JPH09204936A - Battery - Google Patents

Battery

Info

Publication number
JPH09204936A
JPH09204936A JP8011703A JP1170396A JPH09204936A JP H09204936 A JPH09204936 A JP H09204936A JP 8011703 A JP8011703 A JP 8011703A JP 1170396 A JP1170396 A JP 1170396A JP H09204936 A JPH09204936 A JP H09204936A
Authority
JP
Japan
Prior art keywords
battery
peripheral surface
negative electrode
positive electrode
electrode sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8011703A
Other languages
Japanese (ja)
Inventor
Masahide Taniguchi
雅英 谷口
Isamu Sakuma
勇 佐久間
Kazuhiko Hashisaka
和彦 橋阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP8011703A priority Critical patent/JPH09204936A/en
Publication of JPH09204936A publication Critical patent/JPH09204936A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a battery with high filling ratio and high battery capacity by increasing the application quantity of a positive electrode material and a negative electrode material within a specified range. SOLUTION: When the application quantity of an electrode material is increased, the charge and discharge capacity of a battery is increased because the substantial charging quantity is increased. With an application thickness less than 250μm, the filling ratio is largely reduced by the reduction in application thickness, and in order to provide a higher filling ratio, thus, the application thickness must be set to 250μm or more. When the application thickness is larger than 400μm, the probability of cracking in winding is increased. Thus, in both a positive electrode sheet and a negative electrode sheet which are spirally wound, the total application thickness in both the sheets is set to 250μm or more and 400μm or less, whereby a battery with high filling ratio and high battery capacity can be manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、正極、負極、セパ
レータをスパイラル状に巻いた電極体およびそれを用い
た電池に関するものである。
TECHNICAL FIELD The present invention relates to an electrode body in which a positive electrode, a negative electrode, and a separator are spirally wound, and a battery using the same.

【0002】[0002]

【従来の技術】近年、ビデオカメラ、携帯電話、ノート
型パソコン等のポータブル機器の普及に伴い、小型かつ
軽量で高容量の二次電池に対する需要が高まりつつあ
る。現在使用されている二次電池の多くはアルカリ電解
液を用いたニッケル−カドミウム電池であるが、平均電
池電圧が1.2Vと低いため、エネルギー密度を高くするこ
とは困難である。そのため、負極に金属リチウムを使用
した高エネルギー二次電池の研究が行われてきた。
2. Description of the Related Art In recent years, with the widespread use of portable devices such as video cameras, mobile phones, and notebook computers, there is an increasing demand for small, lightweight, high-capacity secondary batteries. Most of the secondary batteries currently used are nickel-cadmium batteries using an alkaline electrolyte, but it is difficult to increase the energy density because the average battery voltage is as low as 1.2V. Therefore, research on high energy secondary batteries using metallic lithium for the negative electrode has been conducted.

【0003】ところが、金属リチウムを負極に使用する
二次電池は、充放電の繰り返しによってリチウムが樹枝
状(デンドライト)に成長し、短絡を起こして発火する危
険性がある。また、活性の高い金属リチウムを使用する
ため、本質的に危険性が高く、民生用として使用するに
は問題が多い。近年、このような安全上の問題を解決
し、かつリチウム電極特有の高エネルギーが可能なもの
として、各種炭素質材料を用いたリチウムイオン二次電
池が考案されている。この方法では、充電時、炭素質材
料にリチウムイオンが吸蔵(ドーピング)され、金属リチ
ウムと同電位になり金属リチウムの代わりに負極に使用
することができることを利用したものである。また、放
電時にはドープされたリチウムイオンが負極から放出
(脱ドーピング)されて元の炭素質材料に戻る。このよう
な、リチウムイオンがドーピングされた炭素質材料を負
極として用いた場合には、デンドライト生成の問題も小
さく、また金属リチウムが存在しないため、安全性にも
優れており、現在、活発に研究が行われている。
However, in a secondary battery in which metallic lithium is used as a negative electrode, there is a risk that lithium will grow in a dendritic form due to repeated charging and discharging, causing a short circuit and ignition. In addition, since highly active metal lithium is used, the risk is inherently high, and there are many problems in using it for consumer use. In recent years, lithium ion secondary batteries using various carbonaceous materials have been devised as a device that solves such a safety problem and enables high energy peculiar to lithium electrodes. This method utilizes the fact that during charging, lithium ions are occluded (doping) in the carbonaceous material to have the same potential as that of metallic lithium, which can be used for the negative electrode instead of metallic lithium. In addition, doped lithium ions are released from the negative electrode during discharge.
It is (de-doped) and returns to the original carbonaceous material. When such a carbonaceous material doped with lithium ions is used as a negative electrode, the problem of dendrite formation is small, and since there is no metallic lithium, the safety is also excellent. Has been done.

【0004】上記の炭素質材料へのリチウムイオンのド
ーピングを利用した電極を用いた二次電池としては、特
開昭57-208079、特開昭58-93176、特開昭58-192266、特
開昭62-90863、特開昭62-122066、特開平2-66856等が公
知であり、リチウムイオン二次電池に用いられる電極体
の形状としては、正極、負極、セパレータをスパイラル
状に巻き込んだ形状が一般的である。
As a secondary battery using an electrode utilizing the above-described carbonaceous material doped with lithium ions, Japanese Patent Laid-Open Nos. 57-208079, 58-93176, 58-192266, and 58-192266 are known. JP-A-62-90863, JP-A-62-122066 and JP-A-2-66856 are known, and the shape of the electrode body used in the lithium-ion secondary battery is a shape in which a positive electrode, a negative electrode, and a separator are spirally wound. Is common.

【0005】[0005]

【発明が解決しようとする課題】スパイラル状電極体に
おいては、電池としての本質的な機能を有する正極材
料、負極材料の他に、正極集電体、負極集電体、および
セパレータが電池缶の中で体積を占有する。そのため、
電池缶の中で正極材料と負極材料の充填量が制限され、
電池の高容量化には限界があった。
In the spiral electrode body, the positive electrode current collector, the negative electrode current collector, and the separator are used for the battery can in addition to the positive electrode material and the negative electrode material having essential functions as a battery. Occupies the volume inside. for that reason,
The filling amount of the positive electrode material and the negative electrode material in the battery can is limited,
There was a limit to increasing the capacity of batteries.

【0006】本発明の目的は、電池をさらに高容量化す
る手段を提供することにある。
An object of the present invention is to provide means for further increasing the capacity of a battery.

【0007】[0007]

【課題を解決するための手段】本発明者らは、高容量化
電池について鋭意検討を行った結果、本発明を達成し
た。
The present inventors have achieved the present invention as a result of extensive studies on a battery having a high capacity.

【0008】すなわち、本発明は、正極シート、負極シ
ートをスパイラル状に巻回してなる電極体を用いた電池
において、正極シートと負極シートの双方それぞれの内
周面、外周面合わせた塗布厚さの合計が250μm以上かつ
400μm以下であることを特徴とする電池に関する。
That is, according to the present invention, in a battery using an electrode body formed by spirally winding a positive electrode sheet and a negative electrode sheet, the coating thickness of both the inner peripheral surface and the outer peripheral surface of both the positive electrode sheet and the negative electrode sheet is adjusted. Is more than 250 μm and
It relates to a battery having a thickness of 400 μm or less.

【0009】[0009]

【発明の実施の形態】すなわち、本発明は、正極材料と
負極材料の塗布量を厚くすることにより電池内の充填量
を増加させることが可能となり実質的に充放電容量の大
きい高性能電池を得ることができる。
BEST MODE FOR CARRYING OUT THE INVENTION That is, according to the present invention, by increasing the coating amount of the positive electrode material and the negative electrode material, the filling amount in the battery can be increased, and a high performance battery having a substantially large charge / discharge capacity can be obtained. Obtainable.

【0010】さらに、電極材料の塗布量を増やすと、電
極シートの長さが短くなり、すなわち、集電体とセパレ
ータの長さが短くなるので、正極材料、負極材料を増や
すことができる。したがって、電極材料の塗布量を増し
て実質的な充填量が大きくなるため電池の充放電容量が
大きくなることが判明した。この効果について本発明者
らがさらに鋭意検討を行ったところ、塗布厚さが250μm
未満では塗布厚さの減少による充填率の低下が大きく、
より高い充填率が得るためには、塗布厚さを250μm以上
にすることが必要であることが判明した。
Further, when the coating amount of the electrode material is increased, the length of the electrode sheet is shortened, that is, the length of the current collector and the separator is shortened, so that the positive electrode material and the negative electrode material can be increased. Therefore, it was found that the charging / discharging capacity of the battery is increased because the coating amount of the electrode material is increased to increase the substantial filling amount. As a result of further diligent study by the present inventors regarding this effect, the coating thickness was 250 μm.
If it is less than 1, the decrease in the filling rate due to the decrease in the coating thickness is large,
It was found that the coating thickness needs to be 250 μm or more in order to obtain a higher filling rate.

【0011】このように、正極材料と負極材料の充填量
を増加させるためには、正極集電体、負極集電体、セパ
レータの長さを短くし、さらに、厚さを薄くして、集電
体やセパレータの占有体積を減少させればよい。しかし
ながら、正極集電体、負極集電体、セパレータは、お互
いが対向する部分は必要なものであるため、正極集電体
の長さは、負極集電体、セパレータの長さと対応してい
る。これらの長さをできるだけ短くして、集電体単位面
積あたりの電極材料の塗布量を多くし、厚膜化すること
は論理的には可能である。しかしながら、スパイラル形
状の電極体では、正極・負極シートの外周面と内周面で
伸縮が生じるため、スパイラル状に巻回する際に電極材
料にひびを生じたり、ひいては短絡を引き起こす可能性
が生じてくる。そこで、本発明者らが鋭意検討を行った
結果、塗布厚さを400μmより大きくすると、巻回時にひ
び割れが生じる確率が大きくなることが判明した。
As described above, in order to increase the filling amount of the positive electrode material and the negative electrode material, the lengths of the positive electrode current collector, the negative electrode current collector, and the separator are shortened, and further, the thickness is reduced, and The volume occupied by the electric body and the separator may be reduced. However, since the positive electrode current collector, the negative electrode current collector, and the separator are required to have portions facing each other, the length of the positive electrode current collector corresponds to the length of the negative electrode current collector and the separator. . It is theoretically possible to shorten these lengths as much as possible to increase the coating amount of the electrode material per unit area of the current collector and increase the film thickness. However, in the spirally shaped electrode body, expansion and contraction occur on the outer and inner peripheral surfaces of the positive and negative electrode sheets, which may cause cracks in the electrode material when spirally wound and eventually cause short circuits. Come on. Therefore, as a result of intensive investigations by the present inventors, it was found that when the coating thickness is greater than 400 μm, the probability of cracking during winding increases.

【0012】スパイラル状の電極体を用いる場合、正極
シート、負極シートともに外周面では電極材料に引張り
の力がはいり、実質的な電極材料の目付(単位面積当た
りの塗布量)が減少し、内周面では圧縮の力がかかるの
で、実質的な電極材料の目付が増加する。そこで、スパ
イラル状態でのバランスをとるためには、外周面の活物
質量を内周面よりも多くすることが望ましい。ただし、
外周面の活物質量が内周面よりも過度に多くすると、塗
布後の電極シート乾燥やプレスの際に、反りを生じ、ス
パイラル状に巻き込む時の巻きずれや電極のひびの原因
になったり、短絡を引き起こしやすくなる。特に本発明
のように電極材料の塗布厚さを250μm以上にするとその
影響を受けやすくなる。
When a spiral electrode body is used, a tensile force is applied to the electrode material on the outer peripheral surfaces of both the positive electrode sheet and the negative electrode sheet, and the basis weight (application amount per unit area) of the electrode material is substantially reduced. Since compression force is applied to the peripheral surface, the basis weight of the electrode material is substantially increased. Therefore, in order to achieve balance in the spiral state, it is desirable that the amount of active material on the outer peripheral surface be larger than that on the inner peripheral surface. However,
If the amount of active material on the outer peripheral surface is excessively larger than that on the inner peripheral surface, it may cause warpage during drying or pressing of the electrode sheet after coating, which may cause misalignment when spirally wound or electrode cracks. , It is easy to cause a short circuit. In particular, when the coating thickness of the electrode material is 250 μm or more as in the present invention, it is easily affected by the influence.

【0013】そこで、外周面の電極材料塗布量と内周面
の電極材料塗布量をより精密に検討した結果、スパイラ
ル状態でのバランスをとり、電極のひび割れなどを防ぐ
ためには、外周面の塗布量を内周面の1.03倍から1.20倍
にすることがより好ましいことが判明した。外周面の塗
布量と内周面の塗布量の比を外周面と内周面とで変化さ
せることは、正極シート、負極シートのうち、どちらか
一方の電極シートで実施することもでき、また、両方の
電極シートで実施することもできる。正極シート、負極
シートの片方において実施する場合は、電池のサイズに
よって若干異なるものの、外周面の塗布量を内周面に対
して1.08〜1.20倍にすることがより好ましい。また、正
極シート、負極シートの両方の電極シートで実施する場
合は、ともに1.03〜1.10倍にすることがより好ましい。
Therefore, as a result of a more precise examination of the coating amount of the electrode material on the outer peripheral surface and the coating amount of the electrode material on the inner peripheral surface, in order to balance in the spiral state and prevent cracking of the electrode, coating of the outer peripheral surface is performed. It was found that it is more preferable to make the amount 1.03 times to 1.20 times the inner peripheral surface. Varying the ratio of the coating amount of the outer peripheral surface and the coating amount of the inner peripheral surface between the outer peripheral surface and the inner peripheral surface can be carried out on either one of the positive electrode sheet and the negative electrode sheet, , Both electrode sheets can also be implemented. When the operation is performed on one of the positive electrode sheet and the negative electrode sheet, the coating amount on the outer peripheral surface is more preferably 1.08 to 1.20 times that on the inner peripheral surface, although it varies slightly depending on the size of the battery. Further, when both electrode sheets, the positive electrode sheet and the negative electrode sheet, are used, it is more preferable that the ratio is 1.03 to 1.10 times.

【0014】これらの電池は、アルカリ金属塩を含む非
水電解液二次電池に適用することができ、好ましくは、
アルカリ金属やカチオンがドープされる炭素質材料を負
極に、アニオンがドープされる材料を正極に用いられ
る。
These batteries can be applied to non-aqueous electrolyte secondary batteries containing an alkali metal salt, and preferably,
A carbonaceous material doped with an alkali metal or a cation is used for the negative electrode, and a material doped with an anion is used for the positive electrode.

【0015】本発明では正極に塗布される電極材料とし
て、炭素繊維、人造あるいは天然の黒鉛粉末などの炭素
質材料、フッ化カーボン、金属あるいは金属酸化物など
の無機化合物や有機高分子化合物などを用いることがで
きる。
In the present invention, as the electrode material applied to the positive electrode, carbon fiber, carbonaceous material such as artificial or natural graphite powder, carbon fluoride, inorganic compound such as metal or metal oxide, organic polymer compound and the like are used. Can be used.

【0016】さらに、本発明では正極に塗布される電極
材料として、通常の二次電池において用いられる正極活
物質を挙げることができる。このような正極活物質とし
ては、アルカリ金属を含む遷移金属酸化物や遷移金属カ
ルコゲンなどの無機化合物、ポリアセチレン、ポリパラ
フェニレン、ポリフェニレンビニレン、ポリアニリン、
ポリピロール、ポリチオフェンなどの共役系高分子、ジ
スルフィド結合を有する架橋高分子、塩化チオニルなど
が挙げられる。本発明では電解質としてリチウム塩が好
ましく用いられるが、この場合には、コバルト、ニッケ
ル、マンガン、モリブデン、バナジウム、クロム、鉄、
銅、チタンなどの遷移金属酸化物や遷移金属カルコゲン
などの遷移金属化合物が好ましく用いられる。特に、L
iCoO2、LiNiO2、LiMn24、LiyNi1-x
x2(M:Ti、V、Mn、Fe のいずれか)、L
1-x-axNi1-y-by2(ただし、Aは少なくとも、
1種類のアルカリもしくはアルカリ土類金属元素、Bは
少なくとも1種類の遷移金属元素)は、エネルギー密度
も大きいために、最も好ましく使用される。その中で特
に、Li1-x-axNi1-y-by2は、0<x≦0.1、0≦y
≦0.3、-0.1≦a≦0.1、-0.15≦b≦0.15(ただし、A、
Bが2種類以上の元素からなる場合は、xはLiを除く
アルカリもしくはアルカリ土類金属の総モル数、yはN
iを除く全遷移金属 元素の総モル数であり、y=0の場合
はAは少なくとも1種類以上のアルカリ土類 金属を含
む)場合、優れた特性の正極材を得ることができる。ま
た、この場合、A、Bの種類、数、組成を変えたり、
x、y、a、bを変えた正極材を用いることよっても本発明
の主旨であるところの特性の異なる活物質を得ることが
可能であるため、非常に好適である。
Further, in the present invention, as an electrode material applied to the positive electrode, a positive electrode active material used in a usual secondary battery can be mentioned. Examples of such a positive electrode active material include inorganic compounds such as transition metal oxides and transition metal chalcogens containing an alkali metal, polyacetylene, polyparaphenylene, polyphenylene vinylene, polyaniline,
Examples thereof include conjugated polymers such as polypyrrole and polythiophene, crosslinked polymers having a disulfide bond, and thionyl chloride. In the present invention, a lithium salt is preferably used as the electrolyte, but in this case, cobalt, nickel, manganese, molybdenum, vanadium, chromium, iron,
Transition metal oxides such as copper and titanium and transition metal compounds such as transition metal chalcogens are preferably used. In particular, L
iCoO 2 , LiNiO 2 , LiMn 2 O 4 , Li y Ni 1-x
M x O 2 (M: Ti, V, Mn, or Fe), L
i 1-xa A x Ni 1 -yb B y O 2 ( however, A is at least,
One kind of alkali or alkaline earth metal element, and B is at least one kind of transition metal element) is most preferably used since it has a large energy density. Especially wherein, Li 1-xa A x Ni 1-yb B y O 2 is, 0 <x ≦ 0.1,0 ≦ y
≤ 0.3, -0.1 ≤ a ≤ 0.1, -0.15 ≤ b ≤ 0.15 (however, A,
When B consists of two or more elements, x is the total number of moles of alkali or alkaline earth metals excluding Li, and y is N.
It is the total number of moles of all transition metal elements excluding i, and when y = 0, A contains at least one alkaline earth metal). Also, in this case, changing the type, number, and composition of A and B,
It is very suitable to use active materials having different characteristics, which is the gist of the present invention, by using positive electrode materials having different x, y, a, and b.

【0017】正極活物質が、金属あるいは金属酸化物な
どの無機化合物の場合は、カチオンのドープと脱ドープ
による充放電反応が生じ、有機高分子化合物の場合は、
アニオンのドープと脱ドープによる充放電反応が生じる
が、これらは必要とされる電池の正極特性に応じて適宜
選択され、特に限定されることはない。
When the positive electrode active material is an inorganic compound such as a metal or a metal oxide, a charge / discharge reaction occurs due to cation doping and dedoping, and when it is an organic polymer compound,
A charge / discharge reaction occurs due to anion doping and dedoping, but these are appropriately selected according to the required positive electrode characteristics of the battery and are not particularly limited.

【0018】本発明では負極に塗布される電極材料とし
て、炭素繊維、人造あるいは天然の黒鉛粉末、フッ化カ
ーボンなどの炭素質材料、金属あるいは金属酸化物など
の無機化合物や有機高分子化合物などを用いることがで
きる。
In the present invention, as the electrode material applied to the negative electrode, carbon fiber, artificial or natural graphite powder, carbonaceous material such as fluorocarbon, inorganic compound such as metal or metal oxide, organic polymer compound and the like are used. Can be used.

【0019】本発明では負極に塗布される電極材料とし
ては、好ましくは、炭素繊維が用いられる。この場合、
炭素繊維は、特に限定されるものではないが、一般に有
機物を繊維状に焼成したものが用いられる。本発明で用
いられる炭素繊維としては、例えば、ポリアクリロニト
リル(PAN)から得られるPAN系炭素繊維、石炭もしくは石
油などのピッチから得られるピッチ系炭素繊維、セルロ
ースから得られるセルロース系炭素繊維、低分子量有機
物の気体から得られる気相成長炭素繊維、ポリビニルア
ルコール、リグニン、ポリ塩化ビニル、ポリアミド、ポ
リイミド、フェノール樹脂、フルフリルアルコールなど
を焼成して得られる炭素繊維などが挙げられ、電極およ
び電池の特性に応じて、その特性を満たす炭素繊維が適
宜選択される。さらに、これらの炭素繊維の中では、PA
N系炭素繊維、ピッチ系炭素繊維がより好ましく用いら
れる。特に、リチウムなどのアルカリ金属塩を含む非水
電解液を用いた二次電池の負極に使用する場合には、PA
N系炭素繊維が特に好ましい。
In the present invention, carbon fiber is preferably used as the electrode material applied to the negative electrode. in this case,
The carbon fiber is not particularly limited, but a fibrous organic material is generally used. The carbon fiber used in the present invention, for example, PAN-based carbon fiber obtained from polyacrylonitrile (PAN), pitch-based carbon fiber obtained from pitch such as coal or petroleum, cellulose-based carbon fiber obtained from cellulose, low molecular weight Vapor grown carbon fibers obtained from organic gas, polyvinyl alcohol, lignin, polyvinyl chloride, polyamide, polyimide, phenolic resin, carbon fibers obtained by firing furfuryl alcohol and the like, and the characteristics of electrodes and batteries In accordance with the above, a carbon fiber satisfying the characteristics is appropriately selected. Furthermore, among these carbon fibers, PA
N-based carbon fibers and pitch-based carbon fibers are more preferably used. Especially when used for the negative electrode of a secondary battery using a non-aqueous electrolyte containing an alkali metal salt such as lithium, PA
N-based carbon fibers are particularly preferred.

【0020】本発明で好ましく使用される炭素繊維の直
径は、それぞれの電極または電池の形態により適宜決め
られるが、一般的には、直径1〜100μmの炭素繊維が好
ましくは用いられ、直径3〜20μmの炭素繊維がさらに好
ましい。また、必要に応じて直径の異なった炭素繊維を
数種類用いることも可能である。
The diameter of the carbon fiber preferably used in the present invention is appropriately determined depending on the form of each electrode or battery, but generally, carbon fiber having a diameter of 1 to 100 μm is preferably used, and a diameter of 3 to More preferred is 20 μm carbon fiber. It is also possible to use several kinds of carbon fibers having different diameters, if necessary.

【0021】さらに、本発明で好ましく使用される炭素
繊維の長さは、特に制限はないが、通例、好ましくは10
0μm以下、さらに好ましくは50μm以下にする。炭素繊
維の長さが、100μmを越えるとはコーターを用いて均一
に塗布しづらくなるので好ましくはない。また、炭素繊
維の長さを炭素繊維の直径より短くすると、繊維方向に
破壊する危険性が生じるので、炭素繊維の長さは炭素繊
維直径以上であることがより好ましい。
Furthermore, the length of the carbon fiber preferably used in the present invention is not particularly limited, but it is usually preferably 10
The thickness is 0 μm or less, more preferably 50 μm or less. When the length of the carbon fiber exceeds 100 μm, it is difficult to apply the carbon fiber uniformly using a coater, which is not preferable. If the length of the carbon fiber is shorter than the diameter of the carbon fiber, there is a risk of breaking in the fiber direction. Therefore, the length of the carbon fiber is more preferably the carbon fiber diameter or more.

【0022】本発明の電池に用いられる結着材として
は、熱可塑性樹脂、熱硬化性樹脂のいずれであってもよ
く、特に限定されない。また、結着材を溶液やエマルジ
ョンなどの状態で使用することも可能である。結着材と
しての添加量は、電極材料中に通常0.01wt%〜40wt%で
用いられる。結着材としては、例えば、各種エポキシ樹
脂、セルロース樹脂、有機フッ素系ポリマ、およびコポ
リマ、アクリル樹脂、有機クロル系樹脂、ポリイミド、
ポリアミド、ポリカーボネートなどが挙げられる。特
に、安定性の点から有機フッ素系ポリマおよびコポリマ
が好ましく、中でもポリテトラフルオロエチレン、ポリ
フッ化ビニリデン、六フッ化プロピレンポリマおよびコ
ポリマが好ましい結着材として挙げられる。
The binder used in the battery of the present invention may be either a thermoplastic resin or a thermosetting resin and is not particularly limited. It is also possible to use the binder in the form of a solution or emulsion. The amount of the binder added is usually 0.01 wt% to 40 wt% in the electrode material. Examples of the binder include various epoxy resins, cellulose resins, organic fluorine-based polymers, and copolymers, acrylic resins, organic chloro-based resins, polyimides,
Examples thereof include polyamide and polycarbonate. In particular, organic fluorine-based polymers and copolymers are preferable from the viewpoint of stability, and among them, polytetrafluoroethylene, polyvinylidene fluoride, propylene hexafluoride polymer and copolymers are preferable binders.

【0023】本発明の電池に使用可能な導電材として
は、炭素材料、金属粉末などが挙げられる。導電材添加
による導電性向上の目的には正極、負極活物質の材料、
形状、粒径、および結着材の種類、配合量などによって
最適な粒径や添加量が決められるが、通常は一次粒子径
で1nm〜100μm、さらに好ましくは5nm〜20μmの微粒子
が用いられ、また、添加量は0.5〜30wt%、さらに好ま
しくは0.7〜20wt%である。一次粒子径が1nmを下回るも
のは安定して製造しにくく、また、100μmを超える も
のは添加効果が小さいという傾向がある。一方、0.5wt
%未満の添加量では添 加効果が乏しく、20wt%を超え
ると電極単位重量あたりの容量が低下するという傾向が
ある。
Examples of the conductive material that can be used in the battery of the present invention include carbon materials and metal powders. For the purpose of improving conductivity by adding a conductive material, the material of the positive electrode, the negative electrode active material,
Shape, particle size, and the type of binder, the optimum particle size and addition amount is determined by the blending amount, etc., usually 1 nm to 100 μm in primary particle size, more preferably 5 nm to 20 μm fine particles are used, The addition amount is 0.5 to 30 wt%, more preferably 0.7 to 20 wt%. Those having a primary particle size of less than 1 nm tend to be difficult to produce stably, and those having a primary particle size of more than 100 μm tend to have a small effect of addition. On the other hand, 0.5 wt
If the amount added is less than%, the effect of addition is poor, and if it exceeds 20 wt%, the capacity per unit weight of the electrode tends to decrease.

【0024】このようにして得られた電極材料は、各種
の電池の電極として利用可能であり、電池の種類は特に
限定されないが、好ましは二次電池の電極に用いられ
る。特に好ましい二次電池としては、過塩素酸リチウ
ム、硼フッ化リチウム、6フッ化リン・リチウムのよう
にアルカリ金属塩を含む非水電解液を用いた二次電池を
挙げることができる。
The electrode material thus obtained can be used as an electrode for various batteries, and the type of battery is not particularly limited, but it is preferably used for an electrode of a secondary battery. Particularly preferable secondary batteries include secondary batteries using a non-aqueous electrolyte solution containing an alkali metal salt such as lithium perchlorate, lithium borofluoride, and phosphorus hexafluoride / lithium.

【0025】本発明に使用される電解液に用いられる溶
媒は、特に限定されず、従来の溶媒が用いられ、例えば
酸あるいはアルカリ水溶液、または非水溶媒などが挙げ
られる。この中で、アルカリ金属塩を含む非水電解液か
らなる二次電池の電解液の溶媒としては、プロピレンカ
ーボネート、エチレンカーボネート、ジメチルカーボネ
ート、γ-ブチロラクトン、N- メチルピロリドン、アセ
トニトリル、N,N-ジメチルホルムアミド、ジメチルスル
フォキシド、テトラヒドロフラン、1,3-ジオキソラン、
ギ酸メチル、スルホラン、オキサゾリドン、塩化チオニ
ル、1,2-ジメトキシエタン、ジエチレンカーボネート、
及びこれらの誘導体や混合物などが好ましく用いられ
る。
The solvent used in the electrolytic solution used in the present invention is not particularly limited, and a conventional solvent may be used, and examples thereof include an acid or alkali aqueous solution or a non-aqueous solvent. Among them, as the solvent of the electrolytic solution of the secondary battery comprising a non-aqueous electrolytic solution containing an alkali metal salt, propylene carbonate, ethylene carbonate, dimethyl carbonate, γ-butyrolactone, N- methylpyrrolidone, acetonitrile, N, N- Dimethylformamide, dimethylsulfoxide, tetrahydrofuran, 1,3-dioxolane,
Methyl formate, sulfolane, oxazolidone, thionyl chloride, 1,2-dimethoxyethane, diethylene carbonate,
And derivatives and mixtures of these are preferably used.

【0026】本発明の電池に使用される電解液に含まれ
る電解質としては、アルカリ金属のハロゲン化物、過塩
素酸塩、チオシアン塩、ホウフッ化塩、リンフッ化塩、
砒素フッ化塩、アルミニウムフッ化塩、トリフルオロメ
チル硫酸塩などが好ましく用いられる。特にリチウム塩
は、標準電極電位が最も低いので、大きな電位差を得る
ことができるので、電解液に含まれる電解質としては、
リチウム塩を使用することがより好ましい。
As the electrolyte contained in the electrolytic solution used in the battery of the present invention, an alkali metal halide, perchlorate, thiocyanate, borofluoride, phosphorofluoride,
Arsenic fluoride, aluminum fluoride, trifluoromethyl sulfate, etc. are preferably used. Lithium salt, in particular, has the lowest standard electrode potential, and therefore a large potential difference can be obtained. Therefore, as the electrolyte contained in the electrolytic solution,
More preferably, a lithium salt is used.

【0027】正極材料、負極材料を集電体に塗布して電
極シートを作製する方法は特に限定されないが、本発明
の性質上、結着材や導電材などとともに溶媒に分散させ
た溶液を塗布後、乾燥させたり、活物質を導電性結着材
や導電材と結着材の混合物を用いて集電体に張り付ける
方法が一般的である。
The method of applying the positive electrode material and the negative electrode material to the current collector to prepare an electrode sheet is not particularly limited, but in view of the characteristics of the present invention, a solution dispersed in a solvent together with a binder, a conductive material, etc. is applied. After that, a general method is to dry or attach the active material to the current collector using a conductive binder or a mixture of a conductive material and a binder.

【0028】本発明における集電体は、金属を箔状、網
状、ラス状などの形態で用いることが可能であるが、こ
れらは特に限定されるものではない。
The current collector of the present invention may be made of metal in the form of foil, mesh, lath or the like, but these are not particularly limited.

【0029】本発明で用いられるセパレータは、正極と
負極が短絡することを防止するためのものであれば特に
制限はない。電解液の浸透性がよく、電子やイオンの移
動抵抗にならないことが望ましく、代表的な素材として
は、ポリエステル、ポリアミド、ポリオレフィン、ポリ
アクリレート、ポリメタクリレート、ポリスルホン、ポ
リカーボネート、ポリテトラフルオロエチレンなどが挙
げられる。この中でも、とくに、ポリプロピレン、ポリ
エチレン、ポリスルホンなどが強度、安全性に優れてお
り好ましい。セパレータの形状としては、多孔性膜や不
織布などが一般的にあげられるが、電池缶への充填率を
上げやすいことから、多孔性膜が好ましい。さらに、多
孔性膜は、対称膜、非対称膜が一般的であるが、強度,
安全性を向上させるために、複数種類の膜を積層した複
合膜とすることも可能である。多孔膜の空孔率は、電子
やイオンの透過性を高めるためになるべく高い方がよい
が、膜の強度低下を招く危険性があるため、素材や膜厚
に応じて決定されるべきである。一般的には、膜厚は20
〜100μm、空孔率は30〜80%が望ましい。また、孔の径
は 電極シートより脱離した活物質、結着材、導電材が
透過しない範囲であることが望ましく、具体的には、平
均孔径が0.01〜1μmのものが好ましい。
The separator used in the present invention is not particularly limited as long as it prevents short circuit between the positive electrode and the negative electrode. It is desirable that the electrolyte has good permeability and does not become a resistance to transfer of electrons and ions. Typical materials include polyester, polyamide, polyolefin, polyacrylate, polymethacrylate, polysulfone, polycarbonate, and polytetrafluoroethylene. To be Among these, polypropylene, polyethylene, polysulfone and the like are particularly preferable because they are excellent in strength and safety. The shape of the separator is generally a porous film or a non-woven fabric, but a porous film is preferable because the filling rate in the battery can is easily increased. Further, as the porous membrane, a symmetric membrane and an asymmetric membrane are generally used, but strength,
In order to improve safety, it is also possible to use a composite membrane in which a plurality of types of membranes are laminated. The porosity of the porous film should be as high as possible in order to enhance the permeability of electrons and ions, but there is a risk of reducing the strength of the film, so it should be determined according to the material and film thickness. . Generally, the film thickness is 20
〜100 μm, Porosity 30-80% is desirable. Further, the pore diameter is preferably in a range in which the active material, the binder and the conductive material detached from the electrode sheet do not permeate, and specifically, the average pore diameter is preferably 0.01 to 1 μm.

【0030】本発明における電池は、スパイラル状に巻
回された電極体を使用する電池であれば特に制限はない
が、高エネルギー密度を要求される携帯用機器搭載用の
電池としては、負極材料としてアルカリ金属を用いた電
池や、二次電池が効果的である。
The battery in the present invention is not particularly limited as long as it is a battery using an electrode body wound in a spiral shape, but as a battery for mounting on portable equipment requiring high energy density, a negative electrode material. A battery using an alkali metal or a secondary battery is effective.

【0031】炭素質材料へのカチオンあるいはアニオン
のドーピングを利用したアルカリ金属塩を含む非水電解
液二次電池に用いる場合には、アルカリ金属やカチオン
がドープされる炭素質材料を負極に、アニオンがドープ
される材料を正極に用いることとなる。
When used in a non-aqueous electrolyte secondary battery containing an alkali metal salt utilizing the cation or anion doping of a carbonaceous material, the carbonaceous material doped with an alkali metal or cation is used as the negative electrode and the anion is used. Will be used for the positive electrode.

【0032】また、スパイラル状電極体を装填する電池
缶は、特に限定されるものではないが、耐腐食のため鉄
にメッキを施した電池缶、ステンレス鋼製電池缶など
が、強度、耐食性、加工性に優れるので好ましい。ま
た、アルミ合金や各種エンジニアリングプラスチックス
を使用して軽量化をはかることも可能であり、各種エン
ジニアリングプラスチックスと金属との併用も可能であ
る。
Further, the battery can loaded with the spiral electrode body is not particularly limited, but a battery can plated with iron for corrosion resistance, a stainless steel battery can, and the like have strength, corrosion resistance, It is preferable because it is excellent in workability. Further, it is possible to reduce the weight by using an aluminum alloy or various engineering plastics, and it is also possible to use various engineering plastics and a metal together.

【0033】さらに、本発明におけるスパイラルの形状
は、必ずしも真円筒形である必要はなく、スパイラル断
面が楕円である長円筒形やスパイラル断面が長方形をは
じめとする角柱の様な形状をとってもかまわない。この
場合、電池缶も電極体の形状に応じた形状をとることが
可能である。代表的な使用形態としては、筒状で底のあ
る電池缶にスパイラル状電極体と電解液を装填し、電極
シートから取り出したリードがキャップと電池缶に溶接
された状態で封がされている形態が最も一般的な形態と
して挙げられるが、特にこの形態に限定されない。
Further, the shape of the spiral in the present invention does not necessarily have to be a true cylindrical shape, and may be a long cylindrical shape having an elliptical spiral cross section or a prismatic shape such as a rectangular spiral cross section. . In this case, the battery can can also take a shape corresponding to the shape of the electrode body. As a typical use form, a spirally-shaped electrode body and an electrolytic solution are loaded into a cylindrical battery can having a bottom, and leads taken out from the electrode sheet are sealed in a state of being welded to the cap and the battery can. The form is mentioned as the most common form, but is not particularly limited to this form.

【0034】[0034]

【実施例】以下実施例をもって本発明をさらに具体的に
説明する。ただし、本発明はこれにより限定されるもの
ではない。
The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited by this.

【0035】実施例1 正極活物質としてLiCoO2を80wt%、結着材として
ポリフッ化ビニリデン(呉羽化学株式会社製、PVDF KF11
00)5wt%、導電材として人造黒鉛(日本黒鉛工業株式会
社製、SP-20)15wt%を混合して正極用の電極材料とし
た。集電体として厚さ20μmのアルミニウム箔を用い、
正極(活物質量:外周側320g/m2、内周側320g/m2(合計
塗布厚256μm、塗布長さ144mm))に塗布して、正極シー
トを得た。
Example 1 80 wt% of LiCoO 2 was used as a positive electrode active material, and polyvinylidene fluoride was used as a binder (Kureha Chemical Co., Ltd., PVDF KF11
5% by weight of 00) and 15% by weight of artificial graphite (manufactured by Nippon Graphite Industry Co., Ltd., SP-20) as a conductive material were mixed to obtain an electrode material for a positive electrode. Using an aluminum foil with a thickness of 20 μm as a current collector,
A positive electrode (amount of active material: outer peripheral side 320 g / m 2 , outer peripheral side 320 g / m 2 (total coating thickness 256 μm, coating length 144 mm)) was applied to obtain a positive electrode sheet.

【0036】つづいて負極用の電極材料として、PAN系
炭素繊維(東レ株式会社製、トレカT300)を約20μmに短
繊維化した後真空中1500℃で4時間焼成し、正極と同じ
結着材、導電材を用いて正極と同じ比率で混練して得
た。負極用の電極材料を集電体である厚さ10μmの銅箔
に、塗布した負極(活物質量:外周側115g/m2(塗布厚105
μm)、内周側115g/m2(合計塗布厚255μm,塗布長さ171m
m))を作製した。これらの正極、負極シートを、多孔質
ポリプロピレンフィルム(ダイセル化学株式会社製、セ
ル ガード#2500)のセパレータを介して重ね合わせ、巻
回することによって円筒状の電極体を30個得た。これら
の電極体に内部短絡は生じなかった。この電極体のうち
任意の10個の電極体をそれぞれ内容積5ccの電池缶に装
填し、1M硼弗化リチ ウムを含有するプロピレンカー
ボネートとジメチルカーボネートの1:1混合液を 電解液
とした電池を作製した。この電池を、充電電流400mA、
定電圧値4.2V、充 電時間2.5時間で定電流定電圧充電
し、放電電流200mA、放電終止電圧2.5Vで容量試験を行
ったところ、電池平均容量は初回378mAhで、100サイク
ル経過後の容量 平均保持率は80%であった。
Subsequently, as an electrode material for the negative electrode, PAN-based carbon fiber (Toray Industries, Inc., Torayca T300) was shortened to about 20 μm and then fired in a vacuum at 1500 ° C. for 4 hours to obtain the same binder as the positive electrode. A conductive material was used and kneaded at the same ratio as the positive electrode. An electrode material for the negative electrode to copper foil having a thickness of 10μm as a current collector, the applied negative electrode (active material content: outer circumferential side 115 g / m 2 (coating thickness 105
μm), 115 g / m 2 on the inner circumference side (total coating thickness 255 μm, coating length 171 m
m)) was prepared. These positive electrode and negative electrode sheets were superposed on each other with a porous polypropylene film (Daicel Chemical Co., Ltd., Celguard # 2500) separator interposed therebetween and wound to obtain 30 cylindrical electrode bodies. No internal short circuit occurred in these electrode bodies. Any 10 of these electrode bodies were loaded into battery cans with an internal volume of 5 cc, and a 1: 1 mixture of propylene carbonate and dimethyl carbonate containing 1M lithium borofluoride was used as the electrolyte. Was produced. This battery, charging current 400mA,
A constant current constant voltage charge was performed at a constant voltage value of 4.2V and a charging time of 2.5 hours, and a capacity test was performed at a discharge current of 200mA and a discharge end voltage of 2.5V.The average battery capacity was 378mAh for the first time, and the capacity after 100 cycles had elapsed. The average retention rate was 80%.

【0037】実施例2 正極活物質量を外周側337g/m2、内周側303g/m2(合計塗
布厚256μm,塗布長さ144mm)とし、負極活物質量を外周
側118g/m2、内周側112g/m2(合計塗布厚255μm,塗布長
さ171mm)とした他は実施例1と同様の電池を作製し同条
件で試験を行ったところ、電池平均容量は初回383mAh
で、100サイクル経過後の容量平均保持率は84%であっ
た。
[0037] Example 2 positive electrode active material weight outer periphery 337 g / m 2 to the inner circumferential side 303 g / m 2 (total coating thickness 256 .mu.m, coated length 144 mm) and the outer circumferential side 118 g / m 2 of the negative electrode active material weight, A battery similar to that of Example 1 was prepared except that the inner peripheral side was 112 g / m 2 (total coating thickness 255 μm, coating length 171 mm), and the test was conducted under the same conditions. The average battery capacity was initially 383 mAh.
The average capacity retention rate after 100 cycles was 84%.

【0038】比較例1 正極活物質量を外周側210g/m2、内周側210g/m2(合計塗
布厚168μm,塗布長さ203mm)とし、負極活物質量を外周
側79g/m2、内周側79g/m2(合計塗布厚175μm,塗布長さ2
30mm)とした他は実施例1と同様の電池を作製し同条件
で試験を行ったところ、電池平均容量は初回354mAhで、
100サイクル経過後の容量平均保持率は80%であった。
[0038] Comparative Example 1 a positive electrode active material weight outer peripheral side 210g / m 2 to the inner circumferential side 210g / m 2 (total coating thickness 168Myuemu, application length 203 mm) and the outer peripheral side 79 g / m 2 of the negative electrode active material weight, Inner circumference 79g / m 2 (total coating thickness 175μm, coating length 2
(30 mm) except that the same battery as in Example 1 was prepared and tested under the same conditions. The average battery capacity was 354 mAh for the first time.
The average capacity retention rate after 100 cycles was 80%.

【0039】[0039]

【発明の効果】本発明の電池は、スパイラル状に巻回し
た正極シートと負極シートの両方において、該正極シー
ト、負極シート両方における塗布厚さが両面合わせて25
0μm以上かつ400μm以下とすることにより、充填率が高
く、電池容量の高い電池を製造することが可能となっ
た。
EFFECTS OF THE INVENTION In the battery of the present invention, both the positive electrode sheet and the negative electrode sheet which are spirally wound have a coating thickness of 25 on both the positive electrode sheet and the negative electrode sheet.
By setting the thickness to 0 μm or more and 400 μm or less, it becomes possible to manufacture a battery having a high filling rate and a high battery capacity.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 正極シート、負極シートをスパイラル状
に巻回してなる電極体を用いた電池において、正極シー
トの外周面、内周面の両面の塗布厚さの合計が250μm以
上、400μm以下であり、負極シートの外周面、内周面の
両面の塗布厚さの合計が250μm以上、400μm以下である
ことを特徴とする電池。
1. A battery using an electrode body formed by spirally winding a positive electrode sheet and a negative electrode sheet, wherein the total coating thickness of both the outer peripheral surface and the inner peripheral surface of the positive electrode sheet is 250 μm or more and 400 μm or less. A battery characterized in that the total coating thickness on both the outer peripheral surface and the inner peripheral surface of the negative electrode sheet is 250 μm or more and 400 μm or less.
【請求項2】 正極シートにおける集電体面積当たりの
活物質塗布量が内周面より外周面が多いことを特徴とす
る請求項1に記載の電池。
2. The battery according to claim 1, wherein the amount of active material applied per area of the current collector in the positive electrode sheet is larger on the outer peripheral surface than on the inner peripheral surface.
【請求項3】 負極シートにおける集電体面積当たりの
活物質塗布量が内周面より外周面が多いことを特徴とす
る請求項1に記載の電池。
3. The battery according to claim 1, wherein the amount of active material applied per area of the current collector in the negative electrode sheet is larger on the outer peripheral surface than on the inner peripheral surface.
【請求項4】 正極シート、負極シートの少なくとも一
方の電極シートにおける内周面に対する外周面の集電体
面積当たりの活物質塗布量の比の値が1.03以上1.20以下
であることを特徴とする請求項1に記載の電池。
4. The ratio of the coating amount of the active material per area of the outer peripheral surface to the inner peripheral surface of at least one of the positive electrode sheet and the negative electrode sheet is 1.03 or more and 1.20 or less. The battery according to claim 1.
【請求項5】 リチウム塩を電解質とすることを特徴と
する請求項1に記載の電池。
5. The battery according to claim 1, wherein a lithium salt is used as an electrolyte.
【請求項6】 正極に塗布される電極材料に遷移金属化
合物を含有することを特徴とする請求項1に記載の電
池。
6. The battery according to claim 1, wherein the electrode material applied to the positive electrode contains a transition metal compound.
【請求項7】 負極に塗布される電極材料に炭素質材料
を含有することを特徴とする請求項1に記載の電池。
7. The battery according to claim 1, wherein the electrode material applied to the negative electrode contains a carbonaceous material.
【請求項8】 炭素質材料が炭素繊維であることを特徴
とする請求項8に記載の電池。
8. The battery according to claim 8, wherein the carbonaceous material is carbon fiber.
【請求項9】 炭素繊維がポリアクリロニトリル系炭素
繊維であることを特徴とする請求項8に記載の電池。
9. The battery according to claim 8, wherein the carbon fiber is a polyacrylonitrile-based carbon fiber.
【請求項10】 炭素繊維の直径が1μm〜100μm、
長さが100μm以下であることを特徴とする請求項9
に記載の電池。
10. The carbon fiber has a diameter of 1 μm to 100 μm,
The length is 100 μm or less, and the length is less than 100 μm.
The battery according to 1.
【請求項11】 炭素繊維の長さが該炭素繊維の直径以
上であることを特徴とする請求項10に記載の電池。
11. The battery according to claim 10, wherein the length of the carbon fiber is not less than the diameter of the carbon fiber.
JP8011703A 1996-01-26 1996-01-26 Battery Pending JPH09204936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8011703A JPH09204936A (en) 1996-01-26 1996-01-26 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8011703A JPH09204936A (en) 1996-01-26 1996-01-26 Battery

Publications (1)

Publication Number Publication Date
JPH09204936A true JPH09204936A (en) 1997-08-05

Family

ID=11785413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8011703A Pending JPH09204936A (en) 1996-01-26 1996-01-26 Battery

Country Status (1)

Country Link
JP (1) JPH09204936A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1079245A (en) * 1996-07-10 1998-03-24 Fuji Photo Film Co Ltd Electrode for battery and battery using it
JPH11154508A (en) * 1997-11-19 1999-06-08 Toshiba Corp Nonaqueous electrolyte battery
JPH11214027A (en) * 1998-01-22 1999-08-06 Samsung Display Devices Co Ltd Secondary battery compensating capacity ratio of positive electrode and negative electrode
US7709142B2 (en) 2005-12-13 2010-05-04 Sony Corporation Electrolytic solution containing 4-fluoro-1, 3-dioxolane-2-one solvent
US7749653B2 (en) 2006-05-15 2010-07-06 Sony Corporation Lithium ion battery
US8216726B2 (en) 2008-01-09 2012-07-10 Sony Corporation Battery
US8377598B2 (en) 2006-09-22 2013-02-19 Sony Corporation Battery having an electrolytic solution containing difluoroethylene carbonate
US8507132B2 (en) 2006-09-19 2013-08-13 Sony Corporation Electrode and method of fabricating it, and battery
US8574761B2 (en) 2008-01-22 2013-11-05 Sony Corporation Battery
US8815446B2 (en) 2007-07-06 2014-08-26 Sony Corporation Anode material, anode and battery, and methods of manufacturing them
US8986885B2 (en) 2010-02-25 2015-03-24 Hitachi Automotive Systems, Ltd. Lithium ion battery
WO2015093411A1 (en) 2013-12-20 2015-06-25 三洋化成工業株式会社 Electrode for lithium-ion cell, lithium-ion cell, and method for manufacturing electrode for lithium-ion cell
US9099743B2 (en) 2008-02-21 2015-08-04 Sony Corporation Anode and secondary battery
US10431851B2 (en) 2014-12-26 2019-10-01 Nissan Motor Co., Ltd. Non-aqueous electrolyte secondary battery and method for manufacturing the same
US10957908B2 (en) 2015-03-27 2021-03-23 Nissan Motor Co., Ltd. Electrode for lithium ion battery, lithium ion battery, and method for producing electrode for lithium ion battery

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1079245A (en) * 1996-07-10 1998-03-24 Fuji Photo Film Co Ltd Electrode for battery and battery using it
JPH11154508A (en) * 1997-11-19 1999-06-08 Toshiba Corp Nonaqueous electrolyte battery
JPH11214027A (en) * 1998-01-22 1999-08-06 Samsung Display Devices Co Ltd Secondary battery compensating capacity ratio of positive electrode and negative electrode
US7709142B2 (en) 2005-12-13 2010-05-04 Sony Corporation Electrolytic solution containing 4-fluoro-1, 3-dioxolane-2-one solvent
US7749653B2 (en) 2006-05-15 2010-07-06 Sony Corporation Lithium ion battery
US8507132B2 (en) 2006-09-19 2013-08-13 Sony Corporation Electrode and method of fabricating it, and battery
US8377598B2 (en) 2006-09-22 2013-02-19 Sony Corporation Battery having an electrolytic solution containing difluoroethylene carbonate
US8815446B2 (en) 2007-07-06 2014-08-26 Sony Corporation Anode material, anode and battery, and methods of manufacturing them
US9263735B2 (en) 2007-07-06 2016-02-16 Sony Corporation Anode and battery
US8216726B2 (en) 2008-01-09 2012-07-10 Sony Corporation Battery
US8574761B2 (en) 2008-01-22 2013-11-05 Sony Corporation Battery
US9099743B2 (en) 2008-02-21 2015-08-04 Sony Corporation Anode and secondary battery
US9748574B2 (en) 2008-02-21 2017-08-29 Sony Corporation Anode and secondary battery
US8986885B2 (en) 2010-02-25 2015-03-24 Hitachi Automotive Systems, Ltd. Lithium ion battery
WO2015093411A1 (en) 2013-12-20 2015-06-25 三洋化成工業株式会社 Electrode for lithium-ion cell, lithium-ion cell, and method for manufacturing electrode for lithium-ion cell
KR20160086923A (en) 2013-12-20 2016-07-20 산요가세이고교 가부시키가이샤 Electrode for lithium-ion cell, lithium-ion cell, and method for manufacturing electrode for lithium-ion cell
KR20180071389A (en) 2013-12-20 2018-06-27 산요가세이고교 가부시키가이샤 Electrode for lithium-ion cell, lithium-ion cell, and method for manufacturing electrode for lithium-ion cell
US10276858B2 (en) 2013-12-20 2019-04-30 Sanyo Chemical Ltd. Electrode for lithium-ion cell, lithium-ion cell, and method for manufacturing electrode for lithium-ion cell
US10727476B2 (en) 2013-12-20 2020-07-28 Sanyo Chemical Industries, Ltd. Electrode for lithium-ion cell, lithium-ion cell, and method for manufacturing electrode for lithium-ion cell
US11233229B2 (en) 2013-12-20 2022-01-25 Sanyo Chemical Industries, Ltd. Electrode for lithium-ion cell, lithium-ion cell, and method for manufacturing electrode for lithium-ion cell
US11322732B2 (en) 2013-12-20 2022-05-03 Sanyo Chemical Industries, Ltd. Electrode for lithium-ion cell, lithium-ion cell, and method for manufacturing electrode for lithium-ion cell
US10431851B2 (en) 2014-12-26 2019-10-01 Nissan Motor Co., Ltd. Non-aqueous electrolyte secondary battery and method for manufacturing the same
US11063295B2 (en) 2014-12-26 2021-07-13 Nissan Motor Co., Ltd. Non-aqueous electrolyte secondary battery and method for manufacturing the same
US10957908B2 (en) 2015-03-27 2021-03-23 Nissan Motor Co., Ltd. Electrode for lithium ion battery, lithium ion battery, and method for producing electrode for lithium ion battery

Similar Documents

Publication Publication Date Title
US8338026B2 (en) Positive electrode active material, and positive electrode and lithium secondary battery including the same
JP4752574B2 (en) Negative electrode and secondary battery
JPH09204936A (en) Battery
JPH09180704A (en) Battery and manufacture thereof
JP2000011991A (en) Organic electrolyte secondary battery
JPH09199177A (en) Battery
JPH08306354A (en) Electrode and nonaqueous solvent type secondary battery using the electrode
JPH04162357A (en) Nonaqueous secondary battery
JP2007273313A (en) Electrode plate for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
JPH09161768A (en) Battery
JPH1167214A (en) Lithium secondary battery
JPH06181058A (en) Looseness restraining means of wound electrode body for nonaqueous electrolyte type battery
JPH09180759A (en) Battery
JP2019129147A (en) Nonaqueous electrolyte battery
JPH1154113A (en) Manufacture of mix for electrode of nonaqueous secondary battery
JPH09161838A (en) Battery
JPH10284082A (en) Electrode for battery and secondary battery using it
JPH1092415A (en) Electrode and secondary battery using it
JP6832474B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode active material layer, and lithium ion secondary battery
JPH08287953A (en) Battery
JPH1064546A (en) Electrode and secondary battery using it
JPH09161847A (en) Battery
JPH09167613A (en) Battery
JPH103947A (en) Battery
JP2001006684A (en) Nonaqueous electrolyte battery