必要である。
図3は、本発明の実施形態による基地局を示す図である。特定の実施形態が図3のBS200の構成要素を参照して提供されるが、より多い、より少ない、または互いに異なる構成要素を含む他の実施形態が具現化できることが理解されるべきである。BS200は複数(NRF)のチェーン205a−205dを含む。各チェーン205a−205dは、各基底帯域+RF処理ブロック210、ビームフォーミング部215及びアンテナアレイ220を含む。各基底帯域+RF処理ブロック210はビームフォーミング部215に結合されるが、ビームフォーミング部215はアンテナアレイ220にさらに結合される。図3のBS200は4個の空間ビームに対応する基準シンボルを多重化するように構成される。各RFチェーン205a−205dは他のRFチェーン205a−205dによって使用されない副搬送波リソースを介して特定の空間ビーム310a−301dに対応する基準シンボル305a−305dを伝達する。
OFDM送受信機システムは、NRF=4個のRF処理チェーン205a−205dを具備し、前記システムは最大N=12個のビーム310をサポートする。与えられた送信インスタント(instant)で、RFチェーン1205aは、他のRFチェーンによって使用される場合もあり、使用されない場合もあるいくつかのOFDMシンボルの周波数副搬送波を用いて1つの空間ビーム310aに対応する基準シンボル305aを送信する。同じ送信インスタントで、第2RFチェーン205bは、第1RFチェーン205a又は他のRFチェーン205c及び205dによって使用される場合もあり、使用されない場合もあるいくつかのOFDMシンボルの周波数副搬送波を用いて他の空間ビーム310bに対応する基準シンボル305bを送信する。同様に、他のRFチェーン205c及び205dは他のRFチェーン205a及び205bによって使用されない互いに異なる空間ビーム310c及び310dに対応する基準シンボル305c及び305dを送信する。
図4は、本発明の実施形態による送信インスタンスにおける4個の空間ビームに対応する多重化されたチャネル状態情報−基準信号(Channel State Information−Reference Signal、CSI−RS)シンボルを示す図である。図4に示す多重化されたCSI−RSシンボル400の例は単に例示のためのものである。他の実施形態がかかる開示の範囲から逸脱することなく使用されることができる。
12個の空間ビーム310は、各OFDMシンボルが4個の空間ビーム310に対するCSI−RSシンボル425を伝達する、スロット420の3個のOFDMシンボル405,410,415で送信される。代案的な構成において、NRF個のRFチェーン205のうち2つのチェーンのみを利用する6個のOFDMシンボルを介して12個の空間ビーム310が送信される。CSI−RSシンボルの構成に関する情報はサポートされたビームの数及び送信されたCSI−RSシンボルの数を含む。このような構成メッセージは、システム構成ブロードキャストメッセージの一部として又は独立的なブロードキャストメッセージとしてBS200によって全てのMSに送信される。システムは複数の構成をサポートできるが、許可された構成のうち、1つの構成のみを使用することができる。したがって、構成が与えられる時、MSは送信されたCSI−RSシンボルの特性(property)(拡散符号、等)、及び受信されたCSI−RSシンボルと送信されたビーム方向との間のマッピング規則を決定する。特定の実施形態において、このような情報は受信機に送信されず、事前に協議される、または暗黙的に使用され得る。
図5は、本発明の実施形態による短い直交周波数分割多重(Orthogonal Frequency Division Multiplexing、OFDM)を示す図である。図5に示す短くなった長さのOFDMシンボルの実施形態は単に例示のためのものである。他の実施形態がかかる開示の範囲から逸脱することなく使用されることができる。
特定の実施形態において、基準シンボルを伝達するOFDMシンボルの区間(duration)は、データ送信のために使用されたFFT/IFFTサイズと異なるより小さいFFT/IFFTサイズを用いることによって減少し得る。基準シンボルに対するOFDMシンボルは、データ送信のために使用されたOFDMシンボルに比べて少ない副搬送波を有する。基準シンボルを送信するために使用されたOFDMシンボル510及び515は、データ送信のために使用された普通のOFDMシンボル505より短い区間を有する。以下、このような短い区間を有するOFDMシンボルを短いOFDMシンボルと呼ぶことにする。短いOFDMシンボル505,515の副搬送波520と普通のOFDMシンボル505の副搬送波とは、同じ帯域幅525の区間を有する。短いOFDMシンボル510,515は、データ送信のために使用された普通のOFDMシンボル505に対して使用されたFFTサイズより小さいFFTサイズを用いて得られることができる。短いOFDMシンボル510,515における時間区間の短縮による直接的な効果は、図5に示すように、副搬送波帯域幅を増加させることである。例えば、第1短いOFDMシンボル510の場合、FFTサイズを半分に減らすことで、もし同じサンプリング区間T(サンプリング周波数F=1/T)が維持されると、OFDMシンボル区間530は(普通のOFDMシンボル区間540に比べた場合)半分に減少される。第2短いOFDMシンボル515の場合、FFTサイズNを1/4に(N/4)減らすことで、OFDMシンボル区間535は(普通のOFDMシンボル区間540に比べた場合)1/4に減少される。短いシンボル510,515に対する2つの例は、単に実際的な例であって、FFTサイズを異なるように減らすことで短いOFDMシンボルのために使用され得る。
図6は、本発明の実施形態によるサイクリックプレフィックス形式(scheme)600を示す図である。図6に示すサイクリックプレフィックス600の実施形態は単に例示のためのものである。他の実施形態がかかる開示の範囲から逸脱することなく使用されることができる。
実施形態3:普通のOFDMシンボルと同じサイクリックプレフィックスを短いOFDMシンボルのために維持する
特定の実施形態において、短いOFDMシンボル515のサイクリックプレフィックス605は、普通のOFDMシンボル505と同じ区間を有する。すなわち、短いOFDMシンボル515のサイクリックプレフィックス605は、普通のOFDMシンボル505のサイクリックプレフィックス610と同じ区間を有する。サイクリックプレフィックス605は、チャネルの遅延拡散よりも長く設計される。遅延拡散はチャネルを介して移動する送信機からの多重経路が受信機に到着し数秒内に測定される時間区間である。短いOFDMシンボル515は普通のOFDMシンボル505と同じチャネルで動作するため、短いOFDMシンボル505のサイクリックプレフィックス505は、普通のOFDMシンボル505のサイクリックプレフィックス610と同じ区間を有する。図6に示すように、普通のOFDMシンボル505のサイクリックプレフィックス区間は、短いOFDMシンボル515で同一に維持される。本実施形態において、FFT/IFFTサイズは普通のOFDMシンボル505と短いOFDMシンボル515との間で4倍に減少され、これはOFDMシンボル515の長さに反映される。しかし、図5に示す例で示すように、0.46μsのサイクリックプレフィックス区間を構成するシンボルの数は、普通のOFDMシンボル505と短いOFDMシンボル515との間で同一に維持される。
図7は、本発明の実施形態によるスーパーフレーム(super−frame)、フレーム、サブフレーム(sub−frame)及びスロット区間が維持されるフレームにおける短いOFDMシンボルを示す図である。図7に示す短いOFDMシンボルの実施形態は単に例示のためのものである。他の実施形態がかかる開示の範囲から逸脱することなく使用されることができる。
実施形態4:CSI−RS送信のためのフレームにおける短いOFDMシンボルの配置
特定の実施形態において、スロット705、サブフレーム710、フレーム715及びスーパーフレーム720の区間が維持されるようにするために、CSI推定のための基準シンボル(CSI−RS)を伝達する短いOFDMシンボル515は、普通のOFDMシンボル505の区間又は普通のOFDMシンボル区間の整数倍(integral multiple)に符合するように位置できる。基準シンボルはユーザがチャネルの周波数選択度を推定することを可能にするために短いOFDMシンボル515の全体帯域幅上で位置する。普通のOFDMシンボル505の区間内で位置できる短いOFDMシンボル515の数は短いOFDMシンボル515の長さに依存して決定されることができる。もしスロット705内に含まれた複数のOFDMシンボル全体の区間に該当する全体区間を有する、複数の短いOFDMシンボル515が使用される場合、これらはスロット705、サブフレーム710又はフレーム715の境界を侵すことなく配置される。さらに、もしスロット705での短いOFDMシンボル515の配置がスロット705の区間に符合しスロット705の境界を侵さない場合、サブフレーム710、フレーム715及びスーパーフレーム715の境界は侵されない。短いOFDMシンボル515は普通のOFDMシンボル505のサイズの約1/4、すなわち短いOFDMシンボル515の区間は0.926μsであるが、これは3.77μsである普通のOFDMシンボル505のサイズの約1/4である。0.46μsである普通のサイクリックプレフィックスの区間が短いOFDMシンボル515に追加される時、3個の短いOFDMシンボル515はサイクリックプレフィックス725を含む普通のOFDMシンボル505の区間に符合する。特定されない場合、30個の普通のOFDMシンボル505を有するスロット725は、29個の普通のOFDMシンボル505及び3個の短いOFDMシンボル515を含む32個のOFDMシンボルを含む。OFDMシンボル505,515は同じサイクリックプレフィックス区間を有する。特定の実施形態において、互いに異なる帯域幅を有する普通のOFDMシンボル505と短いOFDMシンボル515との両方は、各副搬送波に対して同じ帯域幅を有する。図7に示す例で、同じサンプリング周波数で動作する場合、短いOFD
Mシンボル515の副搬送波帯域幅は普通のOFDMシンボル505の副搬送波帯域幅の4倍である。
図8は、本発明の実施形態によるチャネル状態情報−基準信号(CSI−RS)送信のための短いOFDMシンボルにおける基準シンボル配置を示す図である。図8に示す基準シンボル配置800の実施形態は単に例示のためのものである。他の実施形態がかかる開示の範囲から逸脱することなく使用されることができる。
実施形態5:短いOFDMシンボルにおけるCSI−RSシンボルの配置
特定の実施形態において、短いシンボル515の副搬送波は送信機と受信機の両方に知られた基準シンボル810を伝達して送信機と受信機との間の無線チャネルの推定を可能にする。多重アンテナ送信機で、送信アンテナの数と同じ数の基準シンボル810がある。互いに異なるアンテナ220に対応する基準シンボル810は、基準シンボルを伝達するための短いOFDMシンボル515の互いに異なる副搬送波805上に位置する。すなわち、各副搬送波805は特定のアンテナ220に対する基準シンボル810を伝達する。多数の送信アンテナを有する他の無線通信システムにおいて、アンテナの数は過度に多く、CSI−RSシンボルでそれらを受け入れることができない。このような大規模な多重アンテナ送信機で、送信機は協力して動作して特定の方向のビームを形成する。送信機がサポートできるビームの数は重大な特徴であり、各副搬送波は特定の空間方向を指向する特定のビームに対する基準シンボルを伝達する。図8に示す例で、3個の短いOFDMシンボル515は12個のアンテナに対応する基準シンボルを伝達するか、又は4個のアンテナ220で12個の空間ビーム310に対応する基準シンボルを伝達するか、又はOFDMシンボルごとの空間ビーム310に対応する基準シンボルを伝達する。与えられたアンテナ220又は空間ビーム310に対応する基準シンボル810は、MSがチャネルの周波数選択度も推定できるようにする送信帯域幅の範囲内で繰り返される。別の例によれば、1つの送信アンテナ220又は空間ビーム310方向に対応する複数の基準シンボルが全体の送信帯域幅の範囲を有するように適切な副搬送波で位置するように配置される。CSI−RSシンボルの構成に関する情報は、サポートされるビームの数及び送信されたCSI−RSシンボルの数を含む。このような構成メッセージはシステム構成ブロードキャストメッセージの一部として又は独立的なブロードキャストメッセージとしてBS200によって全てのMSに送信される。システムは複数の構成をサポートできるが、許可された構成のうち、1つの構成のみを使用することができる。したがって、構成が与えられる時、MSは送信されたCSI−RSシンボルの特性(拡散符号等)、及び受信されたCSI−RSシンボルと送信されたビーム方向との間のマッピング規則を決定する。特定
の実施形態において、このような情報は受信機に送信されず、事前に協議される、又は暗黙的に使用され得る。
図9は、本発明の実施形態による基準シンボルを符号化して送信できる送信機を示す図である。図9に示す送信機900の実施形態は単に例示のためのものである。他の実施形態がかかる開示の範囲から逸脱することなく使用されることができる。
実施形態6:短いOFDMシンボルにおけるCSI−RSの符号化
特定の実施形態において、互いに異なるアンテナ又は互いに異なる空間方向に対応する基準シンボルは、送信された基準シンボルの特性によって受信機によって区別され得る。特定の空間ビーム又は送信アンテナに対応する基準シンボルは、符号のファミリー(a family of codes)に属することもできる。符号は実数又は複素数のシーケンスで、符号のファミリーは特定の特性を有する符号のセットである。基準シンボルを送信するために使用される符号ファミリーの品質は低い相互相関(low cross correlation)、低いピーク対平均電力比(low peak−to−average ratio)及び一定のモジュラス(constant modulus)を有することが好ましい。以上で言及した特性は他の好ましい品質によって拡大され得る。符号ファミリーに属する符号は特定のビーム又は送信アンテナを示すように使用され、基準シンボルの送信に使用された短いOFDMシンボル515のうち1つにおける基準シンボルとして送信される。受信機は最大尤度(maximum likelihood)、デコラレータ(de−correlator)、及びその他を含むがこれに限定されない様々な受信機アルゴリズムを用いて受信された信号を復号化することによって、符号ファミリーの構成要素を確認する。基準信号における符号は送信された空間ビーム又は空間ビームが送信された送信アンテナを示すので、基準シンボルは符号ファミリーの構成要素を確認するように使用され得る。
図9に示すように、時間tで、短いOFDM CSI−RSシンボル905は、全ての副搬送波で伝達される4個のビームに対する基準シンボルと共に送信され、基準シンボルとして送信された符号の特性によって区別される。時間tで第1RFチェーン915aからの短いOFDMシンボル515の全ての副搬送波上の符号シーケンスuは第1空間ビーム910aで送信される。同じtで、符号シーケンスuに比べて低い相関特性を有する他の3個のRFチェーン915b,915c及び915dからの互いに異なる符号u、u及びuを用いて、それぞれ第2空間ビーム910b、第3空間ビーム910c及び第4空間ビーム910dと索引付けられる3個の互いに異なる空間ビームはそれぞれ互いに異なる方向に指向されて送信される。送信の無線特性のため、3個の全ての符号は空中に送信され(add up over the air)合算された信号として受信機に到達する。符号間の低い相互相関特性を利用して、受信機は個別的な基準シンボルを分離して4個の空間方向それぞれにおけるチャネル状態を測定する。
図10は、本発明の実施形態による基準シンボルの電力(パワー)及び帯域幅を可変させることができる送信機を示す図である。図10に示す送信機1000の実施形態は単に例示のためのものである。他の実施形態がかかる開示の範囲から逸脱することなく使用されることができる。
実施形態7:短いOFDMシンボルに対するCSI−RS基準シンボルの電力及び帯域幅の変化
特定の実施形態において、互いに異なる電力を有する帯域幅の互いに異なる部分を占有するようにするために互いに異なる空間方向又は互いに異なる送信アンテナに対応する基準シンボルは短いOFDMシンボル515で送信される。送信機はアクティブな副搬送波を示すために電力及び帯域幅を可変するが、この電力及び帯域幅上におけるチャネルはチャネル状態を推定するために測定されるべきである。帯域幅の可変は基準シンボルが伝達されない副搬送波を無效化(nulling)することによって行われる。すなわち、ゼロ(zero)の送信電力は基準シンボルが伝達されない副搬送波に割り当てられる。基準シンボルが伝達される副搬送波上における副搬送波に割り当てられた電力は互いに異なる場合がある。特定の実施形態において、基準シンボルを伝達する全ての副搬送波に同じではない電力を適用する特別な場合として、基準シンボルを伝達する全ての副搬送波に同じ電力が適用される。特定の実施形態において、副搬送波に対する電力割り当てを調節することによって互いに異なる空間ビームに対応する基準シンボルは互いに異なる副搬送波上で伝達される。基準シンボルが図9に示す短いOFDMシンボル515における全ての副搬送波で送信される時、副搬送波ごとの電力は調節され得る。
図10に示すように、時間tで、短いOFDM CSI−RSシンボル1005は帯域幅の互いに異なる部分で伝達された4個のビームに対する基準シンボルと共に送信される。第1空間ビーム方向1010aに対応する基準シンボルは帯域幅の部分で伝達される。非ゼロ(nonzero)電力割り当てによって指示される、基準シンボル1005が伝達される副搬送波上の、符号uから基準シンボル1005が得られる(be drawn)。同じ時間tで、他のRFチェーン1015は符号u、u及びuのそれぞれから得られた基準シンボルを用いて第2空間ビーム方向1010b、第3空間ビーム方向1010c及び第4空間ビーム方向1010dに対応する基準シンボルを送信する。このような基準シンボル1005は陰影処理された副搬送波(shaded subcarriers)によって示される各帯域幅の互いに異なる部分1020、又はサブセットを介しても伝達される。例えば、基準シンボル1005は帯域幅における副搬送波のサブセット1020a上で伝達されることができる。さらに、基準シンボル1005は帯域幅における副搬送波の複数のサブセット1020a及び1020b上で伝達されることができる。空間ビーム方向1010のそれぞれに対して、基準シンボルが伝達される副搬送波の電力は変化し、互いに異なるRFチェーン1015を用いて送信される。
図11は、本発明の実施形態による短い直交周波数分割多重(orthogonal frequency division multiplexing、OFDM)シンボルにおけるチャネル状態情報のための基準シンボルの循環動作を示す図である。図11に示す基準シンボルの循環の実施形態は単に例示のためのものである。他の実施形態がかかる開示の範囲から逸脱することなく使用されることができる。
実施形態8:短いOFDMシンボルにおけるCSI−RSシンボルの周波数循環
特定の実施形態において、特別な空間方向又は送信アンテナに対応する基準シンボルは短いOFDMシンボルの互いに異なるリソース(例えば、電力及び帯域幅)を用いて伝達される。互いに異なる送信インスタンスで互いに異なるリソースの使用は所定の規則に基づいて決定される。この規則は空間方向に対応するRSシンボルを伝達するリソースを決定するにあたってサブフレーム番号又はフレーム番号又はスーパーフレーム番号を考慮する。
図11に示すように、空間ビームに対応する基準シンボルは各送信インスタンスにおける互いに異なる副搬送波で伝達される。送信インスタンス(transmission instance)は特定の空間方向又は特定のアンテナに対応する1つの基準シンボルが送信される時間区間(time duration)として定義される。送信インスタンス1110は、スロット又はサブフレーム又はフレーム又はスーパーフレームによって分離され得る。これは互いに異なるシステム及び配置パラメータを用いて最適化される。互いに異なる空間ビームに対応する基準シンボル1105は、各送信インスタンス1110で隣接する副搬送波の間でシフトされる。特定の場合として、第1送信インスタンス1110aにおける短いOFDMシンボルの第1CSI−RS副搬送波1115aで送信されるビーム#1に対応する基準シンボル1105を考慮する。次の送信インスタンス1110bで、基準シンボル1105は第2CSI−RS副搬送波1115bで送信され、3番目の送信インスタンス1110cで、基準シンボル1105は第3CSI−RS副搬送波1115cで送信され、4番目の送信インスタンスで、基準シンボル1105は第4CSI−RS副搬送波1115dで送信される。5番目の送信インスタンスで、ビーム#1に対応する基準シンボル1105は第1CSI−RS副搬送波で伝達され、かかる互いに異なる副搬送波による循環が続けられる。
実施形態9:CSI−RS推定による(with some flooring of the CSI−RS estimate)短いOFDMシンボルに対するサイクリックプレフィックスの減少
特定の実施形態において、短いOFDMシンボル515のサイクリックプレフィックス1205は、普通のOFDMシンボル505のサイクリックプレフィックス725に比べ小さく作られることができる。短いOFDMシンボル515のサイクリックプレフィックス1205を減少させることによってシンボル区間をさらに小さくすることができる。これはより多くのCSI−RSシンボルがスロット内に含まれて構成されるようにすることを可能にする。
図12は、本発明の実施形態によるCSI−RSを伝達する短いOFDMシンボルの非隣接配置(non−contiguous arrangement)を示す図である。図12に示す非隣接配置の実施形態は単に例示のためのものである。他の実施形態がかかる開示の範囲から逸脱することなく使用されることができる。
実施形態10:RS送信のためのフレームで短いOFDMシンボルの互いに異なる配置
特定の実施形態において、スロットでCSI−RSを送信するために使用された短いOFDMシンボル515は、普通の区間のOFDMシンボルと非隣接するように配置されるように(non−contiguously−interspersed)位置することができる。スロット、サブフレーム、フレーム及びスーパーフレームの区間が維持されるようにするために、基準シンボルを伝達する複数の短いOFDMシンボル515は、普通のOFDMシンボル505の区間又は普通のOFDMシンボル505区間の整数倍に符合するように位置する。スロットで短いOFDMシンボルの非隣接配置の例が図12に図示されている。短いOFDMシンボル515は、普通のOFDMシンボル505のサイズの約1/4、すなわち短いOFDMシンボル515の区間は0.926μsであるが、これは3.77μsである普通のOFDMシンボル505のサイズの約1/4である。0.46μsである普通のサイクリックプレフィックス1205の区間が短いOFDMシンボル515に追加される時、3個の短いOFDMシンボル515のみがサイクリックプレフィックス1205を含む普通のOFDMシンボル505の区間に符合する。特定されない場合、30個の普通の区間のOFDMシンボル505を有するスロット1210は、29個の普通のOFDMシンボル505及び3個の短いOFDMシンボル515を含む32個のOFDMシンボルを含む。全てのOFDMシンボルは同じサイクリックプレフィックス区間を有する。互いに異なる副搬送波帯域幅を有する普通のOFDMシンボル及び短いOFDMシンボルはすべて同じ帯域幅を有する。図12に示す例で、同じサンプリング周波数で動作する場合、短いOFDMシンボル515の副搬送波区間は、普通のOFDMシンボル505の副搬送波区間の4倍である。
実施形態10.1:スロット/フレーム境界を維持しない短いOFDMシンボルの互いに異なる配置
特定の実施形態において、スロットでCSI−RSを送信するために使用された短いOFDMシンボル515は、普通の区間のOFDMシンボルと非隣接するように配置されるように(non−contiguously−interspersed)位置することができる。基準シンボルを伝達する短いOFDMシンボル515の数はシステム区間に基づいて決定され、CSI−RSシンボルの区間はスロット、サブフレーム、フレーム及びスーパーフレームの区間を維持する必要がない。
実施形態11:データ送信の位相をトレーニングするための短いOFDMシンボルのRS送信
特定の実施形態において、スロットでCSI−RSを送信するために使用された短いOFDMシンボル515は、受信機に送信するために用いられる送信機に対する最適の送信方式を確認するために使用されるチャネルを推定するために使用される。大規模な送信アンテナのアレイが特定の空間方向に向かうビーム形成のために使用される場合、CSI−RSは送信機がサポートできる全ての空間方向に対して伝達される。各空間方向はビームによって確認される。このビームは与えられた受信機側の方向にデータをビーム形成するために使用される。基準シンボルがデータを伝達するために設計された各ビームに対して伝達される。特定の実施形態において、特徴的な基準シンボルの数は送信機がサポートするビームの数と同じである。
図13は、本発明の実施形態によるパイロット多重化のためのロジックを含む送信機を示す図である。図13に示す送信機1300の実施形態は単に例示のためのものである。他の実施形態がかかる開示の範囲から逸脱することなく使用されることができる。
送信機1300は、基地局200に示すものと同じまたは類似の機能を行う要素(functionality)を含む。さらに、BS200は、送信機1300を含むことができる。各基底帯域+RF処理ブロック210は、各ビームフォーミング部215に結合された送信経路1305を含む。送信経路1305はN/m IFFTブロック1315、スイッチ1320及びサイクリックプレフィックスブロック1325に結合されたCSI−RS送信ロジック1310を含む。送信経路1305は、ソースからデータビットを受信するように構成され、直並列変換器1335及びN IFFTブロック1340に結合された変調及び符号化ブロック1330も含む。送信経路1305は、パイロットシーケンスを受信するように構成され、N/m IFFTブロック1315に結合された第2直並列変換器1345をさらに含む。サイクリックプレフィックスブロック1325は、並直列変換器1350、デジタル−アナログ変換器(digital to analog converter、DAC)1355及びRF処理部1360に結合される。
実施形態12:減少されたシンボル区間を有するCSI−RSシンボルに対する互いに異なるサイズを制御するためのロジック
特定の実施形態において、CSI−RSシンボルのサイズは送信時点でCSI−RS送信ロジック1310によって柔軟に決定される。CSI−RS送信ロジック1310は、CSI−RSシンボルに対して使用されたIFFTのサイズだけでなくCSI−RSシンボルを多重化するためのスイッチング時間を決定する。CSI−RSの送信時に、CSI−RS送信ロジック1310は、CSI−RSシンボルを送信するために使用されるIFFTのサイズを示し、スイッチ1320を動作させ、送受信機チェーンにおける追加的処理のためのパイロットシーケンスを多重化し、CSI−RSシンボルにおけるサイクリックプレフィックス1325のサイズを示すためのCSI−RSサイクリックプレフィックスパラメータを設定する。CSI−RS送信ロジック1310は、CSI−RS OFDMシンボルのサイズを決定する。CSI−RS OFDMシンボルのサイズは、シグナリングによって受信機に示される、又はCSI−RS送信の時間インスタンスに依存して暗黙的である。
図14は、本発明の実施形態による基地局におけるCSI−RSシンボルを送信するためのプロセスを示す図である。図14に示すプロセス1400は、CSI−RS送信のための処理ロジックを具体化する。CSI−RS構成情報(configuration)を含むBS200のため構成情報1405がメモリに保存される。ブロック1410にて、BS200における処理ロジック1310は、CSI−RSのための構成情報を決定するためにメモリから読み出す(read)。CSI−RSのための1つ以上の構成情報が存在できるが、この場合、ロジックは構成情報オプションのうち1つを選択するように設定される。ブロック1415にて、BS200は、メッセージでCSI−RS構成情報をMSに送信する。このメッセージは、ブロードキャスト制御チャネル、マルチキャスト制御チャネル又はユニキャスト制御チャネルのうち少なくとも1つ以上を用いてブロードキャストされる。ブロック1420にて、構成情報は、MSによってCSI−RSシンボルの特性、CSI−RSシンボルで送信されるCSI−RSに対するビームインデックスだけでなくCSI−RSシンボルの長さを決定するために使用される。ブロック1425にて、マッピングが1つのOFDMシンボルで送信された複数のビーム方向間の規則に従って行われ、CSI−RSシンボルが生成される。このような規則は送信機と受信機との間で事前に(apriori)同意された単一の規則であるか、又は調整され得るものであって、構成情報メッセージを用いて受信機に明示的に信号送信され得る。前記構成情報を用いて、BSは選択されたビーム方向に対応するCSI−RS OFDMシンボルを集めて(assembles)送信する。全てのサポートされるビーム方向に対応するCSI−RS送信が送信されるまでこのロジックは行われる。
図15は、本発明の実施形態によるサンプリング周波数の増加によってOFDMシンボルを短くする動作を示す図である。図15に示す短いOFDMシンボル1500の実施形態は単に例示のためのものである。他の実施形態がかかる開示の範囲から逸脱することなく使用されることができる。
実施形態13:CSI−RS送信のためにサンプリング周波数を増加させることによって減少されたシンボル区間
特定の実施形態において、基準シンボルを伝達するOFDMシンボルの区間はデータ送信を伝達するOFDMシンボルのために使用されるものと異なるより高いサンプリング周波数を使用することによって減少される。基準シンボルに対するOFDMシンボルはデータ送信のために使用された普通のOFDMシンボル1505と同じ数の副搬送波を有する。もし、サンプリング周波数が増加した場合、基準シンボルを送信するために使用されたOFDMシンボル1510,1515は、データ送信のために使用された普通のOFDMシンボル1505よりも短い区間であり、以下、短いOFDMシンボルと称する。短いOFDMシンボル1510,1515の副搬送波及び普通のOFDMシンボルの副搬送波は、同じ帯域幅1520の期間を有する(span)。このような実施形態の目的のために、短いOFDMシンボル1510は、データ送信のために使用された普通のOFDMシンボル1505に対して使用されたものよりも大きいサンプリング周波数を用いて派生され得る。短いOFDMシンボル1510における時間区間の短縮の直接的な効果は、増加された副搬送波帯域幅である。もし、サンプリング区間Tが半分になった場合(又は等価的にサンプリング周波数F=1/Tが2倍になった場合)、サンプリング周波数によって、OFDMシンボル期間1510は半分に減少される。さらに、サンプリング周期を1/4に(T/4)減らすことで、OFDMシンボル1515区間は1/4に減少される。短いシンボルに対する2つの例は実際的な例に過ぎず、サンプリング周波数を増加させるための任意の他の要素(factor)が短いOFDMシンボルのために使用され得る。
実施形態14:CSI−RS送信のためのユーザ位置に基づくシンボル区間の減少
特定の実施形態において、特定の空間ビーム方向のために送信されたCSI−RSは、セルにおける受信機の位置に基づいて選択されることができる。これは受信機の位置に基づいてデータを伝達するために使用されるそのような空間ビームのみを機会的に(opportunistically)トレーニングさせることを許可する。例えば、セル中心から遠く離れたユーザはビーム帯域幅がより広い、サポートされるビームのサブセットを使用する。多くのユーザがより広いビームを好ましい状況で、そのようなビームはユーザに好まれなかったビームに優先的により頻繁に送信され得る。
実施形態15:ユーザ移動性に基づく適応性のCSI−RS送信
特定の実施形態において、CSI−RS送信はユーザ移動性に基づいて適応性を有する。空間ビームのビーム幅は受信機の移動性に基づいて調整される。したがって、調整できるビーム幅を有するビームを介してCSI−RSが伝達される。低い移動性のユーザのためのビームは狭くなることができ、CSI−RSは狭いビームを介して伝達されることができる。高い移動性のユーザのためのビームは広くなることができ、CSI−RSは広いビームを介して伝達されることができる。例えば、セルで、もし全てのユーザがほとんど動かない、または非常に低い移動性を有する場合、CSI−RSは狭いビームを介して伝達されることができる。
特定の実施形態において、CSI−RSを伝達するOFDMシンボルの長さはユーザ移動性に基づく。例えば、セルで、もし、全てのユーザがほとんどかない、または非常に低い移動性を有する場合、CSI−RSは長いビームを使用することができる。もし、全てのユーザが普通の又は速い速度を有する場合、CSI−RSに対する短いシンボルが使用され得る。このような実施形態における技術はユーザ位置に基づく適応性のCSI−RS送信と結合され得る。
実施形態16:CSI−RSのコードブックに基づく多重化
特定の実施形態において、互いに異なるコードブックに対応するCSI−RSは、短いOFDMシンボルの互いに異なる送信インスタンスで、短いOFDMシンボルを用いて送信される。互いに異なるコードブックは、各コードブックが互いに異なるビーム幅に対応するマルチ解像度(multi−resolution)ビームに対応できる。与えられたコードブックの互いに異なるビームに対応するCSI−RSは、短いOFDMシンボルに基づくCSI−RS送信の単一の送信インスタンスで送信される。次の送信インスタンスで、互いに異なるコードブックからのビームに対応するCSI−RSが送信される。全てのコードブックからのビームに対応するCSI−RSが送信される場合、全てのコードブックに対するビームの送信シーケンスは後続するCSI−RSの送信インスタンスで繰り返される。例えば、もし、それぞれがB個(i=1,2,…N)のビームを有するN個のコードブックがあれば、CSI−RSの第1送信インスタンスは、コードブックBにおけるビームに対応するCSI−RSの送信に関わる。CSI−RSの第2送信インスタンスで、コードブックBにおけるビームに対応するCSI−RSが送信され、CSI−RSのN番目の送信インスタンスで、コードブックBにおけるビームに対応するCSI−RSが送信される。(N+1)番目の送信インスタンスで、コードブックBにおけるビームに対するCSI−RS送信が送信され、送信サイクルは繰り返される。マルチ解像度コードブックが例として示され、他のマルチ−コードブックに基づくビームフォーミングは、コードブックに対応するCSI−RS短いOFDMシンボルを時間多重化することによってサポートされることができる。
実施形態17:互いに異なる送信周波数を有するCSI−RSのコードブックに基づく多重化
特定の実施形態において、互いに異なるコードブックに対応するCSI−RSは、短いOFDMシンボルの互いに異なる送信インスタンスで、短いOFDMシンボルを用いて送信される。特定のコードブックに対応するCSI−RSシンボルの送信周波数は、各コードブックに対して独立的に設定されることができる。例えば、もし、それぞれがB個(i=1,2,…N)のビームを有するN個のコードブックがあれば、コードブックBはM回送信され、一方、コードブックBは、M回(j≠k;j、k=1,2,…N)送信されることもできる。特定のコードブックからのビームに対応するCSI−RSは規定された数だけ送信され、全てのコードブックに対応する全てのCSI−RSが送信された直後に新たな送信サイクルが開始される。各コードブックに対する送信周波数はコードブック利用統計に基づいて、又は要求される性能、又は他のメトリックに基づいて決定され得る。送信周波数を決定するためのメトリックは本発明の範囲外である。
実施形態17.1:互いに異なるコードブックのための互いに異なるダイナミックな送信周波数
特定の実施形態において、互いに異なるコードブックに対応するCSI−RSは、短いOFDMシンボルの互いに異なる送信インスタンスで、短いOFDMシンボルを用いて送信される。特定のコードブックに対応するCSI−RSシンボルの送信周波数は、各コードブックに対して独立的に設定されることができる。このような送信周波数はダイナミックに決定され得る。例えば、送信の第1サイクルで、互いに異なるコードブックに対応するCSI−RSは、送信サイクルで一度送信されることができる。ユーザから受信されたフィードバックに基づいて、BSはいくつかのコードブックが他に比べて頻繁に送信されることもでき、後続する送信サイクルで、このようなコードブックに対する新しい送信周波数がCSI−RSシンボルの送信に使用されるように決定することもできる。
実施形態18:互いに異なるコードブックを多重化するための互いに異なるシンボル長さ
特定の実施形態において、互いに異なるコードブックに対応するCSI−RSは互いに異なる長さを有する短いOFDMシンボル上で送信される。例えば、最も広いビーム幅を有するコードブックに対応するCSI−RSは、NポイントFFTを使用する普通のOFDMシンボルを用いて送信され、最も狭いコードブックに対応するCSI−RSは、N/8ポイントFFTを使用する普通のOFDMシンボルを用いて送信され、N/4、N/2FFTの短いOFDMシンボルは最も広いビーム幅と最も狭いビーム幅との間のサポートされるビーム幅を有するコードブックに対応するCSI−RSシンボルを送信するために使用される。したがって、互いに異なるシンボル区間を有するOFDMシンボルを用いるマルチビーム解像度コードブックに対するCSI−RSがサポートされる。
実施形態19:BSからMSへのCSI−RSシンボル長さに対するシグナリング
特定の実施形態において、CSI−RSシンボルのシンボル長さは構成情報メッセージを用いて基地局から移動端末に示される。CSI−RSシンボルの長さは構成情報メッセージの特定の位置のビットの列によって指示される。
図16は、本発明の実施形態による移動端末(MS)を示す図である。図16に示す移動端末1600の実施形態は単に例示のためのものである。他の実施形態がかかる開示の範囲から逸脱することなく使用されることができる。移動端末1600は基底帯域+RF処理ブロック1605、ビームフォーミング部1610及びアンテナアレイ1615を含む。基底帯域+RF処理ブロック1605は、DAC1625、直並列変換器1630及びサイクリックプレフィックス除去ブロック1635に結合されたRF処理ブロック1620を含む。CSI−RS復号化ロジック1640は、サイクリックプレフィックス除去ブロック1635、スイッチ1645及びN/m FFT1650に結合される。CSI−RS復号化ロジック1640は、N/m FFT1650に対する「m」の値を示すように構成される。例えば、CSI−RS復号化ロジック1640は、m=1,2,3,…等を示す。N/m FFT1650は、チャネル推定ブロック1655に結合される。スイッチは、サイクリックプレフィックス除去ブロック1635とN/m FFT1650及びN FFT1660との間の接続を変更するように構成される。N FFT1660は、他のチャネル推定ブロック1665、並直列変換器1670及び復調及び復号ブロック1675に結合されるが、復調及び復号ブロック1675は、データビットを出力する。
CSIシンボルの位置及び構成情報は単一の規則に基づくことができ、送信機と受信機との間で明示的に信号送信される必要はない。互いに異なる規則を受け入れることができる多くの構成情報がある場合、かかる構成情報は、構成情報メッセージを用いて受信機に明示的に信号送信されなければならない。スロット又はサブフレームにおけるCSI−RSの位置及びCSI−RS送信周波数は、構成情報メッセージ1680の多くのフィールドを使用して指示される。構成情報メッセージ1680を復号化すると、MS1600はサブフレーム及びスロットにおけるCSI−RSシンボルの長さ及び位置を確認する。MS1600は、スイッチングロジックを設定するために構成情報メッセージ1680を復号化するが、これは、受信機チェーンのサイクリックプレフィックス除去1635、CSI−RSスイッチ1645及びFFTサイズブロックのパラメータを設定する。BS200とMS1600との間で構成情報メッセージ1680のやりとりは、基地局200から構成情報メッセージ1680を移動端末1600に送信することによって開始されるが、これはCSI−RS特定パラメータを含む。MS1600は、構成情報メッセージ1680を復号化し、CSI−RS復号化ロジック1640を設定する。CSI−RSはBS200から受信される。MS1600、はCSI−RSを使用してデータ受信に対するチャネル品質及び好ましいビームインデックスを推定する。MS1600は、アップリンクフィードバックチャネルを用いて好ましいビームインデックスとともにチャネル品質指示をBS200に送信する。BS200は、データ送信のための戦略を決定するにあたって、MS1600から受信されたフィードバックを使用する。
図17は、本発明の実施形態による基地局と移動端末との間の信号送信動作を示す図である。ステップ1705にて、BS200は、構成情報メッセージ1680をMS1600に送信する。構成情報メッセージ1680は、CSI−RSシンボル長さ、送信時間及び送信周波数を示す。ステップ1710にて、MS1600は、構成情報メッセージ1680を復号化し、CSI−RSロジック1640を設定する。ステップ1715にて、BS200は、CSI−RS送信を行う。MS1600は、ステップ1720にて、CSI−RS送信を復号化する。応答として、ステップ1725にて、MS1600は、フィードバックチャネルを介してチャネル状態情報及び好ましいビーム指示子を送信する。ステップ1730にて、BS200は、データ送信を行う。
表1は、BSから送信された構成情報メッセージ1680におけるCSI−RS構成情報に対する互いに異なるフィールドの例を含む。
Figure 2015509305
例えば、もし、システムが12個のサポート可能なビーム方向を有する場合、構成情報メッセージ1680は、4ビットを使用して12個のビーム方向がサポートされることを示す。CSI−RSシンボルの数に対するフィールド(the number of CSI−RS symbols field)は、CSI−RS送信専用のサブフレームにおける全体OFDMシンボルを示す。もし、BS200が3個のOFDMシンボルを使用するように構成される場合、CSI−RSシンボルの数に対するフィールドは3個のビットを使用して3個のOFDMシンボルが使用されたことを示す。サポートされる空間ビームの数(the number of spatial beams supported)及び使用されたCSI−RSシンボルの数(the number of CSI−RS symbols used)に対する各構成情報の場合、CSI−RSシンボルの位置、そのシンボルへのCSI−RSの配置及びCSI−RSシンボルを有するビームのマッピングは暗黙的に規定される。構成情報の詳細はBS200及びMS1600のメモリに保存され、CSI−RS処理ロジック1310,1640によって使用される。このようなパラメータを有するMS1600は、図18に示すように、CSI−RS送信モードを決定し、CSI−RSシンボルを復号化する。
図18は、本発明の実施形態による移動端末によるCSI−RS処理のためのプロセスを示す図である。ブロック1805にて、もし、MS600が現在のシンボル番号に対応するOFDMシンボルがCSI−RSシンボルであると決定した場合、ステップ1810にて、MS1600は、構成情報メッセージ1680を使用してシンボルでCSI−RSを伝達するための副搬送波を分離するためのロジックを構成する。ブロック1815にて、MS1600は、チャネル推定のためのCSI−RSシンボルを使用するが、これは結果的にチャネル品質指示子(CQI)を推定するために使用される。ブロック1820におけるCSI−RS構成情報に規定されたマッピング規則は、ブロック1825にて、CQIをCSI−RSの送信に使用された空間ビームのインデックスに関連づけるために使用される。ブロック1830にて、全てのサポートされる空間方向に対するCQIが受信される場合、ブロック1835にて、MS1600は、アップリンクフィードバックチャネルを使用して現在CQI及び好ましい(複数の)ビームをBS200に示す。現在のOFDMシンボルがCSI−RSシンボルではないと決定された場合は、ブロック1840にて、MS1600は、データを処理し、ブロック1845にて、制御チャネル処理を行い、ブロック1850にて、CSI−RS構成情報メッセージ1680を抽出する。
実施形態20:MS1600からBS200へのCSI−RS構成情報シグナリング
特定の実施形態において、CSI−RSシンボルのサイズはMS1600によってフィードバックメッセージを用いて基地局に示される。MS1600は、次の1つ又はそれ以上:その速度、位置及び他のパラメータ、を使用してBS200からCSI−RSを受信するための最適の構成情報を決定する。この構成情報はBS200に送信される。BS200は、MS1600及びその範囲下にある他のMSから受信されたフィードバックを累積し、全てのMS1600及びその範囲下にある他のMSでロバスト性を有するチャネル品質推定をサポートする最上の構成情報を決定する。
本発明の実施形態は、アンテナアレイを使用して指向性のビームを形成するシステムを含む。送信機は受信機で送信ビームフォーミング利得と呼ばれる最大パワー利得を提供する複数の指向性のビームのうち1つを用いて送信する。また、受信機はアンテナアレイに適用された適切な重み値を用いて生成された指向ビームを使用して送信機によって送信された信号を受信する。受信機におけるパワー利得は受信ビームフォーミング利得と呼ばれる。指向性のビームはアンテナアレイの個別的なアンテナで送信/受信された信号に適切な重み値を適用することによって生成される。重み値は特定の空間方向で形成されたビームに対応する。2つのパラメータはアンテナアレイによって生成された指向性のビームを定義する:アンテナが配列された平面に対して測定された指向性のビームの角度、並びに重み値及びアレイでアンテナの数によって決定されたビーム幅と呼ばれる指向性ビームの幅。本発明では、焦点が平面形のアレイに当てられるが、本発明で記述された技法は非平面形のアンテナアレイに適用可能である。
ダウンリンクで、BS200は送信ビームフォーミングを用いてMS1600にデータを送信する一方、MS1600は受信ビームフォーミングを用いてBS200からデータを受信する。アップリンクで、この関係は逆であり、MS1600は空間ビームを用いて送信し、BS200は受信ビームフォーミングを用いてデータを受信する。ダウンリンクで、BS200とMS1600との間のチャネルは個別的な光線経路(discrete ray paths)の合計で表すことができる:
Figure 2015509305
ここで、Φ及びΘはそれぞれ送信アレイから受信アレイまでのチャネルにおけるk番目び光線に対する出射角(departure angle)及び到来角(arrival angle)である。Φ、Θ、β、ψの値は既知の分布(distributions)でモデル化されたランダム変数である。
図19は、本発明の実施形態による基地局から移動端末への多重経路チャネルを示す図である。図19に示す多重経路チャネルの実施形態は単に例示のためのものである。他の実施形態がかかる開示の範囲から逸脱することなく使用されることができる。
基地局200と移動端末1600との間のチャネルはそれぞれが特定の出射角Φ及び特定の到来角Θを有する3つの経路チャネル1905によって識別される。BS200で、アンテナアレイ220は空間ビーム1910を形成する一方、MS1600で、アンテナアレイ1615は空間ビーム1915を形成する。MS1600への直接経路がない場合、送信された電波は受信機に到達する前に少なくとも一度はオブジェクト1920,1925及び1930によって反射される。
Figure 2015509305
図20は、本発明の実施形態による基準シンボルを用いた基準方向の第1送信インスタンス(instance)を示す図である。図20に示す第1送信インスタンスの実施形態は単に例示のためのものである。他の実施形態がかかる開示の範囲から逸脱することなく使用されることができる。
Figure 2015509305
ゼロ(zeros)及び実質的な角(angular in nature)より同じまたは大きい。1つの動作モードで、BS200におけるビーム方向はBSセクタの最大角度カバレッジを提供するために各送信インスタンスで微細に変更される。
Figure 2015509305
ゼロ及び実質的な角(angular in nature)より大きいまたは同じである。MS1600におけるビーム方向は全ての方向がカバーされることができるように保証するために、各送信インスタンスで変更される。P=2の場合、BS及びMSにおける空間的に時差を有する(staggering)互いに異なる基準シンボルのビームに対する好ましい例の図示が図21に図示されている。空間的に時差を有するスキャンされた角度の解像度における改善が図22に示す2−Dプロット(plot)に図示されている。例えば、図22に示すxは1つの送信インスタンスを示し、oは他の送信インスタンスを示し、四角形は第3送信インスタンスを示す。
したがって、BS200及びMS1600は(P+1)送信インスタンスで送信された(P+1)時差を有する指向セット(staggered orientation sets)を有し、各(P+1)送信インスタンスを繰り返す。MS200は、時差を有するビームを用いて送信及び受信された基準シンボルのすべて又はいくつかを用いてk経路それぞれに対する到来角Θ、出射角Φ及び
Figure 2015509305
を推定するために、推定プロセスを使用する。
図23は、本発明の実施形態による周波数、時間及び空間差を用いたチャネルパラメータ推定及び微細調整プロセスを示す図である。図23にチャネルパラメータ推定及び微細調整プロセスの実施形態は単に例示のためのものである。他の実施形態がかかる開示の範囲から逸脱することなく使用されることができる。
ステップ2305にて、BS200は周波数、時間及び空間スタガーリングを有するパイロットを送信する。ステップ2310にて、MS1600は、チャネルパラメータ到来角(angle of arrival、AoA)、出射角(angle of departure、AoD)及び複素チャネル利得を推定する。ステップ2315にて、MS1600は、アップリンクフィードバックチャネルを用いてAoD、AoA及び複素チャネル利得をBSに送信する。このようなフィードバックは2つの互いに異なる方式を取ることができる。例えば、好ましい送信及び受信ビーム指向がコードブックから選択される暗黙的な方式、又はAoD、AoA及び複素チャネル利得に対する値が量子化されてアップリンクフィードバックチャネル上で送信される明示的な方式が使用され得る。
さらに、ステップ2315にて、1つ又はそれ以上のMS1600は、AoA及びAoD方向及びチャネル利得をさらに分析するために、ターゲットの空間方向で追加的なトレーニングを要求できる。この基準シンボルのセットは要求する(複数の)MSに対して独占的に送信される。改善されたAoA、AoD及びチャネル利得推定を送信するためのフィードバックチャネルがMSに割り当てられる。
ステップ2320にて、BS200は、AoA、AoD方向をさらに分析するために、(複数の)MS1600に特定のトレーニングビームの他のセットを送信することによって、1つ又はそれ以上のMSに対するMS特定トレーニングを初期化できる。ステップ2325にて、MS1600はAoA、AoD及びチャネル利得を微細調整する。ステップ2330にて、MS1600は、微細調整されたAoA、AoD及びチャネル利得をフィードバックする。その後、ステップ2335にて、BS200は、チャネルに敏感なデータ送信を行う。
特定の実施形態において、チャネルパラメータAoA及びAoDが推定され、時差を有するパイロットを用いて各Qサブフレームで送信される。
Figure 2015509305
が推定され、各Q’サブフレームで送信される。典型的な構成情報はQ’<Qであるが、これはチャネル利得が推定され、AoA及びAoD推定値よりも頻繁に送信されることを意味する。
図24は、本発明の実施形態による空間的に差を有するパイロットに対して共有された時間−周波数位置を示す図である。図24に共有された時間−周波数位置の実施形態は単に例示のためのものである。他の実施形態がかかる開示の範囲から逸脱することなく使用されることができる。
特定の実施形態において、互いに異なる空間指向及び最小のビームオーバーラップを有する空間的に時差を有するパイロットはOFDMシンボルで同じ時間、周波数リソースで送信される。互いに異なる指向を有するビーム2410を用いてCSI推定のための基準シンボルを伝達するOFDMシンボル2405は、与えられた時間−周波数リソース位置を共有するように図示されることができる。したがって、CSI−RSに対する与えられたリソース位置で、互いに異なる空間指向を有する2つのCSI−RSは2つの互いに異なるRFチェーンを用いて多重化される。空間指向はその指向におけるビーム間の干渉が最小になるように選択される。これは空間スタガーリングの互いに異なるインスタンスが時間−周波数位置を共有するように、すなわち
Figure 2015509305
及びその他を有するビームに対する時間周波数位置を共有するようにさらに拡張され得る。
特定の実施形態において、ビームの衝突による隣接セル干渉が減少し、チャネル利得及び角度情報のロバスト性を有する(robust)推定が導出されることができるように、多重セルにわたる空間スタガーリング配置が調整され得る。
図25は、本発明の実施形態による空間的に差を有する送信及び受信のためのビーム幅を有して基準シンボルを送信する動作を示す図である。図25に示す可変的なビーム幅を有する空間スタガーリングの実施形態は単に例示のためのものである。他の実施形態がかかる開示の範囲から逸脱することなく使用されることができる。
特定の実施形態において、BS200は、1つの送信インスタンスでは、
Figure 2015509305
Figure 2015509305
ビーム幅は基準シンボル受信の各インスタンスで変更される一方、ビームの空間指向は同一に維持される。
特定の実施形態において、BS200は、1つの送信インスタンスで
Figure 2015509305
BS200でビーム方向及びビーム幅は、各送信インスタンスで微細に変更されてBSセクタの最大角度カバレッジ及びビームフォーミング利得を提供する。
MS1600は、1つのインスタンスで、
Figure 2015509305
ゼロではなく実質的な角(angular in nature)である。3−dBビーム幅は各基準シンボル受信のインスタンスで変更され得る。MS1600におけるビーム方向及び3−dBビーム幅は全ての方向がカバーされ得るように保証するために、各送信インスタンスで変更される。
特定の実施形態において、MS1600は、基準シンボルがBS200によって送信され、MS1600で受信された方向で調べられた測定を用いてチャネルを推定する。基準シンボルが送信された、各調べられた
Figure 2015509305
の場合、受信機で受信された信号は下記式で記述される狭い帯域のチャネル応答からの寄与分(contributions)を含む:
Figure 2015509305
受信機は反復的なビーム減算プロセスを使用して、CLEANアルゴリズムに類似の既知のビーム方向に対して観測されたチャネル測定結果に基づいて到来角、出射角、チャネル利得を推定する。CLEANアルゴリズムは、B.Jeffs,et al.,“A wireless MIMO channel probing approach for arbitrary antenna arrays”、Proc。Of ICASSP、2001、March 2001に記載されているが、その内容は全体的に参照としてここに含まれ、これは離散光線角度マップ(discrete ray angle map)のようなデコンボルビングブラードポイントソースイメージ(de−convolving blurred point source images)に対してより適している。
図26は、本発明の実施形態によるチャネル推定プロセスを示す図である。図26に示すチャネル推定プロセス2600の実施形態は単に例示のためのものである。他の実施形態がかかる開示の範囲から逸脱することなく使用されることができる。
ステップ2605にて、MS1600はチャネル残余マトリックス(Channel Residue Matrix)を初期化する;チャネル残余マトリックスは、
Figure 2015509305
ステップ2610にて、MS1600は、空間的に時差を有する基準シンボルのP個の送信されたインスタンスのすべて又はいくつかによるチャネル観測値を集めることによってチャネル残余マトリックスを構成する。もし、ステップ2615にて、チャネル残余マトリックスが基準シンボルの連続した送信インスタンスを介して進化しなかった場合(does not evolve)、推定プロセスは、ステップ2620に進む。
ステップ2620にて、MS1600は、下記式2のように
Figure 2015509305
におけるピーク値を推定し、ピーク値に対応するN、Mを分離する(isolate)。
Figure 2015509305
ステップ2625にて、MS1600は、N、Mの近傍にある角度範囲を有する基準シンボルから測定値を抽出する。MS1600は、下記式3を用いてピークの近傍の残差ベクトルを形成する。
Figure 2015509305
ステップ2630にて、MS1600は、N、Mの近傍にある基準シンボルからの測定値に対する最上の最小二乗法(least squares fit)のパラメータを推定する。MS1600は、下記式4乃至式6のように、シフトされ、複素スケールされた、2−D探索ビーム応答のための残余ピークに対する最小二乗法を検索する。
Figure 2015509305
ステップ2635にて、MS1600は、AoA、AoD及びチャネル利得に対する推定値を分離する。すると、ステップ2640にて、MS1600は、推定されたチャネルパラメータを用いてチャネルマトリックスを構成することによって残余マトリックスをアップデートし、残余マトリックスからチャネルマトリックスを削除し、チャネルマトリックスが削除された残余マトリックスを
Figure 2015509305
として保存する。例えば、MS1600は、下記式7のように、光線パラメータをモデルに追加し、下記式8のように残余値から光線ピークから除去する。
Figure 2015509305
添字360は、モジュロ360度(degree)の周期的な角度の追加を示し、N{(N,M)は(N,M)の近傍における2−Dサンプル(n,m)のセットである。典型的な近傍値はgBS及びgMSの主な突出部(lobes)を含む。Tは、ターミネーションのために決定されたしきい値である。
ステップ2645にて、もし、
Figure 2015509305
である場合、MS1600は、ステップ2650にて、kを1だけ増加させ、ステップ2615に戻る。もし、そうではない場合には、ステップ2655にて、プロセスを終了する。
上記した図面は様々な実施形態を図示したが、このような図面に多数の変形がなされることができる。例えば、任意の適切なシステムの類型が使用されることができる。また、図14、17、23及び26は様々な一連のステップを図示しているが、図14、17、23及び26で様々なステップは重なる、並列的に行われる、複数回にわたって行われる、または互いに異なる順序で行われることもできる。さらに、装置又はシステムにおける各構成要素は記述された機能を行うことに適切な任意の構造を使用して具現化され得る。
本発明は、好ましい例を用いて記述されたが、当該分野における熟練した者には様々な変更及び変形が提案されることもできる。本発明は、添付する請求項における保護範囲内に属する変更及び変形を含むものとして意図されたものである。
200 基地局
215 ビームフォーミング部
900 送信機
1000 送信機
1110 送信インスタンス
1300 送信機
1310 CSI−RS送信ロジック
1315 N/m IFFTブロック
1320 スイッチ
1325 サイクリックプレフィックスブロック
1330 符号化ブロック
1335 直並列変換器
1340 N IFFTブロック
1345 第2直並列変換器
1350 並直列変換器
1355 デジタル−アナログ変換器
1360 RF処理部
1600 移動端末
1605 基底帯域+RF処理ブロック
1610 ビームフォーミング部
1615 アンテナアレイ
1620 RF処理ブロック
1630 直並列変換器
1635 サイクリックプレフィックス除去ブロック
1640 CSI−RS復号化ロジック
1645 スイッチ
1665 チャネル推定ブロック
1670 並直列変換器
1675 復調及び復号ブロック
1680 構成情報メッセージ
BS200 送信機
MS 移動端末

Claims (14)

  1. 無線通信ネットワークに使用するための、ビームフォーミング技法を使用して複数の加入者端末と通信できる基地局において、
    N個の空間ビームを送信するように構成された複数のアンテナアレイ;及び
    前記複数のアンテナアレイのうち各アレイに接続されたNRF個の無線周波数(radio frequency、RF)処理チェーンを含み、ここで、空間ビームの数NはRF処理チェーンの数NRFより大きい基地局。
  2. 無線通信ネットワークに使用するためのビームフォーミングのための方法において、
    N個の空間ビームをNRF個の無線周波数(radio frequency、RF)処理チェーンを用いて送信する段階を含み、ここで、空間ビームの数NはRF処理チェーンの数NRFより大きい方法。
  3. 無線通信ネットワークに使用するためのビームフォーミング技法を使用して少なくとも1つの基地局と通信できる加入者端末において、
    M個の空間ビームを受信するように構成された複数のアンテナアレイ;及び
    前記複数のアンテナアレイのうち各アレイに結合されたMRF個の無線周波数(RF)処理チェーンを含み、ここで、空間ビームの数MはRF処理チェーンの数MRFより大きい加入者端末。
  4. 前記送信する段階は、前記RF処理チェーンのうち第1チェーンによって、他のRF処理チェーンによって使用されない副搬送波リソースを介して特定の空間ビームに対応する基準シンボルを伝達する段階を含む請求項1に記載の基地局又は請求項2に記載の方法。
  5. 前記送信する段階は、前記NRF個のRF処理チェーンそれぞれによって、少なくともN/NRF回の時間インスタンス(intance)で、互いに異なる空間ビームを送信する段階を含み、
    前記少なくともN/NRF回の時間インスタンス(instance)で前記互いに異なる空間ビームを送信する段階は、互いに異なる方向に送信する段階を含む請求項1に記載の基地局又は請求項2に記載の方法。
  6. 前記少なくとも1つのRFチェーンによって、基準シンボルを伝達するOFDMシンボルの区間(duration)がデータ送信のためのシンボルの区間より短くなる、基準シンボルを伝達するシンボルの区間を減少させる段階をさらに含む請求項1に記載の基地局又は請求項2に記載の方法。
  7. 前記RF処理チェーンのうち第1チェーンは他のRF処理チェーンによって使用されない副搬送波リソースを介して特定の空間ビームに対応する基準シンボルを受信するように構成された請求項3に記載の加入者端末。
  8. 前記MRF個のRF処理チェーンは少なくともM/MRF回のインスタンス(instance)で互いに異なる空間ビームを受信するように構成され、
    前記MRF個のRF処理チェーンは前記加入者端末と前記少なくとも1つの基地局との間の無線チャネルを推定するために前記互いに異なる空間ビームを介して受信された基準シンボルを使用するように構成された請求項3に記載の加入者端末。
  9. 少なくともN/NRF回の時間インスタンス(instance)で前記互いに異なる空間ビームは前記少なくとも1つの基地局によって互いに異なる方向に送信された請求項8に記載の加入者端末。
  10. 少なくとも1つのシンボルは受信された基準シンボルを伝達する短いシンボルを含み、前記短いシンボルはデータ送信のためのシンボルの区間より短い区間を有する請求項3に記載の加入者端末。
  11. 前記基準シンボルを伝達するシンボルはデータ送信のためのシンボルに比べて少ない数の副搬送波を含む請求項6に記載の基地局又は方法又は請求項10に記載の加入者端末。
  12. 前記基準シンボルを伝達するシンボルに対するサイクリックプレフィックスはデータ送信のためのシンボルと同じである請求項6に記載の基地局又は方法又は請求項10に記載の加入者端末。
  13. 前記基準シンボルを伝達するシンボルの多数はデータ送信のためのシンボルの区間内で一致するように構成された請求項6に記載の基地局又は方法又は請求項10に記載の加入者端末。
  14. 前記基準シンボルを伝達するシンボルの多数はそれぞれシンボルごとに少なくともNRF個の空間ビームを有するN個の空間ビームに対応する基準シンボルを伝達する請求項6に記載の基地局又は方法又は請求項10に記載の加入者端末。
JP2014548656A 2011-12-19 2012-12-18 直交周波数分割多重システムにおける基準シンボル送信のための装置及び方法 Active JP6250549B2 (ja)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201161577533P 2011-12-19 2011-12-19
US61/577,533 2011-12-19
US201261649838P 2012-05-21 2012-05-21
US61/649,838 2012-05-21
US13/678,795 2012-11-16
US13/678,795 US9077415B2 (en) 2011-12-19 2012-11-16 Apparatus and method for reference symbol transmission in an OFDM system
PCT/KR2012/011103 WO2013094980A1 (en) 2011-12-19 2012-12-18 Apparatus and method for reference symbol transmission in an ofdm system

Publications (2)

Publication Number Publication Date
JP2015509305A true JP2015509305A (ja) 2015-03-26
JP6250549B2 JP6250549B2 (ja) 2017-12-20

Family

ID=48610122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014548656A Active JP6250549B2 (ja) 2011-12-19 2012-12-18 直交周波数分割多重システムにおける基準シンボル送信のための装置及び方法

Country Status (7)

Country Link
US (1) US9077415B2 (ja)
EP (1) EP2795808A4 (ja)
JP (1) JP6250549B2 (ja)
KR (1) KR102332474B1 (ja)
CN (1) CN104040908B (ja)
IN (1) IN2014KN01301A (ja)
WO (1) WO2013094980A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108293195A (zh) * 2015-11-24 2018-07-17 瑞典爱立信有限公司 用于管理无线通信网络中的信令的无线设备、无线网络节点及在其中执行的方法
JPWO2017073048A1 (ja) * 2015-10-30 2018-08-16 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 送信方法、送信装置、受信方法及び受信装置
KR20180124068A (ko) * 2016-04-15 2018-11-20 텔레폰악티에볼라겟엘엠에릭슨(펍) 무선-네트워크 노드, 무선 장치 및 이들에서 수행된 방법
JP2019525516A (ja) * 2016-06-03 2019-09-05 グァンドン オッポ モバイル テレコミュニケーションズ コーポレーション リミテッドGuangdong Oppo Mobile Telecommunications Corp., Ltd. データ伝送方法及び装置
JP2021052406A (ja) * 2020-12-03 2021-04-01 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. データ伝送方法及び装置
JP2021177642A (ja) * 2016-04-27 2021-11-11 華為技術有限公司Huawei Technologies Co., Ltd. セルラ時分割複信(tdd)ミリ波システムのためのサウンディング参照信号(srs)設計

Families Citing this family (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8811522B2 (en) 2012-05-29 2014-08-19 Magnolia Broadband Inc. Mitigating interferences for a multi-layer MIMO system augmented by radio distribution network
US8861635B2 (en) 2012-05-29 2014-10-14 Magnolia Broadband Inc. Setting radio frequency (RF) beamformer antenna weights per data-stream in a multiple-input-multiple-output (MIMO) system
US8837650B2 (en) 2012-05-29 2014-09-16 Magnolia Broadband Inc. System and method for discrete gain control in hybrid MIMO RF beamforming for multi layer MIMO base station
US8644413B2 (en) 2012-05-29 2014-02-04 Magnolia Broadband Inc. Implementing blind tuning in hybrid MIMO RF beamforming systems
US8649458B2 (en) 2012-05-29 2014-02-11 Magnolia Broadband Inc. Using antenna pooling to enhance a MIMO receiver augmented by RF beamforming
US8842765B2 (en) 2012-05-29 2014-09-23 Magnolia Broadband Inc. Beamformer configurable for connecting a variable number of antennas and radio circuits
US8885757B2 (en) 2012-05-29 2014-11-11 Magnolia Broadband Inc. Calibration of MIMO systems with radio distribution networks
US8767862B2 (en) 2012-05-29 2014-07-01 Magnolia Broadband Inc. Beamformer phase optimization for a multi-layer MIMO system augmented by radio distribution network
US8619927B2 (en) 2012-05-29 2013-12-31 Magnolia Broadband Inc. System and method for discrete gain control in hybrid MIMO/RF beamforming
US8971452B2 (en) 2012-05-29 2015-03-03 Magnolia Broadband Inc. Using 3G/4G baseband signals for tuning beamformers in hybrid MIMO RDN systems
US9154204B2 (en) 2012-06-11 2015-10-06 Magnolia Broadband Inc. Implementing transmit RDN architectures in uplink MIMO systems
US20140052884A1 (en) * 2012-08-14 2014-02-20 Zyxel Communications, Inc. Mobile device case with wireless high definition transmitter
US20140210666A1 (en) * 2013-01-25 2014-07-31 Alexander Maltsev Apparatus, system and method of wireless communication via an antenna array
WO2014115941A1 (en) * 2013-01-27 2014-07-31 Lg Electronics Inc. Method for transmitting and receiving planar antenna based reference signal in wireless communication system and apparatus therefor
US9343808B2 (en) * 2013-02-08 2016-05-17 Magnotod Llc Multi-beam MIMO time division duplex base station using subset of radios
US8797969B1 (en) 2013-02-08 2014-08-05 Magnolia Broadband Inc. Implementing multi user multiple input multiple output (MU MIMO) base station using single-user (SU) MIMO co-located base stations
US9155110B2 (en) 2013-03-27 2015-10-06 Magnolia Broadband Inc. System and method for co-located and co-channel Wi-Fi access points
US20140226740A1 (en) 2013-02-13 2014-08-14 Magnolia Broadband Inc. Multi-beam co-channel wi-fi access point
US8774150B1 (en) 2013-02-13 2014-07-08 Magnolia Broadband Inc. System and method for reducing side-lobe contamination effects in Wi-Fi access points
US8989103B2 (en) 2013-02-13 2015-03-24 Magnolia Broadband Inc. Method and system for selective attenuation of preamble reception in co-located WI FI access points
US9225396B2 (en) 2013-02-15 2015-12-29 Intel Corporation Apparatus, system and method of transmit power control for wireless communication
US9100968B2 (en) 2013-05-09 2015-08-04 Magnolia Broadband Inc. Method and system for digital cancellation scheme with multi-beam
US9425882B2 (en) 2013-06-28 2016-08-23 Magnolia Broadband Inc. Wi-Fi radio distribution network stations and method of operating Wi-Fi RDN stations
US8995416B2 (en) 2013-07-10 2015-03-31 Magnolia Broadband Inc. System and method for simultaneous co-channel access of neighboring access points
US8824596B1 (en) 2013-07-31 2014-09-02 Magnolia Broadband Inc. System and method for uplink transmissions in time division MIMO RDN architecture
US9497781B2 (en) 2013-08-13 2016-11-15 Magnolia Broadband Inc. System and method for co-located and co-channel Wi-Fi access points
JP6257769B2 (ja) * 2013-08-20 2018-01-10 華為技術有限公司Huawei Technologies Co.,Ltd. 通信方法及び装置
US9060362B2 (en) 2013-09-12 2015-06-16 Magnolia Broadband Inc. Method and system for accessing an occupied Wi-Fi channel by a client using a nulling scheme
US9088898B2 (en) 2013-09-12 2015-07-21 Magnolia Broadband Inc. System and method for cooperative scheduling for co-located access points
EP3046269B1 (en) 2013-09-27 2018-09-19 Huawei Technologies Co., Ltd. Communication method, base station and user equipment
ES2599071T3 (es) * 2013-10-16 2017-01-31 Telefónica S.A. Un método y un sistema para la coordinación de haces entre estaciones base en sistemas celulares inalámbricos y programa de ordenador para los mismos
US9762995B2 (en) 2013-10-16 2017-09-12 Samsung Electronics Co., Ltd. Stochastic transmission/reception method and apparatus for MU-MIMO scheme in MIMO radio communication system
CN104579456B (zh) * 2013-10-18 2018-09-04 中国移动通信集团公司 异构网络通信方法及相应设备
US9172454B2 (en) 2013-11-01 2015-10-27 Magnolia Broadband Inc. Method and system for calibrating a transceiver array
KR102088529B1 (ko) * 2013-11-06 2020-03-12 삼성전자주식회사 통신 시스템에서 빔 훈련 방법 및 장치
US8891598B1 (en) 2013-11-19 2014-11-18 Magnolia Broadband Inc. Transmitter and receiver calibration for obtaining the channel reciprocity for time division duplex MIMO systems
US8929322B1 (en) 2013-11-20 2015-01-06 Magnolia Broadband Inc. System and method for side lobe suppression using controlled signal cancellation
US8942134B1 (en) 2013-11-20 2015-01-27 Magnolia Broadband Inc. System and method for selective registration in a multi-beam system
KR101831085B1 (ko) * 2013-11-25 2018-02-21 엘지전자 주식회사 무선랜에서 상향링크 프레임을 전송하는 방법 및 장치
US9294177B2 (en) 2013-11-26 2016-03-22 Magnolia Broadband Inc. System and method for transmit and receive antenna patterns calibration for time division duplex (TDD) systems
US9014066B1 (en) 2013-11-26 2015-04-21 Magnolia Broadband Inc. System and method for transmit and receive antenna patterns calibration for time division duplex (TDD) systems
KR102323130B1 (ko) * 2013-11-27 2021-11-10 삼성전자 주식회사 하이브리드 빔포밍 기반 오픈-루프 mimo 전송 방법 및 장치
US9042276B1 (en) 2013-12-05 2015-05-26 Magnolia Broadband Inc. Multiple co-located multi-user-MIMO access points
US10256882B2 (en) * 2013-12-12 2019-04-09 Telefonaktiebolaget Lm Ericsson (Publ) Method and network node for broadcasting
US9100154B1 (en) 2014-03-19 2015-08-04 Magnolia Broadband Inc. Method and system for explicit AP-to-AP sounding in an 802.11 network
US9172446B2 (en) 2014-03-19 2015-10-27 Magnolia Broadband Inc. Method and system for supporting sparse explicit sounding by implicit data
US9271176B2 (en) 2014-03-28 2016-02-23 Magnolia Broadband Inc. System and method for backhaul based sounding feedback
US20150341105A1 (en) * 2014-05-23 2015-11-26 Mediatek Inc. Methods for efficient beam training and communications apparatus and network control device utilizing the same
US9451536B2 (en) 2014-06-18 2016-09-20 Qualcomm Incorporated UE initiated discovery in assisted millimeter wavelength wireless access networks
US9705581B2 (en) * 2014-09-24 2017-07-11 Mediatek Inc. Synchronization in a beamforming system
US10396873B2 (en) 2014-09-24 2019-08-27 Mediatek Inc. Control signaling in a beamforming system
US9948374B2 (en) 2014-10-01 2018-04-17 Qualcomm Incorporated Beamforming configuration scheme
EP3293911B1 (en) * 2014-10-10 2019-08-14 Telefonaktiebolaget LM Ericsson (publ) Method for dynamic csi feedback
KR102398646B1 (ko) * 2014-12-02 2022-05-17 삼성전자주식회사 하이브리드 다중-입력 다중-출력 방식을 지원하는 통신 시스템에서 빔 운용 장치 및 방법
KR101772739B1 (ko) * 2014-12-23 2017-08-29 한국과학기술원 Rf 빔포밍 방법, 및 이를 수행하는 장치들
EP3229380B1 (en) * 2014-12-31 2019-05-29 Huawei Technologies Co. Ltd. Antenna alignment method and system
JP6508221B2 (ja) 2015-01-29 2019-05-08 ソニー株式会社 装置及び方法
CN105991175B (zh) 2015-01-29 2019-02-05 电信科学技术研究院 一种导频信号的发送、接收处理方法及装置
US10122424B2 (en) 2015-04-10 2018-11-06 Kyocera Corporation Mobile communication system, base station, and user terminal
EP3326297B1 (en) * 2015-07-22 2023-09-13 Telefonaktiebolaget LM Ericsson (publ) Reference signaling for beamforming networks
HUE044311T2 (hu) * 2015-07-31 2019-10-28 Intel Ip Corp Hálózat felfedezés és sugárnyaláb gyûjtés nyaláb cella mûvelethez
CN107852209B (zh) * 2015-07-31 2021-01-12 华为技术有限公司 训练波束传输方法、装置及系统
CN106470065B (zh) 2015-08-14 2020-01-21 财团法人工业技术研究院 发射和接收信道状态信息参考信号的方法及其基站和设备
CN107852212B (zh) * 2015-08-27 2022-03-25 苹果公司 Mimo通信系统中的波束间移动性控制
US9549406B1 (en) 2015-09-14 2017-01-17 Elwha Llc Automatically adjustable radiofrequency link
CN106612132B (zh) * 2015-10-16 2021-05-18 电信科学技术研究院 一种信道状态信息的传输方法和装置
KR102548589B1 (ko) * 2015-11-05 2023-06-29 베이징 시아오미 모바일 소프트웨어 컴퍼니 리미티드 비인가 대역에서 신호 전송 방법, 장치 및 시스템
WO2017082952A1 (en) * 2015-11-11 2017-05-18 Intel IP Corporation Mechanisms for beam switching and refinement in cellular systems
CN105553531B (zh) * 2015-12-14 2020-03-31 北京邮电大学 毫米波系统快速信道估计方法
CN112615706B (zh) * 2016-01-15 2022-08-19 中兴通讯股份有限公司 一种信号的发送方法、信号的接收方法和装置
US10362447B2 (en) * 2016-01-21 2019-07-23 Intel IP Corporation Apparatus, system and method of angle of departure (AoD) estimation
US10393850B2 (en) 2016-01-21 2019-08-27 Intel IP Corporation Apparatus, system and method of angle of departure (AOD) estimation
CN113872654A (zh) * 2016-01-29 2021-12-31 瑞典爱立信有限公司 使用天线阵列进行波束成形
US11088749B2 (en) * 2016-02-25 2021-08-10 Apple Inc. Device and method of using BRRS configuration
WO2017156114A1 (en) * 2016-03-10 2017-09-14 Interdigital Patent Holdings, Inc. Concurrent mimo beamforming training in mmw wlan systems
JP7297400B2 (ja) * 2016-03-18 2023-06-26 キヤノン株式会社 通信装置、情報処理装置、制御方法、および、プログラム
CN108781103B (zh) * 2016-03-23 2022-03-01 瑞典爱立信有限公司 波束质量测量信号向多个无线设备的高效调度
CN107294584B (zh) * 2016-03-31 2021-05-11 上海诺基亚贝尔股份有限公司 共享信道状态信息参考信号资源的方法和装置
WO2017180803A2 (en) * 2016-04-15 2017-10-19 Intel IP Corporation Frequency tracking for beamformed systems
CN109076371B (zh) * 2016-06-01 2023-03-24 苹果公司 用于灵活传输模式切换的cqi上报
JP2018011249A (ja) * 2016-07-15 2018-01-18 三菱電機株式会社 通信システム、基地局装置、通信端末装置および通信方法
US10333672B2 (en) 2016-07-28 2019-06-25 Qualcomm Incorporated Semi-persistent measurement reference signal (MRS) configuration
CN107835042B (zh) 2016-09-14 2020-12-01 华为技术有限公司 同步波束发送接收方法、网络设备、终端及系统
CN112134601B (zh) * 2016-09-19 2023-02-28 Oppo广东移动通信有限公司 传输信号的方法、设备及存储介质
US10756940B2 (en) 2016-09-29 2020-08-25 Lg Electronics Inc. Method and device for transceiving wireless signal in wireless communication system
EP4012967A1 (en) * 2016-09-30 2022-06-15 Motorola Mobility LLC Flexible radio resource allocation
US10425144B2 (en) * 2016-09-30 2019-09-24 Qualcomm Incorporated Methods for assisting in beam sweeping, tracking and recovery
CN108023629A (zh) * 2016-11-03 2018-05-11 株式会社Ntt都科摩 波束确定方法、下行传输解调方法、用户设备和基站
KR20180050025A (ko) * 2016-11-04 2018-05-14 삼성전자주식회사 멀티-빔 시스템 빔 매니지먼트
US10582397B2 (en) * 2016-11-09 2020-03-03 Qualcomm Incorporated Beam refinement reference signal transmissions during control symbol
CN108075811B (zh) 2016-11-11 2021-03-30 上海诺基亚贝尔股份有限公司 用于混合预编码的方法以及通信设备
US10404433B2 (en) * 2017-01-31 2019-09-03 Qualcomm Incorporated Matrix-based techniques for mapping resource elements to ports for reference signals
KR101980429B1 (ko) * 2017-02-09 2019-05-20 한국과학기술원 수신 신호의 크기에 기초하여 빔을 선택하는 방법 및 장치
US11196475B2 (en) * 2017-04-10 2021-12-07 Telefonaktiebolaget Lm Ericsson (Publ) Device-specific beam management of a wireless device
EP3619820A1 (en) * 2017-05-05 2020-03-11 Intel Corporation Management of mimo communication systems
US11888771B2 (en) 2017-05-05 2024-01-30 Qualcomm Incorporated Beam procedure information for channel state information reference signals (CSI-RS)
US10116367B1 (en) * 2017-06-09 2018-10-30 Sony Corporation Method and system for multiple-hop relayed directional wireless communication
KR102506475B1 (ko) 2017-08-31 2023-03-06 삼성전자 주식회사 이동 통신 시스템에서의 csi-rs 자원 반복 전송 지원 방법 및 장치
US10735081B2 (en) * 2017-09-13 2020-08-04 Chiun Mai Communication Systems, Inc. Heterogeneous network, mobile device and method for beam training and tracking
CN111052664A (zh) * 2017-09-29 2020-04-21 株式会社Ntt都科摩 发送信道状态信息参考信号(csi-rs)的方法、基站和用户设备
US10110326B1 (en) 2017-09-30 2018-10-23 Keysight Technologies, Inc. Multi-probe anechoic chamber (MPAC) over-the-air (OTA) test system having a radio channel (RC) emulator that has a dynamically-variable channel model, and methods
US10103823B1 (en) 2017-09-30 2018-10-16 Keysight Technologies, Inc. Radio channel emulator having a dynamically-variable channel model for use in testing base stations and user equipment (UE) that perform analog beam forming
CN110583077B (zh) * 2018-04-06 2022-12-20 Lg 电子株式会社 在无线通信系统中确定用户设备的时隙格式的方法以及使用该方法的用户设备
US10735110B2 (en) 2018-12-07 2020-08-04 Keysight Technologies, Inc. Methods, systems, and computer readable media for testing and modeling beamforming capabilities of a device under test
US20220286336A1 (en) * 2019-08-23 2022-09-08 Iposi, Inc. Improved ofdm ranging using position reference symbol phase
EP3809604B1 (en) * 2019-10-15 2023-11-29 Nokia Technologies Oy Method of operating an apparatus for transmitting and/or receiving radio frequency signals
US11088744B1 (en) 2020-02-07 2021-08-10 Keysight Technologies, Inc. Methods, systems, and computer readable media for 5G digital beamforming testing
CN111988825B (zh) * 2020-08-31 2021-06-29 西安电子科技大学 双频集成系统中的模式选择和切换方法
WO2023048420A1 (ko) * 2021-09-27 2023-03-30 주식회사 케이엠더블유 사중 편파 다이버시티 안테나 시스템

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09326630A (ja) * 1996-06-05 1997-12-16 N T T Ido Tsushinmo Kk アダプティブアレイアンテナ装置
JP2009526434A (ja) * 2006-03-30 2009-07-16 ミツビシ・エレクトリック・リサーチ・ラボラトリーズ・インコーポレイテッド 種々のサウンディングフレームによる、mimoワイヤレスlanにおけるアンテナ/ビーム選択トレーニング
JP2010068482A (ja) * 2008-09-12 2010-03-25 Toshiba Corp アレイアンテナ装置
WO2010083451A2 (en) * 2009-01-16 2010-07-22 Qualcomm Incorporated Method and apparatus for transmitting overload indicator over the air
JP2011523818A (ja) * 2008-05-30 2011-08-18 アルカテル−ルーセント モバイル・セルラ・ネットワークでビーム・フォーミングを制御する方法および基地局
US20110243040A1 (en) * 2010-04-06 2011-10-06 Samsung Electronics Co. Ltd. Apparatus and method for spatial division duplex (sdd) for millimeter wave communication system
JP2012249111A (ja) * 2011-05-27 2012-12-13 Kyocera Corp 無線送信装置及び送信制御方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9402942D0 (en) * 1994-02-16 1994-04-06 Northern Telecom Ltd Base station antenna arrangement
US6438389B1 (en) * 1998-07-24 2002-08-20 The Board Of Trustees Of The Leland Stanford Junior University Wireless communication system with adaptive beam selection
KR20040008692A (ko) 2002-07-19 2004-01-31 주식회사 웨이브컴테크놀로지 디지털 빔 포밍 시스템
US8306574B2 (en) * 2003-10-29 2012-11-06 Robert Warner Method and system for an adaptive wireless communication system optimized for economic benefit
US8483200B2 (en) 2005-04-07 2013-07-09 Interdigital Technology Corporation Method and apparatus for antenna mapping selection in MIMO-OFDM wireless networks
US7539458B2 (en) * 2005-10-24 2009-05-26 The Regents Of The University Of California Apparatus and method for a system architecture for multiple antenna wireless communication systems using round robin channel estimation and transmit beam forming algorithms
US7848438B2 (en) * 2006-02-14 2010-12-07 Motorola Mobility, Inc. Method and apparatus for pilot signal transmission
CA2542445A1 (en) 2006-04-07 2007-10-07 Tenxc Wireless Inc. Adaptive multi-beam system
KR100903926B1 (ko) * 2007-07-09 2009-06-19 후지쯔 가부시끼가이샤 무선 통신 시스템
WO2010002734A2 (en) * 2008-06-30 2010-01-07 Interdigital Patent Holdings, Inc. Method and apparatus to support single user (su) and multiuser (mu) beamforming with antenna array groups
JP5278035B2 (ja) * 2009-02-25 2013-09-04 ソニー株式会社 通信装置及び通信方法、コンピューター・プログラム、並びに通信システム
US20100310002A1 (en) 2009-06-05 2010-12-09 Broadcom Corporation Adaptive and selective frame formats within multiple user, multiple access, and/or mimo wireless communications
US8285221B2 (en) 2009-08-31 2012-10-09 Motorola Mobility Llc Scalable self-calibrating and configuring radio frequency head for a wireless communication system
CN102655418A (zh) * 2010-12-08 2012-09-05 美国博通公司 射频模块控制接口
US8385305B1 (en) * 2012-04-16 2013-02-26 CBF Networks, Inc Hybrid band intelligent backhaul radio

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09326630A (ja) * 1996-06-05 1997-12-16 N T T Ido Tsushinmo Kk アダプティブアレイアンテナ装置
JP2009526434A (ja) * 2006-03-30 2009-07-16 ミツビシ・エレクトリック・リサーチ・ラボラトリーズ・インコーポレイテッド 種々のサウンディングフレームによる、mimoワイヤレスlanにおけるアンテナ/ビーム選択トレーニング
JP2011523818A (ja) * 2008-05-30 2011-08-18 アルカテル−ルーセント モバイル・セルラ・ネットワークでビーム・フォーミングを制御する方法および基地局
JP2010068482A (ja) * 2008-09-12 2010-03-25 Toshiba Corp アレイアンテナ装置
WO2010083451A2 (en) * 2009-01-16 2010-07-22 Qualcomm Incorporated Method and apparatus for transmitting overload indicator over the air
US20110243040A1 (en) * 2010-04-06 2011-10-06 Samsung Electronics Co. Ltd. Apparatus and method for spatial division duplex (sdd) for millimeter wave communication system
JP2012249111A (ja) * 2011-05-27 2012-12-13 Kyocera Corp 無線送信装置及び送信制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Performance Comparison between CDM and FDM Pilot for Uplink SC-FDMA[online]", 3GPP TSG-RAN WG1#46B R1-062563, JPN6016025569, ISSN: 0003668227 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017073048A1 (ja) * 2015-10-30 2018-08-16 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 送信方法、送信装置、受信方法及び受信装置
US10716078B2 (en) 2015-11-24 2020-07-14 Telefonaktiebolaget Lm Ericsson (Publ) Wireless device, radio-network node, and methods performed therein for managing signaling in a wireless communication network
CN108293195B (zh) * 2015-11-24 2021-09-17 瑞典爱立信有限公司 用于管理无线通信网络中的信令的无线设备、无线网络节点及在其中执行的方法
JP2018538735A (ja) * 2015-11-24 2018-12-27 テレフオンアクチーボラゲット エルエム エリクソン(パブル) ワイヤレス通信ネットワークにおけるシグナリングを管理するためのワイヤレスデバイス、無線ネットワークノード、及びそれらにおいて実行される方法
CN108293195A (zh) * 2015-11-24 2018-07-17 瑞典爱立信有限公司 用于管理无线通信网络中的信令的无线设备、无线网络节点及在其中执行的方法
US10887062B2 (en) 2016-04-15 2021-01-05 Telefonaktiebolaget Lm Ericsson (Publ) Methods and systems for providing channel estimation
KR102146177B1 (ko) 2016-04-15 2020-08-19 텔레폰악티에볼라겟엘엠에릭슨(펍) 무선-네트워크 노드, 무선 장치 및 이들에서 수행된 방법
JP2019519952A (ja) * 2016-04-15 2019-07-11 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 無線ネットワークノード、無線デバイス及びそれらにおいて実行される方法
KR20180124068A (ko) * 2016-04-15 2018-11-20 텔레폰악티에볼라겟엘엠에릭슨(펍) 무선-네트워크 노드, 무선 장치 및 이들에서 수행된 방법
JP2021177642A (ja) * 2016-04-27 2021-11-11 華為技術有限公司Huawei Technologies Co., Ltd. セルラ時分割複信(tdd)ミリ波システムのためのサウンディング参照信号(srs)設計
US11522743B2 (en) 2016-04-27 2022-12-06 Futurewei Technologies, Inc. Sounding reference signal (SRS) design for cellular time division duplex (TDD) mmWave systems
JP7359808B2 (ja) 2016-04-27 2023-10-11 華為技術有限公司 セルラ時分割複信(tdd)ミリ波システムのためのサウンディング参照信号(srs)設計
US11888665B2 (en) 2016-04-27 2024-01-30 Futurewei Technologies, Inc. Sounding reference signal (SRS) design for cellular time division duplex (TDD) mmWave systems
JP2019525516A (ja) * 2016-06-03 2019-09-05 グァンドン オッポ モバイル テレコミュニケーションズ コーポレーション リミテッドGuangdong Oppo Mobile Telecommunications Corp., Ltd. データ伝送方法及び装置
US11146368B2 (en) 2016-06-03 2021-10-12 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and device for transmitting data
US11616612B2 (en) 2016-06-03 2023-03-28 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and device for transmitting data
JP2021052406A (ja) * 2020-12-03 2021-04-01 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. データ伝送方法及び装置
JP7093826B2 (ja) 2020-12-03 2022-06-30 オッポ広東移動通信有限公司 データ伝送方法及び装置

Also Published As

Publication number Publication date
EP2795808A1 (en) 2014-10-29
IN2014KN01301A (ja) 2015-10-16
CN104040908A (zh) 2014-09-10
EP2795808A4 (en) 2015-12-16
US20130156120A1 (en) 2013-06-20
KR102332474B1 (ko) 2021-11-30
CN104040908B (zh) 2017-06-13
KR20130070560A (ko) 2013-06-27
JP6250549B2 (ja) 2017-12-20
US9077415B2 (en) 2015-07-07
WO2013094980A1 (en) 2013-06-27

Similar Documents

Publication Publication Date Title
JP6250549B2 (ja) 直交周波数分割多重システムにおける基準シンボル送信のための装置及び方法
CN106576036B (zh) 发送用于估计模拟波束的训练符号的方法和设备
US10028153B2 (en) Efficient beam scanning for high-frequency wireless networks
KR102344710B1 (ko) 밀리미터파 무선 로컬 영역 네트워크에서 빔 형성 피드백을 위한 시스템 및 방법
EP2898646B1 (en) Method and apparatus for transmitting and receiving broadcast channel in cellular communication system
CN103782636B (zh) 用于在无线通信系统中同步并获得系统信息的装置及方法
EP2751947B1 (en) Spatially randomized pilot symbol transmission method, system and device for mimo wireless communications
EP3035556B1 (en) Method and apparatus for transmitting common signal in hybrid beamforming
US9191079B2 (en) Wireless communication system and beamforming training method for wireless communication system
US20160261325A1 (en) Method and apparatus for transmitting signal in wireless communication system
EP3264626B1 (en) Method, apparatus, device and system for acquiring beam identifier
US10505606B2 (en) Hybrid beamforming-based broadcast channel transmitting method and device in wireless connection system
KR20150043310A (ko) 밀리미터파 시스템에서 채널 미세 조정 및 다중 스트림 전송을 지원하기 위한 방법 및 장치
US10536249B2 (en) Uplink pilot reuse and user-proximity detection in wireless networks
US20190215045A1 (en) Method and device for performing beam scanning in wireless access system supporting millimeter wave
US11005541B2 (en) Method for transmitting feedback information and terminal therefor
Kim et al. Efficient MU-MIMO beamforming protocol for IEEE 802.11 ay WLANs
US8514693B2 (en) Broadcast and multicast in single frequency networks using othrogonal space-time codes
Ao et al. Compressed sensing-based pilot assignment and reuse for mobile UEs in mmWave cellular systems
US20210273701A1 (en) Time-overlapping beam-swept transmissions
CN109792414B (zh) 用于蜂窝多输入多输出系统的方法和设备

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20141226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160704

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171122

R150 Certificate of patent or registration of utility model

Ref document number: 6250549

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250