JP2015230807A - Method for manufacturing nonaqueous electrolyte secondary battery - Google Patents

Method for manufacturing nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2015230807A
JP2015230807A JP2014116061A JP2014116061A JP2015230807A JP 2015230807 A JP2015230807 A JP 2015230807A JP 2014116061 A JP2014116061 A JP 2014116061A JP 2014116061 A JP2014116061 A JP 2014116061A JP 2015230807 A JP2015230807 A JP 2015230807A
Authority
JP
Japan
Prior art keywords
negative electrode
charging
graphite
current density
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014116061A
Other languages
Japanese (ja)
Other versions
JP6315259B2 (en
Inventor
邦光 山本
Kunimitsu Yamamoto
邦光 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014116061A priority Critical patent/JP6315259B2/en
Publication of JP2015230807A publication Critical patent/JP2015230807A/en
Application granted granted Critical
Publication of JP6315259B2 publication Critical patent/JP6315259B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a nonaqueous electrolyte secondary battery, by which the initial charging can be completed in a short time while preventing the precipitation of charge carriers.SOLUTION: A method for manufacturing a nonaqueous electrolyte secondary battery according to the invention, which is arranged so as to involve graphite as a negative electrode active material comprises: a step of constructing a battery having a positive electrode and a negative electrode; and an initial charging step of initially charging the battery. The initial charging step includes: a first charging treatment in which the battery is charged with a first charging current density until a structural change of the first stage is caused in the graphite. The first charging current density is set so as to avoid making the potential of the negative electrode 0 V or less; and a second charging treatment in which the battery is charged with a second charging current density smaller than the first charging current density after the first stage structural change is caused in the graphite.

Description

本発明は、非水電解質二次電池の製造方法に関する。   The present invention relates to a method for manufacturing a nonaqueous electrolyte secondary battery.

近年、リチウムイオン二次電池、ニッケル水素電池その他の非水電解質二次電池(例えば特許文献1)は、車両搭載用電源、或いはパソコン及び携帯端末の電源として利用されている。特に、軽量で高エネルギー密度が得られるリチウムイオン二次電池は、車両搭載用高出力電源等として重要性が高まっている。リチウムイオン二次電池では、正極活物質からなる正極と負極活物質からなる負極との間で、リチウムイオンを授受することで充放電が行われる。すなわち、充電時にはリチウム(電荷担体)が正極活物質から引き抜かれ、リチウムイオンとして電解液(電解質)中に放出される。充電時には該リチウムイオンは負極側に設けられた負極活物質(例えば層状の黒鉛)の構造内に入り、ここで正極活物質から外部回路を通ってきた電子を得て、吸蔵される。   In recent years, lithium ion secondary batteries, nickel metal hydride batteries, and other nonaqueous electrolyte secondary batteries (for example, Patent Document 1) have been used as power sources for mounting on vehicles or personal computers and portable terminals. In particular, a lithium ion secondary battery that is lightweight and obtains a high energy density is gaining importance as a high-output power source mounted on a vehicle. In a lithium ion secondary battery, charging / discharging is performed by transferring lithium ions between a positive electrode made of a positive electrode active material and a negative electrode made of a negative electrode active material. That is, during charging, lithium (charge carrier) is extracted from the positive electrode active material and released as lithium ions into the electrolytic solution (electrolyte). At the time of charging, the lithium ions enter the structure of a negative electrode active material (for example, layered graphite) provided on the negative electrode side. Here, electrons passing through an external circuit are obtained from the positive electrode active material and occluded.

特開2012−084322号公報JP 2012-084322 A

ところで、組立直後の電池は未充電状態にあるので、該電池に対して、最初の充電処理(すなわち、正極、負極、電解質等の電池構成要素を組み立てた後に初めて行う充電処理。以下「初期充電」という。)が行われる。生産効率の観点からは初期充電を短時間で完了することが望ましいが、初期充電時の電流密度(充電電流値)を大きくすると、負極において局所的に電荷担体(例えばリチウム)が析出するという問題があった。電荷担体の析出を抑制しつつ、初期充電を時短化することが求められている。本発明は上記課題を解決するものである。   By the way, since the battery immediately after assembly is in an uncharged state, the battery is first charged (that is, the first charge process performed after assembling battery components such as the positive electrode, the negative electrode, and the electrolyte. ") Is performed. From the viewpoint of production efficiency, it is desirable to complete the initial charging in a short time, but if the current density (charging current value) at the initial charging is increased, the problem is that charge carriers (for example, lithium) precipitate locally at the negative electrode. was there. There is a need to shorten the initial charge while suppressing the deposition of charge carriers. The present invention solves the above problems.

ここで提案される非水電解質二次電池の製造方法は、負極活物質としての黒鉛と、充電時に該黒鉛の層間に保持され得る電荷担体(例えばリチウムイオン二次電池の場合、リチウム)を含む正極活物質とを有する非水電解質二次電池を製造する方法である。この製造方法は、正極と負極を備える電池を構築する工程と、前記電池に対して初回の充電を行う初期充電工程とを包含する。ここで前記初期充電工程では、前記黒鉛に第1ステージの構造変化が生じるまでの間、負極電位が0V以下とならないように設定された第1充電電流密度で充電する第1充電処理と、前記黒鉛に第1ステージの構造変化が生じた後、前記第1充電電流密度よりも小さい第2充電電流密度で充電する第2充電処理とを含む。かかる構成によると、電荷担体の析出を抑制しつつ初期充電を時短化することができる。   The method for producing a nonaqueous electrolyte secondary battery proposed here includes graphite as a negative electrode active material and charge carriers that can be held between the graphite layers during charging (for example, lithium in the case of a lithium ion secondary battery). A method for producing a non-aqueous electrolyte secondary battery having a positive electrode active material. This manufacturing method includes a step of constructing a battery including a positive electrode and a negative electrode, and an initial charging step of charging the battery for the first time. Here, in the initial charging step, until the structural change of the first stage occurs in the graphite, a first charging process for charging at a first charging current density set so that the negative electrode potential does not become 0 V or less; And a second charging process in which the graphite is charged at a second charging current density lower than the first charging current density after the first stage structural change occurs in the graphite. According to this configuration, the initial charge can be shortened while suppressing the deposition of charge carriers.

一実施形態に係るリチウムイオン二次電池を模式的に示す図である。It is a figure which shows typically the lithium ion secondary battery which concerns on one Embodiment. 一実施形態に用いられる捲回電極体を模式的に示す図である。It is a figure which shows typically the wound electrode body used for one Embodiment. リチウム/黒鉛半電池の電圧特性を示すグラフである。It is a graph which shows the voltage characteristic of a lithium / graphite half-cell. サンプル1のLi析出の有無を示す図である。It is a figure which shows the presence or absence of Li precipitation of the sample 1. FIG. サンプル2のLi析出の有無を示す図である。It is a figure which shows the presence or absence of Li precipitation of the sample 2. FIG. サンプル3のLi析出の有無を示す図である。It is a figure which shows the presence or absence of Li precipitation of the sample 3. FIG. 高温保存日数と容量維持率との関係を示すグラフである。It is a graph which shows the relationship between high temperature preservation days and a capacity | capacitance maintenance factor. サイクル数と容量維持率との関係を示すグラフである。It is a graph which shows the relationship between the number of cycles and a capacity | capacitance maintenance factor.

以下、図面を参照しながら、本発明による実施の形態を説明する。以下の図面においては、同じ作用を奏する部材・部位には同じ符号を付して説明している。なお、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。また、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、正極及び負極を備えた電極体の構成及び製法、セパレータや電解質の構成及び製法、リチウムイオン二次電池その他の電池の構築に係る一般的技術等)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。   Embodiments according to the present invention will be described below with reference to the drawings. In the following drawings, members / parts having the same action are described with the same reference numerals. Note that the dimensional relationship (length, width, thickness, etc.) in each drawing does not reflect the actual dimensional relationship. Further, matters other than the matters specifically mentioned in the present specification and matters necessary for the implementation of the present invention (for example, the configuration and manufacturing method of an electrode body including a positive electrode and a negative electrode, the configuration and manufacturing method of a separator and an electrolyte, General techniques relating to the construction of lithium ion secondary batteries and other batteries, etc.) can be understood as design matters for those skilled in the art based on the prior art in this field.

以下、本発明の一実施形態に係る非水電解質二次電池の構成および初期充電工程の順に説明する。以下では、リチウムイオン二次電池を初期充電する場合を説明するが、本発明の適用対象を限定する意図ではない。   Hereinafter, the configuration of the nonaqueous electrolyte secondary battery according to an embodiment of the present invention and the initial charging step will be described in this order. Hereinafter, a case where the lithium ion secondary battery is initially charged will be described, but it is not intended to limit the application target of the present invention.

<リチウムイオン二次電池>
本実施形態のリチウムイオン二次電池100(以下、適宜「電池」という。)は、例えば、図1に示すように、長尺状の正極シート10と長尺状の負極シート20が長尺状のセパレータ40を介して扁平に捲回された形態の電極体(捲回電極体)80が、図示しない非水電解液とともに、該捲回電極体80を収容し得る形状(扁平な箱型)のケース50に収容された構成を有する。
<Lithium ion secondary battery>
In the lithium ion secondary battery 100 (hereinafter referred to as “battery” as appropriate) of the present embodiment, for example, as shown in FIG. 1, a long positive electrode sheet 10 and a long negative electrode sheet 20 are long. The shape of the electrode body (winding electrode body) 80 wound in a flat shape through the separator 40 is capable of accommodating the winding electrode body 80 together with a non-aqueous electrolyte (not shown) (flat box shape) The case 50 is accommodated in the case 50.

ケース50は、上端が開放された扁平な直方体状のケース本体52と、その開口部を塞ぐ蓋体54とを備える。ケース50を構成する材質としては、アルミニウム、スチール等の金属材料が好ましく用いられる(本実施形態ではアルミニウム)。あるいは、ポリフェニレンサルファイド(PPS)、ポリイミド樹脂等の樹脂材料を成形してなるケース50であってもよい。ケース50の上面(すなわち蓋体54)には、捲回電極体80の正極と電気的に接続する正極端子70及び該電極体80の負極20と電気的に接続する負極端子72が設けられている。蓋体54の両端子72、74の間には、電池ケース50の内圧が所定レベル以上に上昇した場合に該内圧を開放するように構成された薄肉の安全弁56が形成されている。ケース50の内部には、扁平形状の捲回電極体80が図示しない非水電解液とともに収容される。   The case 50 includes a flat rectangular parallelepiped case main body 52 having an open upper end, and a lid 54 that closes the opening. As a material constituting the case 50, a metal material such as aluminum or steel is preferably used (in this embodiment, aluminum). Or the case 50 formed by shape | molding resin materials, such as a polyphenylene sulfide (PPS) and a polyimide resin, may be sufficient. On the upper surface of the case 50 (that is, the lid body 54), a positive electrode terminal 70 that is electrically connected to the positive electrode of the wound electrode body 80 and a negative electrode terminal 72 that is electrically connected to the negative electrode 20 of the electrode body 80 are provided. Yes. A thin safety valve 56 configured to release the internal pressure of the battery case 50 when the internal pressure of the battery case 50 rises above a predetermined level is formed between both terminals 72 and 74 of the lid 54. In the case 50, a flat wound electrode body 80 is accommodated together with a non-aqueous electrolyte (not shown).

本実施形態に係る捲回電極体80は、通常のリチウムイオン二次電池の捲回電極体と同様であり、図2に示すように、捲回電極体80を組み立てる前段階において長尺状(帯状)のシート構造を有している。   The wound electrode body 80 according to the present embodiment is the same as the wound electrode body of a normal lithium ion secondary battery, and as shown in FIG. (Strip-shaped) sheet structure.

<正極シート>
正極シート10は、正長尺シート状の箔状の正極集電体12の両面に正極活物質を含む正極活物質層14が保持された構造を有している。ただし、正極活物質層14は正極シート10の幅方向の端辺に沿う一方の側縁(図では左側の側縁部分)には付着されず、正極集電体12を一定の幅にて露出させた正極活物質層非形成部16が形成されている。正極集電体12にはアルミニウム箔その他の正極に適する金属箔が好適に使用される。
<Positive electrode sheet>
The positive electrode sheet 10 has a structure in which a positive electrode active material layer 14 containing a positive electrode active material is held on both surfaces of a foil-like positive electrode current collector 12 in the form of a long sheet. However, the positive electrode active material layer 14 is not attached to one side edge (the left side edge portion in the drawing) along the widthwise end of the positive electrode sheet 10, and the positive electrode current collector 12 is exposed with a certain width. The positive electrode active material layer non-formed part 16 is formed. For the positive electrode current collector 12, an aluminum foil or other metal foil suitable for the positive electrode is preferably used.

本実施形態で用いられる正極活物質は、リチウムイオン二次電池の正極活物質として用いることができる物質であって、充電時に負極活物質(後述する黒鉛)の層間に保持され得る電荷担体(ここではリチウム)を有する物質の一種または二種以上を使用することができる。例えば、リチウムと遷移金属元素とを構成金属元素として含む酸化物(リチウム遷移金属酸化物)が挙げられる。該酸化物は、層状岩塩型構造、スピネル構造、およびオリビン構造の何れであってもよい。かかる酸化物の具体例としては、LiNi1/3Mn1/3Co1/3等が挙げられる。 The positive electrode active material used in the present embodiment is a material that can be used as a positive electrode active material of a lithium ion secondary battery, and is a charge carrier that can be held between layers of a negative electrode active material (graphite described later) during charging (here In this case, one kind or two or more kinds of substances having lithium) can be used. For example, an oxide containing lithium and a transition metal element as a constituent metal element (lithium transition metal oxide) can be given. The oxide may have a layered rock salt structure, a spinel structure, or an olivine structure. Specific examples of such oxides include LiNi 1/3 Mn 1/3 Co 1/3 O 2 and the like.

正極活物質層14は、正極活物質のほか、一般的なリチウムイオン二次電池において正極活物質層の構成成分として使用され得る一種または二種以上の材料を必要に応じて含有することができる。そのような材料の例として、導電材が挙げられる。該導電材としては、カーボン粉末(例えば、アセチレンブラック(AB))やカーボンファイバー等のカーボン材料が好ましく用いられる。あるいは、ニッケル粉末等の導電性金属粉末等を用いてもよい。その他、正極活物質層の成分として使用され得る材料としては、正極活物質の結着材(バインダ)として機能し得る各種のポリマー材料(例えば、ポリフッ化ビニリデン(PVDF))が挙げられる。   In addition to the positive electrode active material, the positive electrode active material layer 14 can contain one or two or more materials that can be used as a constituent component of the positive electrode active material layer in a general lithium ion secondary battery as necessary. . An example of such a material is a conductive material. As the conductive material, carbon materials such as carbon powder (for example, acetylene black (AB)) and carbon fiber are preferably used. Alternatively, conductive metal powder such as nickel powder may be used. In addition, examples of a material that can be used as a component of the positive electrode active material layer include various polymer materials (for example, polyvinylidene fluoride (PVDF)) that can function as a binder of the positive electrode active material.

<負極シート>
負極シート20も正極シート10と同様に、長尺シート状の箔状の負極集電体22の両面に負極活物質を含む負極活物質層24が保持された構造を有している。ただし、負極活物質層24は負極シート20の幅方向の端辺に沿う一方の側縁(図では右側の側縁部分)には付着されず、負極集電体22を一定の幅にて露出させた負極活物質層非形成部26が形成されている。負極集電体22には銅箔その他の負極に適する金属箔が好適に使用される。
<Negative electrode sheet>
Similarly to the positive electrode sheet 10, the negative electrode sheet 20 has a structure in which a negative electrode active material layer 24 containing a negative electrode active material is held on both surfaces of a long sheet-like foil-shaped negative electrode current collector 22. However, the negative electrode active material layer 24 is not attached to one side edge (the right side edge portion in the drawing) along the widthwise edge of the negative electrode sheet 20, and the negative electrode current collector 22 is exposed with a certain width. The negative electrode active material layer non-forming part 26 is formed. For the negative electrode current collector 22, a copper foil or other metal foil suitable for the negative electrode is preferably used.

本実施形態で用いられる負極活物質は、黒鉛を含んでいる。ここで開示される負極活物質層に含有される黒鉛としては、天然黒鉛または人造黒鉛を主成分とするものが好ましく、なかでも天然黒鉛がより好ましい。また、天然黒鉛、人工黒鉛等の各種黒鉛を粒子状(球状)に加工(粉砕、球状成形等)したものを使用することができる。例えば鱗片状(Flake Graphite)の黒鉛を球形化したものであり得る。上記球形化黒鉛の平均粒径は、例えば、レーザー散乱・回折法に基づく粒度分布測定装置に基づいて測定した粒度分布から導き出せるメジアン径(平均粒径D50:50%体積平均粒径)が凡そ1μm〜30μm(典型的には5μm〜20μm)であることが好ましい。各種黒鉛を粒子状に加工する方法としては、従来公知の方法(例えばメカノフュージョンやハイブリダイゼーション)を特に制限なく採用することができる。 The negative electrode active material used in this embodiment contains graphite. As the graphite contained in the negative electrode active material layer disclosed herein, those containing natural graphite or artificial graphite as a main component are preferable, and natural graphite is more preferable. Further, various graphites such as natural graphite and artificial graphite processed into particles (spherical) (pulverization, spherical molding, etc.) can be used. For example, flaky graphite can be used. The average particle diameter of the spheroidized graphite is, for example, approximately the median diameter (average particle diameter D 50 : 50% volume average particle diameter) that can be derived from the particle size distribution measured using a particle size distribution measuring apparatus based on a laser scattering / diffraction method. The thickness is preferably 1 to 30 μm (typically 5 to 20 μm). As a method of processing various types of graphite into particles, a conventionally known method (for example, mechanofusion or hybridization) can be employed without particular limitation.

負極活物質層24は、負極活物質のほか、一般的なリチウムイオン二次電池において負極活物質層の構成成分として使用され得る一種または二種以上の材料を必要に応じて含有することができる。そのような材料の例として、負極活物質の結着材(バインダ)として機能し得るポリマー材料(例えばPVDF、スチレンブタジエンゴム(SBR))、負極活物質層形成用ペーストの増粘剤として機能し得るポリマー材料(例えばカルボキシメチルセルロース(CMC))等が挙げられる。   In addition to the negative electrode active material, the negative electrode active material layer 24 can contain one or two or more materials that can be used as a constituent component of the negative electrode active material layer in a general lithium ion secondary battery as necessary. . Examples of such materials are polymer materials (eg, PVDF, styrene butadiene rubber (SBR)) that can function as a binder for the negative electrode active material, and function as a thickener for the paste for forming the negative electrode active material layer. Examples thereof include a polymer material to be obtained (for example, carboxymethyl cellulose (CMC)).

<セパレータ>
正負極シート10、20間に配置されるセパレータ40としては、捲回電極体を備える一般的なリチウムイオン二次電池のセパレータと同様の各種多孔質シートを用いることができる。好適例として、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン系樹脂から成る多孔質樹脂シート(フィルム、不織布等)が挙げられる。かかる多孔質樹脂シートは、単層構造であってもよく、二層以上の複数構造(例えば、PP層の両面にPE層が積層された三層構造)であってもよい。
<Separator>
As the separator 40 disposed between the positive and negative electrode sheets 10 and 20, various porous sheets similar to those of a general lithium ion secondary battery including a wound electrode body can be used. Preferable examples include porous resin sheets (films, nonwoven fabrics, etc.) made of polyolefin resins such as polyethylene (PE) and polypropylene (PP). Such a porous resin sheet may have a single layer structure, or may have a two or more layers structure (for example, a three-layer structure in which PE layers are laminated on both sides of a PP layer).

<捲回電極体>
捲回電極体80を作製するに際しては、正極シート10と負極シート20とがセパレータ40を介して積層される。このとき、正極シート10の正極活物質層非形成部分と負極シート20の負極活物質層非形成部分とがセパレータ40の幅方向の両側からそれぞれはみ出すように、正極シート10と負極シート20とを幅方向にややずらして重ね合わせる。このように重ね合わせた積層体を捲回し、次いで得られた捲回体を側面方向から押しつぶして拉げさせることによって扁平状の捲回電極体80が作製され得る。
<Winded electrode body>
In producing the wound electrode body 80, the positive electrode sheet 10 and the negative electrode sheet 20 are laminated via the separator 40. At this time, the positive electrode sheet 10 and the negative electrode sheet 20 are placed so that the positive electrode active material layer non-formation part of the positive electrode sheet 10 and the negative electrode active material layer non-formation part of the negative electrode sheet 20 protrude from both sides of the separator 40 in the width direction. Laminate slightly shifted in the width direction. The laminated body thus stacked is wound, and then the obtained wound body is crushed from the side surface direction and ablated, whereby a flat wound electrode body 80 can be produced.

捲回電極体80の捲回軸方向における中央部分には、捲回コア部分82(即ち正極シート10の正極活物質層14と負極シート20の負極活物質層24とセパレータ40とが密に積層された部分)が形成される。また、捲回電極体80の捲回軸方向の両端部には、正極シート10及び負極シート20の電極活物質層非形成部分16,26がそれぞれ捲回コア部分82から外方にはみ出ている。かかる正極側はみ出し部分(すなわち正極活物質層14の非形成部分)16及び負極側はみ出し部分(すなわち負極活物質層24の非形成部分)26には、正極リード端子74及び負極リード端子76がそれぞれ付設されており、上述の正極端子70及び負極端子72とそれぞれ電気的に接続される。   A wound core portion 82 (that is, the positive electrode active material layer 14 of the positive electrode sheet 10, the negative electrode active material layer 24 of the negative electrode sheet 20, and the separator 40) is densely laminated at the center portion in the winding axis direction of the wound electrode body 80. Part) is formed. Further, the electrode active material layer non-formed portions 16 and 26 of the positive electrode sheet 10 and the negative electrode sheet 20 protrude outward from the wound core portion 82 at both ends of the wound electrode body 80 in the winding axis direction. . A positive electrode lead terminal 74 and a negative electrode lead terminal 76 are provided on the protruding portion 16 (that is, the non-formed portion of the positive electrode active material layer 14) 16 and the protruding portion 26 (that is, the non-formed portion of the negative electrode active material layer 24) 26, respectively. Attached and electrically connected to the positive terminal 70 and the negative terminal 72 described above.

<非水電解質>
そして、ケース本体52の上端開口部から該本体52内に捲回電極体80を収容するとともに、適当な非水電解質をケース本体52内に配置(注液)する。かる非水電解質は、典型的には、適当な非水溶媒に支持塩を含有させた組成を有する。上記非水溶媒としては、例えば、エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)等を用いることができる。また、上記支持塩としては、例えば、LiPF、LiBF、LiAsF、LiCFSO等のリチウム塩を好ましく用いることができる。
<Nonaqueous electrolyte>
Then, the wound electrode body 80 is accommodated in the main body 52 from the upper end opening of the case main body 52, and an appropriate nonaqueous electrolyte is disposed (injected) in the case main body 52. Such a non-aqueous electrolyte typically has a composition in which a supporting salt is contained in a suitable non-aqueous solvent. As said non-aqueous solvent, ethylene carbonate (EC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), diethyl carbonate (DEC), propylene carbonate (PC) etc. can be used, for example. Further, as the supporting salt, for example, LiPF 6, LiBF 4, LiAsF 6, LiCF 3 can be preferably used a lithium salt of SO 3 and the like.

その後、上記開口部を蓋体54との溶接等により封止し、本実施形態に係るリチウムイオン二次電池100の組み立てが完成する。ケース50の封止プロセスや電解質の配置(注液)プロセスは、従来のリチウムイオン二次電池の製造で行われている手法と同様でよく、本発明を特徴付けるものではない。このようにして本実施形態に係るリチウムイオン二次電池100の構築(組み立て)が完成する。なお、ケース本体52の封止プロセスや電解液の配置(注液)プロセスは、従来のリチウムイオン二次電池の製造で行われている手法と同様にして行うことができる。   Thereafter, the opening is sealed by welding or the like with the lid 54, and the assembly of the lithium ion secondary battery 100 according to the present embodiment is completed. The sealing process of the case 50 and the process of placing (injecting) the electrolyte may be the same as those used in the production of a conventional lithium ion secondary battery, and do not characterize the present invention. In this way, the construction (assembly) of the lithium ion secondary battery 100 according to the present embodiment is completed. In addition, the sealing process of the case main body 52 and the arrangement | positioning (injection) process of electrolyte solution can be performed similarly to the method currently performed by manufacture of the conventional lithium ion secondary battery.

その後、上記組み立てたリチウムイオン二次電池100に対して初期充電工程を行う。ここで初期充電工程とは、上記電池の組立(正極、負極、電解質等の電池構成要素の組立)を終えた後、初めて行う充電処理のことをいう。かかる初期充電工程は、典型的には、該電池の正極(正極端子)と負極(負極端子)の間に外部電源を接続し、所定の電圧まで常温域で充電(典型的には定電流定電圧充電)を行うとよい。初期充電を行うと、リチウム(電荷担体)が正極活物質から引き抜かれ、リチウムイオンとして電解液(電解質)中に放出される。また、該リチウムイオンが負極側に設けられた黒鉛(負極活物質)の層間に入り、吸蔵される。その際、黒鉛の層間に保持されるリチウムの量が増加する(ひいては負極電位が低下する)に従って、第4ステージ、第3ステージ、第2ステージ、第1ステージの構造変化が黒鉛に生じ得る。ここで第3ステージは、黒鉛の層間に3層おきにリチウムが挿入されるステージ(典型的には黒鉛の層間に保持されるリチウムの量が炭素18原子に対してリチウム1原子となるステージ)であり、第2ステージは、黒鉛の層間に2層おきにリチウムが挿入されるステージ(典型的には黒鉛の層間に保持されるリチウムの量が炭素12原子に対してリチウム1原子となるステージ)であり、第1ステージは、黒鉛の全層間にリチウムが挿入されるステージ(典型的には黒鉛の層間に保持されるリチウムの量が炭素6原子に対してリチウム1原子となるステージ)である。この現象は、リチウム/黒鉛半電池の電圧特性において、段階的な電圧変化を示す平坦域として観測され得る(図3の参考負極電位参照)。第2ステージから第1ステージへの移行は、例えば、負極の全容量の70%まで充電したときに生じ得る。   Thereafter, an initial charging step is performed on the assembled lithium ion secondary battery 100. Here, the initial charging step refers to a charging process performed for the first time after the assembly of the battery (assembly of battery components such as a positive electrode, a negative electrode, and an electrolyte) is completed. In this initial charging step, typically, an external power source is connected between the positive electrode (positive electrode terminal) and the negative electrode (negative electrode terminal) of the battery and charged to a predetermined voltage in a normal temperature range (typically constant current constant). Voltage charging). When initial charging is performed, lithium (charge carrier) is extracted from the positive electrode active material and released as lithium ions into the electrolytic solution (electrolyte). Further, the lithium ions enter the layer of graphite (negative electrode active material) provided on the negative electrode side and are occluded. At that time, as the amount of lithium held between the graphite layers increases (and consequently the negative electrode potential decreases), structural changes in the fourth stage, the third stage, the second stage, and the first stage may occur in the graphite. Here, the third stage is a stage in which lithium is inserted between every three layers of graphite (typically a stage in which the amount of lithium held between graphite layers is one lithium atom per 18 carbon atoms). The second stage is a stage in which lithium is inserted between every two layers of graphite (typically a stage in which the amount of lithium held between graphite layers is one lithium atom per 12 carbon atoms) The first stage is a stage in which lithium is inserted between all the graphite layers (typically a stage in which the amount of lithium held between the graphite layers is one lithium atom per six carbon atoms). is there. This phenomenon can be observed as a flat region showing a stepwise voltage change in the voltage characteristics of the lithium / graphite half-cell (see reference negative electrode potential in FIG. 3). The transition from the second stage to the first stage can occur, for example, when charging to 70% of the total capacity of the negative electrode.

ここで生産効率の観点からは、充電電流密度を大きくして初期充電を時短化することが望ましい。その一方で、充電電流密度を大きくしすぎると、負極電位がリチウム析出電位まで下がるため、負極において局所的にリチウム(電荷担体)が析出する場合があり得る。本発明者は、種々実験を行った結果、初期充電を行うと、黒鉛のステージ構造によって負極電位の傾き(負極電位の低下量)が充電電流密度の大小に依存する場合と依存しない場合があることを見出した。具体的には、組立直後の未充電のリチウム/黒鉛半電池を複数用意し、種々異なった充電電流密度にて初期充電を行い、負極電位の推移を測定した。このうち、18mA/mおよび90mA/mの各充電電流密度にて初期充電を行った結果を、図3に示す。図3は初期充電時における負極電位の変化(推移)を示している。サンプル1は18mA/mで得られる負極電位の推移を、サンプル2は90mA/mで得られる負極電位の推移をそれぞれ示している。 Here, from the viewpoint of production efficiency, it is desirable to increase the charging current density to shorten the initial charging time. On the other hand, if the charging current density is excessively increased, the negative electrode potential is lowered to the lithium deposition potential, so that lithium (charge carrier) may be locally deposited on the negative electrode. As a result of various experiments, the present inventor, when performing initial charging, may or may not depend on whether the slope of the negative electrode potential (the amount of decrease in the negative electrode potential) depends on the magnitude of the charging current density, depending on the stage structure of graphite. I found out. Specifically, a plurality of uncharged lithium / graphite half cells immediately after assembly were prepared, initial charging was performed at various charging current densities, and the transition of the negative electrode potential was measured. Among them, the results of initial charging at each charging current density of 18 mA / m 2 and 90 mA / m 2, shown in FIG. FIG. 3 shows changes (transitions) in the negative electrode potential during initial charging. Sample 1 shows the transition of the negative electrode potential obtained at 18 mA / m 2 , and Sample 2 shows the transition of the negative electrode potential obtained at 90 mA / m 2 .

図3に示すように、充電電流密度を18mA/m、90mA/mとした各電池は、第2ステージ〜第4ステージにおいては負極電位の傾きが電流密度(充電電流値)の大小に関係なく略同じ傾きを示した。これは、第2ステージ〜第4ステージにおいては、充電電流密度の大小にかかわらず、負極電位の傾き(ひいては負極電位の低下量)が略同じであることを意味している。すなわち、第2ステージ〜第4ステージにおいては負極電位の低下量が充電電流密度の大小に依存しないため、負極電位がリチウム析出電位(0V)以下とならないように設定された相対的に大きな第1充電電流密度で充電することで、初期充電の時短化を図ることが可能になる。
一方、第1ステージにおいては、充電電流密度の大小により負極電位の傾きに顕著な差が生じた。具体的には、充電電流密度を90mA/mとした電池は、18mA/mとした電池に比べて負極電位の傾きが増大した。これは、第1ステージにおいては、充電電流密度が大きいほど負極電位の傾き(ひいては負極電位の低下量)が大きいことを意味している。すなわち、第1ステージにおいては、負極電位の低下量が充電電流密度の大小に依存するため、負極電位がリチウム析出電位(0V)以下とならないように設定された相対的に小さな第2充電電流密度で充電することで、リチウムの析出を抑制することが可能になる。
As shown in FIG. 3, in each battery with charging current densities of 18 mA / m 2 and 90 mA / m 2 , the slope of the negative electrode potential is increased or decreased in current density (charging current value) in the second to fourth stages. It showed almost the same slope regardless. This means that in the second stage to the fourth stage, the slope of the negative electrode potential (and thus the amount of decrease in the negative electrode potential) is substantially the same regardless of the magnitude of the charging current density. That is, in the second stage to the fourth stage, the amount of decrease in the negative electrode potential does not depend on the magnitude of the charging current density. Therefore, the relatively large first voltage set so that the negative electrode potential does not become the lithium deposition potential (0 V) or less. By charging at the charging current density, it is possible to shorten the initial charging time.
On the other hand, in the first stage, a significant difference occurred in the slope of the negative electrode potential due to the magnitude of the charging current density. Specifically, the battery with a charging current density of 90 mA / m 2 has an increased negative electrode potential gradient as compared with a battery with 18 mA / m 2 . This means that in the first stage, the gradient of the negative electrode potential (and hence the amount of decrease in the negative electrode potential) increases as the charging current density increases. That is, in the first stage, since the amount of decrease in the negative electrode potential depends on the magnitude of the charging current density, the relatively small second charging current density set so that the negative electrode potential does not become the lithium deposition potential (0 V) or less. It becomes possible to suppress precipitation of lithium by charging with.

<初期充電工程>
以上のような知見から、本実施形態における初期充電工程は、第1充電処理と第2充電処理とを含んでいる。
<Initial charging process>
From the above knowledge, the initial charging step in the present embodiment includes a first charging process and a second charging process.

第1充電処理は、黒鉛に第1ステージの構造変化が生じるまでの間(換言すれば、第1ステージに移行する前、すなわち第4ステージ〜第2ステージの間)、負極電位が0V以下とならないように設定された第1充電電流密度で充電する処理である。上記第1充電処理における相対的に大きい第1充電電流密度は、初期充電を高速で行えるとともに、負極電位がリチウム析出電位(0V)以下とならないような充電電流密度に設定することが好ましい。例えば、上記相対的に大きい第1充電電流密度は、概ね90mA/m以上200mA/m以下の範囲内に設定することが望ましい。例えば、上記相対的に高い第1充電電流密度は、後述する第2充電電流密度よりも70mA/m以上(好ましくは72mA/m以上)高い電流密度に設定されていることが好ましい。このようなハイレートで初期充電を行うことで、初期充電工程の時短化を実現できる。 The first charging process is performed until the first stage structural change occurs in graphite (in other words, before the transition to the first stage, that is, between the fourth stage and the second stage), and the negative electrode potential is 0 V or less. It is the process which charges with the 1st charging current density set so that it may not become. The relatively large first charging current density in the first charging process is preferably set to such a charging current density that the initial charging can be performed at a high speed and the negative electrode potential does not fall below the lithium deposition potential (0 V). For example, the relatively large first charging current density is generally it is desirable to set the 90 mA / m 2 or more 200 mA / m 2 within the following ranges. For example, the relatively high first charging current density is preferably 70 mA / m 2 or more is set to (preferably 72 mA / m 2 or more) higher current density than the second charging current density to be described later. By performing the initial charging at such a high rate, the initial charging process can be shortened.

第2充電処理は、黒鉛に第1ステージの構造変化が生じた後(すなわち第1ステージに移行した後)、第1充電電流密度よりも小さい第2充電電流密度で充電する処理である。上記第2充電処理における相対的に小さい第2充電電流密度は、第1充電電流密度よりも小さく、かつ、負極電位がリチウム析出電位(0V)以下とならないような充電電流密度に設定することが好ましい。例えば、上記相対的に小さい第2充電電流密度は、概ね10mA/m以上18mA/m以下の範囲内に設定することが望ましい。このようなローレートで初期充電を行うことで、リチウムの析出を抑制することができる。 The second charging process is a process of charging at a second charging current density smaller than the first charging current density after the first stage structural change occurs in graphite (that is, after shifting to the first stage). The relatively small second charging current density in the second charging process may be set to a charging current density that is smaller than the first charging current density and that the negative electrode potential does not fall below the lithium deposition potential (0 V). preferable. For example, the relatively small second charging current density is generally it is desirable to set the 10 mA / m 2 or more 18 mA / m 2 within the following ranges. By performing the initial charging at such a low rate, precipitation of lithium can be suppressed.

黒鉛に第1ステージの構造変化が生じたか否かの判断は、例えば、負極の容量監視に基づいて行うとよい。例えば、第2ステージから第1ステージへの移行は、負極の全容量の7割まで充電したときに生じ得る。この場合、電池に充電される電流を積算して負極の容量を監視するとともに、負極の容量が所定の基準値以下の場合に黒鉛に第1ステージの構造変化が生じていないと判断し、負極の容量が所定の基準値を上回った場合に黒鉛に第1ステージの構造変化が生じたと判断すればよい。例えば、図3のグラフに基づくと、上記負極容量に対する基準値は、概ね20Ah〜25Ahの負極容量の範囲内に設定することができる。   The determination of whether or not the first stage structural change has occurred in the graphite may be performed based on, for example, monitoring the capacity of the negative electrode. For example, the transition from the second stage to the first stage can occur when charging up to 70% of the total capacity of the negative electrode. In this case, the current charged in the battery is integrated to monitor the capacity of the negative electrode, and when the capacity of the negative electrode is equal to or less than a predetermined reference value, it is determined that the first stage structural change has not occurred in the graphite. What is necessary is just to judge that the structural change of the 1st stage had arisen in graphite when the capacity | capacitance of this exceeded the predetermined reference value. For example, based on the graph of FIG. 3, the reference value for the negative electrode capacity can be set within a range of the negative electrode capacity of approximately 20 Ah to 25 Ah.

なお、ここでは便宜上、図3のグラフに基づいて、初期充電工程における各充電電流密度および負極容量に対する基準値を説明したが、かかる図3のグラフによって得られる各充電電流密度および負極容量に対する基準値は本発明を限定するものではない。例えば、充電電流密度および負極容量に対する基準値は、電池の材料(特に負極活物質の材料)、構成等によって変化し得る。このため、充電電流密度および負極容量に対する基準値は、予備試験を実施してその結果に基づいて定めるとよい。   Here, for the sake of convenience, the reference values for the charging current densities and the negative electrode capacities in the initial charging process have been described based on the graph of FIG. 3, but the reference values for the charging current densities and the negative electrode capacities obtained by the graph of FIG. The value does not limit the invention. For example, the reference values for the charging current density and the negative electrode capacity may vary depending on the battery material (particularly, the negative electrode active material), the configuration, and the like. For this reason, the reference values for the charging current density and the negative electrode capacity may be determined based on the results of a preliminary test.

本実施形態によると、黒鉛に第1ステージの構造変化が生じるまでの間、相対的に大きい第1充電電流密度で充電するので(第1充電処理)、従来に比して充電時間を短縮することができる。また、黒鉛に第1ステージの構造変化が生じた後は、負極電位がリチウム析出電位(0V)以下とならないように設定された相対的に小さい第2充電電流密度で充電するので(第2充電処理)、リチウムの析出を抑制することができる。従って、上記実施形態によれば、リチウムの析出を防ぎつつ、素早く初期充電を完了することができる。   According to the present embodiment, since the graphite is charged at a relatively high first charging current density until the first stage structural change occurs (first charging process), the charging time is shortened as compared with the conventional case. be able to. Further, after the first stage structural change occurs in graphite, the negative electrode potential is charged at a relatively small second charging current density set so as not to be equal to or lower than the lithium deposition potential (0 V) (second charging). Treatment), lithium precipitation can be suppressed. Therefore, according to the said embodiment, initial charge can be completed quickly, preventing precipitation of lithium.

以下、本発明に関する試験例を説明するが、本発明を以下の試験例に示すものに限定することを意図したものではない。   Hereinafter, although the test example regarding this invention is demonstrated, it is not intending to limit this invention to what is shown to the following test examples.

正極活物質としてのLiNi1/3Co1/3Mn1/3粉末と導電材としてのアセチレンブラック(AB)とバインダとしてのポリフッ化ビニリデン(PVDF)とを、これらの材料の質量比が89:3:8となるようにN−メチルピロリドン(NMP)中で混合して、正極活物質層用ペーストを調製した。この正極活物質層用ペーストを長尺シート状の正極集電体(厚さ15μm程度のアルミニウム箔)の両面に帯状に塗布して乾燥することにより、正極集電体の両面に正極活物質層が設けられた正極シートを作製した。 LiNi 1/3 Co 1/3 Mn 1/3 O 2 powder as a positive electrode active material, acetylene black (AB) as a conductive material, and polyvinylidene fluoride (PVDF) as a binder, the mass ratio of these materials is A paste for a positive electrode active material layer was prepared by mixing in N-methylpyrrolidone (NMP) so as to be 89: 3: 8. The positive electrode active material layer paste is applied to both sides of a long sheet-like positive electrode current collector (aluminum foil having a thickness of about 15 μm) and dried to form a positive electrode active material layer on both surfaces of the positive electrode current collector. A positive electrode sheet provided with was prepared.

負極活物質としての黒鉛粉末とバインダとしてのスチレンブタジエンゴム(SBR))と増粘剤としてのカルボキシメチルセルロース(CMC)とを、これらの材料の質量比が98:1:1となるように水中で混合して、負極活物質層用ペーストを調製した。この負極活物質層用ペーストを長尺シート状の負極集電体(厚さ10μm程度の銅箔)の両面に帯状に塗布して乾燥することにより、負極集電体の両面に負極活物質層が設けられた負極シートを作製した。   Graphite powder as a negative electrode active material, styrene butadiene rubber (SBR) as a binder, and carboxymethyl cellulose (CMC) as a thickener are submerged in water so that the mass ratio of these materials is 98: 1: 1. The mixture was mixed to prepare a negative electrode active material layer paste. The negative electrode active material layer paste is applied to both sides of the negative electrode current collector by applying the negative electrode active material layer paste in a strip shape on both sides of a long sheet of negative electrode current collector (copper foil having a thickness of about 10 μm) and drying it. A negative electrode sheet provided with was prepared.

正極シートおよび負極シートを2枚のセパレータシートを介して捲回することによって捲回電極体を作製した。そして、捲回電極体を電池ケースに収容し、電池ケースの開口部を気密に封口した。セル乾燥にて水分を除去した後、非水電解液を注液口から注液し、24時間の含浸処理を行った。非水電解液としては、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)とを3:3:4の体積比で含む混合溶媒に、支持塩としてのLiPFを約1mol/リットルの濃度で含有させたものを用いた。このようにしてリチウムイオン二次電池を組み立てた。かかるリチウムイオン二次電池の負極容量は28Ahであった。 A wound electrode body was prepared by winding the positive electrode sheet and the negative electrode sheet through two separator sheets. And the winding electrode body was accommodated in the battery case, and the opening part of the battery case was sealed airtightly. After removing moisture by cell drying, a non-aqueous electrolyte was injected from the injection port, and impregnation treatment was performed for 24 hours. As the non-aqueous electrolyte, a mixed solvent containing ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) in a volume ratio of 3: 3: 4, and about 1 mol of LiPF 6 as a supporting salt are used. The one contained at a concentration of 1 / liter was used. In this way, a lithium ion secondary battery was assembled. The negative electrode capacity of the lithium ion secondary battery was 28 Ah.

<初期充電処理>
以上のようにして構築したリチウムイオン二次電池に対し、初期充電処理を行った。ここでサンプル1〜3では、初期充電処理の充電電流密度が異なる。サンプル1では、リチウムイオン二次電池に対し、10Aの電流値(18mA/mの電流密度)にて電圧が4.1Vとなるまで黒鉛にLiを吸蔵させる操作(充電)を行った。また、サンプル2では、50Aの電流値(90mA/mの電流密度)にて電圧が4.1V(終止電圧)となるまで黒鉛にLiを吸蔵させる操作(充電)を行った。また、サンプル3では、黒鉛に第1ステージの構造変化が生じるタイミングで充電電流値(充電電流密度)の切り替えを実施した。具体的には、50Aの電流値(90mA/mの電流密度)にて充電容量が20Ahとなるまで黒鉛にLiを吸蔵させる操作(第1充電処理)を行い、次いで、10Aの電流値(18mA/mの電流密度)にて電圧が4.1Vとなるまで黒鉛にLiを吸蔵させる操作(第2充電処理)を行った。各サンプル1〜3の充電時間を表1に示す。
<Initial charging process>
The initial charge process was performed with respect to the lithium ion secondary battery constructed as described above. Here, in samples 1 to 3, the charging current density of the initial charging process is different. In Sample 1, the lithium ion secondary battery was subjected to an operation (charging) in which Li was occluded in graphite until the voltage reached 4.1 V at a current value of 10 A (current density of 18 mA / m 2 ). In Sample 2, an operation (charging) was performed in which Li was occluded in graphite until the voltage reached 4.1 V (end voltage) at a current value of 50 A (current density of 90 mA / m 2 ). In Sample 3, the charging current value (charging current density) was switched at the timing when the first stage structural change occurred in graphite. Specifically, an operation of occluding Li in graphite (first charging process) at a current value of 50 A (current density of 90 mA / m 2 ) until the charge capacity becomes 20 Ah, and then a current value of 10 A ( An operation (second charging process) in which Li was occluded in graphite until the voltage reached 4.1 V at a current density of 18 mA / m 2 was performed. Table 1 shows the charging time of each sample 1 to 3.

また、初期充電処理後の電池を解体し、捲回電極体の下方側R部におけるLi析出の有無を目視にて確認した。ここでは、負極シートの最外周R部においてLi析出の有無を確認した。結果を図4(サンプル1)、図5(サンプル2)、図6(サンプル3)に示す。   In addition, the battery after the initial charging treatment was disassembled, and the presence or absence of Li precipitation in the lower R portion of the wound electrode body was visually confirmed. Here, the presence or absence of Li precipitation was confirmed in the outermost periphery R part of the negative electrode sheet. The results are shown in FIG. 4 (Sample 1), FIG. 5 (Sample 2), and FIG. 6 (Sample 3).

また、初期充電条件を変えた場合の電池特性への影響を調べるために、高温保存試験および充放電サイクル試験を実施した。   Moreover, in order to investigate the influence on the battery characteristics when changing the initial charging conditions, a high temperature storage test and a charge / discharge cycle test were performed.

高温保存試験は、以下のようにして行った。各サンプルのリチウムイオン二次電池に対し、SOC85%に調整した後、60℃の恒温槽に収容し、100日間の高温エージングを行った。また、試験開始から所定日数が経過した時点で電池容量を測定し、[(高温保存後電池容量)/(初期容量)]×100(%)から、高温保存後容量維持率を求めた。高温保存後容量維持率の推移を図7に示す。図7の横軸は保存日数の平方根を、縦軸は容量維持率を示している。また、100日高温保存後の容量維持率を表1に示す。   The high temperature storage test was conducted as follows. The lithium ion secondary battery of each sample was adjusted to SOC 85%, and then housed in a constant temperature bath at 60 ° C. and subjected to high temperature aging for 100 days. The battery capacity was measured when a predetermined number of days had elapsed from the start of the test, and the capacity retention rate after high temperature storage was determined from [(battery capacity after high temperature storage) / (initial capacity)] × 100 (%). The transition of the capacity maintenance rate after high temperature storage is shown in FIG. The horizontal axis of FIG. 7 indicates the square root of the storage days, and the vertical axis indicates the capacity maintenance rate. Table 1 shows the capacity retention ratio after storage at high temperature for 100 days.

充放電サイクル試験は、以下のようにして行った。各サンプルのリチウムイオン二次電池に対し、25℃の温度条件下において、電流値2CでSOC90%まで充電した後、電流値2CでSOC20%まで放電を行う充放電サイクルを600回連続して繰り返した。その際、所定サイクルを繰り返した時点で電池容量を測定し、[(サイクル後電池容量)/(初期容量)]×100(%)から、サイクル後容量維持率を求めた。サイクル後容量維持率の推移を図8に示す。また、600回サイクル後容量維持率を表1に示す。   The charge / discharge cycle test was performed as follows. The lithium-ion secondary battery of each sample was repeatedly charged and discharged continuously 600 times under a temperature condition of 25 ° C., after charging to SOC 90% at a current value of 2C and then discharging to SOC 20% at a current value of 2C. It was. At that time, the battery capacity was measured when a predetermined cycle was repeated, and the post-cycle capacity retention rate was determined from [(battery capacity after cycle) / (initial capacity)] × 100 (%). The transition of the capacity retention rate after cycling is shown in FIG. Table 1 shows the capacity retention ratio after 600 cycles.

なお、電池容量および初期容量は、25℃の温度条件にて、電流値1Cで電圧4.1Vまで充電した後、定電圧方式で2時間充電し、かかる充電後の電池を、25℃において、電流値1Cで電圧3.0Vまで放電し、このときの放電容量を電池容量および初期容量とした。   The battery capacity and the initial capacity were charged at a current value of 1 C to a voltage of 4.1 V under a temperature condition of 25 ° C., and then charged for 2 hours in a constant voltage manner. The battery was discharged to a voltage of 3.0 V at a current value of 1 C, and the discharge capacity at this time was defined as the battery capacity and the initial capacity.

図5および図6に示すように、充電電流密度を90mA/mとしたサンプル2では、破線で囲む領域にLiの析出が認められたが、充電電流密度を90mA/mから18mA/mへ切り替えたサンプル3はLiの析出は認められなかった。また、充電電流密度を90mA/mから18mA/mへ切り替えたサンプル3は、充電電流密度を18mA/mとしたサンプル1に比べて1.6時間の時短を達成することができた。この結果から、サンプル3の初期充電処理によれば、Liの析出を防ぎつつ、短時間で初期充電を完了し得ることが確認された。なお、何れのサンプル1〜3も高温保存後容量維持率およびサイクル後容量維持率には優位差は認められなかった。つまり、サンプル3の充電処理のように充電電流密度を途中で変更しても電池特性に影響がないことが確認された。この点からも本発明は有意義な技術であると云える。 As shown in FIGS. 5 and 6, in the sample 2 was charged current density 90 mA / m 2, although Li precipitation was observed in the area enclosed by broken lines, 18 mA / m the charge current density from 90 mA / m 2 In sample 3 switched to 2 , no Li deposition was observed. Moreover, Sample 3 of switching the charging current density from 90 mA / m 2 to 18 mA / m 2 could be achieved time reduction of 1.6 hours compared to the charging current density on the sample 1 was 18 mA / m 2 . From this result, according to the initial charging process of Sample 3, it was confirmed that the initial charging could be completed in a short time while preventing the precipitation of Li. In any of Samples 1 to 3, no significant difference was observed in the capacity retention rate after high-temperature storage and the capacity retention rate after cycling. That is, it was confirmed that even if the charging current density was changed in the middle as in the charging process of Sample 3, the battery characteristics were not affected. From this point, it can be said that the present invention is a significant technique.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。   As mentioned above, although the specific example of this invention was demonstrated in detail, these are only illustrations and do not limit a claim. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

10 正極シート
12 正極集電体
14 正極活物質層
20 負極シート
22 負極集電体
24 負極活物質層
40 セパレータ
80 捲回電極体
100 リチウムイオン二次電池


DESCRIPTION OF SYMBOLS 10 Positive electrode sheet 12 Positive electrode collector 14 Positive electrode active material layer 20 Negative electrode sheet 22 Negative electrode collector 24 Negative electrode active material layer 40 Separator 80 Winding electrode body 100 Lithium ion secondary battery


Claims (1)

負極活物質としての黒鉛と、充電時に該黒鉛の層間に保持され得る電荷担体を含む正極活物質とを有する非水電解質二次電池を製造する方法であって、
以下の工程:
正極と負極を備える電池を構築する工程;および、
前記電池に対して初回の充電を行う初期充電工程;
を包含し、
前記初期充電工程は、前記黒鉛に第1ステージの構造変化が生じるまでの間、負極電位が0V以下とならないように設定された第1充電電流密度で充電する第1充電処理と、
前記黒鉛に第1ステージの構造変化が生じた後、前記第1充電電流密度よりも小さい第2充電電流密度で充電する第2充電処理と
を含む、非水電解質二次電池の製造方法。











A method for producing a non-aqueous electrolyte secondary battery having graphite as a negative electrode active material and a positive electrode active material containing a charge carrier that can be held between the graphite layers during charging,
The following steps:
Building a battery comprising a positive electrode and a negative electrode; and
An initial charging step in which the battery is charged for the first time;
Including
The initial charging step includes a first charging process for charging at a first charging current density set so that a negative electrode potential does not become 0 V or less until a structural change of the first stage occurs in the graphite;
A method of manufacturing a non-aqueous electrolyte secondary battery, comprising: a second charging process in which the graphite is charged at a second charging current density lower than the first charging current density after the first stage structural change occurs in the graphite.











JP2014116061A 2014-06-04 2014-06-04 Method for producing non-aqueous electrolyte secondary battery Active JP6315259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014116061A JP6315259B2 (en) 2014-06-04 2014-06-04 Method for producing non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014116061A JP6315259B2 (en) 2014-06-04 2014-06-04 Method for producing non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2015230807A true JP2015230807A (en) 2015-12-21
JP6315259B2 JP6315259B2 (en) 2018-04-25

Family

ID=54887488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014116061A Active JP6315259B2 (en) 2014-06-04 2014-06-04 Method for producing non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP6315259B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0917451A (en) * 1995-06-27 1997-01-17 Toray Ind Inc Charging method of secondary battery
JP2002152985A (en) * 2000-11-09 2002-05-24 Nec Mobile Energy Kk Initial charging method of secondary battery
JP2002208440A (en) * 2001-01-10 2002-07-26 Toyota Motor Corp Initial charging method and manufacturing method of lithium secondary cell
JP2003068363A (en) * 2001-08-28 2003-03-07 Sony Corp Manufacturing method of battery
JP2005203134A (en) * 2004-01-13 2005-07-28 Yuasa Corp Electrochemical device
JP2010129192A (en) * 2008-11-25 2010-06-10 Nec Tokin Corp Lithium ion secondary battery and method for manufacturing the same
WO2012095894A1 (en) * 2011-01-14 2012-07-19 トヨタ自動車株式会社 Degradation speed estimation method, and degradation speed estimation device, of lithium-ion battery
WO2013046690A1 (en) * 2011-09-30 2013-04-04 パナソニック株式会社 Lithium ion battery charging method and battery-equipped device
JP2014116251A (en) * 2012-12-12 2014-06-26 Hitachi Maxell Ltd Lithium ion secondary battery, and lithium ion secondary battery control method, state detection method of lithium ion secondary battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0917451A (en) * 1995-06-27 1997-01-17 Toray Ind Inc Charging method of secondary battery
JP2002152985A (en) * 2000-11-09 2002-05-24 Nec Mobile Energy Kk Initial charging method of secondary battery
JP2002208440A (en) * 2001-01-10 2002-07-26 Toyota Motor Corp Initial charging method and manufacturing method of lithium secondary cell
JP2003068363A (en) * 2001-08-28 2003-03-07 Sony Corp Manufacturing method of battery
JP2005203134A (en) * 2004-01-13 2005-07-28 Yuasa Corp Electrochemical device
JP2010129192A (en) * 2008-11-25 2010-06-10 Nec Tokin Corp Lithium ion secondary battery and method for manufacturing the same
WO2012095894A1 (en) * 2011-01-14 2012-07-19 トヨタ自動車株式会社 Degradation speed estimation method, and degradation speed estimation device, of lithium-ion battery
WO2013046690A1 (en) * 2011-09-30 2013-04-04 パナソニック株式会社 Lithium ion battery charging method and battery-equipped device
JP2014116251A (en) * 2012-12-12 2014-06-26 Hitachi Maxell Ltd Lithium ion secondary battery, and lithium ion secondary battery control method, state detection method of lithium ion secondary battery

Also Published As

Publication number Publication date
JP6315259B2 (en) 2018-04-25

Similar Documents

Publication Publication Date Title
JP5924552B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP5218873B2 (en) Lithium secondary battery and manufacturing method thereof
KR101543939B1 (en) Nonaqueous electrolytic-solution rechargeable battery
RU2631239C2 (en) Method of producing a layer of active material of positive electrode for lithium-ion battery and layer of active material of positive electrode for lithium-ion accumulator
CN110754009A (en) Lithium secondary battery
JP5754358B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
CN107658472B (en) Negative electrode comprising mesh-type current collector, lithium secondary battery comprising same, and method for manufacturing same
US20080311475A1 (en) Charging a lithium ion battery
US20160294006A1 (en) Nonaqueous electrolyte secondary cell and method for producing same
JP5920639B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP6051038B2 (en) Foil for positive electrode current collector of lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP5843107B2 (en) Method for producing non-aqueous electrolyte secondary battery
CN114982035A (en) Battery pack, battery pack, electrical device, and method and apparatus for manufacturing battery pack
JP6478112B2 (en) Method for producing non-aqueous electrolyte secondary battery
EP4235874A1 (en) Secondary battery, battery module, battery pack and electric apparatus
JP5741942B2 (en) Capacity recovery method for lithium secondary battery
CN115832185A (en) Secondary battery and power consumption device
JP2024504525A (en) Secondary batteries and power consumption devices including them
KR20230054657A (en) lithium ion battery
JP6315259B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP4736380B2 (en) Secondary battery and secondary battery aging treatment method
JP7249988B2 (en) lithium ion secondary battery
CN220569725U (en) Lithium ion secondary battery
KR20170022909A (en) Lithium ion secondary battery and method of producing same
US20230299303A1 (en) Secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180314

R151 Written notification of patent or utility model registration

Ref document number: 6315259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151