JP2003197265A - Nonaqueous electrolytic solution battery - Google Patents

Nonaqueous electrolytic solution battery

Info

Publication number
JP2003197265A
JP2003197265A JP2001398603A JP2001398603A JP2003197265A JP 2003197265 A JP2003197265 A JP 2003197265A JP 2001398603 A JP2001398603 A JP 2001398603A JP 2001398603 A JP2001398603 A JP 2001398603A JP 2003197265 A JP2003197265 A JP 2003197265A
Authority
JP
Japan
Prior art keywords
electrolytic solution
positive electrode
electrode
negative electrode
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001398603A
Other languages
Japanese (ja)
Other versions
JP4179778B2 (en
Inventor
Masamune Oki
雅統 大木
Masato Iwanaga
征人 岩永
Tomokazu Yamanaka
友和 山中
Yukihiro Oki
雪尋 沖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001398603A priority Critical patent/JP4179778B2/en
Publication of JP2003197265A publication Critical patent/JP2003197265A/en
Application granted granted Critical
Publication of JP4179778B2 publication Critical patent/JP4179778B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolytic solution battery wherein an abundant electrolytic solution is put into a sheath can in a shorter time than a conventional one, and wherein development of superior battery performance is possible. <P>SOLUTION: This is the nonaqueous electrolytic solution battery wherein a bending in which the electrolytic solution is circulated from the short part to the center part in the width direction at least at one of a separator, a positive electrode plate and a negative electrode plate, and wherein the bending is formed preferably in the depth of 1 μm to 1 mm in the thickness direction. For example, on the surface of the positive electrode 1, plural semilunar grooves (bendings) 1a are formed by means of bending work in parallel with the width direction of the positive electrode. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオン電
池などの非水電解液電池において、電解液を短時間かつ
豊富に外装体に入れる技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for abundantly containing an electrolytic solution in an outer casing in a non-aqueous electrolytic solution battery such as a lithium ion battery.

【0002】[0002]

【従来の技術】近年、携帯電話機や携帯情報端末(PD
A)などの小型電子機器が急速に普及している。これら
の小型電子機器には、長時間使用に耐えうる高エネルギ
ー密度の電源としてリチウムイオン電池などの非水電解
液電池が多用されている。非水電解液電池は、外装体
(外装缶)に発電素体が収納され、封口体により電池内
部が密閉された構成を持つ。発電素体は、例えば帯状の
セパレータ、正極、負極とを重ねてなる電極体に電解液
を含浸したものである。電解液は、主として電極体を外
装缶に入れたのち、電極体中の活物質に染み込ませるよ
うに注入される。外装缶内に注入された電解液は、注入
してもすぐに活物質に含浸しにくいので、一般的には時
間を掛けて徐々に電極体中の活物質に含浸させる工程を
繰り返したり、外装缶内を減圧して電解液を注入する工
程を経る必要がある。
2. Description of the Related Art In recent years, mobile phones and personal digital assistants (PDs)
Small electronic devices such as A) are rapidly spreading. A non-aqueous electrolyte battery such as a lithium ion battery is often used as a power source with a high energy density that can withstand long-term use in these small electronic devices. The non-aqueous electrolyte battery has a structure in which a power generation element body is housed in an exterior body (exterior can) and the inside of the battery is sealed by a sealing body. The power generation element body is, for example, an electrode body formed by stacking a strip-shaped separator, a positive electrode, and a negative electrode, and impregnating the electrolytic solution. The electrolytic solution is injected mainly so that the active material in the electrode body is impregnated after the electrode body is put in the outer can. The electrolyte injected into the outer can does not easily impregnate the active material immediately after injection, so generally, it takes a long time to repeat the process of gradually impregnating the active material in the electrode body, It is necessary to depressurize the can and inject the electrolytic solution.

【0003】[0003]

【発明が解決しようとする課題】ところで、昨今の電池
のさらなる高エネルギー密度化に伴い、電極体の容積
や、活物質量を出来るだけ多く確保することが求められ
ている。しかしながら、これによって外装缶内に収納す
る電極体の活物質充填密度が高まるので、電解液の注入
がいっそう困難になり、作業効率が低下する。また、場
合によっては電解液の注液が不十分になる恐れもある。
By the way, with the recent increase in the energy density of batteries, it is required to secure the volume of the electrode body and the amount of the active material as much as possible. However, this increases the packing density of the active material in the electrode body housed in the outer can, which makes it more difficult to inject the electrolytic solution and reduces working efficiency. Further, in some cases, the electrolyte may not be sufficiently injected.

【0004】このような問題は、非水電解液電池全般に
わたって生じる可能性があるが、特に小型電子機器の電
源として広く用いられるリチウムイオン電池の分野で顕
著に生じており、早急な対策が望まれている。このよう
な問題を解決するため、特開平9-298057号公報に、極板
表面を部分的に圧縮して溝を形成し、その溝に電解液を
流通させることが開示されている。しかし、電池の高エ
ネルギー密度化により、極板は限界に近いほど充填され
るので、この方法によりさらに圧縮力をかけると極板の
破損を招く。ましてや、リチウムイオン電池のような薄
厚の極板を用いる電池ではなおさらである。また、溝を
形成するために、極板の活物質層の一部を削り落として
溝を形成することも考えられているが、電池容量の低下
や、削り落とした際に発生する粉末の処理が問題とな
る。
Such a problem may occur in all non-aqueous electrolyte batteries, but particularly in the field of lithium ion batteries widely used as a power source for small electronic devices, urgent countermeasures are required. It is rare. In order to solve such a problem, Japanese Unexamined Patent Publication No. 9-298057 discloses that a surface of an electrode plate is partially compressed to form a groove, and an electrolytic solution is circulated in the groove. However, due to the higher energy density of the battery, the electrode plate is filled closer to the limit, and further compression force applied by this method causes damage to the electrode plate. This is even more so in batteries that use thin plates such as lithium-ion batteries. Further, in order to form the groove, it is considered to scrape off a part of the active material layer of the electrode plate to form the groove, but the battery capacity is reduced, and the treatment of powder generated when scraping is performed. Is a problem.

【0005】本発明はこのような課題に鑑みてなされた
ものであって、その目的は、従来より短時間で外装缶内
に豊富な電解液を注液することが可能であり、良好な電
池性能の発揮が期待できる非水電解液電池を提供するこ
とにある。
The present invention has been made in view of the above problems, and an object thereof is to be able to inject abundant electrolytic solution into an outer can in a shorter time than in the conventional case and to obtain a good battery. It is to provide a non-aqueous electrolyte battery that can be expected to exhibit its performance.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、セパレータを介して正極板と負極板を重
ね合わせてなる電極体を、電解液とともに外装体に収納
してなる非水電解液電池において、セパレータを介して
正極と負極を重ね合わせてなる電極体を、電解液ととも
に外装体に収納してなる密閉型電池において、前記セパ
レータ、正極板、負極板の少なくとも一つには、幅方向
の端部から中央部にかけて電解液が流通する撓みが形成
されているものとした。
In order to solve the above-mentioned problems, the present invention is a non-consolidated case in which an electrode body formed by stacking a positive electrode plate and a negative electrode plate via a separator is housed in an outer package together with an electrolytic solution. In a water electrolyte battery, an electrode body formed by stacking a positive electrode and a negative electrode via a separator, in a sealed battery formed by accommodating in an outer package together with an electrolytic solution, in at least one of the separator, the positive electrode plate and the negative electrode plate. In the above, a bend in which the electrolytic solution flows is formed from the end portion in the width direction to the central portion.

【0007】この構成によれば、正極、セパレータ、負
極の少なくともいずれかに形成された撓みが電極体内部
に前記セパレータ、正極板、負極板の少なくとも一つ微
小通路を形成する。このため、外装体に収納した電極体
に電解液を注入する際には、この前記セパレータ、正極
板、負極板の少なくとも一つ微小通路を電解液が流通
し、迅速に電極活物質のすみずみにまで浸透し、結果と
して豊富な量の電解液が外装体内に注入されることとな
る。したがって、従来のように電解液を電極体に染み込
ませる工程を何度も繰り返す必要がなくなる。このよう
なことから本発明では、非常に簡単な構成でありながら
電解液の注入工程にかかる時間が従来に比べて飛躍的に
短時間で済み、作業効率が向上するので、製造工程が減
少するといった効果が奏される。
According to this structure, the bending formed in at least one of the positive electrode, the separator, and the negative electrode forms at least one minute passage of the separator, the positive electrode plate, and the negative electrode plate inside the electrode body. Therefore, when injecting the electrolytic solution into the electrode body housed in the exterior body, the electrolytic solution circulates through at least one minute passage of the separator, the positive electrode plate, and the negative electrode plate, and the electrode active material is swiftly absorbed. As a result, abundant amount of electrolyte is injected into the outer casing. Therefore, there is no need to repeat the step of impregnating the electrode body with the electrolytic solution many times as in the conventional case. Therefore, in the present invention, the time required for the step of injecting the electrolyte solution is significantly shorter than that of the conventional one, although the structure is very simple, and the work efficiency is improved, so that the number of manufacturing steps is reduced. Such an effect is produced.

【0008】また、本発明では、上記のように発電要素
以外のものを用いることなく電極、セパレータの表面自
体を微小に加工するものであるため、電池のエネルギー
密度の低下を招くおそれもない。前記流通路は、具体的
には前記セパレータ、正極、負極の少なくとも一つの表
面を加工して、溝(撓み)として形成することができ
る。この加工により活物質量をそのまま維持しながら、
極板を破損することなく溝を形成できる利点がある。こ
の溝は、発明者らの実験により、深さが1μm以上1mm以
下の範囲が望ましいことが分かっている。
Further, in the present invention, since the surfaces of the electrodes and the separators are finely processed without using anything other than the power generating element as described above, there is no fear of lowering the energy density of the battery. Specifically, the flow passage can be formed as a groove (flexure) by processing at least one surface of the separator, the positive electrode, and the negative electrode. By this processing, while maintaining the amount of active material as it is,
There is an advantage that the groove can be formed without damaging the electrode plate. According to experiments conducted by the inventors, it has been found that the groove preferably has a depth of 1 μm or more and 1 mm or less.

【0009】ただし深さが1μm程度の場合は、詳細を
後述するように、溝の本数を増やすことが望ましい。ま
た本発明は、一般的にどのような形の外装体の非水電解
液電池においても適用できるが、前記電極体を渦巻き状
に巻き取り、これを円筒型外装缶に収納するタイプのよ
うに、電極体を比較的強い巻回力で捲回するものにおい
て、特に効果が大きい。
However, when the depth is about 1 μm, it is desirable to increase the number of grooves as described later in detail. Further, the present invention can be generally applied to a non-aqueous electrolyte battery having an outer package of any shape. However, as in a type in which the electrode body is wound in a spiral shape and is housed in a cylindrical outer can. The effect is particularly large in the case where the electrode body is wound with a relatively strong winding force.

【0010】[0010]

【発明の実施の形態】1.実施の形態1 1-1.リチウムイオン電池の構成 図1は、本発明の一適用例である円筒型リチウムイオン
電池の断面斜視図である。
BEST MODE FOR CARRYING OUT THE INVENTION 1. First Embodiment 1-1. Configuration of Lithium Ion Battery FIG. 1 is a sectional perspective view of a cylindrical lithium ion battery as an application example of the present invention.

【0011】当該リチウムイオン電池(直径18mm、高さ
65mm)は、円筒型外装缶6を有しており、これに正極1と
負極2がセパレータ3を介して渦巻き状に巻かれてなる電
極体4と、当該電極体4に含浸された電解液等が収納され
た構成を持つ。電解液には非水電解液が用いられるが、
ここでは一例としてEC(エチレンカーボネート)とEMC
(エチルメチルカーボネート)の混合溶媒にLiPF6(六
フッ化リン酸リチウム)を電解質として溶解させた電解
液を用いている。
The lithium ion battery (diameter 18 mm, height
65 mm) has a cylindrical outer can 6, an electrode body 4 in which a positive electrode 1 and a negative electrode 2 are spirally wound around a separator 3, and an electrolytic solution impregnated in the electrode body 4. It has a configuration in which etc. are stored. A non-aqueous electrolyte is used as the electrolyte,
Here, as an example, EC (ethylene carbonate) and EMC
An electrolytic solution is used in which LiPF 6 (lithium hexafluorophosphate) is dissolved as an electrolyte in a mixed solvent of (ethyl methyl carbonate).

【0012】正極1は、アルミニウム製の帯状芯体表面
に、正極活物質であるコバルト酸リチウムLiCoO2を主体
として、導電剤(カーボンブラック)と結着剤(ポリフ
ッ化ビニリデン)を混合した正極合剤を塗布してなるも
のであって、正極集電体11に接続されている。負極2
は、銅製の帯状芯体表面に、黒鉛を主体とする負極活物
質と、結着剤を混合した負極合剤を塗布してなり、負極
集電体(不図示)によって、負極端子を兼ねる円筒外装
缶6の内底面に接続されている。
The positive electrode 1 is a positive electrode composite in which a conductive material (carbon black) and a binder (polyvinylidene fluoride) are mainly mixed with lithium cobalt oxide LiCoO 2 which is a positive electrode active material on the surface of a strip-shaped core made of aluminum. It is formed by applying an agent and is connected to the positive electrode current collector 11. Negative electrode 2
Is a cylinder that doubles as a negative electrode terminal by applying a negative electrode mixture that is a mixture of a negative electrode active material mainly composed of graphite and a binder to the surface of a copper strip-shaped core, and a negative electrode current collector (not shown). It is connected to the inner bottom surface of the outer can 6.

【0013】セパレータ3は、ポリエチレン製の微多孔
膜であって、正極1と負極2の絶縁に用いられる。電極体
4の中心には、電極体4の変形防止および異常状態(火中
に投下されるなど)に発生するガス流通路確保のために
センターピン5が配されている。外装缶6に収められた電
極体4の上には押さえ板7が配置され、この押さえ板7の
中央開口部を通して正極集電体11が配置される。正極集
電体11は、ラプチャディスク(薄膜弁板)8と正極端子1
0に接続されている。
The separator 3 is a microporous polyethylene film and is used for insulating the positive electrode 1 and the negative electrode 2. Electrode body
A center pin 5 is arranged at the center of 4 to prevent deformation of the electrode body 4 and to secure a gas flow passage that is generated in an abnormal state (such as being dropped in a fire). A pressing plate 7 is arranged on the electrode body 4 housed in the outer can 6, and a positive electrode current collector 11 is arranged through the central opening of the pressing plate 7. The positive electrode current collector 11 includes a rupture disk (thin film valve plate) 8 and a positive electrode terminal 1.
Connected to 0.

【0014】このような構成の電池1では、充放電時に
次の反応が起こる。すなわち、充電時には正極1におい
て、正極活物質であるコバルト酸リチウムの結晶格子中
のコバルトが酸化され、これとともにリチウムイオンが
放出される。放出されたリチウムイオンは、電解液を含
浸したセパレータ3を通って、負極側へ移動する。負極
側では、リチウムイオンは黒鉛の結晶格子中に取り込ま
れる。
In the battery 1 having such a structure, the following reactions occur during charging and discharging. That is, at the time of charging, in the positive electrode 1, cobalt in the crystal lattice of lithium cobalt oxide, which is the positive electrode active material, is oxidized, and along with this, lithium ions are released. The released lithium ions move to the negative electrode side through the separator 3 impregnated with the electrolytic solution. On the negative electrode side, lithium ions are incorporated into the graphite crystal lattice.

【0015】そして放電時においては、この充電時とは
逆の反応が起こって、電気エネルギーを外部へ取り出す
ことができる。ここにおいて本実施の形態1は、正極1の
構造に特徴を有している。図2は、正極の部分斜視図で
ある。当図に示されるように、本実施の形態1における
正極1は、その表面に、幅方向端部から中央部にかけ
て、正極の幅方向に平行に、複数の半月状の溝(撓み)
1aが一定間隔をおいて併設されている。当該溝1aは、一
例として、極板厚み方向の深さが300μm、幅が1mmであ
り、正極1の幅方向にわたって4mmピッチで形成されてい
る。
At the time of discharging, a reaction opposite to that at the time of charging occurs, and electric energy can be taken out to the outside. Here, the first embodiment is characterized by the structure of the positive electrode 1. FIG. 2 is a partial perspective view of the positive electrode. As shown in the figure, the positive electrode 1 according to the first embodiment has a plurality of half-moon shaped grooves (flexures) formed on its surface in parallel with the width direction of the positive electrode from the end in the width direction to the center.
1a is installed side by side at regular intervals. As an example, the groove 1a has a depth of 300 μm in the thickness direction of the electrode plate and a width of 1 mm, and is formed at a pitch of 4 mm in the width direction of the positive electrode 1.

【0016】このような正極1の溝1aは、電極体4が成形
されたのち、セパレータ3との間に微小通路を形成す
る。この前記セパレータ、正極板、負極板の少なくとも
一つ微小通路は、電池作製時に、電極の活物質中に電解
液を迅速且つ良好に浸透させる(特に電極体中心付近に
おいて浸透させる)ものである。なお、図1における正
極1は、説明上の理由から溝のサイズを実際よりも大き
くしている。
The groove 1a of the positive electrode 1 forms a minute passage with the separator 3 after the electrode body 4 is molded. At least one minute passage of the separator, the positive electrode plate, and the negative electrode plate allows the electrolytic solution to quickly and satisfactorily penetrate into the active material of the electrode (particularly near the center of the electrode body) when the battery is manufactured. Note that the positive electrode 1 in FIG. 1 has a groove size larger than the actual size for reasons of explanation.

【0017】1-2.実施の形態の効果 一般に、電池の作製工程では、正極、セパレータ、負極
を重ねてなる電極体を外装体(外装缶)に収納したの
ち、外装缶内に電解液を注入する。注入された電解液
は、主に電極体の上下端面から中央部に染み込んでいく
が、この染み込みには長時間を要する。近年では、非水
電解液電池では高エネルギー密度を実現するために、外
装体容積に対して電極体が占める体積の割合(活物質の
密度)を高めるといった工夫がなされている。したがっ
て、このような電極体を外装缶に入れると、外装缶内部
に残されるスペースはほとんど無いので、電解液の注入
が従来にも増して非常に困難になる。
1-2. Effects of Embodiments In general, in a battery manufacturing process, an electrode body in which a positive electrode, a separator and a negative electrode are stacked is housed in an outer casing (outer can), and then an electrolytic solution is placed in the outer can. inject. The injected electrolytic solution mainly permeates from the upper and lower end surfaces of the electrode body to the central portion, but this impregnation requires a long time. In recent years, in non-aqueous electrolyte batteries, in order to achieve a high energy density, an attempt has been made to increase the volume ratio (active material density) of the electrode body to the volume of the outer package. Therefore, when such an electrode body is put into an outer can, there is almost no space left inside the outer can, and it becomes very difficult to inject the electrolytic solution more than ever before.

【0018】電解液の注入方法としては、電解液を徐々
に注入していく注入工程を繰り返す方法の他、遠心力で
外装缶を回しながら、外装缶内を減圧して電解液を電極
体に吸い込ませるといった方法があるが、前者は時間が
長時間かかり、後者は手間がかかる。このような問題に
対し、本実施の形態1では、正極1の表面に複数の微小な
溝1aが形成されているため、正極1、セパレータ3、負極
2を巻き回して電極体4とし、これを外装缶6に収納する
と、前記溝1aが、正極1とセパレータ3の間における微小
通路となる。この微小通路の縞は、電極体4の端面に開
口しているので、電極体4を収納した外装缶6内に電解液
を注入すると、前記微小通路の開口部から電解液が電極
体4の内部深くまで迅速に入ってゆき、正極1、負極2の
活物質のすみずみにわたって浸透する。これにより、短
時間で電解液を電極体4に染み込ませることが可能とな
り、豊富な電解液を外装缶6内に注入できる。本実施の
形態1では、溝1aが電極幅方向にわたって形成されてい
るので、特に電極体4の中心付近において、良好に電極
の活物質に電解液を浸透させることができる。
As a method for injecting the electrolytic solution, other than the method of repeating the injecting step of gradually injecting the electrolytic solution, the internal can is decompressed while the external can is rotated by centrifugal force and the electrolytic solution is applied to the electrode body. There is a method of sucking it in, but the former takes a long time and the latter takes time. In order to solve such a problem, in Embodiment 1, since a plurality of minute grooves 1a are formed on the surface of the positive electrode 1, the positive electrode 1, the separator 3 and the negative electrode are formed.
When the electrode body 4 is wound by winding 2 and is housed in the outer can 6, the groove 1a becomes a minute passage between the positive electrode 1 and the separator 3. Since the stripes of the minute passages are open to the end surface of the electrode body 4, when the electrolytic solution is injected into the outer can 6 accommodating the electrode body 4, the electrolytic solution of the electrode body 4 flows from the opening of the minute passage. It rapidly penetrates deep inside and penetrates the active material of the positive electrode 1 and the negative electrode 2 all the way. This allows the electrolytic solution to soak into the electrode body 4 in a short time, and abundant electrolytic solution can be injected into the outer can 6. In Embodiment 1, since groove 1a is formed in the electrode width direction, the electrolytic solution can be satisfactorily permeated into the electrode active material particularly near the center of electrode body 4.

【0019】また、電極の活物質層を削り取ったり、圧
縮することで溝を形成する方法では、1本の溝に対して
はその溝1本分の電解液流通の効果しかないが、本実施
の形態では、図5の電極体部分断面図に示すように、電
極体巻回時に撓み近傍が撓んで巻回されるため、1本の
撓みに対して数本分の電解液流通経路が形成され、より
迅速な電解液含浸が可能になるという効果を奏する。
Further, in the method of forming the groove by scraping or compressing the active material layer of the electrode, there is only the effect of flowing the electrolytic solution for the one groove for one groove, but this embodiment In the embodiment, as shown in the electrode body partial cross-sectional view of FIG. 5, when the electrode body is wound, the vicinity of the bend is bent and wound, so that several bends of the electrolyte flow path are formed for one bend. Therefore, it is possible to more rapidly impregnate the electrolytic solution.

【0020】なお、特願平11-228728には、電極とセパ
レータの間に糸状もしくは板状部材を挿入して、これに
よって電極体内部に間隙を形成し、外装缶内部を減圧し
つつ前記間隙に電解液を注入する方法が開示されている
が、このように発電要素以外の部材を外装缶に入れる
と、その分エネルギー密度が低下するものと考えられ
る。一方、本発明では電解液の流通路の確保のために正
極、セパレータ、負極の少なくとも何れかの表面を押圧
することによって直接溝を形成する構成のため、エネル
ギー密度の低下は基本的に低下しない。
In Japanese Patent Application No. 11-228728, a thread-shaped or plate-shaped member is inserted between the electrode and the separator to form a gap inside the electrode body, and the gap is formed while decompressing the inside of the outer can. Although a method of injecting an electrolytic solution is disclosed in, the energy density is considered to be reduced by that much when a member other than the power generating element is put in the outer can. On the other hand, in the present invention, in order to secure the flow passage of the electrolytic solution, since the groove is directly formed by pressing at least one surface of the positive electrode, the separator, and the negative electrode, the decrease in energy density is basically not decreased. .

【0021】2.実施例 2-1.実施例と比較例の性能比較実験 次に、実施例の電池を作製し、性能測定実験を行った。
正極の作製にあたっては、長さ600mm、幅55mm、厚さ20
μmのアルミニウム箔からなる導電芯体の表面に、コバ
ルト酸リチウムを主体とし、その他導電剤として黒鉛
と、結着剤としてポリフッ化ビニリデンを含む正極合剤
スラリー(溶剤はN-メチル-2-ピロリドン)を塗布す
る。こののち溶剤を乾燥揮発させ、厚さ165μmにプレ
スして極板を作製する。
2. Example 2-1. Performance Comparison Experiment of Example and Comparative Example Next, a battery of the example was prepared and a performance measurement experiment was conducted.
When manufacturing the positive electrode, length 600 mm, width 55 mm, thickness 20
A positive electrode mixture slurry containing lithium cobalt oxide as a main component, graphite as a conductive agent, and polyvinylidene fluoride as a binder on the surface of a conductive core made of an aluminum foil of μm (solvent is N-methyl-2-pyrrolidone). ) Is applied. After that, the solvent is dried and volatilized, and pressed to a thickness of 165 μm to prepare an electrode plate.

【0022】そして、この極板表面に、図3の工程図に
示すように凸部付きローラを用いて溝(撓み)を形成す
る。溝の形状およびピッチは、ローラの凸部の形状およ
びピッチを変更することで自由に設定することが可能で
ある。この工程において、正極長さ200mm当たり0本以上
110本以内の間で変化させた。また、溝の深さを0μm〜
1500μmの間で変化させた。溝を形成しない正極は、従
来例に相当する。なお溝の深さは、巻回された状態の電
極体の深さであり、X線CT装置(例えば日鉄エレックス
社製マイクロフォーカス3DX線CT装置ELESCANなど)で断
面を透視して確認した。
Then, a groove (flexure) is formed on the surface of the electrode plate by using a roller with a convex portion as shown in the process diagram of FIG. The shape and pitch of the groove can be freely set by changing the shape and pitch of the convex portion of the roller. In this process, 0 or more per 200 mm of positive electrode length
It was changed within 110 lines. In addition, the groove depth is from 0 μm
It was changed between 1500 μm. The positive electrode having no groove corresponds to the conventional example. The depth of the groove is the depth of the electrode body in a wound state, and it was confirmed by seeing through the cross section with an X-ray CT apparatus (for example, Micro Focus 3D X-ray CT apparatus ELESCAN manufactured by Nittetsu Ellex Co., Ltd.).

【0023】このように作製した正極を用い、セパレー
タ、負極を順に重ねて電極体を形成し、円筒型外装缶に
収納した。電解液には、EC(エチレンカーボネート)と
EMC(エチルメチルカーボネート)を体積比でEC:EMC=3
0:70で混合した混合溶媒に、LiPF6(六フッ化リン酸リ
チウム)を電解質として溶解させた溶液を用いた。これ
により、設計容量1800mAhの円筒型リチウムイオン電池
(直径18mm、高さ65mm)を作製した。
Using the positive electrode thus produced, a separator and a negative electrode were sequentially stacked to form an electrode assembly, which was then housed in a cylindrical outer can. EC (ethylene carbonate) and
Volume ratio of EMC (ethyl methyl carbonate) EC: EMC = 3
A solution prepared by dissolving LiPF 6 (lithium hexafluorophosphate) as an electrolyte in a mixed solvent mixed at 0:70 was used. As a result, a cylindrical lithium-ion battery (diameter 18 mm, height 65 mm) with a designed capacity of 1800 mAh was produced.

【0024】次に、上記作製した円筒型リチウムイオン
電池を、室温にて、充電電流1800mAで電池電圧が4.2Vに
なるまで定電流充電を行い、4.2Vで充電電流値が36mAに
なるまで低電圧充電を行った。その後電池を解体して、
負極表面に析出したLiの量を観察した。また、電極体の
電解液の含浸しやすさを評価するために、ビーカーにプ
ロピレンカーボネート(PC)を注ぎ、その中に電極体の
みを5分間浸した後に引き上げ、含浸前後の質量差をも
って電解液が含浸した量(吸液量)とした。
Next, the cylindrical lithium-ion battery prepared above is charged at a constant current at room temperature with a charging current of 1800 mA until the battery voltage reaches 4.2 V, and is reduced to 4.2 mA at a charging current value of 36 mA. Voltage charging was performed. Then disassemble the battery,
The amount of Li deposited on the negative electrode surface was observed. In order to evaluate the ease of impregnation of the electrode body with the electrolytic solution, pour propylene carbonate (PC) into a beaker, immerse only the electrode body in the beaker for 5 minutes, and then pull up the electrolytic solution with the mass difference before and after impregnation. Was taken as the amount impregnated with (absorption amount).

【0025】これらの作製した電池について、電極体に
電解液が含浸した量(吸液量)と、正極表面のLi析出量
に関するデータを表1に示す。
Table 1 shows the data regarding the amount (absorption amount) of the electrolytic solution impregnated in the electrode body and the amount of Li deposited on the surface of the positive electrode of these manufactured batteries.

【0026】[0026]

【表1】 【table 1】

【0027】2-2.実験結果の考察 当図から明らかなように、従来の正極(撓み0本)の電
解液の吸液量が3.0gであるのに対し、溝(撓み)本数が
1本/200mm〜5本/200mmの場合、撓み深さが3μm以上で
あれば、電解液の吸液量は3.2g以上で保たれる。また、
溝(撓み)本数が10本/200mm〜100本/200mmの場合は、
撓み深さが1μm以上であれば、電解液の吸液量は少な
くとも3.1g以上で保たれる。
2-2. Consideration of Experimental Results As is apparent from this figure, while the amount of electrolyte absorption of the conventional positive electrode (0 flexure) is 3.0 g, the number of grooves (flexure) is
In the case of 1 piece / 200 mm to 5 pieces / 200 mm, if the bending depth is 3 μm or more, the amount of electrolyte absorbed is kept at 3.2 g or more. Also,
When the number of grooves (flexure) is 10 / 200mm-100 / 200mm,
When the bending depth is 1 μm or more, the amount of electrolyte absorbed is kept at least 3.1 g or more.

【0028】このように、従来の正極の電解液の吸液量
に対し、本発明のように溝(撓み)を設けることによっ
て、優れた電解液の吸液量が確保されることが分かる。
一方、上記正極の溝(撓み)が1本/200mm〜100本/200mm
の本数範囲であれば、Li析出量も少量または無しといっ
た優れた性能が呈される。ただし、撓み深さが1500μm
に達すると、Li析出量が増えるという結果が得られた。
これは、正極と負極の間で電極反応のバランスが崩れ、
ここでLiが析出しやすくなるためであると考えられる。
As described above, it can be seen that by providing the groove (bending) as in the present invention with respect to the conventional liquid absorption amount of the electrolytic solution of the positive electrode, an excellent liquid absorption amount of the electrolytic solution is secured.
On the other hand, the groove (deflection) of the positive electrode is 1 / 200mm to 100 / 200mm
In the range of the number of, the excellent performance such as a small amount of Li precipitation or no Li precipitation is exhibited. However, the bending depth is 1500 μm
As a result, the Li precipitation amount increased.
This is because the balance of the electrode reaction between the positive electrode and the negative electrode is lost,
It is considered that Li is likely to precipitate here.

【0029】一般にリチウムイオン電池においては、電
池を満充電すると、正極から脱離したLiイオンが負極の
活物質中へインサートする。ここで、正極や負極に何ら
かの不具合があると(例えば負極が過度に圧縮された
り、電解液の含浸が不足している等があると)、Liイオ
ンが負極中の活物質へインサートしにくくなり、負極表
面にLiデンドライト(樹枝状析出物)が生じることにな
る。このLiデンドライトが発生すると、その析出部分に
相当する活物質が失活してしまい、電極性能(電池性
能)の損失を招く。また、負極のLiデンドライトがセパ
レータを突き破り、正極とショートする可能性もある。
したがって、正極表面におけるLi析出量は、少ないほど
電極性能(電池性能)が優れていると言える。
Generally, in a lithium ion battery, when the battery is fully charged, Li ions desorbed from the positive electrode are inserted into the active material of the negative electrode. Here, if the positive electrode or the negative electrode has some trouble (for example, the negative electrode is excessively compressed or the impregnation of the electrolyte is insufficient), it becomes difficult for Li ions to insert into the active material in the negative electrode. , Li dendrite (dendritic deposit) is generated on the surface of the negative electrode. When this Li dendrite is generated, the active material corresponding to the deposited portion is deactivated, resulting in a loss of electrode performance (battery performance). In addition, the Li dendrite of the negative electrode may break through the separator and short-circuit with the positive electrode.
Therefore, it can be said that the smaller the amount of Li deposited on the surface of the positive electrode, the better the electrode performance (battery performance).

【0030】このようなことから、Liデンドライトの析
出を回避するために、撓み深さとしては、正極表面のLi
析出量が少量以下である1μm以上1000μm(1mm)以内
の範囲が好適と言える。このうち1μmの撓みを形成す
る場合には、撓みが比較的浅いので、これを補うために
撓み本数を10本/200mm〜100本/200mmの高い密度にし、
電解液の流通路を良好に確保するのが望ましい。
From the above, in order to avoid the precipitation of Li dendrite, the bending depth is set to Li on the positive electrode surface.
It can be said that a range of 1 μm or more and 1000 μm (1 mm) or less, which is a small amount or less, is suitable. When forming 1 μm of the flexure, the flexure is relatively shallow, so the number of flexures is set to a high density of 10/200 mm to 100/200 mm to compensate for this.
It is desirable to ensure a good flow passage for the electrolyte.

【0031】なお、撓み本数が100本/200mmなど高密度
の場合、撓みの深さによっては、電極体を外装体に収納
するのが若干困難になる場合があるので考慮が必要であ
る。 3.その他の事項 上記実施の形態では、正極表面に溝を形成する例を示し
たが、当然ながら本発明はこれに限定するものではな
く、正極、負極、セパレータの少なくともいずれかの表
面に形成すればよい。このうち、電極体として形成され
たのちに、重なり合うものにそれぞれ溝を形成する場合
には、溝が互いに重なり合って前記セパレータ、正極
板、負極板の少なくとも一つ微小通路が無くならないよ
うに注意する必要がある。具体的には、例えば正極とセ
パレータのそれぞれに形成する溝のピッチを変える方法
が挙げられる。
It should be noted that when the number of flexures is high such as 100/200 mm, it may be difficult to store the electrode body in the exterior body depending on the depth of flexure. 3. Other Matters In the above embodiment, an example in which a groove is formed on the surface of the positive electrode has been shown, but naturally the present invention is not limited to this, and it is formed on at least one surface of the positive electrode, the negative electrode and the separator. do it. Of these, when forming a groove in each of the overlapping parts after being formed as an electrode body, be careful that the grooves do not overlap each other and at least one minute passage of the separator, the positive electrode plate and the negative electrode plate is not lost. There is a need. Specifically, for example, there is a method of changing the pitch of the grooves formed in each of the positive electrode and the separator.

【0032】また、上記実施の形態では、溝の形態とし
て半月断面形状のものとしたが、本発明はこれに限定す
るものではなく、三角断面形状、直方断面形状など、他
の形状であってもよい。ここで、図4(a)〜(c)は、
溝の形態バリエーションを示す正極正面図である。
Further, in the above embodiment, the groove has a half-moon shape, but the present invention is not limited to this, and other shapes such as a triangular shape and a rectangular shape may be used. Good. Here, FIGS. 4 (a) to 4 (c) are
It is a positive electrode front view which shows the form variation of a groove.

【0033】当図(a)では、複数本のまとまった溝の
列(ここでは3列)が、一定間隔おきに繰り返し形成さ
れているパターンを示している。当図(b)では、電極
表面中央部に達する短い溝が、電極幅方向両端から形成
されているパターンを示している。当図(c)では、複
数本のまとまった溝の列(ここでは3列)が、一定間隔
おきに、電極幅方向に沿って斜めに形成されているパタ
ーンを示している。
FIG. 3A shows a pattern in which a row of a plurality of cohesive grooves (here, three rows) is repeatedly formed at regular intervals. In this figure (b), a short groove reaching the central portion of the electrode surface is formed from both ends in the electrode width direction. FIG. 3C shows a pattern in which a plurality of rows of grooves (here, three rows) are obliquely formed at regular intervals along the electrode width direction.

【0034】このいずれの溝の形態バリエーションによ
っても、上記実施の形態とほぼ同様の効果が奏される
が、電極幅方向端部から、電極表面中央部に溝が達して
いると、電極体を外装缶に収納後、電解液の注液の際
に、迅速に電解液が電極体中の活物質に浸透するので望
ましい。また、本発明は円筒型外装缶に限らず、角形外
装缶など、他のタイプの外装缶(外装体)を持つ非水電
解液電池に適用してもよい。
The same effect as in the above-described embodiment can be obtained by any of these groove variations, but if the groove reaches from the end portion in the electrode width direction to the center portion of the electrode surface, the electrode body is It is desirable that the electrolytic solution quickly penetrates into the active material in the electrode body when the electrolytic solution is injected after being housed in the outer can. Further, the present invention is not limited to the cylindrical outer can and may be applied to a non-aqueous electrolyte battery having another type of outer can (exterior body) such as a rectangular outer can.

【0035】[0035]

【発明の効果】以上のことから明らかなように、本発明
は、セパレータを介して正極板と負極板を重ね合わせて
なる電極体を、電解液とともに外装体に収納してなる非
水電解液電池において、セパレータを介して正極と負極
を重ね合わせてなる電極体を、電解液とともに外装体に
収納してなる密閉型電池において、前記セパレータ、正
極板、負極板の少なくとも一つには、幅方向の端部から
中央部にかけて電解液が流通する溝が形成されているの
で、電極体を収納した外装缶内に電解液を注入すると、
前記溝を流通路として電解液が電極体内部に迅速に入
り、正極、負極の活物質全体にわたって浸透する。した
がって、従来より飛躍的に短時間で電解液を電極体に染
み込ませることが可能となり、豊富な電解液を外装缶内
に注入できるため、高い電池性能の発揮が実現される。
As is apparent from the above, the present invention is a nonaqueous electrolytic solution in which an electrode body formed by stacking a positive electrode plate and a negative electrode plate with a separator interposed therebetween is housed in an outer package together with an electrolytic solution. In a battery, an electrode body formed by stacking a positive electrode and a negative electrode via a separator, in a sealed battery that is housed in an outer package together with an electrolytic solution, wherein at least one of the separator, the positive electrode plate, and the negative electrode plate has a width. Since a groove through which the electrolytic solution flows from the end portion to the central portion in the direction is formed, when the electrolytic solution is injected into the outer can containing the electrode body,
The electrolytic solution quickly enters the inside of the electrode body using the groove as a flow path and permeates the entire active material of the positive electrode and the negative electrode. Therefore, the electrolytic solution can be impregnated into the electrode body in a significantly shorter time than in the conventional case, and abundant electrolytic solution can be injected into the outer can, so that high battery performance is realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態1における円筒型リチウムイ
オン電池の断面斜視図である。
FIG. 1 is a sectional perspective view of a cylindrical lithium ion battery according to a first embodiment of the present invention.

【図2】正極の部分断面斜視図である。FIG. 2 is a partial cross-sectional perspective view of a positive electrode.

【図3】正極の製造工程を示す図である。FIG. 3 is a diagram showing a manufacturing process of a positive electrode.

【図4】正極のバリエーションを示す図である。FIG. 4 is a diagram showing variations of a positive electrode.

【図5】電極体の部分断面図である。FIG. 5 is a partial cross-sectional view of an electrode body.

【符号の説明】[Explanation of symbols]

1 正極 1a 溝(撓み) 2 負極 3 セパレータ 4 電極体 6 外装缶 1 Positive electrode 1a groove (deflection) 2 Negative electrode 3 separator 4 electrode body 6 outer can

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山中 友和 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 沖 雪尋 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H011 AA03 AA09 KK01 5H021 AA01 BB04 CC09 HH03 HH10 5H029 AJ01 AJ14 AK03 AL07 AM03 AM05 AM07 CJ03 EJ04 EJ12 HJ04 HJ12 5H050 AA01 AA19 BA17 CA08 CB08 FA15 GA03 HA04    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Tomokazu Yamanaka             2-5-3 Keihan Hondori, Moriguchi City, Osaka Prefecture             Within Yo Denki Co., Ltd. (72) Inventor Yukihiro Oki             2-5-3 Keihan Hondori, Moriguchi City, Osaka Prefecture             Within Yo Denki Co., Ltd. F-term (reference) 5H011 AA03 AA09 KK01                 5H021 AA01 BB04 CC09 HH03 HH10                 5H029 AJ01 AJ14 AK03 AL07 AM03                       AM05 AM07 CJ03 EJ04 EJ12                       HJ04 HJ12                 5H050 AA01 AA19 BA17 CA08 CB08                       FA15 GA03 HA04

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 セパレータを介して正極板と負極板を重
ね合わせてなる電極体を、電解液とともに外装体に収納
してなる非水電解液電池において、 セパレータを介して正極と負極を重ね合わせてなる電極
体を、電解液とともに外装体に収納してなる非水電解液
電池において、 前記セパレータ、正極板、負極板の少なくとも一つに
は、幅方向の端部から中央部にかけて電解液が流通する
撓みが形成されていることを特徴とする非水電解液電
池。
1. A non-aqueous electrolyte battery in which an electrode body obtained by stacking a positive electrode plate and a negative electrode plate with a separator interposed between the positive electrode plate and the negative electrode plate is housed in an outer package together with an electrolytic solution. In a non-aqueous electrolyte battery in which an electrode body made of the same is housed in an outer package together with an electrolytic solution, at least one of the separator, the positive electrode plate, and the negative electrode plate has an electrolytic solution from the end portion in the width direction to the central portion. A non-aqueous electrolyte battery, characterized in that it has a flexure that flows.
【請求項2】 前記電解液が流通する撓みは、前記セパ
レータ、正極、負極の少なくとも一つを厚み方向に曲げ
加工をして形成された撓みであることを特徴とする請求
項1に記載の非水電解液電池。
2. The flexure through which the electrolytic solution flows is a flexure formed by bending at least one of the separator, the positive electrode, and the negative electrode in the thickness direction. Non-aqueous electrolyte battery.
【請求項3】 渦巻き状の前記電極体が円筒型外装缶の
前記外装体に収納されていることを特徴とする請求項1
または2に記載の非水電解液電池。
3. The spirally wound electrode body is housed in the outer casing of a cylindrical outer can.
Alternatively, the non-aqueous electrolyte battery described in 2.
【請求項4】 前記撓みは1μm以上1mm以下の厚み方向深
さで形成されていることを特徴とする請求項1〜3のいず
れかに記載の非水電解液電池。
4. The non-aqueous electrolyte battery according to claim 1, wherein the bending is formed with a depth in a thickness direction of 1 μm or more and 1 mm or less.
JP2001398603A 2001-12-27 2001-12-27 Non-aqueous electrolyte battery Expired - Fee Related JP4179778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001398603A JP4179778B2 (en) 2001-12-27 2001-12-27 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001398603A JP4179778B2 (en) 2001-12-27 2001-12-27 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2003197265A true JP2003197265A (en) 2003-07-11
JP4179778B2 JP4179778B2 (en) 2008-11-12

Family

ID=27603958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001398603A Expired - Fee Related JP4179778B2 (en) 2001-12-27 2001-12-27 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP4179778B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285607A (en) * 2004-03-30 2005-10-13 Matsushita Electric Ind Co Ltd Nonaqueous secondary battery and manufacturing method thereof
JP2007141622A (en) * 2005-11-17 2007-06-07 Sumitomo Electric Ind Ltd Positive electrode for thin film battery and thin film battery
US7960050B2 (en) 2006-10-30 2011-06-14 Panasonic Corporation Secondary cell and its manufacturing method
JP2011204593A (en) * 2010-03-26 2011-10-13 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
WO2012139553A3 (en) * 2011-04-14 2012-12-20 Karlsruher Institut für Technologie On improvements in electrolyte batteries
WO2013084806A1 (en) * 2011-12-05 2013-06-13 日産自動車株式会社 Air battery and battery assembly using same
CN107230765A (en) * 2016-03-24 2017-10-03 三菱制纸株式会社 Lithium ion battery separator
CN107591569A (en) * 2017-10-10 2018-01-16 合肥国轩高科动力能源有限公司 Method for improving wetting property of cylindrical lithium titanate battery
WO2020184502A1 (en) * 2019-03-08 2020-09-17 積水化学工業株式会社 Non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery
JP2022077787A (en) * 2020-11-12 2022-05-24 プライムアースEvエナジー株式会社 Secondary battery
WO2023130902A1 (en) * 2022-01-05 2023-07-13 宁德时代新能源科技股份有限公司 Winding type electrode assembly, battery cell, battery and electric device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06333550A (en) * 1993-05-19 1994-12-02 Toshiba Corp Nonaqueous electrolytic battery
JPH09298057A (en) * 1996-04-30 1997-11-18 Sanyo Electric Co Ltd Lithium ion battery
WO1998048466A1 (en) * 1997-04-23 1998-10-29 Japan Storage Battery Co., Ltd. Electrode and battery
JPH11154508A (en) * 1997-11-19 1999-06-08 Toshiba Corp Nonaqueous electrolyte battery
JP2001023612A (en) * 1999-07-09 2001-01-26 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2001035484A (en) * 1999-05-19 2001-02-09 Nec Corp Nonaqueous electrolyte secondary battery
JP2001176558A (en) * 1999-12-20 2001-06-29 Toshiba Corp Non-aqueous electrolyte secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06333550A (en) * 1993-05-19 1994-12-02 Toshiba Corp Nonaqueous electrolytic battery
JPH09298057A (en) * 1996-04-30 1997-11-18 Sanyo Electric Co Ltd Lithium ion battery
WO1998048466A1 (en) * 1997-04-23 1998-10-29 Japan Storage Battery Co., Ltd. Electrode and battery
JPH11154508A (en) * 1997-11-19 1999-06-08 Toshiba Corp Nonaqueous electrolyte battery
JP2001035484A (en) * 1999-05-19 2001-02-09 Nec Corp Nonaqueous electrolyte secondary battery
JP2001023612A (en) * 1999-07-09 2001-01-26 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2001176558A (en) * 1999-12-20 2001-06-29 Toshiba Corp Non-aqueous electrolyte secondary battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285607A (en) * 2004-03-30 2005-10-13 Matsushita Electric Ind Co Ltd Nonaqueous secondary battery and manufacturing method thereof
JP2007141622A (en) * 2005-11-17 2007-06-07 Sumitomo Electric Ind Ltd Positive electrode for thin film battery and thin film battery
US7960050B2 (en) 2006-10-30 2011-06-14 Panasonic Corporation Secondary cell and its manufacturing method
JP2011204593A (en) * 2010-03-26 2011-10-13 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
WO2012139553A3 (en) * 2011-04-14 2012-12-20 Karlsruher Institut für Technologie On improvements in electrolyte batteries
US9337462B2 (en) 2011-04-14 2016-05-10 Karlsruher Institut Fur Technologie (Kit) Electrolyte batteries
JPWO2013084806A1 (en) * 2011-12-05 2015-04-27 日産自動車株式会社 Air battery and battery pack using the same
WO2013084806A1 (en) * 2011-12-05 2013-06-13 日産自動車株式会社 Air battery and battery assembly using same
CN107230765A (en) * 2016-03-24 2017-10-03 三菱制纸株式会社 Lithium ion battery separator
CN107591569A (en) * 2017-10-10 2018-01-16 合肥国轩高科动力能源有限公司 Method for improving wetting property of cylindrical lithium titanate battery
WO2020184502A1 (en) * 2019-03-08 2020-09-17 積水化学工業株式会社 Non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery
JP2022077787A (en) * 2020-11-12 2022-05-24 プライムアースEvエナジー株式会社 Secondary battery
JP7280232B2 (en) 2020-11-12 2023-05-23 プライムアースEvエナジー株式会社 secondary battery
WO2023130902A1 (en) * 2022-01-05 2023-07-13 宁德时代新能源科技股份有限公司 Winding type electrode assembly, battery cell, battery and electric device

Also Published As

Publication number Publication date
JP4179778B2 (en) 2008-11-12

Similar Documents

Publication Publication Date Title
KR100742109B1 (en) Nonaqueous-electrolyte secondary battery and method of manufacturing the same
KR100624971B1 (en) Electrode Plate of Secondary Battery and Method of fabricating the same
JP5046352B2 (en) Method for producing lithium ion secondary battery
CN100502140C (en) Battery
JP2006156365A (en) Lithium secondary battery
JP5541957B2 (en) Multilayer secondary battery
JP2007273183A (en) Negative electrode and secondary battery
JP2011171107A (en) Lithium ion battery and method for manufacturing the same
JP2003151535A (en) Electrochemical device
JP2006260864A (en) Manufacturing method of lithium secondary battery
JP5110619B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof.
JP2002245998A (en) Battery pack and battery
JP4179778B2 (en) Non-aqueous electrolyte battery
JPH06181069A (en) Nonaqueous electrolyte secondary battery
JP2017139107A5 (en)
JP2006278184A (en) Square battery and its manufacturing method
JP5000080B2 (en) Battery with spiral electrode group
JP2009158335A (en) Negative pole plate for non-aqueous electrolyte secondary cell, manufacturing method therefor, and non-aqueous electrolyte secondary cell
JP2005310577A (en) Coin type secondary battery
JP4361445B2 (en) Lithium secondary battery
JP2008243704A (en) Cylindrical type nonaqueous electrolyte battery
JP2023523740A (en) Lithium ion secondary electrochemical cell
JPH0855637A (en) Nonaqueous electrolytic secondary battery
JP2010010144A (en) Flat nonaqueous electrolyte secondary battery
JP2010021043A (en) Separator, manufacturing method of separator and battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080826

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees