JPH0917451A - Charging method of secondary battery - Google Patents

Charging method of secondary battery

Info

Publication number
JPH0917451A
JPH0917451A JP7161133A JP16113395A JPH0917451A JP H0917451 A JPH0917451 A JP H0917451A JP 7161133 A JP7161133 A JP 7161133A JP 16113395 A JP16113395 A JP 16113395A JP H0917451 A JPH0917451 A JP H0917451A
Authority
JP
Japan
Prior art keywords
charging
voltage
secondary battery
current
charging voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7161133A
Other languages
Japanese (ja)
Inventor
Masahide Taniguchi
雅英 谷口
Tetsuo Oka
哲雄 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP7161133A priority Critical patent/JPH0917451A/en
Publication of JPH0917451A publication Critical patent/JPH0917451A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: To carry out charging at high speed while preventing overvoltage phenomenon caused at the time of reaching the final voltage by keeping charging current large in an initial stage of charging with constant current and at low voltage and gradually lowering the current before the voltage reaches the final voltage. CONSTITUTION: At the time of charging a secondary battery composed of a cathode, an anode, and a non-aqueous electrolyte, a target voltage is set lower than the final charging voltage. After the voltage reaches the target voltage, the charging current is gradually lowered while the voltage being made closer to the final charging voltage. For example, after the voltage reaches the target voltage, rated current lower than the charging current is set and by the time when the voltage reaches the final charging voltage, charging is carried out at constant current lower than the rated current. Further, a plurality of rated current values are set and based on the time and charging voltage, the rated current values are gradually lowered step by step.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、正極,負極,非水電解
質を用いた二次電池の充電方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for charging a secondary battery using a positive electrode, a negative electrode and a non-aqueous electrolyte.

【0002】[0002]

【従来の技術】近年、ビデオカメラ,携帯電話,ノート
型パソコン等のポータブル機器の普及に伴い、小型かつ
軽量で高容量の二次電池に対する需要が高まりつつあ
る。現在使用されている二次電池の多くはアルカリ電解
液を用いたニッケル−カドミウム電池であるが、平均電
池電圧が1.2Vと低いため、エネルギー密度を高くするこ
とは困難である。そのため、負極に最も卑な金属である
リチウム金属を使用して、高エネルギー二次電池の研究
が行われてきた。
2. Description of the Related Art In recent years, with the spread of portable devices such as video cameras, mobile phones, and notebook computers, demand for small, lightweight, high-capacity secondary batteries is increasing. Most of the secondary batteries currently used are nickel-cadmium batteries using an alkaline electrolyte, but it is difficult to increase the energy density because the average battery voltage is as low as 1.2V. For this reason, research on high energy secondary batteries has been conducted using lithium metal, which is the most basic metal for the negative electrode.

【0003】ところが、リチウム金属を負極に使用する
二次電池では充放電の繰り返しによってリチウムが樹脂
状( デンドライト) に成長し、短絡を起こして発火する
危険性がある。また、活性の高い金属リチウムを使用す
るため、本質的に危険性が高く、民生用として使用する
には問題が多い。近年、このような安全性の問題を解決
し、かつリチウム電極特有の高エネルギーが可能なもの
として、各種炭素質材料を用いたリチウムイオン二次電
池が考案されている。この方法では、充電時、炭素質材
料にリチウムイオンが吸蔵( ドーピング) され、金属リ
チウムと同電位になり金属リチウムの代わりに負極に使
用することができることを利用したものである。また、
放電時にはドープされたリチウムイオンが負極から放出
( 脱ドーピング) されて元の炭素質材料に戻る。このよ
うな、リチウムイオンがドーピングされた炭素質材料を
負極として用いた場合には、デンドライト生成の問題も
小さく、また金属リチウムが存在しないため、安全性に
も優れているという問題があり、現在、活発に研究が行
われている。
However, in a secondary battery using lithium metal for the negative electrode, there is a risk that lithium will grow into a resin (dendrites) due to repeated charging and discharging, causing a short circuit and ignition. In addition, since highly active metal lithium is used, the risk is inherently high, and there are many problems in using it for consumer use. In recent years, a lithium ion secondary battery using various carbonaceous materials has been devised as a device that solves such a safety problem and enables high energy peculiar to a lithium electrode. This method utilizes the fact that lithium ions are occluded (doped) in the carbonaceous material during charging, have the same potential as metallic lithium, and can be used as a negative electrode instead of metallic lithium. Also,
During discharge, doped lithium ions are released from the negative electrode
(Dedoping) and returns to the original carbonaceous material. When such a carbonaceous material doped with lithium ions is used as the negative electrode, there is a small problem of dendrite formation, and since there is no metallic lithium, there is a problem that it is also excellent in safety. , Research is actively done.

【0004】上記の炭素質材料へのリチウムイオンのド
ーピングを利用した電極を利用した二次電池としては、
特開昭57-208079 号,特開昭58-93176号,特開昭58-192
266号,特開昭62-90863号,特開昭62-122066 号,特開
平2-66856 号等が公知である。
As a secondary battery using an electrode using the above-mentioned carbonaceous material doped with lithium ions,
JP-A-57-208079, JP-A-58-93176, JP-A-58-192
266, JP-A-62-90863, JP-A-62-122066 and JP-A-2-66856 are known.

【0005】これらリチウムイオン二次電池の充電方法
としては、一般に、目標充電電圧に到達するまでは一定
電流において充電を行い、目標充電電圧に到達後は定電
圧充電を行う定電流・定電圧充電方式が一般的である。
As a method of charging these lithium ion secondary batteries, generally, constant current / constant voltage charging is performed in which charging is performed at a constant current until the target charging voltage is reached, and constant voltage charging is performed after the target charging voltage is reached. The method is general.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、リチウ
ムイオン二次電池の充電電圧は他の二次電池に比較して
高く、一般に4V以上であるため、正極の高電位側では、
電位を高くするほど正極材・電解液の分解などが生じや
すくなり、また、負極側では、電位が0Vになるとデンド
ライトが析出するといった危険性が生じ、また、電池寿
命にも大きな悪影響を及ぼすことになる。電池の充電は
正極と負極の電位差で制御するため、正極・負極それぞ
れにおいて危険を生じない電位での充放電を行うために
は、正極材,負極材,電解液の種類や充填量を最適化す
る必要があり、容易ではなかった。また、正極・負極・
電解液の抱えるリチウムイオンの拡散速度,内部抵抗の
バランスが十分に最適化できない場合、正極電位と負極
電位の差が最終充電電圧に到達した際、一時的に、正極
における充電電位が最適値より高くなったり、もしくは
負極において充電電位が低すぎたりするいわゆる過電位
状態になる場合がある。とくに、高速充電のために充電
電流を大きくすると過電位状態はさらに顕著になり、電
池寿命や安全性の面で大きな問題となる。
However, the charging voltage of the lithium-ion secondary battery is higher than that of other secondary batteries, and is generally 4 V or more. Therefore, on the high potential side of the positive electrode,
The higher the potential, the more likely the positive electrode material / electrolyte will decompose, and on the negative electrode side, there is a risk that dendrite will precipitate when the potential becomes 0 V, and the battery life will be greatly adversely affected. become. Since battery charging is controlled by the potential difference between the positive and negative electrodes, the types and filling amounts of the positive electrode material, negative electrode material, and electrolyte are optimized in order to charge and discharge at potentials that do not cause danger in the positive electrode and negative electrode. Must have been, not easy. In addition,
If the balance of the diffusion rate of lithium ions and the internal resistance of the electrolyte cannot be fully optimized, when the difference between the positive electrode potential and the negative electrode potential reaches the final charging voltage, the charging potential at the positive electrode is temporarily below the optimum value. There is a case where a so-called overpotential state in which the charge potential becomes too high or the charge potential is too low at the negative electrode is generated. In particular, when the charging current is increased for high-speed charging, the overpotential state becomes more prominent, which poses a serious problem in terms of battery life and safety.

【0007】本発明の目的は、かかる従来技術の欠点を
解消すべく、正極,負極における過電位現象を防止しつ
つ高速充電を実現することにある。
An object of the present invention is to realize high-speed charging while preventing the overpotential phenomenon in the positive electrode and the negative electrode in order to eliminate the drawbacks of the prior art.

【0008】[0008]

【課題を解決するための手段】本発明は、かかる目的を
達成すべく、下記の構成を有する。
The present invention has the following constitution in order to achieve such an object.

【0009】「正極,負極,非水電解質を用いた二次電
池を充電するための充電方法において、最終充電電圧V
f よりも低い目標充電電圧Va を設定し、該電圧Va に
到達後、充電電圧Vを最終充電電圧に近づけながら充電
電流Iを漸次減少させていくことを特徴とする二次電池
の充電方法。」すなわち、充電初期の低電圧における定
電流充電の段階では充電電流Io を大きくし、目標充電
電圧に到達する前に、電流を漸次減少させることによ
り、最終充電電圧Vf 到達時に生じる過電位現象による
悪影響を低減させることが可能となる。
[In a charging method for charging a secondary battery using a positive electrode, a negative electrode and a non-aqueous electrolyte, the final charging voltage V
A method of charging a secondary battery, wherein a target charging voltage Va lower than f is set, and after reaching the voltage Va, the charging current I is gradually reduced while bringing the charging voltage V close to the final charging voltage. That is, by increasing the charging current Io in the constant current charging stage at a low voltage at the initial stage of charging and gradually decreasing the current before reaching the target charging voltage, an overpotential phenomenon that occurs when the final charging voltage Vf is reached is caused. It is possible to reduce adverse effects.

【0010】ここで、充電電流Iを減少させる方法とし
ては、最も単純な方法として、目標充電電圧Va に到達
後、Io よりも小さい定電流Io′を設定し、最終充電
電圧Vf に達するまでIo′で定電流充電を行うといっ
た二段階充電がよい。さらに、定電流値を複数設定し、
たとえば時間や充電電圧によって、漸次定電流値を階段
状に減少させるといった方法も可能である。
Here, the simplest method for reducing the charging current I is to set a constant current Io 'smaller than Io after reaching the target charging voltage Va until the final charging voltage Vf is reached. Two-stage charging, such as constant current charging with ', is preferable. Furthermore, set multiple constant current values,
For example, a method of gradually decreasing the constant current value in a stepwise manner depending on the time or the charging voltage is also possible.

【0011】また、Va 到達後、時間や充電電圧によっ
て一定割合で、連続的に電流を減少させる方法も効果的
である。ここで、充電電流Iを減少させる方法として
は、最終充電電圧Vf と充電電圧Vの差を定数Rで割っ
た値を充電電流値とするいわゆる比例制御方式がシンプ
ルかつ効果的である。すなわち、目標充電電圧Va を設
定するにあたり、 [初期充電電流Io ]×[定数R]=[最終充電電圧V
f ]−[目標充電電圧Va ] Va 到達後の充電電流Iを [充電電流I]×[定数R]=[最終充電電圧Vf ]−
[充電電圧V] となるように連続的に変化させることにより、従来の定
電流定電圧充電で生じる可能性の高い過電位現象による
悪影響を低減させることができる。
It is also effective to continuously reduce the current at a constant rate after reaching Va, depending on the time and the charging voltage. Here, as a method for reducing the charging current I, a so-called proportional control method in which a value obtained by dividing a difference between the final charging voltage Vf and the charging voltage V by a constant R is a charging current value is simple and effective. That is, in setting the target charging voltage Va, [initial charging current Io] × [constant R] = [final charging voltage Vo]
f] − [Target charging voltage Va] The charging current I after reaching Va is [charging current I] × [constant R] = [final charging voltage Vf] −
By continuously changing the charging voltage to the charging voltage V, it is possible to reduce the adverse effect due to the overpotential phenomenon which is likely to occur in the conventional constant current / constant voltage charging.

【0012】ここで、用いられる定数Rは、限定される
ものではないが、電池内部に存在する内部抵抗以上の値
を設定することにより過電位現象を完全に防止すること
ができ、好ましい。しかしながら、定数Rを大きくする
ことは、目標充電電圧Va の値が小さくなり、定電流I
o での充電時間が短縮され充電速度低下につながる傾向
がある。これらを鑑みると、定数Rは正負単極それぞれ
の内部抵抗の大きい方に合わせることが望ましいといえ
るため、定数Rを内部抵抗の50%以上100 %以下に設定
することにより、充電速度と過電位現象の点で好まし
い。
Here, the constant R used is not limited, but it is preferable to set a value equal to or higher than the internal resistance existing inside the battery because the overpotential phenomenon can be completely prevented. However, if the constant R is increased, the value of the target charging voltage Va decreases and the constant current I
The charging time at o tends to be shortened, leading to a lower charging speed. In view of these, it can be said that it is desirable to match the constant R with the larger internal resistance of each of the positive and negative single poles. Therefore, by setting the constant R to 50% or more and 100% or less of the internal resistance, the charging speed and overpotential It is preferable in terms of the phenomenon.

【0013】本発明に用いられる二次電池は、定電流定
電圧放電に適したものであれば特に制限はないが、炭素
質材料へのカチオンあるいはアニオンのドーピングを利
用した電池の場合、すなわち、アルカリ金属塩を含む非
水電解液二次電池に用いる場合には、カチオンがドープ
される炭素質材料を負極に、アニオンがドープされる材
料を正極に用いることとなる。
The secondary battery used in the present invention is not particularly limited as long as it is suitable for constant current and constant voltage discharge, but in the case of a battery utilizing the cation or anion doping of a carbonaceous material, that is, When used in a non-aqueous electrolyte secondary battery containing an alkali metal salt, a cation-doped carbonaceous material is used for the negative electrode and an anion-doped material is used for the positive electrode.

【0014】正極材としては、特に限定されるものでは
ないが、炭素質材料として、炭素繊維,人造あるいは天
然の黒鉛粉末,フッ化カーボンなど、又、金属あるいは
金属酸化物などの無機化合物や有機高分子化合物などを
用いることができる。炭素質材料を含まない正極として
は、アルカリ金属を含む遷移金属酸化物や遷移金属カル
コゲンなどの無機化合物、ポリアセチレン、ポリパラフ
ェニレン、ポリフェニレンビニレン、ポリアニリン、ポ
リピロール、ポリチオフェンなどの共役系高分子、ジス
ルフィド結合を有する架橋高分子、塩化チオニルなど、
通常の二次電池において用いられる正極を挙げることが
できる。これらの中で、リチウム塩を含む非水電解液を
用いた二次電池の場合には、コバルト、ニッケル、マン
ガン、モリブデン、バナジウム、クロム、鉄、銅、チタ
ンなどの遷移金属酸化物や遷移金属カルコゲンが好まし
く用いられる。特に、 LiCoO2 , LiNiO2 は、電圧が高
く、エネルギー密度も大きいために、最も好ましく使用
される。金属あるいは金属酸化物などの無機化合物を正
極として用いた場合、カチオンのドープと脱ドープを利
用して充放電反応が生じる。有機高分子化合物を用いた
際には、アニオンのドープと脱ドープにより充放電反応
が生じる。このように、物質により様々な充放電反応様
式を採るものであり、これらは必要とされる電池の正極
特性に応じて適宜選択されるものである。
The positive electrode material is not particularly limited, but carbonaceous materials such as carbon fiber, artificial or natural graphite powder, fluorinated carbon, or an inorganic compound such as metal or metal oxide or organic material. A polymer compound or the like can be used. The positive electrode containing no carbonaceous material, inorganic compounds such as transition metal oxides and transition metal chalcogens containing alkali metal, polyacetylene, polyparaphenylene, polyphenylene vinylene, polyaniline, polypyrrole, conjugated polymer such as polythiophene, disulfide bond Cross-linked polymer having, thionyl chloride, etc.,
The positive electrode used in a normal secondary battery can be mentioned. Among these, in the case of a secondary battery using a non-aqueous electrolytic solution containing a lithium salt, transition metal oxides and transition metals such as cobalt, nickel, manganese, molybdenum, vanadium, chromium, iron, copper, and titanium are used. Chalcogen is preferably used. In particular, LiCoO 2 and LiNiO 2 are most preferably used because of their high voltage and large energy density. When an inorganic compound such as a metal or a metal oxide is used as the positive electrode, a charge / discharge reaction occurs by utilizing cation doping and dedoping. When an organic polymer compound is used, a charge / discharge reaction occurs due to doping and undoping of an anion. As described above, various charge / discharge reaction modes are adopted depending on the substance, and these are appropriately selected according to the required positive electrode characteristics of the battery.

【0015】負極材としても特に限定することなく用い
ることができ、例えば、炭素質材料としては、炭素繊
維,人造あるいは天然の黒鉛粉末,フッ化カーボン,金
属あるいは金属酸化物などの無機化合物や有機高分子化
合物などを用いることができる。ここで用いられる炭素
繊維としては、特に限定されるものではないが、一般に
有機物を焼成したものが用いられる。具体的には、ポリ
アクリロニトリル(PAN)から得られるPAN 系炭素繊維、
石炭もしくは石油などのピッチから得られるピッチ系炭
素繊維、セルロースから得られるセルロース系炭素繊
維、低分子量有機物の気体から得られる気相成長炭素繊
維などが挙げられるが、そのほかに、ポリビニルアルコ
ール、リグニン、ポリ塩化ビニル、ポリアミド、ポリイ
ミド、フェノール樹脂、フルフリルアルコールなどを焼
成して得られる炭素繊維も好適に用いられる。これらの
炭素繊維の中で、炭素繊維が用いられる電極および電池
の特性に応じて、その特性を満たす炭素繊維が適宜選択
されて用いられる。
The negative electrode material can be used without any particular limitation. Examples of the carbonaceous material include carbon fiber, artificial or natural graphite powder, fluorinated carbon, inorganic compounds such as metal or metal oxide, and organic materials. A polymer compound or the like can be used. The carbon fiber used here is not particularly limited, but generally is obtained by firing an organic substance. Specifically, PAN-based carbon fiber obtained from polyacrylonitrile (PAN),
Pitch-based carbon fibers obtained from pitch such as coal or petroleum, cellulosic carbon fibers obtained from cellulose, vapor-grown carbon fibers obtained from a gas of a low molecular weight organic substance, and the like, in addition to them, polyvinyl alcohol, lignin, Carbon fibers obtained by firing polyvinyl chloride, polyamide, polyimide, phenol resin, furfuryl alcohol, etc. are also suitably used. Among these carbon fibers, carbon fibers satisfying the characteristics are appropriately selected and used according to the characteristics of the electrode and the battery in which the carbon fibers are used.

【0016】上記炭素繊維の中で、アルカリ金属塩を含
む非水電解液を用いた二次電池の負極に使用する場合に
は、PAN 系炭素繊維、ピッチ系炭素繊維が好ましい。特
に、アルカリ金属イオン、特にリチウムイオンのドーピ
ングが良好であるという点で、PAN 系炭素繊維が好まし
く用いられる。ところで、炭素繊維を電極にする際に
は、どのような形態をとっても構わないが、一軸方向に
配置したり、もしくは布帛状やフェルト状の構造体にす
るなどが、好ましい形態となる。布帛状あるいはフェル
ト状などの構造体としては、織物、編物、組物、レー
ス、網、フェルト、紙、不織布、マットなどが挙げられ
るが、炭素繊維の性質や電極特性などの点から、織物や
フェルトなどが好ましい。また、一軸方向に配置する場
合には、銅箔などの金属集電体上に炭素繊維を引き揃
え、接着剤となる樹脂を溶解した溶液を塗布して集電体
に接着させる方法などが用いられる。さらに、配置方向
も、円筒型電池の場合に巻き込み方向に対して垂直とな
る配置する方法が、剥離等がなく、好ましい。炭素繊維
の直径は、それぞれの形態を採り易いように決められる
べきであるが、好ましくは1 〜1000μm の直径の炭素繊
維が用いられ、1 〜20μmがさらに好ましい。また、異
なった直径の炭素繊維を数種類用いることも好ましいも
のである。さらに、炭素繊維の短繊維を用いることも好
ましく、炭素繊維を切断し、1mm以下、100μm以
下、さらには、30μm以下とすることも好ましい。
Among the above carbon fibers, PAN-based carbon fibers and pitch-based carbon fibers are preferable when used in the negative electrode of a secondary battery using a non-aqueous electrolyte containing an alkali metal salt. In particular, PAN-based carbon fibers are preferably used in that the doping of alkali metal ions, particularly lithium ions, is good. By the way, when the carbon fiber is used as an electrode, it may have any form, but a preferred form is such that it is uniaxially arranged, or a fabric-like or felt-like structure is formed. Examples of the structure such as a fabric or a felt include a woven fabric, a knitted fabric, a braid, a lace, a net, a felt, a paper, a nonwoven fabric, a mat, and the like. Felt and the like are preferred. Further, when arranging in a uniaxial direction, a method of aligning carbon fibers on a metal current collector such as a copper foil and applying a solution in which a resin as an adhesive is dissolved to adhere to the current collector is used. To be Furthermore, in the case of a cylindrical battery, the method of arranging the cells in a direction perpendicular to the winding direction is also preferable, because there is no peeling or the like. The diameter of the carbon fibers should be determined so that each form can be easily adopted, but carbon fibers having a diameter of 1 to 1000 μm are preferably used, and 1 to 20 μm is more preferable. It is also preferable to use several types of carbon fibers having different diameters. Furthermore, it is also preferable to use short fibers of carbon fibers, and it is also preferable to cut the carbon fibers to 1 mm or less, 100 μm or less, and further 30 μm or less.

【0017】本発明の二次電池としては、特に限定され
るものではないが、過塩素酸リチウム、硼フッ化リチウ
ム、6フッ化リン・リチウムのようにアルカリ金属塩を
含む非水電解液を用いた二次電池として好ましく用いら
れる。
The secondary battery of the present invention is not particularly limited, but a non-aqueous electrolyte containing an alkali metal salt such as lithium perchlorate, lithium borofluoride, and phosphorus hexafluoride / lithium is used. It is preferably used as the secondary battery used.

【0018】本発明に用いられる二次電池の電解液とし
ては、特に限定されることなく従来の電解液が用いら
れ、例えば酸あるいはアルカリ水溶液、または非水溶媒
などが挙げられる。この中で、上述のアルカリ金属塩を
含む非水電解液からなる二次電池の電解液としては、プ
ロピレンカーボネート,エチレンカーボネート,ジメチ
ルカーボネート,γ- ブチロラクトン,N- メチルピロ
リドン,アセトニトリル,N,N-ジメチルホルムアミド,
ジメチルスルフォキシド,テトラヒドロフラン,1,3-ジ
オキソラン,ギ酸メチル,スルホラン,オキサゾリド
ン,塩化チオニル,1,2-ジメトキシエタン,ジエチレン
カーボネートや、これらの誘導体や混合物などが好まし
く用いられる。電解液に含まれる電解質としては、アル
カリ金属、特にリチウムのハロゲン化物、過塩素酸塩、
チオシアン塩、ホウフッ化塩、リンフッ化塩、砒素フッ
化塩、アルミニウムフッ化塩、トリフルオロメチル硫酸
塩などが好ましく用いられる。
The electrolytic solution of the secondary battery used in the present invention is not particularly limited, and a conventional electrolytic solution may be used, and examples thereof include an acid or alkaline aqueous solution or a non-aqueous solvent. Among these, as the electrolyte of the secondary battery composed of the above-mentioned non-aqueous electrolyte containing an alkali metal salt, propylene carbonate, ethylene carbonate, dimethyl carbonate, γ-butyrolactone, N-methylpyrrolidone, acetonitrile, N, N- Dimethylformamide,
Dimethylsulfoxide, tetrahydrofuran, 1,3-dioxolane, methyl formate, sulfolane, oxazolidone, thionyl chloride, 1,2-dimethoxyethane, diethylene carbonate, derivatives and mixtures thereof are preferably used. As the electrolyte contained in the electrolytic solution, an alkali metal, particularly a lithium halide, a perchlorate,
Thiocyan salt, borofluoride salt, phosphorous fluoride salt, arsenic fluoride salt, aluminum fluoride salt, trifluoromethyl sulfate salt and the like are preferably used.

【0019】[0019]

【実施例】以下実施例をもってもって本発明をさらに具
体的に説明する。ただし、本発明はこれにより限定され
るものではない。
The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited by this.

【0020】実施例1 正極活物質にLiCoO 2 ,結着剤としてPVDF( 呉羽化学株
式会社製) ,導電材として人造黒鉛SP-20(日本黒鉛工業
株式会社製) ,集電体としてアルミニウム箔(厚さ20μ
m)を用いて、正極を作製した。負極活物質としてPAN 繊
維トレカT300(東レ株式会社製) を、結着剤として正極
と同じPVDFを用い、集電体としての銅箔( 厚さ10μm)に
一軸方向に張り付けた負極を作製した。これらの極板
を、多孔質ポリプロピレンフィルム( セルガード#2500
,ダイセル化学株式会社製) からなるセパレータを介
して重ね合わせ、内容積5cc の電池缶に入るように巻き
とり円筒状の電極体を得た。電解液としては1M硼弗化
リチウムを含有するジメチルカーボネートを用い、参照
極に金属リチウム箔を用いる3極式セルで充電試験を行
った。充電は、開始時の定電流を1000mAとし、最終充電
電圧Vf を4.2V,目標充電電圧Va を4.0Vとし、目標電
圧Va 到達後の充電電流Iと充電電圧Vの関係が I[mA]×0.002 =4.2 −V[V] となるように充電電流を変化させながら、充電電流が10
mAになるまで充電を行った。その結果、図1 に示すよう
な電位曲線を描き、過電位現象は見られなかった。この
電池を充電時間2 時間,放電時の電流600mA ,放電終止
電圧3Vでサイクル試験を行ったところ、100 回経過時点
での放電容量は380mAhであった。
Example 1 LiCoO 2 as a positive electrode active material, PVDF (manufactured by Kureha Chemical Co., Ltd.) as a binder, artificial graphite SP-20 (manufactured by Nippon Graphite Industry Co., Ltd.) as a conductive material, and aluminum foil (a current collector). 20μ thickness
m) was used to prepare a positive electrode. A PAN fiber Torayca T300 (manufactured by Toray Industries, Inc.) was used as the negative electrode active material, and the same PVDF as the positive electrode was used as the binder. Attach these plates to a porous polypropylene film (Celgard # 2500
, Manufactured by Daicel Chemical Co., Ltd.), and wound into a battery can having an internal volume of 5 cc to obtain a cylindrical electrode body. A dimethyl carbonate containing 1M lithium borofluoride was used as an electrolytic solution, and a charging test was conducted in a three-electrode cell using a metallic lithium foil as a reference electrode. For charging, the constant current at the start is 1000 mA, the final charging voltage Vf is 4.2 V, the target charging voltage Va is 4.0 V, and the relationship between the charging current I and the charging voltage V after reaching the target voltage Va is I [mA] × While changing the charging current so that 0.002 = 4.2-V [V], the charging current becomes 10
It was charged until it reached mA. As a result, the potential curve shown in Fig. 1 was drawn and no overpotential phenomenon was observed. A cycle test was conducted on this battery at a charging time of 2 hours, a discharging current of 600 mA, and an end-of-discharge voltage of 3 V, and the discharge capacity after 100 cycles was 380 mAh.

【0021】比較例1 実施例1と同様の電池セルを作製し、最終充電電圧Vf
に到達するまで定電流1000mAで充電を行い、最終充電電
位Vf 到達後は、充電電圧を4.2Vに維持しつつ充電電流
が10mAになるまで、定電流定電圧充電を行ったところ図
2 の様に過電位現象が見られた。
Comparative Example 1 A battery cell similar to that of Example 1 was prepared and the final charging voltage Vf
Charged with a constant current of 1000mA until reaching the final charge potential, and after reaching the final charge potential Vf, constant current constant voltage charge was performed until the charge current reached 10mA while maintaining the charge voltage at 4.2V.
An overpotential phenomenon was observed as in 2.

【0022】この電池を充電時間,放電条件は実施例1
と同じ条件でサイクル試験を行ったところ、100 回経過
時点での放電容量は352mAhであった。
The charging time and discharging conditions of this battery are the same as those in Example 1.
When a cycle test was performed under the same conditions as above, the discharge capacity after 100 times was 352 mAh.

【0023】[0023]

【発明の効果】本発明により、過電位現象が防止された
二次電池の充電方法を提供することができ、電池の安全
性が向上され、また寿命が向上された。
According to the present invention, it is possible to provide a method for charging a secondary battery in which an overpotential phenomenon is prevented, the battery safety is improved, and the life is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明実施例1における充電電位の経時変化を
示す曲線である。
FIG. 1 is a curve showing changes with time in charging potential in Example 1 of the present invention.

【図2】本発明比較例1における充電電位の経時変化を
示す曲線である。
FIG. 2 is a curve showing changes with time in charging potential in Comparative Example 1 of the present invention.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】正極,負極,非水電解質を用いた二次電池
を充電するための充電方法において、最終充電電圧Vf
よりも低い目標充電電圧Va を設定し、該電圧Va に到
達後、充電電圧Vを最終充電電圧に近づけながら充電電
流Iを漸次減少させていくことを特徴とする二次電池の
充電方法。
1. A final charging voltage Vf in a charging method for charging a secondary battery using a positive electrode, a negative electrode and a non-aqueous electrolyte.
A method of charging a secondary battery, which comprises setting a target charging voltage Va lower than the target charging voltage Va, and gradually reducing the charging current I while the charging voltage V approaches the final charging voltage after reaching the voltage Va.
【請求項2】充電電流Iを減少させるにあたり、最終充
電電圧Vf に到達するまでに1ないし複数の目標充電電
圧Va を設定し、それぞれの充電電圧の区間において充
電電流Iを一定にするかもしくは連続的に変化させるこ
とを特徴とする二次電池の充電方法。
2. When decreasing the charging current I, one or a plurality of target charging voltages Va are set until the final charging voltage Vf is reached, and the charging current I is made constant in each charging voltage section, or A method of charging a secondary battery, which is characterized by continuously changing.
【請求項3】目標充電電圧Va を [初期充電電流Io ]×[定数R]=[最終充電電圧V
f ]−[目標充電電圧Va ]、 Va 到達後の充電電流Iを [充電電流I]×[定数R]=[最終充電電圧Vf ]−
[充電電圧V] となるように連続的に変化させることを特徴とする請求
項1または2記載の二次電池の充電方法。
3. The target charging voltage Va is [initial charging current Io] × [constant R] = [final charging voltage Vo]
f] − [target charging voltage Va], charging current I after reaching Va is [charging current I] × [constant R] = [final charging voltage Vf] −
The charging method for a secondary battery according to claim 1 or 2, wherein the charging voltage V is continuously changed so that the charging voltage becomes V.
【請求項4】該定数Rを、二次電池の内部抵抗の50%以
上100 %以下にすることを特徴とする請求項3記載の二
次電池の充電方法。
4. The method for charging a secondary battery according to claim 3, wherein the constant R is set to 50% or more and 100% or less of the internal resistance of the secondary battery.
【請求項5】該二次電池の電解液が、リチウム塩を電解
質とすることを特徴とする請求項1〜4のいずれかに記
載の二次電池の充電方法。
5. The method for charging a secondary battery according to claim 1, wherein the electrolytic solution of the secondary battery uses a lithium salt as an electrolyte.
【請求項6】該二次電池の正極がリチウムイオンを吸蔵
および放出可能な少なくとも1種類の遷移金属化合物を
含有することを特徴とする請求項1〜5のいずれかに記
載の二次電池の充電方法。
6. The secondary battery according to claim 1, wherein the positive electrode of the secondary battery contains at least one transition metal compound capable of inserting and extracting lithium ions. How to charge.
【請求項7】該二次電池の負極がリチウムイオンを吸蔵
および放出可能な少なくとも1種類の炭素材料を含有す
ることを特徴とする請求項1〜6のいずれかに記載の二
次電池の充電方法。
7. The charging of a secondary battery according to claim 1, wherein the negative electrode of the secondary battery contains at least one kind of carbon material capable of inserting and extracting lithium ions. Method.
【請求項8】該炭素材料として、少なくとも炭素繊維を
用いることを特徴とする請求項7記載の二次電池の充電
方法。
8. The method for charging a secondary battery according to claim 7, wherein at least carbon fiber is used as the carbon material.
JP7161133A 1995-06-27 1995-06-27 Charging method of secondary battery Pending JPH0917451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7161133A JPH0917451A (en) 1995-06-27 1995-06-27 Charging method of secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7161133A JPH0917451A (en) 1995-06-27 1995-06-27 Charging method of secondary battery

Publications (1)

Publication Number Publication Date
JPH0917451A true JPH0917451A (en) 1997-01-17

Family

ID=15729230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7161133A Pending JPH0917451A (en) 1995-06-27 1995-06-27 Charging method of secondary battery

Country Status (1)

Country Link
JP (1) JPH0917451A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009181907A (en) * 2008-01-31 2009-08-13 Toyota Motor Corp Charging method and charging system for lithium-ion secondary battery
WO2013183952A1 (en) * 2012-06-07 2013-12-12 주식회사 엘지화학 Method for charging secondary battery
JP2015230807A (en) * 2014-06-04 2015-12-21 トヨタ自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery
CN106469829A (en) * 2015-08-20 2017-03-01 郑州比克电池有限公司 Lithium ion battery forming and capacity dividing method
JP2017093284A (en) * 2015-11-02 2017-05-25 三星電子株式会社Samsung Electronics Co.,Ltd. Battery charging method and battery charging apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009181907A (en) * 2008-01-31 2009-08-13 Toyota Motor Corp Charging method and charging system for lithium-ion secondary battery
WO2013183952A1 (en) * 2012-06-07 2013-12-12 주식회사 엘지화학 Method for charging secondary battery
CN104335445A (en) * 2012-06-07 2015-02-04 株式会社Lg化学 Method for charging secondary battery
US9490642B2 (en) 2012-06-07 2016-11-08 Lg Chem, Ltd. Charging method of secondary battery with constant current using high charge rate
JP2015230807A (en) * 2014-06-04 2015-12-21 トヨタ自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery
CN106469829A (en) * 2015-08-20 2017-03-01 郑州比克电池有限公司 Lithium ion battery forming and capacity dividing method
JP2017093284A (en) * 2015-11-02 2017-05-25 三星電子株式会社Samsung Electronics Co.,Ltd. Battery charging method and battery charging apparatus
CN106848458A (en) * 2015-11-02 2017-06-13 三星电子株式会社 Method for charging batteries and battery charging equipment

Similar Documents

Publication Publication Date Title
KR100853760B1 (en) Secondary lithium ion cell or battery, and protecting circuit, electronic device and charging device of the same
US6528212B1 (en) Lithium battery
CN102237560B (en) Secondary battery charging method
JP4215718B2 (en) Non-aqueous secondary battery and separator used therefor
JPH02265167A (en) Nonaqueous electrolyte secondary battery
JP2007538365A (en) Additive for lithium secondary battery
JP2009076372A (en) Non-aqueous secondary battery
KR19990088654A (en) lithium ion secondary battery
US7767350B2 (en) Nonaqueous electrolyte battery
KR20150061602A (en) Cable-Type Secondary Battery
US5273842A (en) Non-aqueous electrolyte secondary battery
US20050277026A1 (en) Non-aqueous secondary battery and separator used therefor
JPH076752A (en) Electrode, manufacture thereof, and secondary battery using this electrode
JPH09204936A (en) Battery
JPH087926A (en) Nonaqueous electrolytic secondary cell
JPH09180704A (en) Battery and manufacture thereof
JP2006079960A (en) Flat nonaqueous electrolyte secondary battery
KR20220046267A (en) Anodeless lithium secondary battery and preparing method thereof
JP2000090980A (en) Lithium secondary battery
JPH09199177A (en) Battery
JPH0917451A (en) Charging method of secondary battery
JPH08287953A (en) Battery
KR20190044482A (en) Stretchable electrode, electrochemical device including the same, and method of manufacturing the stretchable electrode
KR20020055572A (en) Non-aqueous electrolyte secondary battery
JPH10270079A (en) Nonaqueous electrolyte battery