JP5571758B2 - Flat fuel cell stack - Google Patents

Flat fuel cell stack Download PDF

Info

Publication number
JP5571758B2
JP5571758B2 JP2012270350A JP2012270350A JP5571758B2 JP 5571758 B2 JP5571758 B2 JP 5571758B2 JP 2012270350 A JP2012270350 A JP 2012270350A JP 2012270350 A JP2012270350 A JP 2012270350A JP 5571758 B2 JP5571758 B2 JP 5571758B2
Authority
JP
Japan
Prior art keywords
plate
gas supply
gas
fuel cell
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012270350A
Other languages
Japanese (ja)
Other versions
JP2014116225A (en
Inventor
琴絵 水木
克也 林
敏 杉田
吉晃 吉田
真悟 峯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2012270350A priority Critical patent/JP5571758B2/en
Publication of JP2014116225A publication Critical patent/JP2014116225A/en
Application granted granted Critical
Publication of JP5571758B2 publication Critical patent/JP5571758B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、平板型の燃料電池セルと燃料電池セルを収容する収容部材とからなる単スタックを複数積層した平板型燃料電池スタックに関するものである。   The present invention relates to a flat plate type fuel cell stack in which a plurality of single stacks each composed of a flat plate type fuel cell and a housing member that houses the fuel cell are stacked.

スタック化した燃料電池では、燃料供給流路と空気供給流路にオリフィスを形成することにより、燃料の分配を均一化させる設計となっている。オリフィスの加工精度はガスの分配性能とスタック出力に大きく影響を及ぼすため、精度よく作製する必要がある(特許文献1、非特許文献1参照)。   The stacked fuel cell is designed to make the fuel distribution uniform by forming orifices in the fuel supply passage and the air supply passage. Since the processing accuracy of the orifice greatly affects the gas distribution performance and the stack output, it must be manufactured with high accuracy (see Patent Document 1 and Non-Patent Document 1).

特開2008−117736号公報JP 2008-117736 A

M.Yokoo,K.Mizuki,K.Watanabe,K.Hayashi,“Development of a high power density 2.5kW class solid oxide fuel cell stack”,Journal of Power Sources 196,2011,p.7937-7944M.Yokoo, K.Mizuki, K.Watanabe, K.Hayashi, “Development of a high power density 2.5kW class solid oxide fuel cell stack”, Journal of Power Sources 196, 2011, p.7937-7944

従来の燃料電池の燃料供給流路および空気供給流路の形成方法としては、セパレータとなる板状の部材にエッチング加工により溝を形成する方法があった。しかしながら、このような形成方法では、加工精度のよいエッチング加工を用いると、加工費用が増加するという問題点があった。また、加工精度を低くすると、流路の断面積がセル毎に異なることにより、ガスの各セルへの分配が不均一になり、燃料電池スタックの性能が低下するという問題点があった。   As a conventional method for forming a fuel supply channel and an air supply channel of a fuel cell, there has been a method of forming a groove by etching in a plate-like member serving as a separator. However, such a forming method has a problem that the processing cost increases when an etching process with a high processing accuracy is used. In addition, when the processing accuracy is lowered, the cross-sectional area of the flow path varies from cell to cell, resulting in a non-uniform distribution of gas to each cell, resulting in a decrease in fuel cell stack performance.

本発明は、上記課題を解決するためになされたもので、ガス分配の均一性の向上と加工費用の低減とを両立させることができる平板型燃料電池スタックを提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a flat plate fuel cell stack capable of achieving both improvement in uniformity of gas distribution and reduction in processing cost.

本発明は、平板型の燃料電池セルとこの燃料電池セルを収容する収容部材とからなる単スタックを複数積層した平板型燃料電池スタックにおいて、前記燃料電池セルは、電極として燃料極と空気極とを有し、前記燃料極と空気極のうち支持電極でない電極側に配置される第1の前記収容部材は、前記燃料電池セルの支持電極でない電極と対向するように配置される第1の板状部材と、前記支持電極でない電極と対向する面と反対側の前記第1の板状部材の面に積層される第2の板状部材と、前記第1の板状部材と反対側の前記第2の板状部材の面に積層されるガス混合防止板となる第3の板状部材とを含み、前記燃料極と空気極のうち支持電極側に配置される第2の前記収容部材は、前記燃料電池セルの支持電極と対向するように配置される第4の板状部材と、前記支持電極と対向する面と反対側の前記第4の板状部材の面に積層される第5の板状部材と、前記支持電極と対向する前記第4の板状部材の面に積層される第6の板状部材とを含み、前記第1の板状部材は、端部に形成されたマニホルドを構成する貫通穴と、前記第1の板状部材を貫通するように中心部に形成されたガス供給穴とを有し、前記第2の板状部材は、端部に形成されたマニホルドを構成する貫通穴と、ガス供給用の1つの前記マニホルドと連通する位置から前記第1の板状部材のガス供給穴と連通する位置まで前記第2の板状部材を貫通するように形成されたガス供給用の複数のスリットと、前記第2の板状部材と一体で前記複数のスリットの長手方向に沿って各スリットの間を分けるように設けられた梁とを有し、前記第3の板状部材は、端部に形成されたマニホルドを構成する貫通穴を有し、前記第4の板状部材は、端部に形成されたマニホルドを構成する貫通穴と、前記第4の板状部材を貫通するように中心部に形成されたガス供給穴とを有し、前記第5の板状部材は、端部に形成されたマニホルドを構成する貫通穴と、ガス供給用の前記マニホルドと連通する位置から前記第4の板状部材のガス供給穴と連通する位置まで前記第5の板状部材を貫通するように形成されたガス供給用のスリットとを有し、前記第6の板状部材は、端部に形成されたマニホルドを構成する貫通穴と、中央部に形成された燃料電池セル収納用の貫通穴とを有し、前記第2の板状部材の上下に前記第3の板状部材と前記第1の板状部材とを密着させることにより、この第2の板状部材の複数のスリットを前記支持電極でない電極に単一のガスを供給するガス供給流路として構成し、前記第5の板状部材の上下に前記第4の板状部材と他の単スタックの第1の収容部材とを密着させることにより、この第5の板状部材のスリットを前記支持電極にガスを供給するガス供給流路として構成することを特徴とするものである。 The present invention relates to a flat plate fuel cell stack in which a plurality of single stacks each composed of a flat plate fuel cell and a housing member that accommodates the fuel cell are stacked. The fuel cell includes a fuel electrode and an air electrode as electrodes. A first plate that is disposed on an electrode side that is not a support electrode of the fuel electrode and the air electrode, and is disposed so as to face an electrode that is not a support electrode of the fuel cell. A second plate member laminated on the surface of the first plate member opposite to the surface facing the electrode that is not the support electrode, and the second plate member opposite to the first plate member A second plate-like member disposed on the support electrode side of the fuel electrode and the air electrode. , Arranged to face the support electrode of the fuel cell 4 plate-like members, a fifth plate-like member laminated on the surface of the fourth plate-like member opposite to the surface facing the support electrode, and the fourth plate facing the support electrode And a sixth plate member laminated on the surface of the member, the first plate member penetrating through the first plate member and a through hole forming a manifold formed at an end. The second plate-shaped member communicates with a through-hole forming a manifold formed at the end and one manifold for gas supply. A plurality of gas supply slits formed so as to penetrate the second plate member from a position to communicate with a gas supply hole of the first plate member; and the second plate member And a beam provided so as to separate each slit along the longitudinal direction of the plurality of slits The third plate member has a through hole forming a manifold formed at the end, and the fourth plate member has a through hole forming a manifold formed at the end. And a gas supply hole formed in the central portion so as to penetrate the fourth plate-shaped member, and the fifth plate-shaped member includes a through-hole constituting a manifold formed in the end portion. A gas supply slit formed so as to penetrate the fifth plate member from a position communicating with the gas supply manifold to a position communicating with the gas supply hole of the fourth plate member. The sixth plate-like member has a through-hole constituting a manifold formed at an end portion, and a through-hole for housing a fuel cell formed at a central portion, and the second plate By bringing the third plate-like member and the first plate-like member into close contact with each other above and below the shape member, The plurality of slits of the second plate member are configured as gas supply passages for supplying a single gas to the electrode that is not the support electrode, and the fourth plate member is disposed above and below the fifth plate member. And a slit of the fifth plate-like member is configured as a gas supply flow path for supplying gas to the support electrode by closely contacting the first accommodating member of the other single stack. is there.

また、本発明の平板型燃料電池スタックの1構成例において、前記第の板状部材は、前記燃料電池セルの支持電極よりも外側の位置に前記第の板状部材を貫通するように形成された2つのガス回収穴をさらに有し、前記第の板状部材は、前記ガス回収穴と連通する位置からガス回収用の前記マニホルドと連通する位置まで前記第の板状部材を貫通するように形成されたガス回収用の2本のスリットをさらに有し、前記2つのガス回収穴から回収したガスをそれぞれ別のガス回収用のマニホルドに導くことを特徴とするものである。
また、本発明の平板型燃料電池スタックの1構成例において、前記第の板状部材は、前記燃料電池セルの支持電極よりも外側の位置に前記第の板状部材を貫通するように形成された2つのガス回収穴をさらに有し、前記第の板状部材は、前記ガス回収穴と連通する位置からガス回収用の前記マニホルドと連通する位置まで前記第の板状部材を貫通するように形成されたガス回収用の2本のスリットをさらに有し、前記2つのガス回収穴から回収したガスを共通のガス回収用のマニホルドに導くことを特徴とするものである。
また、本発明の平板型燃料電池スタックの1構成例において、前記第5の板状部材は、ガス供給用の1つの前記マニホルドと連通する位置から前記第4の板状部材のガス供給穴と連通する位置まで前記第5の板状部材を貫通するように形成された前記ガス供給用のスリットを複数有し、さらにこの複数のスリットの長手方向に沿って各スリットの間を分けるように前記第5の板状部材と一体で設けられた梁を有し、前記第5の板状部材の上下に前記第4の板状部材と他の単スタックの第1の収容部材とを密着させることにより、この第5の板状部材の複数のスリットを前記支持電極に単一のガスを供給するガス供給流路として構成することを特徴とするものである。
Additionally, in an example of flat type fuel cell stack of the present invention, the fourth plate-like member, so as to penetrate the fourth plate-shaped member at a position outside the supporting electrode of the fuel cell further comprising a formed two gas recovery holes are, the fifth plate member, said fifth plate member to a position where the manifold communicating with the gas recovered from a position communicating with the gas recovery holes Two slits for gas recovery formed so as to penetrate therethrough are further provided, and the gases recovered from the two gas recovery holes are respectively guided to different gas recovery manifolds.
Additionally, in an example of flat type fuel cell stack of the present invention, the fourth plate-like member, so as to penetrate the fourth plate-shaped member at a position outside the supporting electrode of the fuel cell further comprising a formed two gas recovery holes are, the fifth plate member, said fifth plate member to a position where the manifold communicating with the gas recovered from a position communicating with the gas recovery holes Two slits for gas recovery formed so as to penetrate are further provided, and the gas recovered from the two gas recovery holes is guided to a common gas recovery manifold.
Further, in one configuration example of the flat plate fuel cell stack of the present invention, the fifth plate-shaped member includes a gas supply hole of the fourth plate-shaped member from a position communicating with one manifold for gas supply. A plurality of the gas supply slits formed so as to penetrate the fifth plate-like member to the communicating position, and further, the slits are divided along the longitudinal direction of the plurality of slits; A beam provided integrally with the fifth plate-like member, and the fourth plate-like member and the other single stack first receiving member are brought into close contact with each other above and below the fifth plate-like member Thus, the plurality of slits of the fifth plate-like member are configured as gas supply passages for supplying a single gas to the support electrode.

本発明によれば、スリット(ガス供給流路)の高さが加工精度によらず第2の板状部材の厚さにより決定されるので、セル毎のガス供給流路の断面積の差を小さくすることが可能となり、またガス供給流路の加工方法として安価な打ち抜き加工を利用することができるので、加工精度の高いガス供給流路を安価に形成することが可能となり、各燃料電池セルへのガス分配の均一性の向上と加工費用の低減とを両立させることができる。   According to the present invention, since the height of the slit (gas supply flow path) is determined by the thickness of the second plate-like member regardless of the processing accuracy, the difference in the cross-sectional area of the gas supply flow path for each cell is determined. It is possible to reduce the size of the gas supply flow path, and an inexpensive punching process can be used as a processing method for the gas supply flow path. Therefore, it is possible to form a gas supply flow path with high processing accuracy at a low cost. It is possible to achieve both improvement in uniformity of gas distribution and reduction in processing cost.

また、本発明では、第2の板状部材と一体の梁をスリットの長手方向に沿って設けて各スリットを分離するようにしたことにより、平板型燃料電池スタックに荷重が掛けられたときに、スリット(ガス供給流路)の上下の板が撓んでガス供給流路の内部に押し出されることを防止することができ、ガス供給流路の寸法精度を担保することが可能となる。   Further, in the present invention, when a load is applied to the flat plate fuel cell stack, a beam integral with the second plate member is provided along the longitudinal direction of the slit to separate each slit. In addition, it is possible to prevent the upper and lower plates of the slit (gas supply flow path) from being bent and pushed out into the gas supply flow path, and to ensure the dimensional accuracy of the gas supply flow path.

本発明の第1の実施の形態に係る平板型燃料電池スタックの構成を示す分解斜視図である。1 is an exploded perspective view showing a configuration of a flat plate fuel cell stack according to a first embodiment of the present invention. 本発明の第2の実施の形態に係る平板型燃料電池スタックの構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the flat fuel cell stack which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る平板型燃料電池スタックの構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the flat fuel cell stack which concerns on the 3rd Embodiment of this invention.

[発明の原理]
本発明では、燃料電池セルの燃料極または空気極にガスを供給するガス供給流路を打ち抜き加工可能な3枚の金属板で構成することにより、ガス分配の均一性の向上と加工費用の低減とを両立させる。
[Principle of the Invention]
In the present invention, the gas supply flow path for supplying gas to the fuel electrode or the air electrode of the fuel cell is composed of three metal plates that can be punched, thereby improving the uniformity of gas distribution and reducing the processing cost. Both.

[第1の実施の形態]
以下、本発明の実施の形態について図面を参照して説明する。図1は本発明の第1の実施の形態に係る平板型燃料電池スタックの構成を示す分解斜視図である。本実施の形態の平板型燃料電池スタック1は、平面視円形の平板型の燃料電池セル2と、燃料電池セル2を収容する収容部材とを備え、これらを1組として複数組重ねて設けた構造を有する。燃料電池セル2は、空気極と呼ばれる陽極と燃料極と呼ばれる陰極とで電解質の層を挟んだ構造を有する。燃料電池セル2には、燃料極によって機械的強度を担保する燃料極支持型や空気極によって機械的強度を担保する空気極支持型などが存在する。
[First Embodiment]
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an exploded perspective view showing the configuration of a flat plate fuel cell stack according to the first embodiment of the present invention. The flat plate type fuel cell stack 1 according to the present embodiment includes a flat plate type fuel cell 2 having a circular shape in plan view, and a housing member that houses the fuel cell 2, and a plurality of these are provided as a set. It has a structure. The fuel cell 2 has a structure in which an electrolyte layer is sandwiched between an anode called an air electrode and a cathode called a fuel electrode. The fuel cell 2 includes a fuel electrode support type in which mechanical strength is ensured by the fuel electrode and an air electrode support type in which mechanical strength is ensured by the air electrode.

燃料電池セル2は、支持電極側の収容部材と支持電極と反対側の収容部材とによって挟まれるようにして収容部材の中に収容される。なお、これら収容部材の少なくとも一部は、各燃料電池セル2の燃料極側に供給される燃料と空気極側に供給される空気とが混合しない状態で各燃料電池セル2を電気的に接続するセパレータとしての機能を有する。   The fuel cell 2 is housed in the housing member so as to be sandwiched between the housing member on the support electrode side and the housing member on the opposite side of the support electrode. At least a part of these housing members are electrically connected to each fuel cell 2 in a state where the fuel supplied to the fuel electrode side of each fuel cell 2 and the air supplied to the air electrode are not mixed. It functions as a separator.

本実施の形態では、燃料電池セル2を収容する収容部材のうち、支持電極と反対側(図1の上側)の収容部材のみについて説明する。支持電極側の収容部材については後述する。燃料電池セル2が燃料極支持型の場合、燃料極が支持電極なので、支持電極と反対側の収容部材は、空気極と対向する収容部材となる。また、燃料電池セル2が空気極支持型の場合、空気極が支持電極なので、支持電極と反対側の収容部材は、燃料極と対向する収容部材となる。   In the present embodiment, only the housing member opposite to the support electrode (upper side in FIG. 1) among the housing members that house the fuel cells 2 will be described. The accommodating member on the support electrode side will be described later. When the fuel cell 2 is a fuel electrode support type, since the fuel electrode is a support electrode, the storage member on the side opposite to the support electrode is a storage member facing the air electrode. When the fuel cell 2 is an air electrode support type, since the air electrode is a support electrode, the storage member on the side opposite to the support electrode is a storage member facing the fuel electrode.

図1に示すように、支持電極と反対側の収容部材は、金属からなる平面視矩形の平板型のガス混合防止板3(第3の板状部材)と、支持電極と反対側の電極にガスを供給するガス供給流路6(スリット)が形成された、金属からなる平面視矩形の平板型のガス供給流路板4(第2の板状部材)と、支持電極と反対側の電極にガスを供給するガス供給穴8が中心部に設けられた、金属からなる平面視矩形の平板型のガス供給穴板5(第1の板状部材)とから構成される。これらの板は、燃料電池セル2の支持電極と反対側の電極上に、ガス供給穴板5、ガス供給流路板4、ガス混合防止板3の順に積層される。   As shown in FIG. 1, the accommodating member on the opposite side to the support electrode is a flat plate gas mixing prevention plate 3 (third plate-like member) made of metal and having a rectangular shape in plan view, and an electrode opposite to the support electrode. A flat plate-shaped gas supply channel plate 4 (second plate member) made of metal and having a gas supply channel 6 (slit) for supplying gas, and an electrode opposite to the support electrode A gas supply hole 8 (first plate member) having a rectangular shape in a plan view made of metal and having a gas supply hole 8 for supplying gas to the center is formed. These plates are laminated on the electrode opposite to the supporting electrode of the fuel cell 2 in the order of the gas supply hole plate 5, the gas supply flow path plate 4, and the gas mixing prevention plate 3.

ガス混合防止板3とガス供給流路板4とガス供給穴板5の各々の四隅には、電極にガスを供給したりガスを回収したりするためのマニホルドを構成する貫通穴9a,9b,9c,9dが形成されている。また、ガス供給流路板4には、ガス供給用のマニホルドを構成する貫通穴9dと連通する位置から後述するガス供給穴8と連通する中心部の位置まで、ガス供給流路板4を貫通するガス供給流路6が形成されている。ガス供給穴板5には、スタックの積層時にガス供給流路6と連通する中心部の位置にガス供給穴8が形成されている。これらのガス供給流路6、ガス供給穴8および貫通穴9a,9b,9c,9dは、打ち抜き加工によって予め形成されている。   At the four corners of each of the gas mixing prevention plate 3, the gas supply passage plate 4, and the gas supply hole plate 5, through holes 9a, 9b, which constitute manifolds for supplying gas to the electrode and collecting the gas, 9c and 9d are formed. Further, the gas supply flow path plate 4 passes through the gas supply flow path plate 4 from a position communicating with a through hole 9d constituting a gas supply manifold to a central position communicating with a gas supply hole 8 described later. A gas supply flow path 6 is formed. A gas supply hole 8 is formed in the gas supply hole plate 5 at a central position where the gas supply hole plate 5 communicates with the gas supply flow path 6 during stacking. These gas supply passage 6, gas supply hole 8, and through holes 9a, 9b, 9c, 9d are formed in advance by punching.

1枚のセルを用いた平板型燃料電池の組み立て手順を簡単に説明すると、後述する支持電極側の収容部材を組み立てた後に、この支持電極側の収容部材の上に、支持電極が下になるようにして燃料電池セル2を搭載し、この燃料電池セル2の上にガス供給穴板5、ガス供給流路板4、ガス混合防止板3を順に積層する。これらの板の積層によって各板に形成された貫通穴9a,9b,9c,9dが連結され、収容部材の四隅にマニホルドが形成されることになる。また、ガス供給流路6は、ガス混合防止板3とガス供給穴板5とによって挟まれることになる。こうして、平板型燃料電池の単スタックの組み立てが完了する。高い発電出力を得るためには、単スタックを例えば10ユニットから40ユニット積層すればよい。   The assembly procedure of a flat plate fuel cell using a single cell will be briefly described. After assembling a supporting electrode side accommodating member described later, the supporting electrode is placed on the supporting electrode side accommodating member. In this way, the fuel cell 2 is mounted, and the gas supply hole plate 5, the gas supply flow path plate 4, and the gas mixing prevention plate 3 are sequentially stacked on the fuel cell 2. Through holes 9a, 9b, 9c, and 9d formed in each plate are connected by stacking these plates, and manifolds are formed at the four corners of the housing member. Further, the gas supply channel 6 is sandwiched between the gas mixing prevention plate 3 and the gas supply hole plate 5. Thus, the assembly of a single stack of flat plate fuel cells is completed. In order to obtain a high power generation output, a single stack may be stacked, for example, 10 to 40 units.

平板型燃料電池スタックの組み立て後、800℃程度の高温下で金属板同士を拡散接合して気密性を確保する。なお、本実施の形態では、支持電極と反対側の電極の上にガス供給穴板5を直接搭載しているが、これに限るものではなく、支持電極と反対側の電極と、ガス供給穴板5との間に、耐熱網や多孔質金属、波打ち板などの凹凸を有する導電性の板を挿入してもよい。   After assembling the flat plate fuel cell stack, the metal plates are diffusion-bonded at a high temperature of about 800 ° C. to ensure airtightness. In this embodiment, the gas supply hole plate 5 is directly mounted on the electrode opposite to the support electrode. However, the present invention is not limited to this, and the electrode on the opposite side of the support electrode and the gas supply hole are not limited thereto. A conductive plate having irregularities such as a heat-resistant net, a porous metal, and a corrugated plate may be inserted between the plate 5 and the plate 5.

次に、支持電極と反対側のガスの流れについて簡単に説明する。燃料または空気のいずれかであるガスは、ガス供給用のマニホルドを構成する貫通穴9dからガス供給流路6を通ってガス供給穴板5のガス供給穴8に供給され、ガス供給穴8から支持電極と反対側の電極に供給される。燃料電池セル2が燃料極支持型の場合、支持電極と反対側の電極(空気極)に供給されるガスは空気である。一方、燃料電池セル2が空気極支持型の場合、支持電極と反対側の電極(燃料極)に供給されるガスは燃料ガスである。   Next, the gas flow on the side opposite to the support electrode will be briefly described. The gas, which is either fuel or air, is supplied to the gas supply hole 8 of the gas supply hole plate 5 from the through hole 9d constituting the manifold for gas supply, through the gas supply flow path 6, and from the gas supply hole 8. It is supplied to the electrode opposite to the support electrode. When the fuel cell 2 is a fuel electrode support type, the gas supplied to the electrode (air electrode) opposite to the support electrode is air. On the other hand, when the fuel battery cell 2 is an air electrode support type, the gas supplied to the electrode (fuel electrode) opposite to the support electrode is a fuel gas.

燃料電池セル2が空気極支持型の場合、貫通穴9dは燃料供給用のマニホルドとなり、ガス供給流路6は燃料供給用の流路となる。この場合、ガス供給流路6は、燃料供給用のマニホルドを構成する貫通穴9dの断面積に対する当該ガス供給流路6の断面積の比率(以下、第1の比率という)が、0.015以上0.05以下、望ましくは0.015以上0.02以下に設定されている。なお、ガス供給流路6の断面積とは、当該流路におけるガスの流通方向(図1の例では手前から奥に向かう方向)に対して垂直方向の面積のことを意味する。また、マニホルドの断面積とは、当該マニホルドにおけるガスの流通方向(図1では上下方向)に対して垂直な方向の面積のことを意味する。第1の比率を0.015以上0.05以下、望ましくは0.015以上0.02以下に設定することにより、燃料の圧力損失を抑えつつ、各燃料電池セル2に燃料を均一に分配することが可能となり、結果として、平板型燃料電池スタックの性能を向上させることができる。   When the fuel cell 2 is an air electrode support type, the through hole 9d serves as a fuel supply manifold, and the gas supply flow path 6 serves as a fuel supply flow path. In this case, the ratio of the cross-sectional area of the gas supply flow path 6 to the cross-sectional area of the through-hole 9d constituting the fuel supply manifold (hereinafter referred to as the first ratio) is 0.015. It is set to 0.05 or more and desirably 0.015 or more and 0.02 or less. In addition, the cross-sectional area of the gas supply flow path 6 means an area perpendicular to the gas flow direction in the flow path (the direction from the near side to the back side in the example of FIG. 1). Moreover, the cross-sectional area of the manifold means an area in a direction perpendicular to the gas flow direction (vertical direction in FIG. 1) in the manifold. By setting the first ratio to 0.015 or more and 0.05 or less, preferably 0.015 or more and 0.02 or less, the fuel is uniformly distributed to each fuel cell 2 while suppressing the pressure loss of the fuel. As a result, the performance of the flat plate fuel cell stack can be improved.

一方、燃料電池セル2が燃料極支持型の場合、貫通穴9dは空気供給用のマニホルドとなり、ガス供給流路6は空気供給用の流路となる。この場合、ガス供給流路6は、空気供給用のマニホルドを構成する貫通穴9dの断面積に対する当該ガス供給流路6の断面積の比率(以下、第2の比率という)が、0.03以上0.10以下、望ましくは0.04以上0.06以下に設定されている。第2の比率を0.03以上0.10以下、望ましくは0.04以上0.06以下に設定することにより、空気の圧力損失を抑えつつ、各燃料電池セル2に空気を均一に分配することが可能となり、結果として、平板型燃料電池スタックの性能を向上させることができる。   On the other hand, when the fuel cell 2 is a fuel electrode support type, the through hole 9d serves as an air supply manifold, and the gas supply channel 6 serves as an air supply channel. In this case, the gas supply flow path 6 has a ratio of the cross-sectional area of the gas supply flow path 6 to the cross-sectional area of the through hole 9d constituting the manifold for air supply (hereinafter referred to as the second ratio) is 0.03. It is set to 0.10 or more and desirably 0.04 or more and 0.06 or less. By setting the second ratio to 0.03 or more and 0.10 or less, preferably 0.04 or more and 0.06 or less, air is uniformly distributed to each fuel cell 2 while suppressing air pressure loss. As a result, the performance of the flat plate fuel cell stack can be improved.

以上の第1の比率および第2の比率については、特許文献1に開示されている。本実施の形態では、燃料電池セル2が空気極支持型の場合、第1の比率が上記の範囲になるようにガス供給流路6の幅(ガスの流通方向に対して垂直方向の寸法)およびガス供給流路板4の厚さを適宜選定すればよい。また、燃料電池セル2が燃料極支持型の場合、第2の比率が上記の範囲になるようにガス供給流路6の幅およびガス供給流路板4の厚さを適宜選定すればよい。   The above first ratio and second ratio are disclosed in Patent Document 1. In the present embodiment, when the fuel cell 2 is an air electrode support type, the width of the gas supply channel 6 (dimension in the direction perpendicular to the gas flow direction) so that the first ratio falls within the above range. The thickness of the gas supply flow path plate 4 may be selected as appropriate. When the fuel cell 2 is a fuel electrode support type, the width of the gas supply flow path 6 and the thickness of the gas supply flow path plate 4 may be appropriately selected so that the second ratio is in the above range.

以上のように、本実施の形態では、ガス供給流路6の高さが加工精度によらずガス供給流路板4の厚さにより決定されるので、セル毎のガス供給流路6の断面積の差を小さくすることが可能となり、またガス供給流路6の加工方法として安価な打ち抜き加工を利用することができるので、加工精度の高いガス供給流路6を安価に形成することが可能となり、各燃料電池セル2へのガス分配の均一性の向上と加工費用の低減とを両立させることができる。   As described above, in the present embodiment, the height of the gas supply flow path 6 is determined by the thickness of the gas supply flow path plate 4 regardless of the processing accuracy. It becomes possible to reduce the difference in area, and an inexpensive punching process can be used as a processing method of the gas supply flow path 6, so that the gas supply flow path 6 with high processing accuracy can be formed at low cost. Thus, it is possible to achieve both improvement in the uniformity of gas distribution to each fuel cell 2 and reduction in processing costs.

なお、支持電極と反対側の電極に供給するガスの流量が大きく、ブロワの出力(すなわち圧力ヘッド)を下げたい場合には、ガス供給流路板4に形成するガス供給流路6の幅を大きくする方法が考えられる。このとき、幅10mm以上のガス供給流路6を設けたいときには、図1に示すようにガス供給流路6を複数に分割し、ガス供給流路板4と一体の梁7をガス供給流路6の長手方向(図1の例では手前から奥に向かう方向)に沿って設けて各供給流路6の間を分けるようにすればよい。このような梁7を設けることにより、燃料電池スタックに荷重が掛けられたときに、ガス供給流路6の上下のガス混合防止板3とガス供給穴板5とが撓んでガス供給流路6の内部に押し出されることを防止することができ、組立時のオリフィス(ガス供給流路6)の寸法精度を担保することが可能となる。   When the flow rate of the gas supplied to the electrode opposite to the support electrode is large and the output of the blower (that is, the pressure head) is desired to be lowered, the width of the gas supply flow path 6 formed in the gas supply flow path plate 4 is reduced. A method of increasing the size can be considered. At this time, when it is desired to provide the gas supply flow path 6 having a width of 10 mm or more, the gas supply flow path 6 is divided into a plurality of parts as shown in FIG. 6 may be provided along the longitudinal direction of 6 (in the example of FIG. 1, the direction from the front to the back) to divide the supply channels 6. By providing such a beam 7, when a load is applied to the fuel cell stack, the gas mixing prevention plate 3 and the gas supply hole plate 5 above and below the gas supply channel 6 bend and the gas supply channel 6. Can be prevented from being pushed out into the interior of the chamber, and the dimensional accuracy of the orifice (gas supply flow path 6) during assembly can be ensured.

ガス供給流路6の幅が10mm以下の場合は梁7を設ける必要はない。ガス供給流路6の幅の総計が10mmを超え、20mm未満の場合には、10mm以下の幅のガス供給流路6を2本形成して、この2本のガス供給流路6の間に1本の梁7を設けるようにすればよい。ガス供給流路6の幅の総計が20mm以上の場合には、梁7の本数を増やし、各ガス供給流路6の幅が10mmを超えないようにすればよい。梁7の最小幅は打ち抜き加工が可能な幅によって決まり、梁7の最大幅は要求されるガス供給流路6の幅によって決まる。   When the width of the gas supply channel 6 is 10 mm or less, it is not necessary to provide the beam 7. When the total width of the gas supply channels 6 exceeds 10 mm and is less than 20 mm, two gas supply channels 6 having a width of 10 mm or less are formed, and the two gas supply channels 6 are interposed between the two gas supply channels 6. One beam 7 may be provided. When the total width of the gas supply channels 6 is 20 mm or more, the number of beams 7 may be increased so that the width of each gas supply channel 6 does not exceed 10 mm. The minimum width of the beam 7 is determined by the width that can be punched, and the maximum width of the beam 7 is determined by the required width of the gas supply channel 6.

なお、図1では図示していないが、支持電極と反対側の電極からガスを回収する流路をガス供給流路6と同様にガス供給流路板4に形成してもよい。   Although not shown in FIG. 1, a flow path for collecting gas from the electrode opposite to the support electrode may be formed in the gas supply flow path plate 4 in the same manner as the gas supply flow path 6.

[第2の実施の形態]
次に、本発明の第2の実施の形態について説明する。図2は本発明の第2の実施の形態に係る平板型燃料電池スタックの構成を示す分解斜視図である。本実施の形態では、燃料電池セル2を収容する収容部材のうち、支持電極側(図2の下側)の収容部材のみについて説明する。支持電極と反対側の収容部材は第1の実施の形態で説明したとおりである。燃料電池セル2が燃料極支持型の場合、支持電極側の収容部材は、燃料極と対向する収容部材となる。また、燃料電池セル2が空気極支持型の場合、支持電極側の収容部材は、空気極と対向する収容部材となる。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. FIG. 2 is an exploded perspective view showing the structure of a flat plate fuel cell stack according to the second embodiment of the present invention. In the present embodiment, only the housing member on the support electrode side (the lower side in FIG. 2) among the housing members that house the fuel cells 2 will be described. The accommodating member on the side opposite to the support electrode is as described in the first embodiment. When the fuel cell 2 is a fuel electrode support type, the support member on the support electrode side is a storage member facing the fuel electrode. When the fuel cell 2 is an air electrode support type, the support member on the support electrode side is a storage member that faces the air electrode.

図2に示すように、支持電極側の収容部材は、金属からなる平面視矩形の平板型のセル収納板10(第4の板状部材)と、支持電極にガスを供給するガス供給穴14が中心部に設けられた、金属からなる平面視矩形の平板型のガス供給穴板11(第1の板状部材)と、支持電極にガスを供給するガス供給流路16(スリット)とガスを回収するガス回収流路17(スリット)とが形成された、金属からなる平面視矩形の平板型のガス供給・回収流路板12(第2の板状部材)とから構成される。これらの板は、ガス供給・回収流路板12、ガス供給穴板11、セル収納板10の順に積層される。   As shown in FIG. 2, the support member on the support electrode side is a planar cell storage plate 10 (fourth plate member) made of metal and having a rectangular shape in plan view, and a gas supply hole 14 for supplying gas to the support electrode. Is a flat plate-shaped gas supply hole plate 11 (first plate-like member) made of metal and provided in the center, a gas supply channel 16 (slit) for supplying gas to the support electrode, and gas The gas recovery channel 17 (slit) for recovering the gas is formed from a flat plate-shaped gas supply / recovery channel plate 12 (second plate member) made of metal and having a rectangular shape in plan view. These plates are laminated in the order of the gas supply / recovery flow path plate 12, the gas supply hole plate 11, and the cell storage plate 10.

支持電極と反対側の収容部材と同様に、セル収納板10とガス供給穴板11とガス供給・回収流路板12の各々の四隅には、マニホルドを構成する貫通穴9a,9b,9c,9dが形成されている。セル収納板10には、その中央部にセル収納用の例えば平面視円形の貫通穴13が形成されている。セル収納板10の厚さは、燃料電池セル2の厚さと同じか、燃料電池セル2よりも僅かに厚い程度に設定されている。ガス供給穴板11の上に燃料電池セル2を直接搭載する場合には、セル収納板10の厚さは燃料電池セル2と同じ厚さでよい。貫通穴13の径は、燃料電池セル2の外径よりも少し大きい寸法に設定されており、この貫通穴13の中に燃料電池セル2が配置される。   Similar to the housing member on the side opposite to the support electrode, through holes 9 a, 9 b, 9 c, which constitute a manifold, are provided at the four corners of the cell storage plate 10, the gas supply hole plate 11, and the gas supply / recovery flow path plate 12. 9d is formed. The cell storage plate 10 is formed with a through hole 13 having a circular shape in plan view, for example, for cell storage at the center thereof. The thickness of the cell storage plate 10 is set to be the same as the thickness of the fuel cell 2 or slightly thicker than the fuel cell 2. When the fuel cell 2 is directly mounted on the gas supply hole plate 11, the thickness of the cell storage plate 10 may be the same as that of the fuel cell 2. The diameter of the through hole 13 is set to be slightly larger than the outer diameter of the fuel cell 2, and the fuel cell 2 is disposed in the through hole 13.

ガス供給穴板11には、中心部の位置にガス供給穴14が形成され、スタックの積層時に貫通穴13と連通する位置にガス回収穴15が形成されている。ガス供給・回収流路板12には、ガス供給用のマニホルドを構成する貫通穴9bと連通する位置からガス供給穴14と連通する中心部の位置まで、ガス供給・回収流路板12を貫通するガス供給流路16が形成され、さらにガス回収用のマニホルドを構成する貫通穴9a,9cと連通する位置からガス回収穴15と連通する位置まで、ガス供給・回収流路板12を貫通するガス回収流路17が形成されている。これらの貫通穴9a,9b,9c,9d、貫通穴13、ガス供給穴14、ガス回収穴15、ガス供給流路16およびガス回収流路17は、打ち抜き加工によって予め形成されている。   In the gas supply hole plate 11, a gas supply hole 14 is formed at a central position, and a gas recovery hole 15 is formed at a position communicating with the through hole 13 when the stack is stacked. The gas supply / recovery flow path plate 12 penetrates the gas supply / recovery flow path plate 12 from a position communicating with the through hole 9b constituting the gas supply manifold to a central position communicating with the gas supply hole 14. Gas supply passage 16 is formed, and further passes through the gas supply / recovery passage plate 12 from a position communicating with the through holes 9a, 9c constituting the manifold for gas recovery to a position communicating with the gas recovery hole 15. A gas recovery channel 17 is formed. These through holes 9a, 9b, 9c and 9d, the through hole 13, the gas supply hole 14, the gas recovery hole 15, the gas supply channel 16 and the gas recovery channel 17 are formed in advance by punching.

1枚のセルを用いた平板型燃料電池の組み立て手順を簡単に説明すると、ガス供給・回収流路板12、ガス供給穴板11、セル収納板10の順に積層した後に、セル収納板10の貫通穴13の中に、支持電極が下になるようにして燃料電池セル2を収納し、この燃料電池セル2の上に第1の実施の形態で説明したガス供給穴板5、ガス供給流路板4、ガス混合防止板3を順に積層する。こうして、平板型燃料電池の単スタックの組み立てが完了する。第1の実施の形態で説明したとおり、高い発電出力を得るためには、単スタックを例えば10ユニットから40ユニット積層すればよい。この場合、ガス供給流路16およびガス回収流路17は、ガス供給穴板11と他の単スタックのガス混合防止板3とによって挟まれることになる。   The assembly procedure of the flat plate fuel cell using one cell will be briefly described. After the gas supply / recovery flow path plate 12, the gas supply hole plate 11, and the cell storage plate 10 are stacked in this order, the cell storage plate 10 The fuel cell 2 is accommodated in the through hole 13 with the support electrode facing down, and the gas supply hole plate 5 described in the first embodiment, the gas supply flow is provided on the fuel cell 2. The road plate 4 and the gas mixing prevention plate 3 are laminated in order. Thus, the assembly of a single stack of flat plate fuel cells is completed. As described in the first embodiment, in order to obtain a high power generation output, for example, 10 to 40 units may be stacked as a single stack. In this case, the gas supply channel 16 and the gas recovery channel 17 are sandwiched between the gas supply hole plate 11 and the other single stack gas mixing prevention plate 3.

平板型燃料電池スタックの組み立て後、800℃程度の高温下で金属板同士を拡散接合して気密性を確保する。なお、本実施の形態では、ガス供給穴板11の上に燃料電池セル2を直接搭載しているが、これに限るものではなく、燃料電池セル2の支持電極とガス供給穴板11との間に、耐熱網や多孔質金属、波打ち板などの凹凸を有する導電性の板を挿入してもよい。   After assembling the flat plate fuel cell stack, the metal plates are diffusion-bonded at a high temperature of about 800 ° C. to ensure airtightness. In the present embodiment, the fuel cell 2 is directly mounted on the gas supply hole plate 11, but the present invention is not limited to this, and the support electrode of the fuel cell 2 and the gas supply hole plate 11 A conductive plate having irregularities such as a heat-resistant net, a porous metal, and a corrugated plate may be inserted therebetween.

次に、支持電極側のガスの流れについて簡単に説明する。燃料または空気のいずれかであるガスは、ガス供給用のマニホルドを構成する貫通穴9bからガス供給流路16を通ってガス供給穴板11のガス供給穴14に供給され、ガス供給穴14から支持電極に供給される。そして、使用済みのガスは、ガス供給穴板11のガス回収穴15からガス供給・回収流路板12のガス回収流路17を通ってガス回収用のマニホルドを構成する貫通穴9a,9cに排出され、これらのマニホルドから外部に排出される。上記のとおり、貫通穴13の径は燃料電池セル2の外径よりも少し大きい寸法に設定されており、この貫通穴13の端部の位置、具体的には燃料電池セル2の外周部よりも僅かに外側の位置にガス回収穴15が設けられている。燃料電池セル2が燃料極支持型の場合、支持電極(燃料極)に供給されるガスは燃料ガスである。一方、燃料電池セル2が空気極支持型の場合、支持電極(空気極)に供給されるガスは空気である。   Next, the gas flow on the support electrode side will be briefly described. The gas, which is either fuel or air, is supplied to the gas supply hole 14 of the gas supply hole plate 11 from the through hole 9b constituting the gas supply manifold through the gas supply flow path 16, and from the gas supply hole 14. Supplied to the support electrode. The used gas passes from the gas recovery hole 15 of the gas supply hole plate 11 through the gas recovery flow path 17 of the gas supply / recovery flow path plate 12 to the through holes 9a, 9c constituting the manifold for gas recovery. Are discharged and discharged from these manifolds to the outside. As described above, the diameter of the through hole 13 is set to be slightly larger than the outer diameter of the fuel cell 2. More specifically, the position of the end of the through hole 13, specifically the outer periphery of the fuel cell 2. A gas recovery hole 15 is provided at a slightly outer position. When the fuel cell 2 is a fuel electrode support type, the gas supplied to the support electrode (fuel electrode) is a fuel gas. On the other hand, when the fuel cell 2 is an air electrode support type, the gas supplied to the support electrode (air electrode) is air.

燃料電池セル2が燃料極支持型の場合、貫通穴9bは燃料供給用のマニホルドとなり、ガス供給流路16は燃料供給用の流路となる。この場合、ガス供給流路16は、上記第1の比率が、0.015以上0.05以下、望ましくは0.015以上0.02以下に設定されている。一方、燃料電池セル2が空気極支持型の場合、貫通穴9bは空気供給用のマニホルドとなり、ガス供給流路16は空気供給用の流路となる。この場合、ガス供給流路16は、上記第2の比率が、0.03以上0.10以下、望ましくは0.04以上0.06以下に設定されている。   When the fuel cell 2 is a fuel electrode support type, the through hole 9b serves as a fuel supply manifold, and the gas supply channel 16 serves as a fuel supply channel. In this case, the first ratio of the gas supply channel 16 is set to 0.015 or more and 0.05 or less, desirably 0.015 or more and 0.02 or less. On the other hand, when the fuel cell 2 is an air electrode support type, the through hole 9b serves as an air supply manifold, and the gas supply channel 16 serves as an air supply channel. In this case, the second ratio of the gas supply channel 16 is set to 0.03 or more and 0.10 or less, and preferably 0.04 or more and 0.06 or less.

本実施の形態では、燃料電池セル2が燃料極支持型の場合、第1の比率が上記の範囲になるようにガス供給流路16の幅(ガスの流通方向に対して垂直方向の寸法)およびガス供給・回収流路板12の厚さを適宜選定すればよい。また、燃料電池セル2が空気極支持型の場合、第2の比率が上記の範囲になるようにガス供給流路16の幅およびガス供給・回収流路板12の厚さを適宜選定すればよい。   In the present embodiment, when the fuel cell 2 is a fuel electrode support type, the width of the gas supply channel 16 (dimension in the direction perpendicular to the gas flow direction) so that the first ratio falls within the above range. The thickness of the gas supply / recovery flow path plate 12 may be selected as appropriate. Further, when the fuel cell 2 is an air electrode support type, the width of the gas supply channel 16 and the thickness of the gas supply / recovery channel plate 12 are appropriately selected so that the second ratio is in the above range. Good.

以上のように、本実施の形態では、ガス供給流路16の高さが加工精度によらずガス供給・回収流路板12の厚さにより決定されるので、セル毎のガス供給流路16の断面積の差を小さくすることが可能となり、またガス供給流路16の加工方法として安価な打ち抜き加工を利用することができるので、加工精度の高いガス供給流路16を安価に形成することが可能となり、各燃料電池セル2へのガス分配の均一性の向上と加工費用の低減とを両立させることができる。   As described above, in the present embodiment, the height of the gas supply flow path 16 is determined by the thickness of the gas supply / recovery flow path plate 12 regardless of the processing accuracy. It is possible to reduce the difference in the cross-sectional area of the gas, and it is possible to use an inexpensive punching process as a processing method of the gas supply channel 16, so that the gas supply channel 16 with high processing accuracy can be formed at a low cost. Therefore, it is possible to achieve both improvement in the uniformity of gas distribution to each fuel cell 2 and reduction in processing costs.

なお、幅10mm以上のガス供給流路16を設けたいときには、第1の実施の形態と同様にガス供給流路16を複数に分割し、ガス供給・回収流路板12と一体の梁を各供給流路16の間に設けるようにすればよい。   When it is desired to provide the gas supply flow path 16 having a width of 10 mm or more, the gas supply flow path 16 is divided into a plurality of parts in the same manner as in the first embodiment, and beams integrated with the gas supply / recovery flow path plate 12 are provided. What is necessary is just to provide between the supply flow paths 16.

[第3の実施の形態]
次に、本発明の第3の実施の形態について説明する。図3は本発明の第3の実施の形態に係る平板型燃料電池スタックの構成を示す分解斜視図である。本実施の形態では、燃料電池セル2を収容する収容部材のうち、支持電極側(図3の下側)の収容部材のみについて説明する。支持電極と反対側の収容部材は第1の実施の形態で説明したとおりである。
[Third Embodiment]
Next, a third embodiment of the present invention will be described. FIG. 3 is an exploded perspective view showing the structure of a flat plate fuel cell stack according to the third embodiment of the present invention. In the present embodiment, only the housing member on the support electrode side (the lower side in FIG. 3) among the housing members that house the fuel cells 2 will be described. The accommodating member on the side opposite to the support electrode is as described in the first embodiment.

図2に示すように、支持電極側の収容部材は、セル収納板10と、ガス供給穴板11と、ガス供給流路16とガス回収流路17aとが形成された、金属からなる平面視矩形の平板型のガス供給・回収流路板12a(第2の板状部材)とから構成される。これらの板は、ガス供給・回収流路板12a、ガス供給穴板11、セル収納板10の順に積層される。   As shown in FIG. 2, the storage member on the support electrode side is a plan view made of metal in which a cell storage plate 10, a gas supply hole plate 11, a gas supply channel 16 and a gas recovery channel 17a are formed. The gas supply / recovery flow path plate 12a (second plate member) is a rectangular flat plate type. These plates are laminated in the order of the gas supply / recovery flow path plate 12a, the gas supply hole plate 11, and the cell storage plate 10.

セル収納板10とガス供給穴板11については第2の実施の形態で説明したとおりである。支持電極と反対側の収容部材と同様に、ガス供給・回収流路板12aの四隅には、マニホルドを構成する貫通穴9a,9b,9c,9dが形成されている。また、ガス供給・回収流路板12aには、ガス供給用のマニホルドを構成する貫通穴9bと連通する位置からガス供給穴14と連通する中心部の位置まで、ガス供給・回収流路板12aを貫通するガス供給流路16(スリット)が形成され、さらにガス回収用のマニホルドを構成する貫通穴9dと連通する位置からガス回収穴15と連通する位置まで、ガス供給・回収流路板12aを貫通するガス回収流路17a(スリット)が形成されている。これらの貫通穴9a,9b,9c,9d、ガス供給流路16およびガス回収流路17aは、打ち抜き加工によって予め形成されている。   The cell storage plate 10 and the gas supply hole plate 11 are as described in the second embodiment. Similar to the housing member on the side opposite to the support electrode, through holes 9a, 9b, 9c, and 9d constituting the manifold are formed at the four corners of the gas supply / recovery flow path plate 12a. Further, the gas supply / recovery flow path plate 12a has a gas supply / recovery flow path plate 12a from a position communicating with the through hole 9b constituting the gas supply manifold to a central position communicating with the gas supply hole 14. A gas supply / recovery flow path plate 12a is formed from a position communicating with the through hole 9d constituting the manifold for gas recovery to a position communicating with the gas recovery hole 15. A gas recovery flow path 17a (slit) penetrating therethrough is formed. These through holes 9a, 9b, 9c, 9d, the gas supply channel 16 and the gas recovery channel 17a are formed in advance by punching.

1枚のセルを用いた平板型燃料電池の組み立て手順を簡単に説明すると、ガス供給・回収流路板12a、ガス供給穴板11、セル収納板10の順に積層した後に、セル収納板10の貫通穴13の中に、支持電極が下になるようにして燃料電池セル2を収納し、この燃料電池セル2の上に第1の実施の形態で説明したガス供給穴板5、ガス供給流路板4、ガス混合防止板3を順に積層する。こうして、平板型燃料電池の単スタックの組み立てが完了する。第1の実施の形態で説明したとおり、高い発電出力を得るためには、単スタックを例えば10ユニットから40ユニット積層すればよい。この場合、ガス供給流路16およびガス回収流路17aは、ガス供給穴板11と他の単スタックのガス混合防止板3とによって挟まれることになる。   The assembly procedure of the flat plate fuel cell using one cell will be briefly described. After the gas supply / recovery flow path plate 12a, the gas supply hole plate 11, and the cell storage plate 10 are stacked in this order, the cell storage plate 10 The fuel cell 2 is accommodated in the through hole 13 with the support electrode facing down, and the gas supply hole plate 5 described in the first embodiment, the gas supply flow is provided on the fuel cell 2. The road plate 4 and the gas mixing prevention plate 3 are laminated in order. Thus, the assembly of a single stack of flat plate fuel cells is completed. As described in the first embodiment, in order to obtain a high power generation output, for example, 10 to 40 units may be stacked as a single stack. In this case, the gas supply channel 16 and the gas recovery channel 17a are sandwiched between the gas supply hole plate 11 and the other single stack gas mixing prevention plate 3.

平板型燃料電池スタックの組み立て後、800℃程度の高温下で金属板同士を拡散接合して気密性を確保する。なお、第2の実施の形態で説明したとおり、燃料電池セル2の支持電極とガス供給穴板11との間に、耐熱網や多孔質金属、波打ち板などの凹凸を有する導電性の板を挿入してもよい。   After assembling the flat plate fuel cell stack, the metal plates are diffusion-bonded at a high temperature of about 800 ° C. to ensure airtightness. As described in the second embodiment, a conductive plate having irregularities such as a heat-resistant net, a porous metal, and a corrugated plate is provided between the support electrode of the fuel cell 2 and the gas supply hole plate 11. It may be inserted.

燃料または空気のいずれかであるガスは、ガス供給用のマニホルドを構成する貫通穴9bからガス供給流路16を通ってガス供給穴板11のガス供給穴14に供給され、ガス供給穴14から支持電極に供給される。そして、使用済みのガスは、ガス供給穴板11のガス回収穴15からガス供給・回収流路板12aのガス回収流路17aを通ってガス回収用のマニホルドを構成する貫通穴9dに排出され、このマニホルドから外部に排出される。燃料電池セル2が燃料極支持型の場合、支持電極(燃料極)に供給されるガスは燃料ガスである。一方、燃料電池セル2が空気極支持型の場合、支持電極(空気極)に供給されるガスは空気である。ガス供給流路16の第1の比率または第2の比率は、第1、第2の実施の形態で説明した範囲になるように設定すればよい。   The gas, which is either fuel or air, is supplied to the gas supply hole 14 of the gas supply hole plate 11 from the through hole 9b constituting the gas supply manifold through the gas supply flow path 16, and from the gas supply hole 14. Supplied to the support electrode. Then, the used gas is discharged from the gas recovery hole 15 of the gas supply hole plate 11 through the gas recovery flow path 17a of the gas supply / recovery flow path plate 12a to the through hole 9d constituting the manifold for gas recovery. , Discharged from this manifold to the outside. When the fuel cell 2 is a fuel electrode support type, the gas supplied to the support electrode (fuel electrode) is a fuel gas. On the other hand, when the fuel cell 2 is an air electrode support type, the gas supplied to the support electrode (air electrode) is air. What is necessary is just to set the 1st ratio or 2nd ratio of the gas supply flow path 16 so that it may become the range demonstrated in 1st, 2nd embodiment.

こうして、本実施の形態では、第2の実施の形態と同様の効果を得ることができる。また、本実施の形態では、スタックの積層時に2つのガス回収穴15と連通する2本のガス回収流路17aを用いて使用済みのガスを1つの貫通穴9dに導くので、セル近傍のガスの流れを担保したまま、ガス回収用のマニホルドの数を低減することができる。   Thus, in this embodiment, the same effect as in the second embodiment can be obtained. In the present embodiment, since the used gas is guided to one through hole 9d using the two gas recovery passages 17a communicating with the two gas recovery holes 15 when stacking the stack, the gas in the vicinity of the cell The number of manifolds for gas recovery can be reduced while securing the flow of gas.

本発明は、平板型燃料電池に適用することができる。   The present invention can be applied to a flat plate fuel cell.

1…平板型燃料電池スタック、2…燃料電池セル、3…ガス混合防止板、4…ガス供給流路板、5,11…ガス供給穴板、6,16…ガス供給流路、7…梁、8,14…ガス供給穴、9a〜9d,13…貫通穴、10…セル収納板、12,12a…ガス供給・回収流路板、15…ガス回収穴、17,17a…ガス回収流路。   DESCRIPTION OF SYMBOLS 1 ... Flat type fuel cell stack, 2 ... Fuel cell, 3 ... Gas mixing prevention plate, 4 ... Gas supply flow path plate, 5,11 ... Gas supply hole plate, 6, 16 ... Gas supply flow path, 7 ... Beam 8, 14 ... gas supply holes, 9a to 9d, 13 ... through holes, 10 ... cell storage plate, 12, 12a ... gas supply / recovery flow path plate, 15 ... gas recovery hole, 17, 17a ... gas recovery flow path .

Claims (4)

平板型の燃料電池セルとこの燃料電池セルを収容する収容部材とからなる単スタックを複数積層した平板型燃料電池スタックにおいて、
前記燃料電池セルは、電極として燃料極と空気極とを有し、
前記燃料極と空気極のうち支持電極でない電極側に配置される第1の前記収容部材は、前記燃料電池セルの支持電極でない電極と対向するように配置される第1の板状部材と、前記支持電極でない電極と対向する面と反対側の前記第1の板状部材の面に積層される第2の板状部材と、前記第1の板状部材と反対側の前記第2の板状部材の面に積層されるガス混合防止板となる第3の板状部材とを含み、
前記燃料極と空気極のうち支持電極側に配置される第2の前記収容部材は、前記燃料電池セルの支持電極と対向するように配置される第4の板状部材と、前記支持電極と対向する面と反対側の前記第4の板状部材の面に積層される第5の板状部材と、前記支持電極と対向する前記第4の板状部材の面に積層される第6の板状部材とを含み、
前記第1の板状部材は、端部に形成されたマニホルドを構成する貫通穴と、前記第1の板状部材を貫通するように中心部に形成されたガス供給穴とを有し、
前記第2の板状部材は、端部に形成されたマニホルドを構成する貫通穴と、ガス供給用の1つの前記マニホルドと連通する位置から前記第1の板状部材のガス供給穴と連通する位置まで前記第2の板状部材を貫通するように形成されたガス供給用の複数のスリットと、前記第2の板状部材と一体で前記複数のスリットの長手方向に沿って各スリットの間を分けるように設けられた梁とを有し、
前記第3の板状部材は、端部に形成されたマニホルドを構成する貫通穴を有し、
前記第4の板状部材は、端部に形成されたマニホルドを構成する貫通穴と、前記第4の板状部材を貫通するように中心部に形成されたガス供給穴とを有し、
前記第5の板状部材は、端部に形成されたマニホルドを構成する貫通穴と、ガス供給用の前記マニホルドと連通する位置から前記第4の板状部材のガス供給穴と連通する位置まで前記第5の板状部材を貫通するように形成されたガス供給用のスリットとを有し、
前記第6の板状部材は、端部に形成されたマニホルドを構成する貫通穴と、中央部に形成された燃料電池セル収納用の貫通穴とを有し、
前記第2の板状部材の上下に前記第3の板状部材と前記第1の板状部材とを密着させることにより、この第2の板状部材の複数のスリットを前記支持電極でない電極に単一のガスを供給するガス供給流路として構成し、
前記第5の板状部材の上下に前記第4の板状部材と他の単スタックの第1の収容部材とを密着させることにより、この第5の板状部材のスリットを前記支持電極にガスを供給するガス供給流路として構成することを特徴とする平板型燃料電池スタック。
In the flat plate type fuel cell stack in which a plurality of single stacks each composed of a flat plate type fuel cell and a housing member that houses the fuel cell are stacked,
The fuel cell has a fuel electrode and an air electrode as electrodes,
A first plate member disposed on the fuel electrode and the air electrode on the electrode side that is not a support electrode; and a first plate member disposed so as to face an electrode that is not a support electrode of the fuel cell; A second plate member laminated on the surface of the first plate member opposite to the surface facing the non-support electrode, and the second plate opposite to the first plate member. Including a third plate member serving as a gas mixing prevention plate laminated on the surface of the member,
Of the fuel electrode and the air electrode, the second housing member disposed on the support electrode side includes a fourth plate-shaped member disposed to face the support electrode of the fuel cell, the support electrode, A fifth plate member laminated on the surface of the fourth plate member opposite to the opposite surface, and a sixth plate laminated on the surface of the fourth plate member opposed to the support electrode. Including a plate-like member,
The first plate-like member has a through-hole constituting a manifold formed at an end portion, and a gas supply hole formed in a central portion so as to penetrate the first plate-like member,
The second plate-like member communicates with a gas supply hole of the first plate-like member from a through hole that forms a manifold formed at an end portion and a position that communicates with one manifold for gas supply. A plurality of gas supply slits formed so as to penetrate the second plate-like member to a position , and between the slits along the longitudinal direction of the plurality of slits integrally with the second plate-like member And a beam provided to divide
The third plate-like member has a through-hole constituting a manifold formed at an end,
The fourth plate-like member has a through hole that forms a manifold formed at an end portion, and a gas supply hole that is formed in the center so as to penetrate the fourth plate-like member,
The fifth plate-like member has a through-hole forming a manifold formed at an end, and a position communicating with the manifold for gas supply to a position communicating with the gas supply hole of the fourth plate-like member. A gas supply slit formed so as to penetrate the fifth plate-shaped member,
The sixth plate-shaped member has a through-hole constituting a manifold formed at an end portion, and a through-hole for storing a fuel cell formed at a central portion,
By bringing the third plate-like member and the first plate-like member into close contact with each other above and below the second plate-like member, a plurality of slits of the second plate-like member are formed as electrodes that are not the support electrodes. Configure as a gas supply channel to supply a single gas,
The fourth plate member and another single stack first housing member are brought into close contact with the upper and lower sides of the fifth plate member so that the slits of the fifth plate member are gas-filled to the support electrode. A flat plate fuel cell stack, characterized in that it is configured as a gas supply flow path for supplying gas .
請求項記載の平板型燃料電池スタックにおいて、
前記第の板状部材は、前記燃料電池セルの支持電極よりも外側の位置に前記第の板状部材を貫通するように形成された2つのガス回収穴をさらに有し、
前記第の板状部材は、前記ガス回収穴と連通する位置からガス回収用の前記マニホルドと連通する位置まで前記第の板状部材を貫通するように形成されたガス回収用の2本のスリットをさらに有し、
前記2つのガス回収穴から回収したガスをそれぞれ別のガス回収用のマニホルドに導くことを特徴とする平板型燃料電池スタック。
The flat plate fuel cell stack according to claim 1 ,
The fourth plate-like member further has two gas recovery holes formed so as to penetrate the fourth plate-like member at a position outside the support electrode of the fuel cell.
The fifth plate-like member has two gas recovery holes formed so as to penetrate the fifth plate-like member from a position communicating with the gas recovery hole to a position communicating with the manifold for gas recovery. Further having a slit,
A flat plate fuel cell stack, wherein the gas recovered from the two gas recovery holes is guided to a separate gas recovery manifold.
請求項記載の平板型燃料電池スタックにおいて、
前記第の板状部材は、前記燃料電池セルの支持電極よりも外側の位置に前記第の板状部材を貫通するように形成された2つのガス回収穴をさらに有し、
前記第の板状部材は、前記ガス回収穴と連通する位置からガス回収用の前記マニホルドと連通する位置まで前記第の板状部材を貫通するように形成されたガス回収用の2本のスリットをさらに有し、
前記2つのガス回収穴から回収したガスを共通のガス回収用のマニホルドに導くことを特徴とする平板型燃料電池スタック。
The flat plate fuel cell stack according to claim 1 ,
The fourth plate-like member further has two gas recovery holes formed so as to penetrate the fourth plate-like member at a position outside the support electrode of the fuel cell.
The fifth plate-like member has two gas recovery holes formed so as to penetrate the fifth plate-like member from a position communicating with the gas recovery hole to a position communicating with the manifold for gas recovery. Further having a slit,
A flat plate fuel cell stack, wherein the gas recovered from the two gas recovery holes is guided to a common gas recovery manifold.
請求項記載の平板型燃料電池スタックにおいて、
前記第5の板状部材は、ガス供給用の1つの前記マニホルドと連通する位置から前記第4の板状部材のガス供給穴と連通する位置まで前記第5の板状部材を貫通するように形成された前記ガス供給用のスリットを複数有し、さらにこの複数のスリットの長手方向に沿って各スリットの間を分けるように前記第5の板状部材と一体で設けられた梁を有し、
前記第5の板状部材の上下に前記第4の板状部材と他の単スタックの第1の収容部材とを密着させることにより、この第5の板状部材の複数のスリットを前記支持電極に単一のガスを供給するガス供給流路として構成することを特徴とする平板型燃料電池スタック。
The flat plate fuel cell stack according to claim 1 ,
The fifth plate-shaped member penetrates the fifth plate-shaped member from a position communicating with one manifold for gas supply to a position communicating with a gas supply hole of the fourth plate-shaped member. A plurality of slits for gas supply formed, and a beam provided integrally with the fifth plate member so as to divide the slits along the longitudinal direction of the plurality of slits. ,
The plurality of slits of the fifth plate-like member are formed on the support electrode by bringing the fourth plate-like member into close contact with the first accommodating member of another single stack above and below the fifth plate-like member. A flat plate fuel cell stack, characterized in that it is configured as a gas supply channel for supplying a single gas .
JP2012270350A 2012-12-11 2012-12-11 Flat fuel cell stack Active JP5571758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012270350A JP5571758B2 (en) 2012-12-11 2012-12-11 Flat fuel cell stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012270350A JP5571758B2 (en) 2012-12-11 2012-12-11 Flat fuel cell stack

Publications (2)

Publication Number Publication Date
JP2014116225A JP2014116225A (en) 2014-06-26
JP5571758B2 true JP5571758B2 (en) 2014-08-13

Family

ID=51172004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012270350A Active JP5571758B2 (en) 2012-12-11 2012-12-11 Flat fuel cell stack

Country Status (1)

Country Link
JP (1) JP5571758B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4794126B2 (en) * 2003-12-19 2011-10-19 三恵技研工業株式会社 Fuel cell separator
JP5017777B2 (en) * 2004-01-16 2012-09-05 三菱マテリアル株式会社 Separator for fuel cell, method for producing separator, and solid oxide fuel cell
JP5165882B2 (en) * 2006-11-08 2013-03-21 日本電信電話株式会社 Flat fuel cell
JP5092530B2 (en) * 2006-11-22 2012-12-05 トヨタ自動車株式会社 Fuel cell
JP2010238443A (en) * 2009-03-30 2010-10-21 Mitsubishi Materials Corp Separator for fuel cell

Also Published As

Publication number Publication date
JP2014116225A (en) 2014-06-26

Similar Documents

Publication Publication Date Title
KR101693993B1 (en) Bipolar plate for fuel cell
JP4966522B2 (en) Current collecting structure in fuel cell stack
CN107251300B (en) Flat-plate type fuel cell
JP5227543B2 (en) Fuel cell
CN108091912B (en) Separator for fuel cell and unit cell for fuel cell
US10026975B2 (en) Fuel cell
JP6003863B2 (en) Separator and fuel cell
JP2006260919A (en) Fuel cell
JP2016219404A (en) Porous division plate for fuel cell
US20190036146A1 (en) Flat plate type fuel cell
JP5740562B2 (en) Fuel cell stack
JP2016042463A (en) Fuel cell improved in distribution of reactant
KR102355788B1 (en) fuel cell
JP5571758B2 (en) Flat fuel cell stack
JPH10134836A (en) Fuel cell
JP5165882B2 (en) Flat fuel cell
JPH06349512A (en) Fuel cell
KR101703575B1 (en) Separator and fuel cell with the same
TWI699037B (en) Electrode separator structure and fuel cell applied with the same
TWM579825U (en) Electrode separator structure and fuel cell applied with the same
CN107949942B (en) Frame for fuel cell and fuel cell stack structure including the same
CN109314264B (en) Fuel cell stack and separator for fuel cell stack
JP4740880B2 (en) Channel flow field with extremely short high pressure gradient
JP5700152B1 (en) Fuel cell and separator
JP5775204B2 (en) Flat fuel cell

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140626

R150 Certificate of patent or registration of utility model

Ref document number: 5571758

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150