JPH11154508A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JPH11154508A
JPH11154508A JP9317990A JP31799097A JPH11154508A JP H11154508 A JPH11154508 A JP H11154508A JP 9317990 A JP9317990 A JP 9317990A JP 31799097 A JP31799097 A JP 31799097A JP H11154508 A JPH11154508 A JP H11154508A
Authority
JP
Japan
Prior art keywords
positive electrode
aqueous electrolyte
negative electrode
electrolyte battery
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9317990A
Other languages
Japanese (ja)
Other versions
JP4149543B2 (en
Inventor
Toru Yajima
亨 矢嶋
Nobukazu Suzuki
信和 鈴木
Kyotaro Iyasu
巨太郎 居安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP31799097A priority Critical patent/JP4149543B2/en
Publication of JPH11154508A publication Critical patent/JPH11154508A/en
Application granted granted Critical
Publication of JP4149543B2 publication Critical patent/JP4149543B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte battery excellent in production efficiency in which a nonaqueous electrolyte can be speedily impregnated in a laminate. SOLUTION: A grooved recess is formed at a surface having a positive electrode active substance layer on a positive electrode 4 by pressing by means of a roll having a projection in conformity of the grooved recess. A lower insulative plate 2 is disposed at the inner bottom of a metallic, cylindrical container 1 having an opening upper portion. A laminate 3 in which the positive electrode 4 and a negative electrode 6 are would spirally via a separator 5 is housed inside the container 1. A nonaqueous electrolyte is injected into the container 1 containing the laminate 3 therein. An upper insulating plate 7 is mounted on the laminate 3, and a sealing plate 8 having a positive electrode terminal 9 is embedded in the upper portion of the container 1, to thus seal it. The positive electrode terminal 9 is connected to the positive electrode 4 via a positive electrode tab 10. The negative electrode 6 is connected to the container 1 via a negative electrode tab, and the bottom of the container 1 serves as a negative electrode terminal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、正極電極、負極電
極、及びセパレータが積層構造をなし、非水電解液を含
浸してなる非水電解液電池に係り、特に、非水電解液が
含浸しやすいように正極電極、負極電極又はセパレータ
の表面に改良を施した非水電解液電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte battery in which a positive electrode, a negative electrode, and a separator have a laminated structure and are impregnated with a non-aqueous electrolyte. The present invention relates to a nonaqueous electrolyte battery in which the surface of a positive electrode, a negative electrode, or a separator is improved so as to be easily performed.

【0002】[0002]

【従来の技術】近年、移動体通信機、ノートブック型パ
ソコン、パームトップ型パソコン、一体型ビデオカメ
ラ、ポータブルCD(MD)プレーヤー、コードレス電
話等の電子機器の普及が著しい。このような電子機器
は、小形化、軽量化の要請が高いため、特に、その電源
として小型で大容量の電池が求められている。
2. Description of the Related Art In recent years, electronic devices such as a mobile communication device, a notebook computer, a palmtop computer, an integrated video camera, a portable CD (MD) player, and a cordless telephone have been widely used. Since such electronic devices are highly demanded to be reduced in size and weight, a small-sized and large-capacity battery is particularly required as a power source thereof.

【0003】一般的に、これらの電子機器の電源として
普及している電池としては、アルカリマンガン電池のよ
うな一次電池や、ニッケルカドミウム電池、鉛蓄電池等
の二次電池が挙げられる。その中でも、例えば、特開昭
62−90863号公報等において提案されているよう
な非水電解液電池が注目されている。この非水電解液電
池は、正極活物質にリチウム複合酸化物を用い、負極活
物質にリチウム金属若しくはその合金や、リチウムイオ
ンをドーブ・脱ドーブできる炭素質材料を用いた電池で
あり、小型軽量で単電池電圧が高く、高エネルギー密度
を得られることから、優れた電源としての利用が期待さ
れている。
[0003] In general, as batteries widely used as power supplies for these electronic devices, there are primary batteries such as alkaline manganese batteries, and secondary batteries such as nickel cadmium batteries and lead storage batteries. Among them, for example, a non-aqueous electrolyte battery as proposed in Japanese Patent Application Laid-Open No. Sho 62-90863 has attracted attention. This nonaqueous electrolyte battery is a battery that uses a lithium composite oxide for the positive electrode active material and a lithium metal or an alloy thereof or a carbonaceous material capable of doping and desorbing lithium ions as the negative electrode active material. Thus, since the cell voltage is high and a high energy density can be obtained, it is expected to be used as an excellent power source.

【0004】このような非水電解液を用いた二次電池に
おいては、非水電解液のイオン伝導性が低いので、大電
流を取り出すためには、水系二次電池に比して正極電極
及び負極電極の面積を大きくとる必要がある。このた
め、電極構造としては、積層体構造が採用されている。
この積層体の例としては、薄いシート状の正極電極及び
負極電極を、セパレータを介して円筒形や長円筒形の渦
巻状(コイル状)に巻回したものがある。他にも、正極
電極、負極電極及びセパレータを九十九折り状に折り重
ねたり、正極電極、負極電極及びセパレータを交互に積
層する等の方法によって構成されたものもある。
In a secondary battery using such a non-aqueous electrolyte, since the non-aqueous electrolyte has a low ionic conductivity, a large amount of current can be taken out by using a positive electrode and a non-aqueous electrolyte as compared with an aqueous secondary battery. It is necessary to increase the area of the negative electrode. For this reason, a laminated structure is adopted as the electrode structure.
As an example of the laminate, a thin sheet-shaped positive electrode and negative electrode are wound in a spiral shape (coil shape) in a cylindrical shape or a long cylindrical shape via a separator. In addition, there is a method in which a positive electrode, a negative electrode, and a separator are folded in a 99-fold form, or a positive electrode, a negative electrode, and a separator are alternately stacked.

【0005】このような薄いシート状の正極電極及び負
極電極は、一般的に、集電体である金属箔に、正極活物
質若しくは負極活物質を含む混合物の層を形成すること
によって製造されている。そして、通常の非水電解液電
池は、上記積層体を、電解液の保持及び電気的絶縁、形
状の保持等のために容器に収容し、容器内に非水電解液
を注入して、積層体を構成する正極電極、負極電極及び
セパレータに非水電解液を含浸させることによって構成
されている。
[0005] Such a thin sheet-like positive electrode and negative electrode are generally produced by forming a layer of a mixture containing a positive electrode active material or a negative electrode active material on a metal foil as a current collector. I have. Then, the ordinary non-aqueous electrolyte battery contains the above-mentioned laminate in a container for holding the electrolytic solution and electrical insulation, maintaining the shape, etc., injecting the non-aqueous electrolytic solution into the container, and stacking the laminate. It is constituted by impregnating a nonaqueous electrolyte into a positive electrode, a negative electrode and a separator constituting a body.

【0006】ところで、上記のような非水電解液電池に
おいては、容器に注入された非水電解液が、積層体を構
成する正極電極、負極電極及びセパレータに含浸される
までには、一定の時間を要する。一般には、正極活物質
層、負極活物質層やセパレータの平均気孔径が小さいほ
ど、また、その厚さが薄いほど、含浸に要する時間は長
くなる。そして、非水電解液の性質の点からは、非水電
解液の粘度が高いほど、また、正極及び負極の活物質や
セパレータとの親和性が低いほど、含浸に要する時間は
長くなると言える。
In the above-described non-aqueous electrolyte battery, a fixed amount of the non-aqueous electrolyte injected into the container is impregnated into the positive electrode, the negative electrode, and the separator constituting the laminate. Takes time. In general, the smaller the average pore diameter of the positive electrode active material layer, the negative electrode active material layer, and the separator, and the thinner the thickness, the longer the time required for impregnation. In view of the properties of the non-aqueous electrolyte, it can be said that the higher the viscosity of the non-aqueous electrolyte and the lower the affinity of the positive electrode and the negative electrode with the active material and the separator, the longer the time required for impregnation.

【0007】このように、積層体に対する非水電解液の
含浸に要する時間が長いと、生産能率に影響を与えるこ
とになるので、実際には、この含浸時間を短くするため
に、一旦容器の内部を減圧し、非水電解液注入後に大気
圧に戻す等の方法が採られている。
As described above, if the time required for impregnating the laminate with the nonaqueous electrolyte solution is long, the production efficiency will be affected. A method of reducing the pressure inside and returning the pressure to the atmospheric pressure after injecting the non-aqueous electrolyte is adopted.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記の
ような構成の非水電解液電池においては、非水電解液の
含浸の速度は、積層体を構成する正極電極、負極電極及
びセパレータの物性及び形状と、非水電解液の物性との
相互の関係によって決まる。このため、これらの関係が
一定であれば、容器の内部を減圧する方法を用いても、
含浸に要する時間をある程度以下に短くすることはでき
ない。
However, in the non-aqueous electrolyte battery having the above structure, the impregnation rate of the non-aqueous electrolyte depends on the physical properties of the positive electrode, the negative electrode, and the separator constituting the laminate. It depends on the mutual relationship between the shape and the physical properties of the non-aqueous electrolyte. Therefore, if these relationships are constant, even if a method of depressurizing the inside of the container is used,
The time required for impregnation cannot be reduced below a certain level.

【0009】本発明は、以上のような従来技術の問題点
を解決するために提案されたものであり、その目的は、
非水電解液を積層体に速やかに含浸させることができ、
優れた生産能率が得られる非水電解液電池を提供するこ
とにある。
The present invention has been proposed to solve the above-mentioned problems of the prior art.
Non-aqueous electrolyte can be quickly impregnated into the laminate,
An object of the present invention is to provide a non-aqueous electrolyte battery capable of obtaining excellent production efficiency.

【0010】[0010]

【課題を解決するための手段】以上の目的を達成するた
めに、正極集電体の少なくとも片面に多孔性の正極活物
質層が形成された正極電極と、負極集電体の少なくとも
片面に多孔性の負極活物質層が形成された負極電極と
を、多孔性のセパレータを介して積層することによって
構成された積層体を備え、非水電解液が前記積層体に含
浸された非水電解液電池において、以下のような技術的
特徴を有する。
In order to achieve the above object, a positive electrode having a porous positive electrode active material layer formed on at least one surface of a positive electrode current collector and a porous electrode having at least one surface on a negative electrode current collector are provided. A negative electrode on which a negative electrode active material layer is formed, and a laminated body formed by laminating through a porous separator, a non-aqueous electrolyte in which the non-aqueous electrolyte is impregnated in the laminated body The battery has the following technical features.

【0011】すなわち、請求項1記載の発明は、前記正
極電極における正極活物質層が形成された面、前記負極
電極における負極活物質層が形成された面及び前記セパ
レータの表面のうちの少なくとも一つに、前記積層体の
周縁に開口した溝状の凹部が設けられていることを特徴
とする。以上のような請求項1記載の発明では、溝状の
凹部を通して、非水電解液が積層体の内部に速やかに浸
透するため、含浸に要する時間を飛躍的に短くすること
が可能となる。
That is, according to the present invention, at least one of the surface of the positive electrode on which the positive electrode active material layer is formed, the surface of the negative electrode on which the negative electrode active material layer is formed, and the surface of the separator is provided. Finally, a groove-shaped concave portion that is open at the periphery of the laminate is provided. According to the first aspect of the present invention, since the nonaqueous electrolyte quickly penetrates into the inside of the laminate through the groove-shaped recess, the time required for impregnation can be drastically reduced.

【0012】請求項2記載の発明は、請求項1記載の非
水電解液電池において、前記積層体が、前記正極電極、
前記負極電極及び前記セパレータを渦巻状に巻回するこ
とによって構成されていることを特徴とする。以上のよ
うな請求項2記載の発明では、正極電極、負極電極及び
セパレータが渦巻状に巻回されることにより密に積層さ
れるため、非水電解液が含浸される空隙が少なくなる
が、溝状の凹部が設けられているので、非水電解液の含
浸時間の長時間化を防止できる。
According to a second aspect of the present invention, in the non-aqueous electrolyte battery according to the first aspect, the laminate comprises the positive electrode,
The negative electrode and the separator are spirally wound. In the invention according to claim 2 as described above, since the positive electrode, the negative electrode, and the separator are densely laminated by being spirally wound, the number of voids impregnated with the nonaqueous electrolyte is reduced. Since the groove-shaped recess is provided, it is possible to prevent the impregnation time of the non-aqueous electrolyte solution from becoming long.

【0013】請求項3記載の発明は、請求項2記載の非
水電解液電池において、前記溝状の凹部の中心線の少な
くとも一部が、渦巻状に巻回された前記積層体の中心軸
に対して傾いていることを特徴とする。以上のような請
求項3記載の発明では、溝状の凹部の中心線の方向と、
張力によって正極電極、負極電極又はセパレータが破断
しやすい方向とが異なるため、応力は集中せず、正極電
極、負極電極及びセパレータの破断を防ぐことが可能と
なる。
According to a third aspect of the present invention, in the non-aqueous electrolyte battery according to the second aspect, at least a part of a center line of the groove-shaped concave portion is spirally wound around the central axis of the laminate. Characterized by being inclined with respect to. According to the third aspect of the present invention, the direction of the center line of the groove-shaped recess is
Since the direction in which the positive electrode, the negative electrode, or the separator is easily broken differs depending on the tension, stress is not concentrated, and the positive electrode, the negative electrode, and the separator can be prevented from being broken.

【0014】請求項4記載の発明は、請求項3記載の非
水電解液電池において、渦巻状に巻回された前記積層体
の中心軸の中点を通り当該中心軸に垂直な面に関して、
前記凹部が対称をなしていることを特徴とする。以上の
ような請求項4記載の発明では、渦巻状の積層体の中心
軸の中点を通り当該中心軸に垂直な面を境にして、一方
の凹部の面積の合計が、他方の凹部の面積の合計と等し
くなる。従って、巻回される正極電極、負極電極及びセ
パレータの張力による伸びが当該面を境にして対称とな
るので、巻回される位置がずれることはない。
According to a fourth aspect of the present invention, in the non-aqueous electrolyte battery according to the third aspect, with respect to a surface passing through a midpoint of the center axis of the spirally wound laminate and perpendicular to the center axis,
The recess is symmetrical. In the invention according to claim 4 described above, the total area of one concave portion is equal to that of the other concave portion with respect to a plane passing through the center point of the central axis of the spiral laminated body and perpendicular to the central axis. It is equal to the sum of the areas. Therefore, the elongation of the wound positive electrode, the negative electrode, and the separator due to the tension is symmetric with respect to the surface, so that the wound position does not shift.

【0015】請求項5記載の発明は、請求項1〜4のい
ずれか1項に記載の非水電解液電池において、前記非水
電解液はイオン解離性の塩と非水溶媒からなり、前記非
水溶媒は、環状カーボネート、環状エステル、テトラメ
チルスルフォラン、ジメチルスルフォキシド、N−メチ
ルピロリドン、ジメチルフォルムアミドのうちの少なく
とも一つを含むことを特徴とする。以上のような請求項
5記載の発明では、他の非水溶媒を用いた非水電解液電
池に比べてイオン伝導度が高く、充放電の容量及び電流
を大きく取ることが可能となるものの、非水溶媒の粘性
が高い。しかし、溝状の凹部が設けられているので、非
水電解液の含浸時間の長時間化を防止できる。
According to a fifth aspect of the present invention, in the non-aqueous electrolyte battery according to any one of the first to fourth aspects, the non-aqueous electrolyte comprises an ion-dissociable salt and a non-aqueous solvent. The non-aqueous solvent is characterized by containing at least one of cyclic carbonate, cyclic ester, tetramethylsulfolane, dimethylsulfoxide, N-methylpyrrolidone and dimethylformamide. In the invention according to claim 5 as described above, although the ionic conductivity is higher than that of a non-aqueous electrolyte battery using another non-aqueous solvent, the charge and discharge capacity and current can be increased. Non-aqueous solvent has high viscosity. However, since the groove-shaped concave portion is provided, it is possible to prevent the impregnation time of the non-aqueous electrolyte solution from being lengthened.

【0016】請求項6記載の発明は、請求項5記載の非
水電解液電池において、前記非水電解液中の前記イオン
解離性の塩の濃度が0.5mol/l以上であることを
特徴とする。以上のような請求項6記載の発明では、非
水電解液中の荷電物質の量が多いため、イオン伝導度が
高く、充放電の容量及び電流を大きく取ることが可能で
あるものの、非水電解液の粘度が上昇する。しかし、溝
状の凹部が設けられているので、非水電解液の含浸時間
の長時間化を防止できる。
According to a sixth aspect of the present invention, in the nonaqueous electrolyte battery according to the fifth aspect, the concentration of the ion dissociable salt in the nonaqueous electrolyte is 0.5 mol / l or more. And In the invention according to claim 6 described above, since the amount of the charged substance in the nonaqueous electrolyte is large, the ionic conductivity is high, and the charge and discharge capacity and current can be increased. The viscosity of the electrolyte increases. However, since the groove-shaped concave portion is provided, it is possible to prevent the impregnation time of the non-aqueous electrolyte solution from being lengthened.

【0017】請求項7記載の発明は、請求項5又は請求
項6記載の非水電解液電池において、前記正極活物質層
の厚さが200μm以下であることを特徴とする。以上
のような請求項7記載の発明では、イオンが正極活物質
層から負極活物質層に移動する際の距離が短くなるた
め、イオンの移動の抵抗を小さくすることができ、充放
電の容量及び電流を大きく取ることが可能であるもの
の、非水電解液の浸透速度は小さくなる。しかし、溝状
の凹部が設けられているので、非水電解液の含浸時間の
長時間化を防止できる。
According to a seventh aspect of the present invention, in the nonaqueous electrolyte battery according to the fifth or sixth aspect, the thickness of the positive electrode active material layer is 200 μm or less. In the above-described invention, since the distance when the ions move from the positive electrode active material layer to the negative electrode active material layer is shortened, the resistance of the movement of the ions can be reduced, and the charge / discharge capacity can be reduced. Although the current can be increased, the permeation rate of the non-aqueous electrolyte decreases. However, since the groove-shaped concave portion is provided, it is possible to prevent the impregnation time of the non-aqueous electrolyte solution from being lengthened.

【0018】請求項8記載の発明は、請求項5〜7のい
ずれか1項に記載の非水電解液電池において、前記正極
活物質層の平均気孔径が10μm以下であることを特徴
とする。以上のような請求項8記載の発明では、充放電
反応に寄与する正極活物質層の表面積を大きくすること
ができ、充放電の容量及び電流を大きく取ることが可能
であるものの、非水電解液の浸透速度は小さくなる。し
かし、溝状の凹部が設けられているので、非水電解液の
含浸時間の長時間化を防止できる。
According to an eighth aspect of the present invention, in the non-aqueous electrolyte battery according to any one of the fifth to seventh aspects, the positive electrode active material layer has an average pore diameter of 10 μm or less. . According to the eighth aspect of the present invention, the surface area of the positive electrode active material layer contributing to the charge / discharge reaction can be increased, and the charge / discharge capacity and current can be increased. The permeation rate of the liquid decreases. However, since the groove-shaped concave portion is provided, it is possible to prevent the impregnation time of the non-aqueous electrolyte solution from being lengthened.

【0019】請求項9記載の発明は、請求項5〜8のい
ずれか1項に記載の非水電解液電池において、前記セパ
レータの厚さが100μm以下であることを特徴とす
る。以上のような請求項9記載の発明では、セパレータ
におけるイオン伝導の抵抗が低く、充放電の電流を大き
く取ることが可能である。また、積層体全体の体積に占
めるセパレータの体積の割合が少なく、相対的に正極活
物質及び負極活物質の体積の割合を多くできるため、充
放電の容量を大きく取ることが可能である。そして、セ
パレータ内への非水電解液の浸透速度については、溝状
の凹部が設けられているので、非水電解液の含浸時間の
長時間化を防止できる。
According to a ninth aspect of the present invention, in the nonaqueous electrolyte battery according to any one of the fifth to eighth aspects, the separator has a thickness of 100 μm or less. According to the ninth aspect of the present invention, the separator has a low ionic conduction resistance, and a large charge / discharge current can be obtained. Further, since the ratio of the volume of the separator to the total volume of the laminate is small and the ratio of the volumes of the positive electrode active material and the negative electrode active material can be relatively increased, the charge / discharge capacity can be increased. As for the permeation rate of the non-aqueous electrolyte into the separator, since the groove-shaped concave portion is provided, it is possible to prevent the impregnation time of the non-aqueous electrolyte from becoming long.

【0020】請求項10記載の発明は、請求項5〜9の
いずれか1項に記載の非水電解液電池において、前記セ
パレータの平均気孔径が1μm以下であることを特徴と
する。以上のような請求項10記載の発明では、セパレ
ータ内に非水電解液を強固に保持してセパレータにおけ
るイオン伝導度を高く保ち、充放電の電流を大きく取る
ことが可能である。また、金属等の析出による内部短絡
を防ぎ、電池としての寿命を長く保つことが可能とな
る。そして、セパレータ内への非水電解液の浸透速度に
ついては、溝状の凹部が設けられているので、非水電解
液の含浸時間の長時間化を防止できる。
According to a tenth aspect of the present invention, in the non-aqueous electrolyte battery according to any one of the fifth to ninth aspects, the separator has an average pore diameter of 1 μm or less. According to the tenth aspect of the present invention, the non-aqueous electrolyte is firmly held in the separator, the ionic conductivity of the separator is kept high, and the charge / discharge current can be increased. Further, an internal short circuit due to deposition of metal or the like can be prevented, and the life of the battery can be maintained long. As for the permeation rate of the non-aqueous electrolyte into the separator, since the groove-shaped concave portion is provided, it is possible to prevent the impregnation time of the non-aqueous electrolyte from becoming long.

【0021】[0021]

【発明の実施の形態】[1.実施の形態の構成]本発明
の実施の形態の構成を、図1〜5に従って以下に説明す
る。なお、図1は、本実施の形態による非水電解液電池
の断面図である。すなわち、上部が開口した金属製の円
筒形の容器1の内底に、下部絶縁板2が設られている。
この容器1内には、正極電極4及び負極電極6をセパレ
ータ5を介して渦巻状に巻回した積層体3が収納されて
いる。積層体3を収納した容器1内には、図中の上方か
ら非水電解液(図示せず)が注入されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS [1. Configuration of Embodiment] The configuration of an embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a cross-sectional view of the nonaqueous electrolyte battery according to the present embodiment. That is, a lower insulating plate 2 is provided on the inner bottom of a metal cylindrical container 1 having an upper opening.
In the container 1, a laminated body 3 in which a positive electrode 4 and a negative electrode 6 are spirally wound via a separator 5 is accommodated. A non-aqueous electrolyte (not shown) is injected into the container 1 containing the laminate 3 from above in the figure.

【0022】そして、積層体3の上部には上部絶縁板7
が設けられ、容器1の上部開口に正極端子9を有する封
口板8がはめ込まれることによって、容器1内が密閉さ
れている。この正極端子9は、正極タブ10を介して正
極電極4に接続されている。また、負極電極6は、負極
タブ(図示せず)を介して容器1に接続されており、容
器1の底部が負極端子としての役割を果たしている。
The upper insulating plate 7 is provided on the upper part of the laminate 3.
Is provided, and a sealing plate 8 having a positive electrode terminal 9 is fitted into an upper opening of the container 1 so that the inside of the container 1 is sealed. The positive terminal 9 is connected to the positive electrode 4 via a positive tab 10. The negative electrode 6 is connected to the container 1 via a negative electrode tab (not shown), and the bottom of the container 1 serves as a negative electrode terminal.

【0023】[1−1.正極の構成]正極電極4として
は、正極活物質としてのリチウム含有遷移金属酸化物
を、導電剤及び結着剤と混合し、薄い金属箔に塗布した
ものを用いる。正極活物質層の厚さは200μm以下、
その平均気孔径は10μm以下とするのが望ましい。
[1-1. Configuration of Positive Electrode] As the positive electrode 4, a material in which a lithium-containing transition metal oxide as a positive electrode active material is mixed with a conductive agent and a binder and applied to a thin metal foil is used. The thickness of the positive electrode active material layer is 200 μm or less,
The average pore diameter is desirably 10 μm or less.

【0024】リチウム含有遷移金属酸化物としては、各
種のものが使用可能であるが、特に、コバルト酸リチウ
ム、ニッケル酸リチウム、マンガン酸リチウム又はこれ
らの混合物を用いるのが望ましい。導電剤としては、例
えば、アセチレンブラック、カーボンブラック、黒鉛等
が使用可能である。結着剤としては、例えば、ポリテト
ラフルオロエチレン、ポリビニリデンフルオライド、ポ
リエーテルサルフォン、エチレン−プロピレン−ジエン
共重合体、スチレン−ブタジエンゴム等が使用可能であ
る。金属箔としては、アルミニウム箔、ニッケル箔、ス
テンレス箔等が使用可能である。
As the lithium-containing transition metal oxide, various ones can be used, and it is particularly preferable to use lithium cobaltate, lithium nickelate, lithium manganate or a mixture thereof. As the conductive agent, for example, acetylene black, carbon black, graphite and the like can be used. As the binder, for example, polytetrafluoroethylene, polyvinylidene fluoride, polyethersulfone, ethylene-propylene-diene copolymer, styrene-butadiene rubber and the like can be used. As the metal foil, an aluminum foil, a nickel foil, a stainless steel foil or the like can be used.

【0025】さらに、正極電極4における正極活物質層
を形成した面には、図2に示すように、溝形状に対応し
た凸部を表面に設けたロールでプレスすることにより、
溝状の凹部11が形成されている。この凹部11は略V
字形とされていて、その中心線が積層体3の中心軸に対
して傾いており、積層体3の中心軸の中点を通り当該中
心軸に垂直な面(正極電極の幅方向の中心線)に関して
対称となるように構成されている。そして、凹部11の
両端部は、正極電極4の両端辺に達しているため、積層
体3の端部において凹部11の両端部が開口する構成と
なっている。
Further, as shown in FIG. 2, the surface of the positive electrode 4 on which the positive electrode active material layer is formed is pressed by a roll provided with a convex portion corresponding to the groove shape on the surface.
A groove-shaped recess 11 is formed. This recess 11 is substantially V
The center line is inclined with respect to the central axis of the stacked body 3, and passes through the midpoint of the center axis of the stacked body 3 and is perpendicular to the center axis (the center line in the width direction of the positive electrode). ). Since both ends of the concave portion 11 reach both ends of the positive electrode 4, both ends of the concave portion 11 are open at the end of the laminate 3.

【0026】さらに、凹部11においては正極活物質が
セパレータ5と接触せず、正極電極4としての作用が弱
まるため、凹部11の溝の幅はできる限り狭い方がよ
い。一方、非水電解液の含浸速度を速めるためには、溝
の幅は広い方がよい。この両者を勘案すると、溝の幅は
0.1〜0.5mm程度が望ましい。溝の深さは、非水
電解液の含浸速度を速めるためには深い方がよい。一
方、正極電極4の破断を防ぐためには浅い方が望まし
い。この両者を勘案すると、正極電極4の厚さの半分程
度が適当である。
Furthermore, since the positive electrode active material does not come into contact with the separator 5 in the concave portion 11 and the action as the positive electrode 4 is weakened, the width of the groove of the concave portion 11 is preferably as narrow as possible. On the other hand, in order to increase the impregnation rate of the non-aqueous electrolyte, the wider the groove, the better. In consideration of both, the groove width is desirably about 0.1 to 0.5 mm. The depth of the groove is preferably large in order to increase the impregnation rate of the non-aqueous electrolyte. On the other hand, in order to prevent breakage of the positive electrode 4, a shallower one is desirable. Taking these both into consideration, about half of the thickness of the positive electrode 4 is appropriate.

【0027】[1−2.負極の構成]負極電極6には、
リチウムイオンを吸蔵・放出可能な負極活物質を結着材
と混合し、薄い金属箔に塗布したものが用いられる。負
極活物質としては、コークス、炭素繊維、黒鉛、メソフ
ェーズピッチ系炭素、熱分解気相炭素物質、樹脂焼成体
等の炭素材料、二硫化チタン、二硫化モリブデン、セレ
ン化ニオブ等のカルコゲン化合物、アルミニウム、アル
ミニウム合金、マグネシウム合金、リチウム、リチウム
合金等の軽金属が挙げられる。特に、2000℃以上の
温度で黒鉛化したメソフェーズピッチ系炭素繊維、メソ
フェーズ球状カーボンが、負極の容量を大きくできるの
で望ましい。
[1-2. Configuration of Negative Electrode]
A material obtained by mixing a negative electrode active material capable of inserting and extracting lithium ions with a binder and applying the mixture to a thin metal foil is used. Examples of the negative electrode active material include coke, carbon fiber, graphite, mesophase pitch-based carbon, pyrolysis gas phase carbon material, carbon materials such as resin fired bodies, chalcogen compounds such as titanium disulfide, molybdenum disulfide, and niobium selenide, and aluminum. And light metals such as aluminum alloys, magnesium alloys, lithium, and lithium alloys. In particular, mesophase pitch-based carbon fiber and mesophase spherical carbon which are graphitized at a temperature of 2000 ° C. or higher are preferable because the capacity of the negative electrode can be increased.

【0028】結着剤としては、例えば、ポリテトラフル
オロエチレン、ポリビニリデンフルオライド、エチレン
−プロピレン−ジエン共重合体、スチレン−ブタジエン
ゴム、カルボキシメチルセルロース等が使用可能であ
る。金属箔としては、銅箔、ニッケル箔、ステンレス箔
等が使用可能である。
As the binder, for example, polytetrafluoroethylene, polyvinylidene fluoride, ethylene-propylene-diene copolymer, styrene-butadiene rubber, carboxymethyl cellulose and the like can be used. As the metal foil, a copper foil, a nickel foil, a stainless steel foil or the like can be used.

【0029】[1−3.セパレータの構成]セパレータ
5としては、ポリエチレン、ポリプロピレン、エチレン
−プロピレン共重合ポリマー、エチレン−ブテン共重合
ポリマー等で作られた微多孔性の膜や、これらの繊維で
作られた織布又は不織布、あるいはこれらのうち同一材
又は異種材による積層物が使用可能である。特に、微多
孔性の膜又はその積層物を用いるのが望ましい。この微
多孔性の膜の製造方法は、特に限定されない。セパレー
タ5の厚さは100μm以下、平均気孔径は1μmであ
ることが望ましい。
[1-3. Configuration of Separator] As the separator 5, a microporous film made of polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-butene copolymer, or the like, a woven or nonwoven fabric made of these fibers, Alternatively, a laminate made of the same material or different materials can be used. In particular, it is desirable to use a microporous film or a laminate thereof. The method for producing the microporous membrane is not particularly limited. It is desirable that the thickness of the separator 5 be 100 μm or less and the average pore diameter be 1 μm.

【0030】[1−4.電解液の組成]非水電解液に用
いる非水溶媒としては、プロピレンカーボネート、エチ
レンカーボネート、ブチレンカーボネートなどの環状カ
ーボネートや、γ−ブチロラクトンなどの環状エステ
ル、テトラメチルスルフォラン、ジメチルスルフォキシ
ド、N−メチルピロリドン、ジメチルフォルムアミドや
これらの誘導体、あるいは上記の非水溶媒のうち2種類
以上の混合溶媒が使用可能であり、特に限定されるもの
ではない。さらに、これらの非水溶媒に、ジメチルカー
ボネート、メチルエチルカーボネート、ジエチルカーボ
ネート等の鎖状カーボネートや、アセトニトリル、酢酸
エチル、酢酸メチル、トルエン、キシレン等の非水溶媒
を混合し、非水電解液の粘度を下げることも有効であ
る。
[1-4. Composition of Electrolyte Solution] Examples of the non-aqueous solvent used in the non-aqueous electrolyte solution include cyclic carbonates such as propylene carbonate, ethylene carbonate and butylene carbonate, cyclic esters such as γ-butyrolactone, tetramethylsulfolane, dimethylsulfoxide, N -Methylpyrrolidone, dimethylformamide and derivatives thereof, or a mixed solvent of two or more of the above non-aqueous solvents can be used, and there is no particular limitation. Further, a non-aqueous solvent such as dimethyl carbonate, methyl ethyl carbonate, or a chain carbonate such as diethyl carbonate, or acetonitrile, ethyl acetate, methyl acetate, toluene, or xylene is mixed with these non-aqueous solvents to form a non-aqueous electrolyte. It is also effective to lower the viscosity.

【0031】またイオン解離性の塩としては、LiPF
6 ,LiBF4 ,LiAsF6 ,LiClO4 ,LiC
3 SO3 ,LiN(CF3 SO2 2 などが使用可能
であり、非水電解液中の塩の濃度は0.5mol/l以
上とすることが望ましい。
As the ion dissociating salt, LiPF
6, LiBF 4, LiAsF 6, LiClO 4, LiC
F 3 SO 3 , LiN (CF 3 SO 2 ) 2 and the like can be used, and the concentration of the salt in the non-aqueous electrolyte is desirably 0.5 mol / l or more.

【0032】[2.実施の形態の作用効果]以上のよう
な本実施の形態の作用効果は以下の通りである。すなわ
ち、正極電極4、負極電極6及びセパレータ5のうち、
非水電解液の含浸に最も時間を要するのが正極電極4で
あるが、本実施の形態においては、正極電極4に溝状の
凹部11が設けられているので、凹部11を通して非水
電解液が積層体3の内部に速やかに浸透するため、含浸
に要する時間を飛躍的に短くすることができ、生産能率
を向上させることができる。
[2. Operation and Effect of Embodiment] The operation and effect of the present embodiment as described above are as follows. That is, of the positive electrode 4, the negative electrode 6, and the separator 5,
The positive electrode 4 takes the longest time for impregnation with the non-aqueous electrolyte, but in the present embodiment, since the groove 4 is provided in the positive electrode 4, the non-aqueous electrolyte passes through the recess 11. Quickly penetrates into the inside of the laminate 3, so that the time required for impregnation can be drastically shortened, and the production efficiency can be improved.

【0033】また、正極電極4、負極電極6及びセパレ
ータ5を渦巻状に巻回することによって密に積層されて
いると、一般に、非水電解液が含浸される空隙が少なく
なるが、本実施の形態においては、正極電極4に溝状の
凹部11が設けられているので、非水電解液の含浸時間
の長時間化を防止できる。
When the positive electrode 4, the negative electrode 6, and the separator 5 are spirally wound and densely laminated, the number of voids impregnated with the non-aqueous electrolyte generally decreases. In the embodiment, since the groove-shaped concave portion 11 is provided in the positive electrode 4, it is possible to prevent the impregnation time of the non-aqueous electrolyte from being lengthened.

【0034】また、一般に、渦巻状に構成された積層体
3においては、積層体3の巻回時に加えられる張力や、
充電・放電に伴う正極活物質及び負極活物質の膨脹・収
縮による圧力により、正極電極4、負極電極6及びセパ
レータ5に巻回方向の張力が働き、その張力に垂直な方
向、すなわち積層体の中心軸に平行な線に沿って正極電
極4、負極電極6及びセパレータ5が破断しやすい傾向
にある。従って、例えば、溝状の凹部11が正極電極4
に存在すると、そのような張力が働いた場合に凹部11
に応力が集中し、凹部11を起点として破断が生じる可
能性がある。しかし、本実施の形態においては、凹部1
1の中心線は、積層体3の中心軸に対して傾いているの
で、張力によって正極電極4が破断しやすい方向と異な
る。このため、凹部11への応力集中が生じることはな
く、正極電極4の破断を防ぐことが可能となる。
In general, in the spirally laminated body 3, the tension applied when the laminated body 3 is wound,
The tension in the winding direction acts on the positive electrode 4, the negative electrode 6, and the separator 5 due to the pressure due to the expansion and contraction of the positive electrode active material and the negative electrode active material accompanying the charging and discharging, and the direction perpendicular to the tension, that is, the The positive electrode 4, the negative electrode 6, and the separator 5 tend to be easily broken along a line parallel to the central axis. Therefore, for example, the groove-shaped concave portion 11 is
When such tension acts, the recess 11
Stress may be concentrated on the substrate and the fracture may occur from the concave portion 11 as a starting point. However, in the present embodiment, the recess 1
Since the center line 1 is inclined with respect to the center axis of the multilayer body 3, the center line is different from the direction in which the positive electrode 4 is easily broken by tension. Therefore, stress concentration on the concave portion 11 does not occur, and it is possible to prevent the positive electrode 4 from breaking.

【0035】また、一般に、渦巻状に構成された積層体
3においては、積層体3の巻回時に、正極電極4、負極
電極6及びセパレータ5に巻回方向の張力を加えるが、
仮に溝状の凹部11が一方向のみに傾いていたり、ある
いは渦巻状の積層体3の中心軸の中点を通り当該中心軸
に垂直な面を境にして、上方又は下方のいずれか一方の
領域における凹部11の面積の合計が、他方の領域にお
ける凹部11の面積の合計よりも多いような場合、正極
電極4の張力による伸びが一様ではなくなり、巻回され
る位置が徐々にずれていく現象が生じる可能性がある。
しかし、本実施の形態においては、凹部11は、積層体
3の中心軸の中点を通り当該中心軸に垂直な面を境にし
て対称となるように形成されているので、正極電極4の
張力による伸びは均一となり、巻回される位置がずれる
ことはない。
In general, in the spirally laminated body 3, when the laminated body 3 is wound, tension in the winding direction is applied to the positive electrode 4, the negative electrode 6, and the separator 5.
If the groove-shaped recess 11 is inclined only in one direction, or one of the upper and lower sides with respect to a plane passing through the center point of the central axis of the spiral laminated body 3 and perpendicular to the central axis, If the total area of the concave portions 11 in the region is larger than the total area of the concave portions 11 in the other region, the elongation due to the tension of the positive electrode 4 is not uniform, and the winding position is gradually shifted. Some phenomena may occur.
However, in the present embodiment, the concave portion 11 is formed so as to be symmetrical with respect to a plane passing through the midpoint of the central axis of the multilayer body 3 and perpendicular to the central axis, and thus the concave portion 11 of the positive electrode 4 is formed. Elongation due to tension becomes uniform, and the winding position does not shift.

【0036】また、電解液の非水溶媒、イオン解離性の
塩は、上記のような組成であるため、イオン伝導度が高
く、充放電の容量及び電流を大きく取ることができる。
一方、電解液の粘性が高くなることによる含浸時間への
影響は、正極電極4に設けられた凹部11によって改善
することができる。
Further, since the non-aqueous solvent and the ion dissociable salt of the electrolytic solution have the above-mentioned composition, the ion conductivity is high, and the charge and discharge capacity and current can be increased.
On the other hand, the influence on the impregnation time due to the increase in the viscosity of the electrolytic solution can be improved by the concave portion 11 provided in the positive electrode 4.

【0037】また、イオン解離性の塩の濃度が、0.5
mol/l以上であるため、濃度の低い非水電解液を用
いた非水電解液電池に比べて、非水電解液中の荷電物質
の量が多い。このため、イオン伝導度が高く、充放電の
容量及び電流を大きく取ることができる。一方、非水電
解液の粘度が上昇することによる含浸時間への影響は、
正極電極4に設けられた凹部11によって改善すること
ができる。
When the concentration of the ion dissociable salt is 0.5
Since it is at least mol / l, the amount of charged substances in the non-aqueous electrolyte is larger than that in a non-aqueous electrolyte battery using a low-concentration non-aqueous electrolyte. Therefore, the ionic conductivity is high, and a large capacity and current for charging and discharging can be obtained. On the other hand, the effect on the impregnation time due to the increase in the viscosity of the non-aqueous electrolyte is as follows:
This can be improved by the concave portion 11 provided in the positive electrode 4.

【0038】また、正極活物質層の厚さは、200μm
以下であるので、厚い正極活物質層を用いた非水電解液
電池に比べて、イオンが正極活物質層から負極活物質層
に移動する際の距離が短く、イオンの移動の抵抗を小さ
くすることができ、充放電の容量及び電流を大きく取る
ことが可能となる。一方、非水電解液の浸透速度に与え
る影響は、正極電極4に設けられた凹部11によって改
善できる。
The thickness of the positive electrode active material layer is 200 μm
Therefore, compared to a nonaqueous electrolyte battery using a thick positive electrode active material layer, the distance when ions move from the positive electrode active material layer to the negative electrode active material layer is short, and the resistance of ion transfer is reduced. It is possible to increase the charge and discharge capacity and current. On the other hand, the effect on the permeation rate of the non-aqueous electrolyte can be improved by the concave portion 11 provided in the positive electrode 4.

【0039】また、正極活物質層の平均気孔径が10μ
m以下のため、平均気孔径が大きな正極活物質層を用い
た非水電解液電池に比べて、活物質層の体積が同じでも
充放電反応に寄与する正極活物質層の表面積を大きくす
ることができ、充放電の容量及び電流を大きく取ること
が可能となる。そして、非水電解液の浸透速度に与える
影響は、正極電極4に設けられた凹部11によって改善
できる。
The average pore diameter of the positive electrode active material layer is 10 μm.
m or less, the surface area of the positive electrode active material layer contributing to the charge / discharge reaction should be increased even if the volume of the active material layer is the same, as compared to a nonaqueous electrolyte battery using a positive electrode active material layer having a large average pore diameter. And a large charge and discharge capacity and current can be obtained. The effect on the permeation rate of the non-aqueous electrolyte can be improved by the concave portion 11 provided in the positive electrode 4.

【0040】また、セパレータ5の厚さが、100μm
以下であるので、厚いセパレータ5を用いた非水電解液
電池に比べてセパレータ5におけるイオン伝導の抵抗が
低く、充放電の電流を大きく取ることが可能である。ま
た、積層体全体の体積に占めるセパレータ5の体積の割
合が少なく、相対的に正極活物質及び負極活物質の体積
の割合を多くできるため、充放電の容量を大きく取るこ
とが可能となる。そして、非水電解液の浸透速度に与え
る影響は、正極電極4に設けられた凹部11によって改
善できる。
The thickness of the separator 5 is 100 μm
Therefore, the ion conduction resistance of the separator 5 is lower than that of the nonaqueous electrolyte battery using the thick separator 5, and a large charge / discharge current can be obtained. In addition, since the ratio of the volume of the separator 5 to the total volume of the laminate is small and the ratio of the volumes of the positive electrode active material and the negative electrode active material can be relatively increased, the charge / discharge capacity can be increased. The effect on the permeation rate of the non-aqueous electrolyte can be improved by the concave portion 11 provided in the positive electrode 4.

【0041】さらに、セパレータ5の平均気孔径が、1
μm以下であるので、平均気孔径の大きいセパレータ5
を用いた非水電解液電池に比べて、セパレータ5内に非
水電解液を強固に保持し、セパレータ5におけるイオン
伝導度を高く保ち、充放電の電流を大きく取ることが可
能となる。また、金属等の析出による内部短絡を防ぎ、
電池としての寿命を長く保つことが可能となる。そし
て、非水電解液の浸透速度に与える影響は、正極電極4
に設けられた凹部11によって改善できる。
Further, when the average pore diameter of the separator 5 is 1
μm or less, the separator 5 having a large average pore diameter.
As compared with a non-aqueous electrolyte battery using a non-aqueous electrolyte, the non-aqueous electrolyte can be held firmly in the separator 5, the ionic conductivity in the separator 5 can be kept high, and a large charge / discharge current can be obtained. Also, prevent internal short circuit due to deposition of metal, etc.,
It is possible to keep the life of the battery long. The effect on the permeation rate of the non-aqueous electrolyte depends on the positive electrode 4
This can be improved by the concave portion 11 provided in the first portion.

【0042】[3.他の実施の形態]本発明は、上記の
ような実施の形態に限定されるものではなく、各部材の
大きさ、数、形状等は適宜変更可能である。例えば、図
1に示すような円筒形の非水電解液電池に限らず、長円
筒形の積層体や、正極電極、負極電極及びセパレータを
九十九折り状に折り重ねた積層体、あるい正極電極、負
極電極及びセパレータを交互に積層した積層体等、様々
な形状の非水電解液電池に適用することも可能である。
[3. Other Embodiments] The present invention is not limited to the above embodiments, and the size, number, shape, and the like of each member can be changed as appropriate. For example, the present invention is not limited to the cylindrical non-aqueous electrolyte battery as shown in FIG. 1, but may be a long cylindrical laminate, a laminate in which a positive electrode, a negative electrode, and a separator are folded in a 99-fold form. The present invention can also be applied to non-aqueous electrolyte batteries of various shapes, such as a laminate in which a positive electrode, a negative electrode, and a separator are alternately laminated.

【0043】また、正極活物質、負極活物質、セパレー
タ及び非水電解液の組成の組合わせは、上記以外であっ
てもよい。また、上記の実施の形態では、正極電極4、
負極電極6及びセパレータ5のうち、非水電解液の含浸
に最も時間を要するのが正極電極4であるため、正極電
極4に凹部11が設けられているが、他の組合わせにお
いては、負極電極6に凹部11を設けても良いし、セパ
レータ5に凹部11を設けても良い。例えば、セパレー
タ5の厚さを100μm以下とした場合や、セパレータ
5の平均気孔径を1μm以下とした場合のセパレータ5
内への非水電解液の浸透速度については、溝状の凹部1
1を設けることによって、非水電解液の含浸時間の長時
間化をより一層防止できる。また、負極電極6に金属リ
チウム板を用いる例では、負極電極6が柔らかいため
に、負極電極6に凹部11を形成することが望ましい。
The combination of the compositions of the positive electrode active material, the negative electrode active material, the separator and the non-aqueous electrolyte may be other than the above. In the above embodiment, the positive electrode 4,
Among the negative electrode 6 and the separator 5, since the positive electrode 4 takes the longest time for impregnation with the nonaqueous electrolyte, the concave portion 11 is provided in the positive electrode 4. The concave portion 11 may be provided in the electrode 6, or the concave portion 11 may be provided in the separator 5. For example, when the thickness of the separator 5 is 100 μm or less, or when the separator 5 has an average pore diameter of 1 μm or less,
Regarding the penetration rate of the non-aqueous electrolyte into the inside, the groove-shaped recess 1
By providing 1, the lengthening of the impregnation time of the non-aqueous electrolyte can be further prevented. Further, in the example in which a metal lithium plate is used for the negative electrode 6, it is desirable to form the concave portion 11 in the negative electrode 6 because the negative electrode 6 is soft.

【0044】また、凹部11は、中心線の少なくとも一
部が積層体3の中心軸に対して傾いており、且つ積層体
3の中心軸の中点を通り当該中心軸に垂直な面(正極電
極の幅方向の中心線)に関して対称となるように構成さ
れていれば、どのような形状でもよい。例えば、図3に
示すように鋸状としても、図4に示すように台山形状と
しても、図5に示すように円弧状としてもよく、様々な
形状が考えられる。また、溝の断面形状も、図2〜5に
示すような角形の他、V字形やU字形の断面等、様々な
形状が考えられる。上記のような様々な種類の積層体3
の形状に応じて変形したものを適用することもできる。
The concave portion 11 has at least a part of the center line inclined with respect to the central axis of the multilayer body 3, and passes through a center point of the central axis of the multilayer body 3 and is perpendicular to the central axis (the positive electrode). Any shape may be used as long as it is symmetrical with respect to the center line in the width direction of the electrode). For example, the shape may be a saw-like shape as shown in FIG. 3, a hill shape as shown in FIG. 4, or an arc shape as shown in FIG. 5, and various shapes are conceivable. Also, as for the cross-sectional shape of the groove, various shapes such as V-shaped and U-shaped cross-sections are conceivable in addition to the square shape shown in FIGS. Various types of laminates 3 as described above
May be applied in accordance with the shape of.

【0045】さらに、凹部11の形成方法としては、上
述したプレスの他に、アルミニウム箔に正極活物質を塗
布する際に、溝となる部分に正極活物質を塗布しないよ
うにすることも可能である。また、塗布後に工具を用い
て正極活物質を削り取る等の方法も考えられる。
Further, as a method of forming the concave portion 11, in addition to the above-described pressing, it is also possible to prevent the positive electrode active material from being applied to the groove portion when applying the positive electrode active material to the aluminum foil. is there. Further, a method of scraping off the positive electrode active material using a tool after the application is also conceivable.

【0046】[0046]

【実施例】本発明の代表的な実施例を、比較例との対比
によって具体的に説明する。なお、図4は、非水電解液
注入からの時間と浸透量の変化との関係を比較したグラ
フである。
EXAMPLES Representative examples of the present invention will be specifically described by comparison with comparative examples. FIG. 4 is a graph comparing the relationship between the time since the injection of the nonaqueous electrolyte and the change in the amount of permeation.

【0047】[1.実施例、比較例の構成] [1−1]実施例 各構成部材は、以下のような条件とした。[1. Configurations of Examples and Comparative Examples] [1-1] Example Each constituent member was set under the following conditions.

【0048】正極 正極電極は、正極活物質であるコバルト酸リチウムに対
して、導電剤としてアセチレンブラックを5%加えてな
るコンパウンドに、ポリビニリデンフルオライドの5%
DMF溶液を加えて懸濁液とし、これをアルミニウム箔
の片面に均一に塗布し乾燥させて作成した。塗膜(正極
活物質層)の厚さは0.12mmである。また、正極活
物質層の平均気孔径は1μmであった。
Positive Electrode A positive electrode is a compound obtained by adding 5% of acetylene black as a conductive agent to lithium cobalt oxide as a positive electrode active material, and adding 5% of polyvinylidene fluoride to a compound.
A suspension was prepared by adding a DMF solution, and the suspension was uniformly applied to one surface of an aluminum foil and dried to prepare a suspension. The thickness of the coating film (positive electrode active material layer) is 0.12 mm. The average pore diameter of the positive electrode active material layer was 1 μm.

【0049】負極 負極電極は、負極活物質としてメソフェーズピッチ系炭
素繊維を用い、これにポリビニリデンフルオライドの5
%DMF溶液を加えて懸濁液とし、これを銅箔の片面に
均一に塗布し乾燥させて作成した。塗膜の厚さは0.1
4mmである。
Negative Electrode The negative electrode uses a mesophase pitch-based carbon fiber as the negative electrode active material, and is made of polyvinylidene fluoride.
% DMF solution was added to form a suspension, which was uniformly applied to one surface of a copper foil and dried to prepare a suspension. The thickness of the coating is 0.1
4 mm.

【0050】セパレータ セパレータは、厚さ30μm、平均気孔径0.2μmの
ポリエチレン製微多孔性膜を用いた。正極電極と負極電
極とがセパレータを介さずに直接接触することを防ぐた
め、セパレータの幅は正極電極及び負極電極の幅に比べ
て広く作られている。
Separator A polyethylene microporous membrane having a thickness of 30 μm and an average pore diameter of 0.2 μm was used. The width of the separator is made wider than the width of the positive electrode and the width of the negative electrode in order to prevent the positive electrode and the negative electrode from directly contacting each other without passing through the separator.

【0051】電解液 非水電解液は、エチレンカーボネートとメチルエチルカ
ーボネートの1:2混合溶媒に、イオン解離性の塩とし
てLiPF6 を1mol/l溶解させた溶液を用いた。
Electrolyte As the non-aqueous electrolyte, a solution prepared by dissolving 1 mol / l of LiPF 6 as an ion dissociable salt in a 1: 2 mixed solvent of ethylene carbonate and methyl ethyl carbonate was used.

【0052】[1−2]比較例 正極電極に溝状の凹部を設けずに平板のままとした以外
は、上記と同様の条件で、積層体を構成した。
[1-2] Comparative Example A laminate was formed under the same conditions as described above, except that the positive electrode was left as a flat plate without providing a groove-shaped recess.

【0053】[2.実験結果]以上の条件で作成した実
施例の積層体と比較例の積層体とを、それぞれ容器に収
納し、この容器に非水電解液を3.5g/Ah注入した
後の時間と、浸透量の変化との関係を比較したグラフ
を、図6に示す。この実験結果から、比較例よりも本実
施例の方が、非水電解液が積層体に速やかに含浸するこ
とが判明した。
[2. [Experimental results] The laminate of the example and the laminate of the comparative example prepared under the above conditions were respectively housed in containers, and the time after injecting 3.5 g / Ah of the nonaqueous electrolyte into the containers and the penetration FIG. 6 shows a graph comparing the relationship with the change in the amount. From this experimental result, it was found that the non-aqueous electrolyte solution was more rapidly impregnated into the laminate in the present example than in the comparative example.

【0054】[0054]

【発明の効果】以上述べたように、本発明によれば、非
水電解液を積層体に速やかに含浸させることができ、優
れた生産能率が得られる非水電解液電池を提供すること
ができる。
As described above, according to the present invention, it is possible to provide a non-aqueous electrolyte battery in which a non-aqueous electrolyte can be rapidly impregnated into a laminate and excellent production efficiency can be obtained. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の非水電解液電池の一つの実施の形態を
示す部分断面図である。
FIG. 1 is a partial cross-sectional view showing one embodiment of a nonaqueous electrolyte battery according to the present invention.

【図2】本発明の非水電解液電池の実施の形態における
正極電極の一例を示す斜視図である。
FIG. 2 is a perspective view showing an example of a positive electrode in a nonaqueous electrolyte battery according to an embodiment of the present invention.

【図3】本発明の非水電解液電池の実施の形態における
正極電極の他の一例を示す斜視図である。
FIG. 3 is a perspective view showing another example of the positive electrode in the embodiment of the nonaqueous electrolyte battery of the present invention.

【図4】本発明の非水電解液電池の実施の形態における
正極電極の他の一例を示す斜視図である。
FIG. 4 is a perspective view showing another example of the positive electrode in the embodiment of the nonaqueous electrolyte battery of the present invention.

【図5】本発明の非水電解液電池の実施の形態における
正極電極の他の一例を示す斜視図である。
FIG. 5 is a perspective view showing another example of the positive electrode in the embodiment of the nonaqueous electrolyte battery of the present invention.

【図6】本発明の実施例と比較例の、非水電解液を注入
した後の時間と非水電解液の浸透量との関係を示す特性
図である。
FIG. 6 is a characteristic diagram showing the relationship between the time after injecting a non-aqueous electrolyte and the permeation amount of the non-aqueous electrolyte in Examples and Comparative Examples of the present invention.

【符号の説明】[Explanation of symbols]

1…容器 2…下部絶縁板 3…積層体 4…正極電極 5…セパレータ 6…負極電極 7…上部絶縁板 8…封口板 9…正極端子 10…正極タブ 11…凹部 DESCRIPTION OF SYMBOLS 1 ... Container 2 ... Lower insulating plate 3 ... Laminated body 4 ... Positive electrode 5 ... Separator 6 ... Negative electrode 7 ... Upper insulating plate 8 ... Sealing plate 9 ... Positive electrode terminal 10 ... Positive electrode tab 11 ... Concave part

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 正極集電体の少なくとも片面に多孔性の
正極活物質層が形成された正極電極と、負極集電体の少
なくとも片面に多孔性の負極活物質層が形成された負極
電極とを、多孔性のセパレータを介して積層することに
よって構成された積層体を備え、非水電解液が前記積層
体に含浸された非水電解液電池において、 前記正極電極における正極活物質層が形成された面、前
記負極電極における負極活物質層が形成された面及び前
記セパレータの表面のうちの少なくとも一つに、前記積
層体の周縁に開口した溝状の凹部が設けられていること
を特徴とする非水電解液電池。
A positive electrode in which a porous positive electrode active material layer is formed on at least one surface of a positive electrode current collector, and a negative electrode in which a porous negative electrode active material layer is formed on at least one surface of a negative electrode current collector. Comprises a laminate constituted by laminating via a porous separator, in a non-aqueous electrolyte battery in which a non-aqueous electrolyte is impregnated in the laminate, wherein a positive electrode active material layer in the positive electrode is formed. A groove-shaped concave portion that is open at the periphery of the laminate is provided on at least one of the surface, the surface of the negative electrode, on which the negative electrode active material layer is formed, and the surface of the separator. Non-aqueous electrolyte battery.
【請求項2】 前記積層体が、前記正極電極、前記負極
電極及び前記セパレータを渦巻状に巻回することによっ
て構成されていることを特徴とする請求項1記載の非水
電解液電池。
2. The non-aqueous electrolyte battery according to claim 1, wherein the laminate is formed by spirally winding the positive electrode, the negative electrode, and the separator.
【請求項3】 前記溝状の凹部の中心線の少なくとも一
部が、渦巻状に巻回された前記積層体の中心軸に対して
傾いていることを特徴とする請求項2記載の非水電解液
電池。
3. The non-aqueous water according to claim 2, wherein at least a part of a center line of the groove-shaped concave portion is inclined with respect to a center axis of the spirally wound stacked body. Electrolyte battery.
【請求項4】 渦巻状に巻回された前記積層体の中心軸
の中点を通り当該中心軸に垂直な面に関して、前記凹部
が対称をなしていることを特徴とする請求項3記載の非
水電解液電池。
4. The concavity according to claim 3, wherein the concave portion is symmetrical with respect to a plane passing through a midpoint of the central axis of the spirally wound laminate and perpendicular to the central axis. Non-aqueous electrolyte battery.
【請求項5】 前記非水電解液はイオン解離性の塩と非
水溶媒からなり、 前記非水溶媒は、環状カーボネート、環状エステル、テ
トラメチルスルフォラン、ジメチルスルフォキシド、N
−メチルピロリドン、ジメチルフォルムアミドのうちの
少なくとも一つを含むことを特徴とする請求項1〜4の
いずれか1項に記載の非水電解液電池。
5. The non-aqueous electrolyte comprises an ion-dissociable salt and a non-aqueous solvent, wherein the non-aqueous solvent is cyclic carbonate, cyclic ester, tetramethylsulfolane, dimethylsulfoxide, N
The non-aqueous electrolyte battery according to any one of claims 1 to 4, further comprising at least one of -methylpyrrolidone and dimethylformamide.
【請求項6】 前記非水電解液中の前記イオン解離性の
塩の濃度が0.5mol/l以上であることを特徴とす
る請求項5記載の非水電解液電池。
6. The non-aqueous electrolyte battery according to claim 5, wherein the concentration of the ion-dissociable salt in the non-aqueous electrolyte is 0.5 mol / l or more.
【請求項7】 前記正極活物質層の厚さが200μm以
下であることを特徴とする請求項5又は請求項6記載の
非水電解液電池。
7. The non-aqueous electrolyte battery according to claim 5, wherein the thickness of the positive electrode active material layer is 200 μm or less.
【請求項8】 前記正極活物質層の平均気孔径が10μ
m以下であることを特徴とする請求項5〜7のいずれか
1項に記載の非水電解液電池。
8. An average pore diameter of the positive electrode active material layer is 10 μm.
The nonaqueous electrolyte battery according to any one of claims 5 to 7, wherein m is equal to or less than m.
【請求項9】 前記セパレータの厚さが100μm以下
であることを特徴とする請求項5〜8のいずれか1項に
記載の非水電解液電池。
9. The non-aqueous electrolyte battery according to claim 5, wherein the thickness of the separator is 100 μm or less.
【請求項10】 前記セパレータの平均気孔径が1μm
以下であることを特徴とする請求項5〜9のいずれか1
項に記載の非水電解液電池。
10. An average pore diameter of the separator is 1 μm.
10. The method according to claim 5, wherein:
Non-aqueous electrolyte battery according to the item.
JP31799097A 1997-11-19 1997-11-19 Non-aqueous electrolyte battery Expired - Fee Related JP4149543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31799097A JP4149543B2 (en) 1997-11-19 1997-11-19 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31799097A JP4149543B2 (en) 1997-11-19 1997-11-19 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPH11154508A true JPH11154508A (en) 1999-06-08
JP4149543B2 JP4149543B2 (en) 2008-09-10

Family

ID=18094263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31799097A Expired - Fee Related JP4149543B2 (en) 1997-11-19 1997-11-19 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP4149543B2 (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035484A (en) * 1999-05-19 2001-02-09 Nec Corp Nonaqueous electrolyte secondary battery
WO2001031720A1 (en) * 1999-10-22 2001-05-03 Sanyo Electric Co., Ltd. Electrode for lithium cell and lithium secondary cell
JP2001176558A (en) * 1999-12-20 2001-06-29 Toshiba Corp Non-aqueous electrolyte secondary battery
JP2002083585A (en) * 2000-09-06 2002-03-22 Toshiba Corp Positive electrode and nonaqueous electrolyte secondary battery
JP2003197265A (en) * 2001-12-27 2003-07-11 Sanyo Electric Co Ltd Nonaqueous electrolytic solution battery
JP2005285607A (en) * 2004-03-30 2005-10-13 Matsushita Electric Ind Co Ltd Nonaqueous secondary battery and manufacturing method thereof
US7122279B2 (en) 2000-04-26 2006-10-17 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
US7192673B1 (en) 1999-10-22 2007-03-20 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
JP2007173178A (en) * 2005-12-26 2007-07-05 Sony Corp Battery
US7241533B1 (en) 1999-10-22 2007-07-10 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
US7410728B1 (en) 1999-10-22 2008-08-12 Sanyo Electric Co., Ltd. Electrode for lithium batteries and rechargeable lithium battery
JP2008251226A (en) * 2007-03-29 2008-10-16 Sharp Corp Non-aqueous electrolyte secondary battery and its manufacturing method
US7695864B2 (en) 2007-07-20 2010-04-13 Panasonic Corporation Electrode plate for battery, electrode group for battery, lithium secondary battery, and method for producing electrode plate for battery
JP2010118355A (en) * 2003-08-20 2010-05-27 Samsung Sdi Co Ltd Electrolytic solution for lithium secondary battery and lithium secondary battery containing the same
JP2010186738A (en) * 2009-01-14 2010-08-26 Panasonic Corp Anode plate for nonaqueous battery, electrode group for nonaqueous battery and its manufacturing method, and cylindrical nonaqueous secondary battery and its manufacturing method
JP2010186736A (en) * 2009-01-13 2010-08-26 Panasonic Corp Anode plate for nonaqueous battery, electrode group for nonaqueous battery and its manufacturing method, and cylindrical nonaqueous secondary battery and its manufacturing method
JP2010186740A (en) * 2009-01-16 2010-08-26 Panasonic Corp Electrode group for nonaqueous battery, its manufacturing method, cylindrical nonaqueous secondary battery and its manufacturing method
US7806943B2 (en) 2007-07-17 2010-10-05 Panasonic Corporation Secondary battery and method for producing the same
US7842418B2 (en) 2007-07-20 2010-11-30 Panasonic Corporation Electrode plate for battery, electrode group for battery, lithium secondary battery, method for producing electrode plate for battery and apparatus for producing electrode plate for battery
US7951487B2 (en) 2009-01-16 2011-05-31 Panasonic Corporation Electrode group for nonaqueous battery and method for producing the same, and cylindrical nonaqueous secondary battery and method for producing the same
US7960050B2 (en) 2006-10-30 2011-06-14 Panasonic Corporation Secondary cell and its manufacturing method
JP2011253820A (en) * 2000-10-20 2011-12-15 Massachusetts Institute Of Technology Battery having electrode of controlled porosity in mesh shape
JP2013033746A (en) * 2012-10-02 2013-02-14 Nissan Motor Co Ltd Electrode for battery and manufacturing method thereof
CN103094521A (en) * 2013-01-22 2013-05-08 宁德时代新能源科技有限公司 Positive plate of lithium ion power battery as well as manufacturing method and laser etching device of positive plate
WO2013084806A1 (en) * 2011-12-05 2013-06-13 日産自動車株式会社 Air battery and battery assembly using same
CN103682249A (en) * 2012-09-07 2014-03-26 罗伯特·博世有限公司 Battery with porous electrode
JP2014207244A (en) * 2014-07-03 2014-10-30 ソニー株式会社 Device of manufacturing battery
US8999571B2 (en) 2007-05-25 2015-04-07 Massachusetts Institute Of Technology Batteries and electrodes for use thereof
US9065093B2 (en) 2011-04-07 2015-06-23 Massachusetts Institute Of Technology Controlled porosity in electrodes
JP2016076296A (en) * 2014-10-02 2016-05-12 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery and method of manufacturing the same
US9362550B2 (en) 2011-11-25 2016-06-07 Panasonic Intellectual Property Management Co., Ltd. Negative electrode for lithium ion secondary batteries and method for producing the negative electrode, and lithium ion secondary battery
US20180241087A1 (en) * 2015-10-30 2018-08-23 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery
CN109417152A (en) * 2016-06-28 2019-03-01 宁德新能源科技有限公司 Secondary cell battery core
JP2019091603A (en) * 2017-11-14 2019-06-13 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
US10468710B2 (en) 2017-03-06 2019-11-05 Toyota Jidosha Kabushiki Kaisha Nonaqueous secondary battery
US10569480B2 (en) 2014-10-03 2020-02-25 Massachusetts Institute Of Technology Pore orientation using magnetic fields
US10675819B2 (en) 2014-10-03 2020-06-09 Massachusetts Institute Of Technology Magnetic field alignment of emulsions to produce porous articles
CN116364847A (en) * 2023-05-30 2023-06-30 惠州亿纬动力电池有限公司 Manufacturing method of battery pole piece, battery pole piece and battery
WO2024041664A1 (en) * 2023-05-30 2024-02-29 惠州亿纬动力电池有限公司 Manufacturing method for battery electrode sheet, battery electrode sheet, and battery
WO2024065764A1 (en) * 2022-09-30 2024-04-04 宁德时代新能源科技股份有限公司 Negative electrode sheet and preparation method therefor, and secondary battery and electric device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05159766A (en) * 1991-12-09 1993-06-25 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH05290833A (en) * 1992-04-10 1993-11-05 Matsushita Electric Ind Co Ltd Manufacture of nonaqueous secondary battery and its negative electrode plate
JPH06333550A (en) * 1993-05-19 1994-12-02 Toshiba Corp Nonaqueous electrolytic battery
JPH087928A (en) * 1994-06-22 1996-01-12 Kanebo Ltd Organic electrolytic cell
JPH0992257A (en) * 1995-09-27 1997-04-04 Sony Corp Nonaqueous electrolyte secondary battery
JPH09204936A (en) * 1996-01-26 1997-08-05 Toray Ind Inc Battery
JPH09245762A (en) * 1996-03-11 1997-09-19 Nitto Denko Corp Battery separator and manufacture thereof
JPH09298057A (en) * 1996-04-30 1997-11-18 Sanyo Electric Co Ltd Lithium ion battery
JPH10270016A (en) * 1997-03-24 1998-10-09 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
WO1998048466A1 (en) * 1997-04-23 1998-10-29 Japan Storage Battery Co., Ltd. Electrode and battery
JPH1186870A (en) * 1997-09-03 1999-03-30 Japan Storage Battery Co Ltd Electrochemical battery

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05159766A (en) * 1991-12-09 1993-06-25 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH05290833A (en) * 1992-04-10 1993-11-05 Matsushita Electric Ind Co Ltd Manufacture of nonaqueous secondary battery and its negative electrode plate
JPH06333550A (en) * 1993-05-19 1994-12-02 Toshiba Corp Nonaqueous electrolytic battery
JPH087928A (en) * 1994-06-22 1996-01-12 Kanebo Ltd Organic electrolytic cell
JPH0992257A (en) * 1995-09-27 1997-04-04 Sony Corp Nonaqueous electrolyte secondary battery
JPH09204936A (en) * 1996-01-26 1997-08-05 Toray Ind Inc Battery
JPH09245762A (en) * 1996-03-11 1997-09-19 Nitto Denko Corp Battery separator and manufacture thereof
JPH09298057A (en) * 1996-04-30 1997-11-18 Sanyo Electric Co Ltd Lithium ion battery
JPH10270016A (en) * 1997-03-24 1998-10-09 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
WO1998048466A1 (en) * 1997-04-23 1998-10-29 Japan Storage Battery Co., Ltd. Electrode and battery
JPH1186870A (en) * 1997-09-03 1999-03-30 Japan Storage Battery Co Ltd Electrochemical battery

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035484A (en) * 1999-05-19 2001-02-09 Nec Corp Nonaqueous electrolyte secondary battery
US7241533B1 (en) 1999-10-22 2007-07-10 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
WO2001031720A1 (en) * 1999-10-22 2001-05-03 Sanyo Electric Co., Ltd. Electrode for lithium cell and lithium secondary cell
US7794881B1 (en) 1999-10-22 2010-09-14 Sanyo Electric Co., Ltd. Electrode for lithium batteries and rechargeable lithium battery
JP3733067B2 (en) * 1999-10-22 2006-01-11 三洋電機株式会社 Lithium battery electrode and lithium secondary battery
US7192673B1 (en) 1999-10-22 2007-03-20 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
US7195842B1 (en) 1999-10-22 2007-03-27 Sanyo Electric Co., Ltd. Electrode for use in lithium battery and rechargeable lithium battery
US7235330B1 (en) 1999-10-22 2007-06-26 Sanyo Electric Co., Ltd. Electrode for use in lithium battery and rechargeable lithium battery
US7410728B1 (en) 1999-10-22 2008-08-12 Sanyo Electric Co., Ltd. Electrode for lithium batteries and rechargeable lithium battery
JP2001176558A (en) * 1999-12-20 2001-06-29 Toshiba Corp Non-aqueous electrolyte secondary battery
US7122279B2 (en) 2000-04-26 2006-10-17 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
JP2002083585A (en) * 2000-09-06 2002-03-22 Toshiba Corp Positive electrode and nonaqueous electrolyte secondary battery
JP2012182141A (en) * 2000-10-20 2012-09-20 Massachusetts Institute Of Technology Battery having mesh electrode with controlled porosity
JP2011253820A (en) * 2000-10-20 2011-12-15 Massachusetts Institute Of Technology Battery having electrode of controlled porosity in mesh shape
JP2003197265A (en) * 2001-12-27 2003-07-11 Sanyo Electric Co Ltd Nonaqueous electrolytic solution battery
JP2010118355A (en) * 2003-08-20 2010-05-27 Samsung Sdi Co Ltd Electrolytic solution for lithium secondary battery and lithium secondary battery containing the same
JP2005285607A (en) * 2004-03-30 2005-10-13 Matsushita Electric Ind Co Ltd Nonaqueous secondary battery and manufacturing method thereof
JP2007173178A (en) * 2005-12-26 2007-07-05 Sony Corp Battery
US7960050B2 (en) 2006-10-30 2011-06-14 Panasonic Corporation Secondary cell and its manufacturing method
JP2008251226A (en) * 2007-03-29 2008-10-16 Sharp Corp Non-aqueous electrolyte secondary battery and its manufacturing method
US8999571B2 (en) 2007-05-25 2015-04-07 Massachusetts Institute Of Technology Batteries and electrodes for use thereof
US7806943B2 (en) 2007-07-17 2010-10-05 Panasonic Corporation Secondary battery and method for producing the same
US7695864B2 (en) 2007-07-20 2010-04-13 Panasonic Corporation Electrode plate for battery, electrode group for battery, lithium secondary battery, and method for producing electrode plate for battery
US7842418B2 (en) 2007-07-20 2010-11-30 Panasonic Corporation Electrode plate for battery, electrode group for battery, lithium secondary battery, method for producing electrode plate for battery and apparatus for producing electrode plate for battery
JP2010186736A (en) * 2009-01-13 2010-08-26 Panasonic Corp Anode plate for nonaqueous battery, electrode group for nonaqueous battery and its manufacturing method, and cylindrical nonaqueous secondary battery and its manufacturing method
JP4672079B2 (en) * 2009-01-14 2011-04-20 パナソニック株式会社 Non-aqueous battery negative electrode plate, non-aqueous battery electrode group and manufacturing method thereof, cylindrical non-aqueous secondary battery and manufacturing method thereof
JP2010186738A (en) * 2009-01-14 2010-08-26 Panasonic Corp Anode plate for nonaqueous battery, electrode group for nonaqueous battery and its manufacturing method, and cylindrical nonaqueous secondary battery and its manufacturing method
JP2010186740A (en) * 2009-01-16 2010-08-26 Panasonic Corp Electrode group for nonaqueous battery, its manufacturing method, cylindrical nonaqueous secondary battery and its manufacturing method
US7951487B2 (en) 2009-01-16 2011-05-31 Panasonic Corporation Electrode group for nonaqueous battery and method for producing the same, and cylindrical nonaqueous secondary battery and method for producing the same
US10164242B2 (en) 2011-04-07 2018-12-25 Massachusetts Institute Of Technology Controlled porosity in electrodes
US9065093B2 (en) 2011-04-07 2015-06-23 Massachusetts Institute Of Technology Controlled porosity in electrodes
US9362550B2 (en) 2011-11-25 2016-06-07 Panasonic Intellectual Property Management Co., Ltd. Negative electrode for lithium ion secondary batteries and method for producing the negative electrode, and lithium ion secondary battery
JPWO2013084806A1 (en) * 2011-12-05 2015-04-27 日産自動車株式会社 Air battery and battery pack using the same
WO2013084806A1 (en) * 2011-12-05 2013-06-13 日産自動車株式会社 Air battery and battery assembly using same
CN103682249A (en) * 2012-09-07 2014-03-26 罗伯特·博世有限公司 Battery with porous electrode
JP2013033746A (en) * 2012-10-02 2013-02-14 Nissan Motor Co Ltd Electrode for battery and manufacturing method thereof
CN103094521A (en) * 2013-01-22 2013-05-08 宁德时代新能源科技有限公司 Positive plate of lithium ion power battery as well as manufacturing method and laser etching device of positive plate
JP2014207244A (en) * 2014-07-03 2014-10-30 ソニー株式会社 Device of manufacturing battery
CN107078335B (en) * 2014-10-02 2019-11-01 丰田自动车株式会社 Non-aqueous electrolyte secondary battery and its manufacturing method
JP2016076296A (en) * 2014-10-02 2016-05-12 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery and method of manufacturing the same
KR20170056655A (en) * 2014-10-02 2017-05-23 도요타 지도샤(주) Non-aqueous electrolytic secondary battery and method of manufacturing the same
CN107078335A (en) * 2014-10-02 2017-08-18 丰田自动车株式会社 Rechargeable nonaqueous electrolytic battery and its manufacture method
US10964970B2 (en) 2014-10-02 2021-03-30 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolytic secondary battery and method of manufacturing the same
US10675819B2 (en) 2014-10-03 2020-06-09 Massachusetts Institute Of Technology Magnetic field alignment of emulsions to produce porous articles
US10569480B2 (en) 2014-10-03 2020-02-25 Massachusetts Institute Of Technology Pore orientation using magnetic fields
US10811729B2 (en) * 2015-10-30 2020-10-20 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery
US20180241087A1 (en) * 2015-10-30 2018-08-23 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery
CN109417152A (en) * 2016-06-28 2019-03-01 宁德新能源科技有限公司 Secondary cell battery core
US10468710B2 (en) 2017-03-06 2019-11-05 Toyota Jidosha Kabushiki Kaisha Nonaqueous secondary battery
JP2019091603A (en) * 2017-11-14 2019-06-13 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
WO2024065764A1 (en) * 2022-09-30 2024-04-04 宁德时代新能源科技股份有限公司 Negative electrode sheet and preparation method therefor, and secondary battery and electric device
CN116364847A (en) * 2023-05-30 2023-06-30 惠州亿纬动力电池有限公司 Manufacturing method of battery pole piece, battery pole piece and battery
WO2024041664A1 (en) * 2023-05-30 2024-02-29 惠州亿纬动力电池有限公司 Manufacturing method for battery electrode sheet, battery electrode sheet, and battery
CN116364847B (en) * 2023-05-30 2024-03-15 惠州亿纬动力电池有限公司 Manufacturing method of battery pole piece, battery pole piece and battery

Also Published As

Publication number Publication date
JP4149543B2 (en) 2008-09-10

Similar Documents

Publication Publication Date Title
JP4149543B2 (en) Non-aqueous electrolyte battery
JP6332483B2 (en) Separator and battery
KR101130471B1 (en) Lithium secondary battery
KR100367751B1 (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
WO2003088404A1 (en) Nonaqueous electrolyte secondary battery
JP2000235868A (en) Nonaqueous electrolyte secondary battery
JP2002203562A (en) Non-aqueous electrolyte secondary battery
JP4649113B2 (en) Nonaqueous electrolyte secondary battery
JP2003282148A (en) Thin lithium ion secondary battery
JP2002015771A (en) Nonaqueous electrolyte and nonaqueous electrlyte secondary cell
JP4840302B2 (en) Separator and battery using the same
KR20030079734A (en) Battery
JP2004158441A (en) Nonaqueous electrolyte secondary battery
JP2002313418A (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP4664455B2 (en) Non-aqueous electrolyte secondary battery
JP2002157996A (en) Negative electrode and battery using it
JP2007242575A (en) Nonaqueous electrolyte solution secondary battery
JP2000195550A (en) Nonaqueous electrolyte secondary battery
CN114651359A (en) Electrolyte for lithium metal secondary battery and lithium metal secondary battery including the same
JP2001283811A (en) Separator and nonaqueous electrolyte battery
JP3971181B2 (en) Non-aqueous electrolyte secondary battery
JPH11135107A (en) Lithium secondary battery
US20220336797A1 (en) Electrode for secondary battery and lithium secondary battery including the same
JP4737949B2 (en) Nonaqueous electrolyte secondary battery
JP2005322517A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080626

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees