WO2013084806A1 - Air battery and battery assembly using same - Google Patents

Air battery and battery assembly using same Download PDF

Info

Publication number
WO2013084806A1
WO2013084806A1 PCT/JP2012/081050 JP2012081050W WO2013084806A1 WO 2013084806 A1 WO2013084806 A1 WO 2013084806A1 JP 2012081050 W JP2012081050 W JP 2012081050W WO 2013084806 A1 WO2013084806 A1 WO 2013084806A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
negative electrode
positive electrode
electrolytic solution
separator
Prior art date
Application number
PCT/JP2012/081050
Other languages
French (fr)
Japanese (ja)
Inventor
宮澤 篤史
長山 森
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP2013548206A priority Critical patent/JP6143252B2/en
Publication of WO2013084806A1 publication Critical patent/WO2013084806A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Separators (AREA)
  • Hybrid Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Filling, Topping-Up Batteries (AREA)

Abstract

An air battery, having: a power generating unit (B) having a negative electrode (30) and a positive electrode (31) facing each other at prescribed intervals; and an electrolyte storage vessel (20) that stores electrolyte (W) for supply to this power generating unit (B). The air battery has an electrolyte diffusion groove (C1) for diffusing and permeating into all areas in the power generating unit (B) the electrolyte (W) supplied from the electrolyte storage vessel (20), formed in the mutually facing surface of the negative electrode (30) or the positive electrode (31), or in both of these facing surfaces.

Description

空気電池とこれを用いた組電池Air battery and battery pack using the same
 本発明は、負極と正極との間に電解質層を形成した空気電池とこれを用いた組電池に関する。 The present invention relates to an air battery in which an electrolyte layer is formed between a negative electrode and a positive electrode, and an assembled battery using the same.
 この種の空気電池として、「アルミニウム-空気電池」とした名称において特許文献1に開示されたものがある。
 特許文献1に開示されたアルミニウム-空気電池は、正極に空気極を、また、負極にアルミニウム又はアルミニウム合金を採用しているとともに、それら正極と負極との間に介在させる電解質としてアニオン交換膜又はアニオン交換樹脂を用いたものである。
As this type of air battery, there is one disclosed in Patent Document 1 under the name of “aluminum-air battery”.
The aluminum-air battery disclosed in Patent Document 1 employs an air electrode as a positive electrode and aluminum or an aluminum alloy as a negative electrode, and an anion exchange membrane or electrolyte as an electrolyte interposed between the positive electrode and the negative electrode. An anion exchange resin is used.
特開2002‐184472号公報JP 2002-184472 A
 しかしながら、上記特許文献1に記載されたアルミニウム-空気電池では、正極、負極及び電解質に供給した電解液が、それら正極、負極及び電解質に拡散浸透して良好な発電状態になるまでに時間を要するという課題が未解決のままである。 However, in the aluminum-air battery described in Patent Document 1, it takes time for the electrolytic solution supplied to the positive electrode, the negative electrode, and the electrolyte to diffuse and penetrate into the positive electrode, the negative electrode, and the electrolyte to obtain a favorable power generation state. The issue remains unresolved.
 そこで本発明は、電解液貯留容器から発電部に送給された電解液を、発電部全域に速やかに行き渡らせて、迅速に発電させることができる空気電池とこれを用いた組電池の提供を目的としている。 Accordingly, the present invention provides an air battery capable of quickly generating an electric power by quickly distributing the electrolytic solution supplied from the electrolytic solution storage container to the power generation unit throughout the power generation unit, and an assembled battery using the air battery. It is aimed.
 上記課題を解決するための本発明に係る空気電池は、互いに対向させた負極と正極とを有する発電部と、この発電部に送給するための電解液を貯留する電解液貯留容器とを有し、その電解液貯留容器から送給された電解液を発電部の全域に拡散浸透させるための電解液拡散溝を、負極又は正極の互いの対向面若しくはそれら双方に形成している。
 この構成によれば、電解液貯留容器から送給した電解液は、負極又は正極若しくはそれら双方の対向面に形成されている電解液拡散用溝を介して、発電部の全域に速やかに拡散浸透する。
An air battery according to the present invention for solving the above-described problems has a power generation unit having a negative electrode and a positive electrode facing each other, and an electrolyte storage container for storing an electrolyte to be supplied to the power generation unit. Then, an electrolyte solution diffusion groove for diffusing and penetrating the electrolyte solution supplied from the electrolyte solution storage container throughout the entire power generation unit is formed on the opposing surfaces of the negative electrode or the positive electrode or both of them.
According to this configuration, the electrolyte supplied from the electrolyte storage container is quickly diffused and permeated throughout the power generation section through the electrolyte diffusion groove formed on the negative electrode and / or the positive electrode. To do.
 同上の課題を解決するための本発明に係る組電池は、上記した空気電池を直並列接続させたものである。これにより、任意の出力電圧,電流値を得るようにしている。 An assembled battery according to the present invention for solving the above-described problems is obtained by connecting the above-described air batteries in series and parallel. Thereby, an arbitrary output voltage and current value are obtained.
 本発明によれば、電解液貯留容器から発電部に送給された電解液を、発電部全域に速やかに拡散浸透させられ、迅速に発電させることができる。 According to the present invention, the electrolytic solution fed from the electrolytic solution storage container to the power generation unit can be quickly diffused and penetrated throughout the power generation unit, and can be quickly generated.
本発明の第一の実施形態に係る空気電池の平面図である。1 is a plan view of an air battery according to a first embodiment of the present invention. 図1に示すI‐I線に沿う断面図である。It is sectional drawing which follows the II line | wire shown in FIG. 図2に示すII‐II線に沿う断面図である。It is sectional drawing which follows the II-II line | wire shown in FIG. セパレータの下面に形成した他例に係る電解液拡散用溝を示す下面図である。It is a bottom view which shows the groove | channel for electrolyte solution diffusion which concerns on the other example formed in the lower surface of a separator. (A)は、上記した電解液拡散用溝を負極に形成した例を示す部分断面図、(B)は、上記した電解液拡散用溝をセパレータの上面に形成した例を示す部分断面図である。(A) is a partial cross-sectional view showing an example in which the above-described electrolytic solution diffusion groove is formed on the negative electrode, and (B) is a partial cross-sectional view showing an example in which the above-described electrolytic solution diffusion groove is formed on the upper surface of the separator. is there. (A)は、上記した電解液拡散用溝をセパレータの上下両面に形成した例を示す部分断面図、(B)は、上記した電解液拡散用溝を正極の下面に形成した例を示す部分断面図である。(A) is a partial cross-sectional view showing an example in which the above-described electrolyte diffusion grooves are formed on both upper and lower surfaces of the separator, and (B) is a part showing an example in which the above-described electrolyte diffusion grooves are formed on the lower surface of the positive electrode. It is sectional drawing. 第二の実施形態に係る空気電池の概略平面図である。It is a schematic plan view of the air battery which concerns on 2nd embodiment. (A)は、電解液拡散用溝を負極に形成したときの液拡散部の構成を示す概略断面図、(B)は、電解液拡散用溝をセパレータに形成したときの液拡散部の構成を示す概略断面図、(C)は、電解液拡散用溝を正極に形成したときの液拡散部の構成を示す概略断面図である。(A) is schematic sectional drawing which shows the structure of the liquid diffusion part when the groove | channel for electrolyte solution diffusion is formed in a negative electrode, (B) is the structure of the liquid diffusion part when the groove | channel for electrolyte solution diffusion is formed in a separator. (C) is a schematic sectional drawing which shows the structure of a liquid-diffusion part when the groove | channel for electrolyte solution diffusion is formed in a positive electrode. (A)は、上記した電解液拡散用溝を負極に形成した例を示す部分断面図、(B)は、電解液拡散用溝を負極と正極双方の互いの対向面にそれぞれ形成した例を示す部分断面図、(C)は、電解液拡散用溝を正極極に形成した例を示す部分断面図である。(A) is a partial sectional view showing an example in which the above-described electrolyte diffusion groove is formed in the negative electrode, and (B) is an example in which the electrolyte diffusion groove is formed on the opposing surfaces of both the negative electrode and the positive electrode. FIG. 4C is a partial cross-sectional view showing an example in which an electrolyte diffusion groove is formed on the positive electrode. 図9に示す空気電池の正極と負極との間に保持部材を配設した構成を示すものであり、(A)は、一例に係る保持部材の正極と負極に対向する両面に電解液拡散用溝を形成した形態を示す部分断面図、(B)は、保持部材の正極に対向する面に電解液拡散用溝を形成した形態を示す部分断面図、(C)は、保持部材の負極に対向する面に電解液拡散用溝を形成した形態を示す部分断面図、(D)は、他例に係る保持部材の側面に電解液拡散用溝を形成した例を示す部分断面図である。FIG. 9 shows a configuration in which a holding member is disposed between the positive electrode and the negative electrode of the air battery shown in FIG. 9, and (A) shows an electrolyte diffusion diffusion on both surfaces of the holding member according to an example facing the positive electrode and the negative electrode. (B) is a partial cross-sectional view showing a form in which an electrolytic solution diffusion groove is formed on the surface of the holding member facing the positive electrode, and (C) is a negative view of the holding member. FIG. 6D is a partial cross-sectional view showing a form in which an electrolyte solution diffusion groove is formed on the opposing surface, and FIG. 4D is a partial cross-sectional view showing an example in which an electrolyte solution diffusion groove is formed on the side surface of a holding member according to another example.
 以下に、本発明を実施するための形態について、図面を参照して説明する。図1は、本発明の第一の実施形態に係る空気電池の平面図、図2は、図1に示すI‐I線に沿う断面図、図3は、図2に示すII‐II線に沿う断面図である。 Hereinafter, modes for carrying out the present invention will be described with reference to the drawings. 1 is a plan view of the air battery according to the first embodiment of the present invention, FIG. 2 is a cross-sectional view taken along line II shown in FIG. 1, and FIG. 3 is taken along line II-II shown in FIG. It is sectional drawing which follows.
 本発明の第一の実施形態に係る空気電池A1は、筐体10内に収容した発電部Bと、この発電部Bに送給する電解液Wを貯留するための電解液貯留容器20とを有している。 The air battery A1 according to the first embodiment of the present invention includes a power generation unit B accommodated in the housing 10 and an electrolyte storage container 20 for storing the electrolyte W supplied to the power generation unit B. Have.
 筐体10は、平面視方形の底壁11の外縁に沿って側壁12~15を一体にして起立形成したものである。
 側壁12には、電解液貯留容器20から送給される電解液Wを筐体10内に導入するための3つの液導入孔12a~12cが穿設されている。
The housing 10 is formed by standing up side walls 12 to 15 along the outer edge of the bottom wall 11 having a square shape in plan view.
In the side wall 12, three liquid introduction holes 12 a to 12 c for introducing the electrolytic solution W fed from the electrolytic solution storage container 20 into the housing 10 are formed.
 本実施形態において示す液導入孔12a~12cは、側壁12を平面視において三分する位置であって、上記発電部Bの一部をなすセパレータ32の下面32aに一致する高さ位置に配設されている。このように複数の液導入孔12a~12cを設けることにより、電解液Wを発電部B全域に容易に拡散させられる。
 なお、本実施形態においては、3つの液導入孔12a~12cを配設した例について示しているが、2つ又は4つ以上の液導入孔を適宜配設してもよいことは勿論である。
The liquid introduction holes 12a to 12c shown in this embodiment are positions at which the side wall 12 is divided into three parts in a plan view, and are arranged at a height position that coincides with the lower surface 32a of the separator 32 forming a part of the power generation unit B. Has been. By providing the plurality of liquid introduction holes 12a to 12c in this way, the electrolyte solution W can be easily diffused throughout the power generation unit B.
In the present embodiment, an example in which three liquid introduction holes 12a to 12c are provided is shown, but it is needless to say that two or four or more liquid introduction holes may be appropriately provided. .
 発電部Bは、負極30と正極31との間にセパレータ32を配設したものであり、そのセパレータ32と負極30との間には、電解液Wを毛細管現象によって流動させるための電解液流路33が区画形成されている。
 なお、正極31の図示上面には、集電材40が積層されている。
In the power generation unit B, a separator 32 is disposed between the negative electrode 30 and the positive electrode 31, and an electrolytic solution flow for flowing the electrolytic solution W by a capillary phenomenon between the separator 32 and the negative electrode 30. A path 33 is defined.
A current collector 40 is laminated on the upper surface of the positive electrode 31 in the figure.
 電解液貯留容器20は、筐体10の上記側壁12の外壁面に固定されており、それは、その側壁12とほぼ同じ幅にし、かつ、所要量の電解液Wを貯留する容積にした横長直方体形にして形成されている。 The electrolyte storage container 20 is fixed to the outer wall surface of the side wall 12 of the housing 10, which is a horizontally long rectangular parallelepiped having a width substantially the same as that of the side wall 12 and a volume for storing a required amount of the electrolyte W. It is formed into a shape.
 この電解液貯留容器20には、上記側壁12に形成した液導入孔12a~12cに対向する位置に、これの内部に貯留する電解液Wを筐体10内に送給するための3つの送給孔(図示しない)が形成されている。 The electrolyte storage container 20 has three feeds for feeding the electrolyte W stored therein into the housing 10 at positions facing the liquid introduction holes 12a to 12c formed in the side wall 12. A supply hole (not shown) is formed.
 図3に示すように、セパレータ32の下面32aには、互いに対向する上記側壁12側の辺縁32bから辺縁32cにわたり、上記電解液貯留容器20から送給された電解液Wを、発電部Bの全域に拡散浸透させるための電解液拡散用溝C1が形成されている。 As shown in FIG. 3, the electrolyte solution W fed from the electrolyte solution storage container 20 is supplied to the lower surface 32 a of the separator 32 from the edge 32 b on the side wall 12 side to the edge 32 c facing each other. An electrolyte solution diffusion groove C1 for diffusing and penetrating the entire region of B is formed.
 本実施形態において示す電解液拡散用溝C1は、上記した辺縁32bと辺縁32cとの間にわたり、かつ、互いに一定の間隔にして平行にし、かつ、連続して形成された断面凹凸形のものである。
 なお、凹凸の間隔や高さ(深さ)については、使用する電解液等に従って、適宜設定すればよいものである。
The electrolyte solution diffusing groove C1 shown in the present embodiment has a concavo-convex shape formed continuously between the side edge 32b and the side edge 32c, in parallel with each other at a constant interval. Is.
In addition, what is necessary is just to set suitably about the space | interval and height (depth) of an unevenness | corrugation according to the electrolyte solution etc. to be used.
 上記した負極30の表面への電解液拡散溝の形成は、機械加工(研磨)、エッチング、表面処理により行なうことができる。
 機械加工の場合、既に知られているヘアライン加工は、素材の製造工程で仕上げることができるために容易である。
 エッチングや表面処理については、凹凸形状に合わせたマスキングにより形成することができる。
 なお、負極30の下面と底壁11との間には集電材41が配設されている。
Formation of the electrolyte solution diffusion groove on the surface of the negative electrode 30 can be performed by machining (polishing), etching, or surface treatment.
In the case of machining, the already known hairline processing is easy because it can be finished in the manufacturing process of the material.
Etching and surface treatment can be formed by masking in accordance with the uneven shape.
A current collector 41 is disposed between the lower surface of the negative electrode 30 and the bottom wall 11.
 上記セパレータ32の表面への電解液拡散溝の形成は、多孔質で非導電性の樹脂製の場合は、シート状のセパレータを成形する際に、あらかじめ型表面に凹凸を形成することで、凹凸形状のついたものを形成できる。 Formation of the electrolyte solution diffusion groove on the surface of the separator 32 is performed by forming irregularities on the mold surface in advance when forming a sheet-like separator in the case of a porous and non-conductive resin. Shaped ones can be formed.
 上記正極31の表面への電解液拡散溝の形成は、その正極31が多孔質で導電性である場合、例えば、スラリーから成膜する工程を経るときには、セパレータと同様な工程により形成できる。また、導電/非導電な材料を印刷等の技術を用いて当該表面に形成することもできる。 The formation of the electrolyte solution diffusion groove on the surface of the positive electrode 31 can be formed by the same process as the separator when the positive electrode 31 is porous and conductive, for example, when a film is formed from a slurry. In addition, a conductive / non-conductive material can be formed on the surface using a technique such as printing.
 以上の構成からなる空気電池A1によれば、電解液貯留容器20から送給された電解液Wは、図示しない送給孔及び液導入孔12a~12cを通じ、セパレータ32の下面32aに導入される。 According to the air battery A1 having the above configuration, the electrolytic solution W fed from the electrolytic solution storage container 20 is introduced to the lower surface 32a of the separator 32 through a feeding hole and liquid introducing holes 12a to 12c (not shown). .
 セパレータ32の下面32aに導入された電解液Wは、その下面32aに形成された電解液拡散用溝C1を介して、発電部Bの全域に速やかに拡散浸透する。これにより、電解液Wを供給した後、速やかに発電させることができる。 The electrolytic solution W introduced into the lower surface 32a of the separator 32 quickly diffuses and permeates throughout the power generation unit B through the electrolytic solution diffusion groove C1 formed in the lower surface 32a. Thereby, after supplying the electrolyte solution W, electric power can be generated quickly.
 ところで、本実施形態においては、電解液貯留容器20から筐体10内に電解液Wを送給するとき、電解液貯留容器20を上部側に位置するように筐体10を保持することにより、セパレータ32の辺縁32bを上側にし、かつ、辺縁32eを下側にしている。 By the way, in this embodiment, when supplying the electrolyte solution W from the electrolyte storage container 20 into the housing 10, by holding the housing 10 so that the electrolyte storage container 20 is positioned on the upper side, The edge 32b of the separator 32 is on the upper side, and the edge 32e is on the lower side.
 これにより、当該辺縁32bに送給された電解液Wに重力を作用させ、その電解液Wを辺縁32bから辺縁32bに向けてより速やか流下させているが、毛細管現象を利用することにより上記した浸透拡散を図ってもよい。 As a result, gravity is applied to the electrolyte W supplied to the edge 32b, and the electrolyte W is caused to flow more quickly from the edge 32b toward the edge 32b, but the capillary phenomenon is used. The permeation diffusion described above may be achieved.
 図4は、セパレータの下面に形成した他例に係る電解液拡散用溝を示す下面図である。なお、上述した実施形態において説明したものと同等のものについては、それらと同一の符号を付して説明を省略する。 FIG. 4 is a bottom view showing an electrolyte solution diffusing groove according to another example formed on the bottom surface of the separator. In addition, about the thing equivalent to what was demonstrated in embodiment mentioned above, the code | symbol same as them is attached | subjected and description is abbreviate | omitted.
 同図に示す他例に係る電解液拡散用溝C2は、セパレータ32の辺縁32bに対し、所要の角度に傾斜させた溝を格子状にして形成したものである。このような格子状のものであっても、上記した空気電池A1と同様の効果を得ることができる。 The electrolytic solution diffusing groove C2 according to another example shown in the figure is formed by forming grooves inclined at a required angle with respect to the edge 32b of the separator 32 in a lattice shape. Even in such a lattice shape, the same effect as that of the air battery A1 described above can be obtained.
 図5(A)は、上記した電解液拡散用溝を負極に形成した例を示す部分断面図、(B)は、上記した電解液拡散用溝をセパレータの上面に形成した例を示す部分断面図、図6(A)は、上記した電解液拡散用溝をセパレータの上下両面に形成した例を示す部分断面図、(B)は、上記した電解液拡散用溝を正極の下面に形成した例を示す部分断面図である。 FIG. 5A is a partial cross-sectional view showing an example in which the above-described electrolytic solution diffusion groove is formed on the negative electrode, and FIG. 5B is a partial cross-sectional view showing an example in which the above electrolytic solution diffusion groove is formed on the upper surface of the separator. FIG. 6A is a partial cross-sectional view showing an example in which the above-described electrolyte diffusion groove is formed on the upper and lower surfaces of the separator, and FIG. 6B is the above-described electrolyte diffusion groove formed on the lower surface of the positive electrode. It is a fragmentary sectional view showing an example.
 図5(A)に示す電解液拡散用溝C1(C2)は、負極30の上面30a、従ってまた、その負極30のセパレータ30との対向面30aに、この負極30の側壁12側の辺縁から側壁14側の辺縁にかけて形成されている。 The electrolytic solution diffusion groove C1 (C2) shown in FIG. 5 (A) is formed on the upper surface 30a of the negative electrode 30, and therefore on the side 30a of the negative electrode 30 facing the separator 30 on the side wall 12 side of the negative electrode 30. To the edge on the side wall 14 side.
 図5(B)に示す電解液拡散用溝C1(C2)は、セパレータ32の上面32b、従ってまた、そのセパレータ32の正極31との対向面32bに、このセパレータ32の側壁14側の辺縁から側壁14側の辺縁にかけて形成されている。 The electrolytic solution diffusing groove C1 (C2) shown in FIG. 5 (B) is formed on the upper surface 32b of the separator 32, and hence on the surface 32b facing the positive electrode 31 of the separator 32, on the side wall 14 side of the separator 32. To the edge on the side wall 14 side.
 図6(A)に示す電解液拡散用溝C1(C2)は、セパレータ32の上下両面32b,32a、従ってまた、そのセパレータ32の正極31,負極32との対向面32b,32aに、このセパレータ32の側壁14側の辺縁から側壁14側の辺縁にかけて形成されている。 6A is formed on the upper and lower surfaces 32b and 32a of the separator 32, and thus on the surfaces 32b and 32a of the separator 32 facing the positive electrode 31 and the negative electrode 32. 32 from the side edge on the side wall 14 side to the side edge on the side wall 14 side.
 図6(B)に示す電解液拡散用溝C1(C2)は、正極31の下面31a、従ってまた、その正極31のセパレータ32との対向面31aに、この正極31の側壁14側の辺縁から側壁14側の辺縁にかけて形成されている。 The electrolyte solution diffusion groove C1 (C2) shown in FIG. 6B is formed on the lower surface 31a of the positive electrode 31 and, therefore, on the side 31a of the positive electrode 31 facing the separator 32, on the side wall 14 side of the positive electrode 31. To the edge on the side wall 14 side.
 上記したように、電解液拡散用溝を、セパレータと正極の互いの対向面の少なくともいずれか一方、若しくはセパレータと負極の互いの対向面の少なくともいずれか一方に形成した場合にも、上記した空気電池A1と同様の効果を得ることができる。 As described above, even when the electrolyte diffusion groove is formed on at least one of the opposing surfaces of the separator and the positive electrode, or at least one of the opposing surfaces of the separator and the negative electrode, the air described above The same effect as battery A1 can be acquired.
 図7は、第二の実施形態に係る空気電池の概略平面図、図8(A)は、電解液拡散用溝を負極に形成したときの液拡散部の構成を示す概略断面図、(B)は、電解液拡散用溝をセパレータに形成したときの液拡散部の構成を示す概略断面図、(C)は、電解液拡散用溝を正極に形成したときの液拡散部の構成を示す概略断面図である。なお、上述した実施形態において説明したものと同等のものについては、それらと同一の符号を付して説明を省略する。 FIG. 7 is a schematic plan view of the air battery according to the second embodiment, and FIG. 8A is a schematic cross-sectional view showing the configuration of the liquid diffusion portion when the electrolytic solution diffusion groove is formed in the negative electrode. ) Is a schematic cross-sectional view showing the configuration of the liquid diffusion portion when the electrolytic solution diffusion groove is formed in the separator, and (C) shows the configuration of the liquid diffusion portion when the electrolytic solution diffusion groove is formed in the positive electrode. It is a schematic sectional drawing. In addition, about the thing equivalent to what was demonstrated in embodiment mentioned above, the code | symbol same as them is attached | subjected and description is abbreviate | omitted.
 第二の実施形態に係る空気電池A2は、筐体10の側壁12とセパレータ32との間に、側壁13,15間にわたる空間αを設けているとともに、その空間αに液拡散部40を配設している点で、上記空気電池A1と相違している。 In the air battery A2 according to the second embodiment, a space α extending between the side walls 13 and 15 is provided between the side wall 12 of the housing 10 and the separator 32, and the liquid diffusion portion 40 is disposed in the space α. It is different from the air battery A1 in that it is provided.
 本実施形態において示す電解液貯留容器20には、これの内部に貯留する電解液Wを筐体10内に送給するための2つの送給孔(図示しない)が互いに所要の間隔をおいて形成されている。 In the electrolytic solution storage container 20 shown in the present embodiment, two supply holes (not shown) for supplying the electrolytic solution W stored therein to the inside of the housing 10 are spaced from each other at a required interval. Is formed.
 側壁12には、図示しない上記送給孔に対向する位置に、電解液貯留容器Bから送給される電解液Wを筐体10内に導入するための2つの液導入孔12d,12eが穿設されている。 The side wall 12 is provided with two liquid introduction holes 12d and 12e for introducing the electrolytic solution W fed from the electrolytic solution storage container B into the housing 10 at a position facing the feeding hole (not shown). It is installed.
 液拡散部40は、上記液導入孔12d,12eから導入された電解液Wをセパレータ32、負極30及び正極31の対向方向βと交差する幅方向に拡散させるためのものであり、セパレータ32の辺縁32aから液導入孔12d,12eに向けて高くなる平面視三角形に形成したものである。
 液拡散部40は、液導入孔12d,12eから導入された電解液Wを、上記幅方向に拡散させるのに伴って、セパレータ32の電解液拡散用溝C1(C2)に向けて流下させるように凹凸40bが形成されている。
The liquid diffusion part 40 is for diffusing the electrolytic solution W introduced from the liquid introduction holes 12d and 12e in the width direction intersecting the opposing direction β of the separator 32, the negative electrode 30, and the positive electrode 31, It is formed in a triangular shape in plan view that rises from the edge 32a toward the liquid introduction holes 12d and 12e.
The liquid diffusion unit 40 causes the electrolyte W introduced from the liquid introduction holes 12d and 12e to flow down toward the electrolyte diffusion groove C1 (C2) of the separator 32 as the electrolyte W is diffused in the width direction. Concavities and convexities 40b are formed on the surface.
 ところで、上記液拡散部40は、電解液拡散用溝C1(C2)を形成する部位に応じて異なる構成としている。
 図8(A)に示すように、負極30の上面30aに電解液拡散用溝C1(C2)を形成する場合には、その電解液拡散用溝C1(C2)と同じ高さ位置に配設するとよい。
 図8(B)に示すように、セパレータ32の上面32aに電解液拡散用溝C1(C2)を形成する場合には、その電解液拡散用溝C1(C2)と同じ高さ位置に配設するとよい。
 図8(C)に示すように、正極31の下面31aに電解液拡散用溝C1(C2)を形成する場合には、セパレータ32と同じ高さ位置に配設してもよい。
By the way, the said liquid diffusion part 40 is set as the different structure according to the site | part which forms the groove | channel C1 (C2) for electrolyte solution diffusion.
As shown in FIG. 8A, when the electrolytic solution diffusion groove C1 (C2) is formed on the upper surface 30a of the negative electrode 30, it is disposed at the same height as the electrolytic solution diffusion groove C1 (C2). Good.
As shown in FIG. 8B, when the electrolytic solution diffusion groove C1 (C2) is formed on the upper surface 32a of the separator 32, the separator 32 is disposed at the same height as the electrolytic solution diffusion groove C1 (C2). Good.
As shown in FIG. 8C, when the electrolyte solution diffusion groove C <b> 1 (C <b> 2) is formed on the lower surface 31 a of the positive electrode 31, it may be disposed at the same height as the separator 32.
 上記した各液拡散部40によれば、液導入孔12d,12eから導入した電解液Wは、その液拡散部40の斜辺縁40a,40aによって負極30及び正極31の対向方向βと交差する幅方向に拡散させられて流下する。
 これにより、電解液Wをより速やかに発電部Bの全域に拡散浸透させることができる。
According to each liquid diffusion part 40 described above, the electrolyte solution W introduced from the liquid introduction holes 12d and 12e has a width that intersects the opposing direction β of the negative electrode 30 and the positive electrode 31 by the oblique side edges 40a and 40a of the liquid diffusion part 40. It is diffused in the direction and flows down.
Thereby, the electrolyte solution W can be diffused and permeated more quickly throughout the power generation unit B.
 ところで、上述した空気電池A1,A2を直並列接続させることにより組電池を構成することにより、所望の電圧,電流値を得ることができる。
 また、その組電池を、複数の空気電池を一体化してなる二以上のモジュールから構成することにより、例えば組電池をなす一部の空気電池に故障等が生じたときにも、その空気電池のみを含むモジュールのみを交換することができるようになり、メンテナンスを容易に行なうことができる。
By the way, a desired voltage and current value can be obtained by configuring the assembled battery by connecting the above-described air batteries A1 and A2 in series and parallel.
Further, by configuring the assembled battery from two or more modules formed by integrating a plurality of air batteries, for example, even when a failure occurs in some of the air batteries forming the assembled battery, only the air battery It becomes possible to replace only the module containing the, so that maintenance can be easily performed.
 上述した実施形態においては、互いに所定の間隔をおいて対向させた負極と正極との間にセパレータを配設した発電部を例として説明したが、負極金属の種類の違いによって生成する酸化物が絶縁性の場合、電解液を循環させる場合、また、限られた電池体積中に少しでも大きく電解液を収容させる場合等には、セパレータを必ずしも設ける必要がない。
 上記図1,7に示す構成の空気電池において、セパレータを設けない場合、電解液拡散用溝を、図9に示すように形成することができる。
In the above-described embodiment, the power generation unit in which the separator is disposed between the negative electrode and the positive electrode opposed to each other with a predetermined interval has been described as an example, but the oxide generated due to the difference in the type of the negative electrode metal In the case of insulation, it is not always necessary to provide a separator when the electrolytic solution is circulated or when the electrolytic solution is accommodated in a limited battery volume as much as possible.
In the air battery having the configuration shown in FIGS. 1 and 7, when the separator is not provided, the electrolyte solution diffusing groove can be formed as shown in FIG.
 図9(A)は、上記した電解液拡散用溝を負極の正極に対向する面に形成した例を示す部分断面図、(B)は、電解液拡散用溝を負極の正極に対向する面及び正極の負極に対向する面に形成した例を示す部分断面図、(C)は、電解液拡散用溝を正極の負極に対向する面に形成した例を示す部分断面図である。なお、上述した実施形態において説明したものと同等のものについては、それらと同一の符号を付して説明を省略する。 FIG. 9A is a partial cross-sectional view showing an example in which the above-described electrolyte diffusion groove is formed on the surface facing the negative electrode of the negative electrode, and FIG. 9B is a surface of the electrolyte diffusion groove facing the negative electrode of the negative electrode. And (C) is a partial cross-sectional view showing an example in which the electrolytic solution diffusion groove is formed on the surface facing the negative electrode of the positive electrode. In addition, about the thing equivalent to what was demonstrated in embodiment mentioned above, the code | symbol same as them is attached | subjected and description is abbreviate | omitted.
 図9(A)に示す電解液拡散用溝C1(C2)は、負極30の上面30a、従ってまた、その負極30の正極31との対向面30aに、この負極30の上記した側壁12側の辺縁から側壁14側の辺縁にかけて形成されたものである。 The electrolyte solution diffusion groove C1 (C2) shown in FIG. 9A is formed on the upper surface 30a of the negative electrode 30, and therefore, on the surface 30a facing the positive electrode 31 of the negative electrode 30 on the side wall 12 side. It is formed from the edge to the edge on the side wall 14 side.
 図9(B)に示す電解液拡散用溝C1(C2)は、負極30の上面30a及び正極31の下面31a、従ってまた、その負極30と正極31の互いの対向面30a,31aに、それの負極30,正極31の上記した側壁12側の辺縁から側壁14側の辺縁にかけて形成されたものである。 The electrolyte solution diffusion groove C1 (C2) shown in FIG. 9B is formed on the upper surface 30a of the negative electrode 30 and the lower surface 31a of the positive electrode 31, and thus on the opposing surfaces 30a and 31a of the negative electrode 30 and the positive electrode 31. The negative electrode 30 and the positive electrode 31 are formed from the side edge on the side wall 12 side to the side edge on the side wall 14 side.
 図9(C)に示す電解液拡散用溝C1(C2)は、正極31の下面31a、従ってまた、その正極31の負極30との対向面31aに、その正極31の上記した側壁12側の辺縁から側壁14側の辺縁にかけて形成されている。 The electrolytic solution diffusion groove C1 (C2) shown in FIG. 9C is formed on the lower surface 31a of the positive electrode 31, and thus on the surface 31a of the positive electrode 31 facing the negative electrode 30, on the side wall 12 side of the positive electrode 31. It is formed from the edge to the edge on the side wall 14 side.
 正極31又は負極30に電解液拡散用溝C1(C2)を形成することにより、表面積を増加させることができ、見かけ面積に対する発電性能を向上させることができる。 By forming the electrolyte solution diffusion groove C1 (C2) in the positive electrode 31 or the negative electrode 30, the surface area can be increased, and the power generation performance with respect to the apparent area can be improved.
 図10は、図9に示す空気電池の正極と負極との間に保持部材を配設した構成を示すものであり、(A)は、一例に係る保持部材の正極と負極に対向する両面に電解液拡散用溝を形成した形態を示す部分断面図、(B)は、保持部材の正極に対向する面に電解液拡散用溝を形成した形態を示す部分断面図、(C)は、保持部材の負極に対向する面に電解液拡散用溝を形成した形態を示す部分断面図、(D)は、他例に係る保持部材の側面に電解液拡散用溝を形成した例を示す部分断面図である。
 なお、上述した実施形態において説明したものと同等のものについては、それらと同一の符号を付して説明を省略する。
FIG. 10 shows a configuration in which a holding member is disposed between the positive electrode and the negative electrode of the air battery shown in FIG. 9, and (A) shows on both surfaces of the holding member according to an example facing the positive electrode and the negative electrode. A partial cross-sectional view showing a form in which a groove for electrolytic solution diffusion is formed. (B) is a partial cross-sectional view showing a form in which a groove for electrolytic solution diffusion is formed on the surface of the holding member facing the positive electrode. The partial cross section figure which shows the form which formed the groove | channel for electrolyte solution diffusion in the surface facing the negative electrode of a member, (D) is a partial cross section which shows the example which formed the groove | channel for electrolyte solution diffusion in the side surface of the holding member which concerns on another example FIG.
In addition, about the thing equivalent to what was demonstrated in embodiment mentioned above, the code | symbol same as them is attached | subjected and description is abbreviate | omitted.
 一例に係る保持部材50…は、図示しない長方形枠の互いに対抗する二つの枠部材間に、互いに所定の間隔にして配列されているものである。
 これらの保持部材50…は、図9に示す正極31と負極30との間隔を保持し、かつ、電解液貯留容器20から送給された電解液Wを発電部Bの全域に拡散浸透させるための電解液拡散溝C1(C2)を形成したものである。
The holding members 50... According to the example are arranged at predetermined intervals between two opposing frame members of a rectangular frame (not shown).
These holding members 50... Hold the gap between the positive electrode 31 and the negative electrode 30 shown in FIG. 9 and diffuse and permeate the electrolytic solution W fed from the electrolytic solution storage container 20 throughout the power generation unit B. The electrolytic solution diffusion groove C1 (C2) is formed.
 なお、本実施形態においては、すべての保持部材50…に、電解液拡散溝C1(C2)を形成しているが、例えば上記した液導入孔12a等に対向して配列されたもののみに形成するようにしてもよい。換言すると、すべての保持部材50…に電解液拡散溝C1(C2)を形成しなくともい。 In the present embodiment, the electrolyte solution diffusion grooves C1 (C2) are formed in all the holding members 50..., For example, only formed in the arrangement facing the liquid introduction holes 12a. You may make it do. In other words, the electrolyte solution diffusion grooves C1 (C2) need not be formed in all the holding members 50.
 すなわち、互いに所定の間隔をおいて配設された正極31と負極30との間に、保持部材50を互いに所定の間隔にして複数配設することにより、それら正極31と負極30との間隔を保持する機能を有するものであり、例えば不織布等を採用することができる。
 これにより、例えば上記した組電池としたときに、対向方向αに圧力が作用するときにも、その圧力によって正極31と負極30が変形して互いに接触することを防止できるようにしたものである。
That is, by arranging a plurality of holding members 50 at a predetermined interval between the positive electrode 31 and the negative electrode 30 arranged at a predetermined interval, the interval between the positive electrode 31 and the negative electrode 30 can be increased. For example, a non-woven fabric can be used.
Thus, for example, when the above-described assembled battery is used, even when pressure acts in the facing direction α, the positive electrode 31 and the negative electrode 30 can be prevented from being deformed by the pressure and coming into contact with each other. .
 図10(A)に示す電解液拡散用溝C1(C2)は、保持部材50の図示上下両面50a,50bに、従ってまた、その保持部材50の正極31及び負極30の各対向面50a,50bに、その保持部材50の上記した側壁12側の辺縁から側壁14側の辺縁にかけて形成されている。 10A is provided on the upper and lower surfaces 50a and 50b of the holding member 50, and accordingly, the opposing surfaces 50a and 50b of the positive electrode 31 and the negative electrode 30 of the holding member 50. Further, the holding member 50 is formed from the side edge on the side wall 12 side to the side edge on the side wall 14 side.
 図10(B)に示す電解液拡散用溝C1(C2)は、保持部材50の図示上面50aに、従ってまた、その保持部材50の正極31の対向面50aに、上記した側壁12側の辺縁から側壁14側の辺縁にかけて形成されている。 The electrolyte solution diffusing groove C1 (C2) shown in FIG. 10 (B) is formed on the upper surface 50a of the holding member 50 and accordingly on the opposite surface 50a of the positive electrode 31 of the holding member 50. It is formed from the edge to the edge on the side wall 14 side.
 図10(C)に示す電解液拡散用溝C1(C2)は、保持部材50の図示下面50bに、従ってまた、その保持部材50の負極30との対向面50bに、上記した側壁12側の辺縁から側壁14側の辺縁にかけて形成されている。 The electrolytic solution diffusion groove C1 (C2) shown in FIG. 10C is formed on the lower surface 50b of the holding member 50 and on the opposite surface 50b of the holding member 50 facing the negative electrode 30 on the side wall 12 side. It is formed from the edge to the edge on the side wall 14 side.
 図10(D)に示す他例に係る保持部材51は、上記(A)~(C)に示すものと相違しており、例えば断面が略円形の撚線である。
 このような形態の保持部材51においては、電解液拡散用溝C1´(C2´)を側面(側部)51a,51aにも形成することができる。
 電解液拡散用溝C1´(C2´)は、上記した電解液拡散用溝C1(C2)とは異なり、保持部材51をなす繊維の凹凸が「溝」として機能する。
A holding member 51 according to another example shown in FIG. 10D is different from those shown in the above (A) to (C), and is, for example, a stranded wire having a substantially circular cross section.
In the holding member 51 having such a configuration, the electrolyte solution diffusing groove C1 ′ (C2 ′) can also be formed on the side surfaces (side portions) 51a and 51a.
Unlike the above-described electrolyte solution diffusion groove C1 (C2), the unevenness of the fibers forming the holding member 51 functions as the “groove” in the electrolyte solution diffusion groove C1 ′ (C2 ′).
 図10に示す保持部材50や保持部材51…を配設した場合、隣り合う保持部材50,50(51,51)間に区画形成される空間には、電解液が満たされるまでに時間を要するので、その空間が、注液時に押し出された空気の逃げ場所としての機能を有する。 When the holding members 50 and the holding members 51 shown in FIG. 10 are provided, it takes time to fill the space defined between the adjacent holding members 50 and 50 (51 and 51) with the electrolytic solution. Therefore, the space has a function as a escape place for the air pushed out during the injection.
 なお、本発明は上述した実施形態に限るものではなく、次のような変形実施が可能である。
・上述した実施形態においては、セパレータの正極との対向面又は正極のセパレータとの対向面若しくはそれら双方の互いの対向面、セパレータの負極との対向面又は負極のセパレータとの対向面若しくはそれら双方の互いの対向面に電解液拡散用溝を形成した例について説明したが、負極及び正極に対向しないセパレータの側面に電解液拡散溝を形成してもよい。
The present invention is not limited to the above-described embodiments, and the following modifications can be made.
-In embodiment mentioned above, the opposing surface to the positive electrode of a separator, the opposing surface to the separator of a positive electrode, or both opposing surfaces, the opposing surface to the negative electrode of a separator, or the opposing surface to the separator of a negative electrode, or both Although the example in which the electrolyte diffusion grooves are formed on the surfaces facing each other has been described, the electrolyte solution diffusion grooves may be formed on the side surfaces of the separator that do not face the negative electrode and the positive electrode.
12a~12e 液導入孔
20      電解液貯留容器
30      負極
31      正極
32      セパレータ
40      液拡散部
50,51   保持部材
A1,A2   空気電池
C1,C2   電解液拡散用溝
12a to 12e Liquid introduction hole 20 Electrolyte storage container 30 Negative electrode 31 Positive electrode 32 Separator 40 Liquid diffusion part 50, 51 Holding member A1, A2 Air battery C1, C2 Electrolyte diffusion groove

Claims (12)

  1.  互いに所定の間隔をおいて対向させた負極と正極とを有する発電部と、この発電部に送給するための電解液を貯留する電解液貯留容器とを有し、
     その電解液貯留容器から送給された電解液を発電部の全域に拡散浸透させるための電解液拡散溝を、負極又は正極の互いの対向面若しくはそれら双方の互いの対向面に形成していることを特徴とする空気電池。
    A power generation unit having a negative electrode and a positive electrode opposed to each other at a predetermined interval, and an electrolyte storage container for storing an electrolyte for feeding to the power generation unit,
    Electrolytic solution diffusion grooves for diffusing and penetrating the electrolytic solution supplied from the electrolytic solution storage container throughout the entire power generation unit are formed on the opposing surfaces of the negative electrode or the positive electrode or on the opposing surfaces of both. An air battery characterized by that.
  2.  互いに所定の間隔をおいて対向させた負極と正極との間にセパレータを配設した発電部と、この発電部に送給するための電解液を貯留する電解液貯留容器とを有し、
     その電解液貯留容器から送給された電解液を発電部の全域に拡散浸透させるための電解液拡散溝を、セパレータ、負極又は正極の少なくともいずれかの対向面に形成していることを特徴とする空気電池。
    A power generation unit in which a separator is disposed between a negative electrode and a positive electrode opposed to each other at a predetermined interval; and an electrolyte storage container that stores an electrolyte solution to be supplied to the power generation unit,
    An electrolyte diffusion groove for diffusing and penetrating the electrolyte supplied from the electrolyte storage container throughout the power generation unit is formed on at least one of the separator, the negative electrode, and the positive electrode. Air battery to play.
  3.  負極及び正極に対向しないセパレータの側面に電解液拡散溝を形成している請求項2に記載の空気電池。 3. The air battery according to claim 2, wherein an electrolyte solution diffusion groove is formed on a side surface of the separator that does not face the negative electrode and the positive electrode.
  4.  電解液拡散用溝が、セパレータの正極との対向面又は正極のセパレータとの対向面若しくはそれら双方の互いの対向面に形成されている請求項2又は3に記載の空気電池。 The air battery according to claim 2 or 3, wherein the electrolytic solution diffusing groove is formed on a surface facing the positive electrode of the separator, a surface facing the separator of the positive electrode, or both surfaces facing each other.
  5.  電解液拡散用溝が、セパレータの負極との対向面又は負極のセパレータとの対向面若しくはそれら双方の互いの対向面に形成されている請求項2又は3に記載の空気電池。 The air battery according to claim 2 or 3, wherein the electrolytic solution diffusing groove is formed on a surface facing the negative electrode of the separator, a surface facing the separator of the negative electrode, or both surfaces facing each other.
  6.  電解液貯留容器から送給された電解液を、セパレータ,負極及び正極の対向方向と交差する方向に拡散させるための液拡散部が形成されている請求項2~5のいずれか1項に記載の空気電池。 The liquid diffusion part for diffusing the electrolytic solution supplied from the electrolytic solution storage container in a direction intersecting with the opposing direction of the separator, the negative electrode, and the positive electrode is formed. Air battery.
  7.  底壁の外縁に側壁を起立形成した筐体に発電部が収容されているとともに、電解液貯留容器から送給された電解液を、上記筐体内に導入するための複数の液導入孔が側壁に形成されている請求項1~6のいずれか1項に記載の空気電池。 The power generation unit is housed in a casing whose side walls are formed upright on the outer edge of the bottom wall, and a plurality of liquid introduction holes for introducing the electrolyte supplied from the electrolyte storage container into the casing are provided on the side walls. The air battery according to any one of claims 1 to 6, wherein the air battery is formed as described above.
  8.  正極と負極との間隔を保持し、かつ、電解液貯留容器から送給された電解液を発電部の全域に拡散浸透させるための電解液拡散溝を形成した保持部材を介挿している請求項1に記載の空気電池。 A holding member formed with an electrolytic solution diffusion groove for holding the gap between the positive electrode and the negative electrode and for diffusing and penetrating the electrolytic solution supplied from the electrolytic solution storage container to the entire region of the power generation unit is interposed. 1. The air battery according to 1.
  9.  電解液拡散用溝が、保持部材の正極との対向面又はその保持部材の負極との対向面若しくはそれら双方の対向面に形成されている請求項8に記載の空気電池。 The air battery according to claim 8, wherein the electrolytic solution diffusing groove is formed on a surface facing the positive electrode of the holding member, a surface facing the negative electrode of the holding member, or a surface facing both of them.
  10.  負極及び正極に対向しない保持部材の側面に電解液拡散溝を形成している請求項8又は9に記載の空気電池。 The air battery according to claim 8 or 9, wherein an electrolyte solution diffusion groove is formed on a side surface of the holding member that does not face the negative electrode and the positive electrode.
  11.  請求項1~10のいずれか1項に記載の空気電池を直並列接続させていることを特徴とする組電池。 An assembled battery comprising the air batteries according to any one of claims 1 to 10 connected in series and parallel.
  12.  請求項11に記載の組電池を、複数の空気電池を一体化してなる二以上のモジュールから構成している組電池。 The assembled battery which comprises the assembled battery of Claim 11 from the 2 or more module formed by integrating several air battery.
PCT/JP2012/081050 2011-12-05 2012-11-30 Air battery and battery assembly using same WO2013084806A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013548206A JP6143252B2 (en) 2011-12-05 2012-11-30 Air battery and battery pack using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011265993 2011-12-05
JP2011-265993 2011-12-05

Publications (1)

Publication Number Publication Date
WO2013084806A1 true WO2013084806A1 (en) 2013-06-13

Family

ID=48574175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081050 WO2013084806A1 (en) 2011-12-05 2012-11-30 Air battery and battery assembly using same

Country Status (2)

Country Link
JP (1) JP6143252B2 (en)
WO (1) WO2013084806A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190074536A1 (en) * 2017-09-04 2019-03-07 Hyundai Motor Company Lithium air battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09298057A (en) * 1996-04-30 1997-11-18 Sanyo Electric Co Ltd Lithium ion battery
JPH11154508A (en) * 1997-11-19 1999-06-08 Toshiba Corp Nonaqueous electrolyte battery
JP2003197265A (en) * 2001-12-27 2003-07-11 Sanyo Electric Co Ltd Nonaqueous electrolytic solution battery
JP2004146238A (en) * 2002-10-25 2004-05-20 Matsushita Electric Ind Co Ltd Separator for battery, and battery
JP2004179159A (en) * 2002-11-14 2004-06-24 Matsushita Electric Ind Co Ltd Battery
JP2010244731A (en) * 2009-04-01 2010-10-28 Toyota Motor Corp Air battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004025760A1 (en) * 2002-09-12 2004-03-25 Metallic Power, Inc. Improved fuel for a zinc-based fuel cell and regeneration thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09298057A (en) * 1996-04-30 1997-11-18 Sanyo Electric Co Ltd Lithium ion battery
JPH11154508A (en) * 1997-11-19 1999-06-08 Toshiba Corp Nonaqueous electrolyte battery
JP2003197265A (en) * 2001-12-27 2003-07-11 Sanyo Electric Co Ltd Nonaqueous electrolytic solution battery
JP2004146238A (en) * 2002-10-25 2004-05-20 Matsushita Electric Ind Co Ltd Separator for battery, and battery
JP2004179159A (en) * 2002-11-14 2004-06-24 Matsushita Electric Ind Co Ltd Battery
JP2010244731A (en) * 2009-04-01 2010-10-28 Toyota Motor Corp Air battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190074536A1 (en) * 2017-09-04 2019-03-07 Hyundai Motor Company Lithium air battery
US10797340B2 (en) * 2017-09-04 2020-10-06 Hyundai Motor Company Lithium air battery

Also Published As

Publication number Publication date
JP6143252B2 (en) 2017-06-14
JPWO2013084806A1 (en) 2015-04-27

Similar Documents

Publication Publication Date Title
CN105531846B (en) Battery module
US3902916A (en) Rechargeable electrochemical generator
JP6247590B2 (en) Cell stack and storage battery
JP6024907B2 (en) Air battery and battery pack using the same
JP6143252B2 (en) Air battery and battery pack using the same
JP2014152399A (en) Method for operating electrolytic cell
JP2015072755A (en) Separator for fuel cell and fuel cell
KR101891491B1 (en) Fuel cell stacks
JPS58150271A (en) Fuel cell
AU2019228266A1 (en) Redox flow battery with at least one cell and an electrode element, and method for producing a conductor structure of an electrode element of a redox flow battery
TW201401639A (en) Fuel cells in stacks
JP2005141979A (en) Fuel cell
JP6810273B2 (en) Electrode support structure for coaxial electrolytic cells
JP6004365B2 (en) Injection air battery
JP2017134920A (en) Cell frame and flow battery
JPH11204118A (en) Fuel cell separator and fuel cell
JP2005216581A (en) Fuel cell
JP2014175114A (en) Fuel cell stack
CN219329274U (en) Battery pole piece and battery
JP5423699B2 (en) Gas flow path forming body and fuel cell
JP2014203636A (en) Air cell, and battery pack using the same
JP2018092749A (en) Cell stack of flow battery, and flow battery
KR20200129912A (en) Fuel cell apparatus
JP5571758B2 (en) Flat fuel cell stack
KR20220009789A (en) Multiple perforation plate for separator of fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12856030

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013548206

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12856030

Country of ref document: EP

Kind code of ref document: A1