JP2015222155A - Fin material for heat exchanger and method for manufacturing the same - Google Patents

Fin material for heat exchanger and method for manufacturing the same Download PDF

Info

Publication number
JP2015222155A
JP2015222155A JP2014107078A JP2014107078A JP2015222155A JP 2015222155 A JP2015222155 A JP 2015222155A JP 2014107078 A JP2014107078 A JP 2014107078A JP 2014107078 A JP2014107078 A JP 2014107078A JP 2015222155 A JP2015222155 A JP 2015222155A
Authority
JP
Japan
Prior art keywords
coating
hydrophilic
heat exchanger
film
fin material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014107078A
Other languages
Japanese (ja)
Other versions
JP6374219B2 (en
Inventor
直人 碓井
Naoto Usui
直人 碓井
淑夫 久米
Yoshio Kume
淑夫 久米
真登 柏木
Masato Kashiwagi
真登 柏木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2014107078A priority Critical patent/JP6374219B2/en
Publication of JP2015222155A publication Critical patent/JP2015222155A/en
Application granted granted Critical
Publication of JP6374219B2 publication Critical patent/JP6374219B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Paints Or Removers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fin material for a heat exchanger on which coating excellent in not only a hydrophilic property and an antifouling property but also a metal-mold abrasion property is formed.SOLUTION: On the surface of a base material made of aluminium or aluminium alloy, there are formed a hydrophilic coat having, as a main component, polyoxyethylene chain provided in the deposition amount of 0.4 g/m-1.2 g/m; and an antifouling property coat made by applying and drying aqueous paint containing alumina particles, silica particles, and a polyoxyethylene system lubricant and provided on the hydrophilic coat in the deposition amount of 0.1 g/m-0.5 g/m.

Description

本発明は、親水性、防汚性、金型摩耗性に優れる塗膜を形成した熱交換器用フィン材及びその製造方法に関する。   The present invention relates to a fin material for a heat exchanger having a coating film excellent in hydrophilicity, antifouling property, and mold wear and a method for producing the same.

熱交換器用フィン材には、軽量性、加工性、熱伝導性の面で優れるアルミニウムやアルミニウム合金が使用されている。
また、エアコンなどの熱交換器ではエバポレーター側として使用される場合、空気中の水蒸気を凝縮し、その結露水がフィンに水滴として付着すると通風抵抗が増加することによって圧力損失が大きくなり、熱交換器の能力低下が生じる。このため、フィンに凝縮した水を容易に流下させるために、表面に親水性塗膜を形成している。
The heat exchanger fin material is made of aluminum or aluminum alloy, which is superior in terms of lightness, workability, and thermal conductivity.
Also, when used on the evaporator side in a heat exchanger such as an air conditioner, if water vapor in the air is condensed and the condensed water adheres to the fins as water droplets, the airflow resistance increases, resulting in increased pressure loss and heat exchange. The capacity of the vessel is reduced. For this reason, in order to make the water condensed on the fins flow down easily, a hydrophilic coating film is formed on the surface.

特許文献1には、Zr化合物を用いて金属架橋させたポリアクリル酸等の有機樹脂に、シリカ粒子、ポリエチレングリコールを含有した親水性塗膜をアルミニウム合金基材の表面に形成することが開示されている。
特許文献2には、アルミニウム板に、樹脂とジルコニウムとを含有する下地皮膜層を形成し、その上に、樹脂、コロイダルシリカ、ジルコニウム化合物を含有する親水性被膜層を形成することが開示されている。
Patent Document 1 discloses that a hydrophilic coating film containing silica particles and polyethylene glycol is formed on the surface of an aluminum alloy substrate on an organic resin such as polyacrylic acid that is metal-crosslinked with a Zr compound. ing.
Patent Document 2 discloses that a base coating layer containing a resin and zirconium is formed on an aluminum plate, and a hydrophilic coating layer containing a resin, colloidal silica, and a zirconium compound is formed thereon. Yes.

特開2010−96416号公報JP 2010-96416 A 特許第4667978号公報Japanese Patent No. 4667978

ところで、フィン材を熱交換器用フィンに加工するためにプレス成形されるが、特許文献記載の親水性塗膜ではモース硬度が高いシリカ粒子が表面層に存在するため、プレス成形時に金型摩耗を生じ易い。   By the way, it is press-molded in order to process the fin material into heat exchanger fins, but in the hydrophilic coating described in the patent document, silica particles with high Mohs hardness are present in the surface layer, so that mold wear occurs during press molding. It is likely to occur.

本発明はこのような事情に鑑みてなされたものであり、親水性、防汚性だけでなく、金型摩耗性にも優れる塗膜を形成した熱交換器用フィン材を提供することを目的とする。   This invention is made in view of such a situation, and it aims at providing the fin material for heat exchangers which formed the coating film which is excellent not only in hydrophilic property and antifouling property but in mold abrasion property. To do.

本発明者は、親水性、防汚性、金型摩耗性に優れる熱交換器用フィン材について鋭意研究した結果、以下の知見を得た。
ポリアクリル酸を含むアクリル樹脂、ポリビニルアルコール等とともにポリエチレングリコールやポリエチレンオキサイド等のポリオキシエチレン鎖を含む高分子化合物は、親水性を有する塗装材として用いることができる。このポリオキシエチレン鎖を含む高分子化合物を添加することによって、塗膜の硬化反応を促進して密着性を向上する作用があり、更に焼き付け後の被膜に潤滑性を与え、プレス加工時の金型への焼き付きの防止、金型摩耗の抑制等の効果がある。
一方で、ポリオキシエチレン鎖を含む高分子化合物は焼き付け後に被膜の最上層にあると、静電気が発生し易く、親水性、疎水性の汚れ(ほこり等)が付着し易い。この汚れを付着しにくくするためには、親水性被膜上にアルミナ粒子、シリカ粒子を含む水系塗料を塗布、乾燥することで、帯電防止効果を発揮して親水性汚れ、疎水性等の汚れが付着しにくくなる。
As a result of earnest research on the fin material for heat exchangers that is excellent in hydrophilicity, antifouling properties, and mold wear properties, the present inventors have obtained the following knowledge.
Polymer compounds containing polyoxyethylene chains such as polyethylene glycol and polyethylene oxide together with acrylic resins containing polyacrylic acid, polyvinyl alcohol, and the like can be used as hydrophilic coating materials. By adding this polymer compound containing a polyoxyethylene chain, it has the effect of promoting the curing reaction of the coating film to improve the adhesion, further imparting lubricity to the coating film after baking, There are effects such as prevention of seizing to the mold and suppression of mold wear.
On the other hand, when the polymer compound containing a polyoxyethylene chain is in the uppermost layer of the coating after baking, static electricity is likely to be generated, and hydrophilic and hydrophobic stains (dust etc.) are likely to adhere. In order to make this stain difficult to adhere, water-based paint containing alumina particles and silica particles is applied on the hydrophilic coating and dried to exert an antistatic effect to remove stains such as hydrophilic stains and hydrophobic stains. It becomes difficult to adhere.

アルミナ粒子、シリカ粒子を単独で塗布すると固着しにくいため、接着のためにバインダー樹脂を添加するが、ポリオキシエチレン鎖を主成分とする高分子化合物を含有する親水性塗膜上に塗布した場合、親水性塗膜表面の凹凸面にアルミナ粒子、シリカ粒子が入り込み、バインダー樹脂がなくても親水性塗膜に密着し、結露水で洗われてもアルミナ粒子、シリカ粒子は残存する。
この場合、モース硬度が高いシリカ粒子が被膜最上層に存在すると、プレス加工において金型摩耗性が悪化するおそれがある。そこで、親水性被膜上にシリカ粒子よりモース硬度が低いアルミナ粒子を混合させ、更に潤滑性向上のためにポリオキシエチレン系潤滑剤(例えばポリオキシエチレンアルキルエーテル)を混合させることにより、潤滑成分が塗膜の最上層に存在し、プレス加工時の金型摩耗性を低減することができる。
また、シリカ粒子単独では親水性が向上するものの、防汚性が不足し、アルミナ粒子単独では防汚性が向上するものの、プレス油塗布後の親水性や耐汚染性が劣化する。したがって、アルミナ粒子とシリカ粒子を混合することにより、親水性と防汚性とを両立することが可能となる。
Alumina particles and silica particles are hard to stick when applied alone, so a binder resin is added for adhesion, but when applied on a hydrophilic coating containing a polymer compound composed mainly of polyoxyethylene chains Alumina particles and silica particles enter the irregular surface of the hydrophilic coating film surface, adhere to the hydrophilic coating film even without the binder resin, and the alumina particles and silica particles remain even when washed with condensed water.
In this case, if silica particles having a high Mohs hardness are present in the uppermost layer of the coating, there is a risk that the mold wear resistance will deteriorate during press working. Therefore, by mixing alumina particles having a Mohs hardness lower than that of silica particles on the hydrophilic coating, and further mixing a polyoxyethylene-based lubricant (for example, polyoxyethylene alkyl ether) to improve lubricity, the lubricating component can be reduced. It exists in the uppermost layer of a coating film, and can reduce die wear during pressing.
Silica particles alone improve hydrophilicity but lack antifouling properties. Alumina particles alone improve antifouling properties, but hydrophilicity and stain resistance after press oil application deteriorate. Therefore, it is possible to achieve both hydrophilicity and antifouling properties by mixing alumina particles and silica particles.

なお、塗膜最上層に潤滑成分であるポリオキシエチレン系潤滑剤を含有させた場合、帯電防止効果が低減するが、エアコン運転によりフィン表面に結露水が付着することによって、潤滑成分が洗い流されて、帯電防止効果を発揮することができる。
以上の知見の下、本発明を以下の解決手段とした。
If the top layer of the coating contains a polyoxyethylene-based lubricant, which is a lubricating component, the antistatic effect will be reduced, but the condensation component will be washed away due to the condensation water adhering to the fin surface during air conditioning operation. Thus, an antistatic effect can be exhibited.
Based on the above knowledge, the present invention is defined as the following solution.

すなわち、本発明の熱交換器用フィン材は、アルミニウム又はアルミニウム合金からなる基材の表面に、0.4g/m〜1.2g/mの被着量で設けられたポリオキシエチレン鎖を主成分とする高分子化合物を含有する親水性被膜と、該親水性被膜の上に0.1g/m〜0.5g/mの被着量で設けられたアルミナ粒子、シリカ粒子及びポリオキシエチレン系潤滑剤を含有する水系塗料を塗布乾燥してなる防汚性被膜とが形成されていることを特徴とする。 That is, the heat exchanger fin material of the present invention, the surface of aluminum or an aluminum alloy substrate, a polyoxyethylene chain, which is provided in the deposition amount of 0.4g / m 2 ~1.2g / m 2 a hydrophilic film containing a polymer compound containing as a main component, alumina particles is provided in the deposition amount of 0.1g / m 2 ~0.5g / m 2 on the hydrophilic coating, silica particles and poly An antifouling film formed by applying and drying a water-based paint containing an oxyethylene-based lubricant is formed.

本発明の熱交換器用フィン材において、前記アルミナ粒子及びシリカ粒子は、Alが1重量部に対してSiOが0.25重量部〜1重量部となるように含有されているとよい。
シリカ粒子よりアルミナ粒子の方がモース硬度が低いので、アルミナ粒子の混合比率をシリカ粒子と同等以上とすることにより、金型摩耗を効果的に低減することができる。
In the fin material for a heat exchanger according to the present invention, the alumina particles and the silica particles are contained such that Al 2 O 3 is 1 part by weight of SiO 2 and 0.25 part by weight to 1 part by weight of SiO 2 . Good.
Since the Mohs hardness of the alumina particles is lower than that of the silica particles, mold wear can be effectively reduced by setting the mixing ratio of the alumina particles equal to or higher than that of the silica particles.

本発明の熱交換器用フィン材において、表面の動摩擦係数が0.2以下であることが好ましい。   In the heat exchanger fin material of the present invention, the surface dynamic friction coefficient is preferably 0.2 or less.

本発明の熱交換器用フィン材において、前記親水性被膜中にフッ素樹脂を含有しているとよい。
親水性被膜中にフッ素樹脂を含有することにより、更に帯電防止効果を発揮して汚れを付着しにくくすることができる。
In the heat exchanger fin material of the present invention, the hydrophilic coating film preferably contains a fluororesin.
By containing a fluororesin in the hydrophilic coating, it is possible to further exert an antistatic effect and make it difficult to adhere dirt.

なお、熱交換器に組み立てられた後のフィンにおいては、表面のポリオキシエチレン系潤滑剤は結露水等によって流されてしまうが、アルミナ粒子及びシリカ粒子が混合して付着しているので、防汚性及び親水性を発揮することができる。   In the fin after being assembled in the heat exchanger, the polyoxyethylene-based lubricant on the surface is washed away by dew condensation water, etc., but the alumina particles and silica particles are mixed and adhered, so that Dirty and hydrophilic can be exhibited.

本発明の熱交換器用フィン材の製造方法は、アルミニウム又はアルミニウム合金からなる基材の表面に、0.4g/m〜1.2g/mの被着量でポリオキシエチレン鎖を主成分とする高分子化合物を含有する親水性被膜を形成し、該親水性被膜の上に0.1g/m〜0.5g/mの被着量でアルミナ粒子、シリカ粒子及びポリオキシエチレン系潤滑剤を含有する水系塗料を塗布乾燥して防汚性被膜を形成することを特徴とする。 Method of manufacturing a heat exchanger fin material of the present invention, the surface of a base material made of aluminum or an aluminum alloy, composed mainly of polyoxyethylene chain in the deposition amount of 0.4g / m 2 ~1.2g / m 2 forming a hydrophilic film containing that polymer compound, alumina particles in the deposition amount of 0.1g / m 2 ~0.5g / m 2 on the hydrophilic coating, silica particles and polyoxyethylene A water-based paint containing a lubricant is applied and dried to form an antifouling film.

本発明の熱交換器用フィン材の製造方法において、前記基材の表面に形成した前記親水性被膜を洗浄した後に前記防汚性被膜を形成するとよい。
親水性被膜を洗浄することによって、被膜の凹凸面が大きくなり、アルミナ粒子、シリカ粒子の密着性が向上する。
In the manufacturing method of the fin material for heat exchangers of the present invention, the antifouling film may be formed after washing the hydrophilic film formed on the surface of the substrate.
By washing the hydrophilic coating, the uneven surface of the coating becomes large, and the adhesion between alumina particles and silica particles is improved.

本発明によれば、親水性、防汚性だけでなく、金型摩耗性にも優れる塗膜を形成した熱交換器用フィン材を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the fin material for heat exchangers which formed the coating film which is excellent also not only in hydrophilic property and antifouling property but mold abrasion property can be obtained.

本発明の熱交換器用フィン材の一実施形態における使用前の状態を模式的に示す断面図である。It is sectional drawing which shows typically the state before use in one Embodiment of the fin material for heat exchangers of this invention. 図1の熱交換器用フィン材を熱交換器に組み付けて使用された状態を模式的に示す断面図である。It is sectional drawing which shows typically the state which assembled | attached and used the fin material for heat exchangers of FIG. 1 to the heat exchanger.

以下、本発明の実施形態を説明する。
熱交換器用フィン材は、図1に示すように、アルミニウム又はアルミニウム合金からなる基材1と、この基材1の表面に形成された化成被膜2と、この化成被膜2の上に形成された親水性被膜3と、この親水性被膜3の上に形成された防汚性被膜4とを備える。
基材1としては、例えばJIS規格の合金番号で1100、1200、1050、3003等が用いられる。この基材1の表面には、化成被膜2として、クロメート処理された薄いクロメート被膜が形成されている。
Embodiments of the present invention will be described below.
As shown in FIG. 1, the heat exchanger fin material is formed on a base material 1 made of aluminum or an aluminum alloy, a chemical conversion film 2 formed on the surface of the base material 1, and the chemical conversion film 2. A hydrophilic coating 3 and an antifouling coating 4 formed on the hydrophilic coating 3 are provided.
As the base material 1, for example, 1100, 1200, 1050, 3003, etc., are used as alloy numbers according to JIS standards. On the surface of the substrate 1, a thin chromate film that has been chromated is formed as the chemical conversion film 2.

親水性被膜3は、ポリオキシエチレン鎖を主成分とする高分子化合物を含有する。ポリオキシエチレン鎖を主成分とする高分子化合物としては、ポリエチレングリコール、ポリエチレンオキサイドなどから選ぶことができる。
また、この親水性被膜3中に、フッ素樹脂5を添加してもよい。フッ素樹脂5としては、PTFEディスパージョン、FEPディスパージョンなどを用いることができる。添加量としては、0.1質量%〜5質量%が好ましい。
この親水性被膜3は、基材1の化成被膜2の上に0.4g/m〜1.2g/mの被着量で設けられる。被着量が0.4g/m未満であると、親水性が不足するとともに、耐汚染性も好ましくない。被着量が1.2g/mを超えると、コスト増を招くだけでなく、基材への密着性が損なわれる。
The hydrophilic coating 3 contains a polymer compound mainly composed of a polyoxyethylene chain. The polymer compound having a polyoxyethylene chain as a main component can be selected from polyethylene glycol, polyethylene oxide, and the like.
Further, the fluororesin 5 may be added to the hydrophilic coating 3. As the fluororesin 5, PTFE dispersion, FEP dispersion, or the like can be used. As addition amount, 0.1 mass%-5 mass% are preferable.
The hydrophilic film 3 is provided in the deposition amount of 0.4 g / m 2 to 1.2 g / m 2 on the chemical conversion coating 2 of the substrate 1. When the deposition amount is less than 0.4 g / m 2 , the hydrophilicity is insufficient and the stain resistance is not preferable. When the deposition amount exceeds 1.2 g / m 2 , not only the cost increases, but also the adhesion to the substrate is impaired.

防汚性被膜4は、アルミナ粒子6a及びシリカ粒子6bからなる微粒子及びポリオキシエチレン系潤滑剤を含有する水系塗料を塗布乾燥して形成されたものである。
アルミナ粒子は、平均粒子径が10nm〜100nmの微粒子であり、その水系分散物であるアルミナゾルとして塗料に添加される。シリカ粒子は、平均粒子径が5nm〜80nmの微粒子であり、その水系分散物であるコロイダルシリカとして塗料に添加される。
これらアルミナ粒子6a及びシリカ粒子6bの微粒子は、その両方が混在していることが重要であり、これらの混合比は、Alが1重量部に対してSiOが0.25重量部〜1重量部となるように設定される。この場合、モース硬度はシリカ粒子6bが6であるのに対して、アルミナ粒子6aは、それより低く、3.5〜4とされる。このアルミナ粒子6a及びシリカ粒子6bの微粒子は、防汚性塗料中に固形分として0.5質量%〜5質量%含有するとよい。
The antifouling coating 4 is formed by applying and drying a water-based paint containing fine particles composed of alumina particles 6a and silica particles 6b and a polyoxyethylene-based lubricant.
The alumina particles are fine particles having an average particle diameter of 10 nm to 100 nm, and are added to the coating material as an alumina sol which is an aqueous dispersion thereof. The silica particles are fine particles having an average particle diameter of 5 nm to 80 nm, and are added to the coating material as colloidal silica which is an aqueous dispersion thereof.
It is important that the fine particles of these alumina particles 6a and silica particles 6b are mixed, and the mixing ratio thereof is 1 part by weight of Al 2 O 3 and 0.25 parts by weight of SiO 2. It is set to be 1 part by weight. In this case, the Mohs hardness is 6 for the silica particles 6b, whereas the alumina particle 6a is lower than that, and is 3.5-4. The fine particles of the alumina particles 6a and the silica particles 6b are preferably contained in an antifouling paint in an amount of 0.5% by mass to 5% by mass as a solid content.

ポリオキシエチレン系潤滑剤としては、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンミリスチルエーテル、ポリオキシエチレンオクチルデシル、ポリオキシエチレンアルキルエーテル等の中から選ぶことができる。   Select polyoxyethylene-based lubricant from polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxyethylene myristyl ether, polyoxyethylene octyl decyl, polyoxyethylene alkyl ether, etc. Can do.

そして、このような組成からなる防汚性被膜4は、基材1の親水性被膜3の上に0.1g/m〜0.5g/mの被着量で設けられる。その被着量が0.1g/m未満では防汚性が不足し、0.5g/mを超えるとコスト増となるだけでなく、プレス成形時の金型摩耗が大きくなる。
また、この防汚性被膜4表面の動摩擦係数は0.2以下とされる。
The antifouling coating 4 made of such a composition is provided in the deposition amount of 0.1g / m 2 ~0.5g / m 2 on the hydrophilic film 3 of the substrate 1. When the deposition amount is less than 0.1 g / m 2 , the antifouling property is insufficient, and when it exceeds 0.5 g / m 2 , not only the cost is increased, but also die wear during press molding is increased.
The coefficient of dynamic friction on the surface of the antifouling coating 4 is 0.2 or less.

このように構成される熱交換器用フィン材は、基材1の表面に、リン酸クロメート処理を施して下地膜として化成被膜(クロメート被膜)2を形成した後に、親水性被膜3を形成し、その上に防汚性被膜4を形成することにより製造される。
この場合、親水性被膜3を形成した後、防汚性被膜4を形成する前に、親水性被膜3の表面を水で洗浄する。これにより、親水性被膜3の表面の凹凸が大きくなり、後述するようにアルミナ粒子6a及びシリカ粒子6bの微粒子の密着性が向上する。
The heat exchanger fin material configured as described above forms a hydrophilic coating 3 after forming a chemical conversion coating (chromate coating) 2 as a base film on the surface of the substrate 1 by performing a phosphoric acid chromate treatment, It is manufactured by forming an antifouling film 4 thereon.
In this case, after forming the hydrophilic film 3 and before forming the antifouling film 4, the surface of the hydrophilic film 3 is washed with water. Thereby, the unevenness | corrugation of the surface of the hydrophilic coating 3 becomes large, and the adhesiveness of the microparticles | fine-particles of the alumina particle 6a and the silica particle 6b improves so that it may mention later.

このようにして製造される熱交換器用フィン材は、プレス成形により、曲げ、穴明け等の加工がなされ、熱交換器用フィンとして成形された後、熱交換器に組み込まれる。この成形時において、フィン材の表面の防汚性被膜4には、ポリオキシエチレン系潤滑剤が添加されて、動摩擦係数が0.2以下と小さいので、円滑にプレス加工され、フィンにクラック等が発生せず、また金型摩耗も低減することができる。
この場合、防汚性被膜4中に存在するアルミナ粒子6a及びシリカ粒子6bからなる微粒子は硬質粒子であり、金型を摩耗させるおそれがあるが、シリカ粒子よりもモース硬度の小さいアルミナ粒子が半分以上の量で混在しているので、シリカ粒子単独の場合に比べて金型摩耗が抑制され、かつ、ポリオキシエチレン系潤滑剤の存在により、金型摩耗を低減することができる。
The heat exchanger fin material manufactured in this manner is subjected to processing such as bending and drilling by press molding, and is formed as a heat exchanger fin, and then incorporated into the heat exchanger. At the time of molding, a polyoxyethylene-based lubricant is added to the antifouling coating 4 on the surface of the fin material, and the coefficient of dynamic friction is as small as 0.2 or less, so that it is smoothly pressed, cracked in the fin, etc. Does not occur, and die wear can be reduced.
In this case, the fine particles composed of the alumina particles 6a and the silica particles 6b present in the antifouling coating 4 are hard particles and may wear the mold, but half of the alumina particles having a smaller Mohs hardness than the silica particles. Since they are mixed in the above amounts, the wear of the mold is suppressed as compared with the case of the silica particles alone, and the wear of the mold can be reduced due to the presence of the polyoxyethylene-based lubricant.

そして、このフィン材が熱交換器として組み込まれて使用されると、最初の熱交換器の運転時にフィン上に結露が生じた際に、ポリオキシエチレン系潤滑剤は水溶性であるので、結露した水によって流される。ここで、防汚性被膜4の下に存在している親水性被膜3の表面が露出してしまうと、ポリオキシエチレン鎖を主成分とする高分子化合物により静電気が発生し易く、親水性、疎水性の汚れが付着し易くなるが、防汚性被膜4に含有されていたアルミナ粒子6a及びシリカ粒子6bの微粒子は、その下層の親水性被膜3の表面が凹凸面であることから、図2に示すように、この凹凸面によって流されずに保持される。前述したように、この親水性被膜3の表面は、製造時の水洗浄によって凹凸が大きくなっているため、アルミナ粒子6a及びシリカ粒子6bの微粒子が凹凸内に入り込んで残存する。   When this fin material is incorporated and used as a heat exchanger, when condensation occurs on the fins during the initial heat exchanger operation, the polyoxyethylene-based lubricant is water-soluble. Washed away by water. Here, when the surface of the hydrophilic coating 3 existing under the antifouling coating 4 is exposed, static electricity is easily generated by the polymer compound mainly composed of polyoxyethylene chains, Hydrophobic dirt tends to adhere, but the fine particles of alumina particles 6a and silica particles 6b contained in the antifouling coating 4 have irregular surfaces on the surface of the hydrophilic coating 3 below. As shown in FIG. As described above, the surface of the hydrophilic coating 3 has unevenness due to washing with water at the time of manufacture, so that the fine particles of alumina particles 6a and silica particles 6b enter the unevenness and remain.

このため、親水性被膜3の表面にアルミナ粒子6a及びシリカ粒子6bの微粒子が密着してなる防汚性被膜11が存在し、フィンとして引き続き、親水性と防汚性を発揮することができる。この場合、シリカ粒子6bとアルミナ粒子6aとを混在させているので、シリカ粒子6bによる親水性と、アルミナ粒子6aによる防汚性との両方の機能を効果的に発揮させることができる。
また、親水性被膜3にフッ素樹脂5が添加される場合は、更に帯電防止効果を発揮して汚れがより付着しにくくなる。
For this reason, the antifouling film 11 in which the fine particles of the alumina particles 6a and the silica particles 6b are in close contact with the surface of the hydrophilic film 3 is present, and the hydrophilicity and antifouling property can be continuously exhibited as fins. In this case, since the silica particles 6b and the alumina particles 6a are mixed, both functions of the hydrophilicity by the silica particles 6b and the antifouling property by the alumina particles 6a can be effectively exhibited.
Moreover, when the fluororesin 5 is added to the hydrophilic coating 3, the antistatic effect is further exerted and dirt is less likely to adhere.

なお、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   In addition, this invention is not limited to the said embodiment, A various change can be added in the range which does not deviate from the meaning of this invention.

以下、本発明の実施例を説明する。
化成処理としてリン酸クロメート処理を施したアルミニウム合金板の表面に、表1に示した組成の親水性被膜用塗料をバーコーターで塗布し、オーブンにて220℃(設定温度)×30秒で焼き付けした。その後、親水性被膜の表面を60℃の温水中に10秒間浸漬することによって洗浄し、洗浄後の親水性被膜の上に、表1に示す防汚性被膜用塗料をバーコーターで塗布して、オーブンにて120℃(設定温度)×30秒で焼き付けた。併せて、親水性被膜形成後に水で洗浄せずに、そのまま防汚性被膜を形成したものも作製した。
表1中、親水性被膜の樹脂1、樹脂2は以下の通りとした。
樹脂1:ポリアクリル酸系コポリマー、ポリビニルアルコール、ポリエチレンオキサイドを混合して得たもの
樹脂2:アクリル酸、メタクリル酸−2−ヒドロキシエチル、アクリロニトリル、アクリルアミド共重合体、カルボキシメチルセルロースNa、ポリエチレングリコールを混合して得たもの
この場合、この親水性被膜中にフッ素樹脂を添加したものと添加しなかったものとを作製した。
また、防汚性被膜は、原料1、2、3を表1に示すように混合した塗料により形成され、原料1はアルミナゾル、原料2はコロイダルシリカ、原料3はポリオキシエチレンアルキルエーテルとした。原料1と原料2はその混合比率(重量部)を示している。
そして、表1に示す19種類の組み合わせからなる塗料を表2及び表3の塗布量で塗布して焼き付けた。
Examples of the present invention will be described below.
A coating for a hydrophilic coating having the composition shown in Table 1 is applied to the surface of an aluminum alloy plate that has been subjected to phosphoric acid chromate treatment as a chemical conversion treatment, and baked in an oven at 220 ° C. (set temperature) × 30 seconds. did. Thereafter, the surface of the hydrophilic coating was washed by immersing it in warm water at 60 ° C. for 10 seconds, and the antifouling coating paint shown in Table 1 was applied on the washed hydrophilic coating with a bar coater. And baked in an oven at 120 ° C. (set temperature) × 30 seconds. In addition, an antifouling film was formed as it was without washing with water after forming the hydrophilic film.
In Table 1, the hydrophilic coating resin 1 and resin 2 were as follows.
Resin 1: What was obtained by mixing polyacrylic acid copolymer, polyvinyl alcohol and polyethylene oxide Resin 2: Mixing acrylic acid, 2-hydroxyethyl methacrylate, acrylonitrile, acrylamide copolymer, carboxymethylcellulose Na, polyethylene glycol In this case, the hydrophilic film with and without the fluororesin was prepared.
Further, the antifouling film was formed by a paint in which raw materials 1, 2, and 3 were mixed as shown in Table 1, raw material 1 was alumina sol, raw material 2 was colloidal silica, and raw material 3 was polyoxyethylene alkyl ether. The raw material 1 and the raw material 2 have shown the mixing ratio (weight part).
And the coating material which consists of 19 types of combinations shown in Table 1 was apply | coated with the application quantity of Table 2 and Table 3, and baked.

Figure 2015222155
Figure 2015222155

Figure 2015222155
Figure 2015222155

Figure 2015222155
Figure 2015222155

得られた試料につき、被膜の密着性、親水性として各種の接触角、動摩擦係数、防汚性として粉体付着率、金型摩耗性を評価した。
密着性は、1ポンドのハンマーに貼り付けたキムタオル(登録商標)を試料の被膜表面に載置して、往復10回擦った後の被膜の密着状態を観察した。剥離が全く認められず、密着良好と判断されたものを◎、一部剥離のものを○、完全剥離が認められたものを×とした。
親水性については、プレス油乾燥後接触角、乾湿サイクル後接触角、汚染試験後接触角を評価した。
プレス油乾燥後接触角は、試料の被膜表面にプレス油(揮発性油)を塗布し、150℃×5分乾燥後に被膜表面の接触角を測定した。接触角が20°以下のものを○、20°を超えていたものを×とした。
乾湿サイクル後接触角は、試料に対して、流量3L/minの常温流水に8時間浸漬、80℃×16時間乾燥を交互に14サイクル行った後の被膜表面の接触角を測定した。接触角が40°以下のものを○、40°を超えていたものを×とした。
汚染試験後接触角は、汚染物質としてバルミチン酸6gと試料とをビーカーの中に入れて、100℃で6日間加熱暴露後の被膜表面の接触角を測定した。接触角が60°以下のものを○、60°を超えていたものを×とした。
動摩擦係数は、バウデン式摩擦試験機を用い、プレス油を塗布しないで、試料の被膜表面に鋼球サイズφ9/32インチの接触子を200gの荷重で押し付け、試料の表面上を長さ10mmにわたって1往復摺動させたときの摩擦力を測定して、動摩擦係数を求めた。動摩擦係数が0.2以下のものを○、0.2を超えていたものを×とした。
粉体付着率は、100mm×100mmの試料を流量3L/minの常温流水に1時間浸漬後、JIS Z8901で定められる試験用粉体11種、12種のそれぞれを試料の被膜表面に付着させて、画像解析にて付着面積率を測定した。付着面積率が0.1%以下のものを◎、0.2%以下のものを○、0.2%を超えていたものを×とした。
金型摩耗性は、プレス加工で100万回試料を切断し、金型(スリット刃)の摩耗状態を観察した。スリット刃硬度はHRC37〜41のものを使用し、定量評価としてレーザー顕微鏡にて金型(スリット刃)の刃先の摩耗面積を測定し、2次元断面での摩耗面積が100μm以下のものを◎、100μmを超え300μm以下のものを○、300μmを超えたものを×とした。
これらの評価結果を表4及び表5に示す。
With respect to the obtained samples, various contact angles and dynamic friction coefficients were evaluated as the adhesion and hydrophilicity of the coating, and the powder adhesion rate and the mold wear resistance were evaluated as antifouling properties.
For adhesion, Kim Towel (registered trademark) affixed to a 1 pound hammer was placed on the coating surface of the sample, and the adhesion state of the coating after rubbing 10 times was observed. The case where peeling was not observed at all and the adhesion was judged to be good was marked as ◎, the case where some peeling was observed as ○, and the case where complete peeling was recognized as x.
For hydrophilicity, the contact angle after press oil drying, the contact angle after the wet and dry cycle, and the contact angle after the contamination test were evaluated.
The contact angle after drying the press oil was measured by applying the press oil (volatile oil) to the surface of the coating film of the sample and measuring the contact angle of the coating surface after drying at 150 ° C. for 5 minutes. Those having a contact angle of 20 ° or less were evaluated as ◯, and those having a contact angle exceeding 20 ° were evaluated as ×.
The contact angle after the wet / dry cycle was determined by measuring the contact angle on the surface of the sample after 14 hours of alternately immersing the sample in normal temperature flowing water at a flow rate of 3 L / min for 8 hours and drying at 80 ° C. for 16 hours. A contact angle of 40 ° or less was evaluated as ◯, and a contact angle exceeding 40 ° was evaluated as ×.
As the contact angle after the contamination test, 6 g of valmitic acid and a sample were placed in a beaker as contaminants, and the contact angle of the coating surface after heating exposure at 100 ° C. for 6 days was measured. Those having a contact angle of 60 ° or less were evaluated as ◯, and those having a contact angle exceeding 60 ° were evaluated as ×.
The coefficient of dynamic friction was measured using a Bowden friction tester, without applying press oil, pressing a steel ball size φ9 / 32 inch contact with a load of 200 g on the surface of the sample coating over a length of 10 mm on the surface of the sample. The frictional force at the time of one reciprocal sliding was measured to determine the dynamic friction coefficient. A sample having a coefficient of dynamic friction of 0.2 or less was marked with ◯, and a sample with a coefficient of dynamic friction exceeding 0.2 was marked with ×.
The powder adhesion rate was determined by immersing a 100 mm × 100 mm sample in normal temperature flowing water at a flow rate of 3 L / min for 1 hour, and then attaching each of 11 types and 12 types of test powders defined by JIS Z8901 to the surface of the sample coating. Then, the adhesion area ratio was measured by image analysis. A case where the adhesion area ratio was 0.1% or less was rated as ◎, a case where the adhesion area ratio was 0.2% or less was rated as ○, and a case where the adhesion area ratio exceeded 0.2% was rated as ×.
For mold wear, the sample was cut 1 million times by press working, and the wear state of the mold (slit blade) was observed. Slitting blades hardness should be designed HRC37~41, mold using a laser microscope as a quantitative evaluation to measure the wear area of the cutting edge of the (slit blade), the wear area of the two-dimensional cross-section 100 [mu] m 2 or less of those of ◎ , those beyond the 100 [mu] m 2 of 300 [mu] m 2 or less ○, was × those exceed 300 [mu] m 2.
These evaluation results are shown in Tables 4 and 5.

Figure 2015222155
Figure 2015222155

Figure 2015222155
Figure 2015222155

これらの結果から明らかなように、本発明の実施例品は、密着性、親水性、防汚性に優れ、プレス加工時の金型摩耗も生じにくいものであることがわかる。   As is clear from these results, it can be seen that the examples of the present invention are excellent in adhesion, hydrophilicity, and antifouling properties, and are less likely to cause mold wear during press working.

1 基材
2 化成被膜
3 親水性被膜
4 防汚性被膜
5 フッ素樹脂
6a アルミナ粒子
6b シリカ粒子
11 防汚性被膜
DESCRIPTION OF SYMBOLS 1 Base material 2 Chemical conversion film 3 Hydrophilic film 4 Antifouling film 5 Fluororesin 6a Alumina particle 6b Silica particle 11 Antifouling film

Claims (6)

アルミニウム又はアルミニウム合金からなる基材の表面に、0.4g/m〜1.2g/mの被着量で設けられたポリオキシエチレン鎖を主成分とする高分子化合物を含有する親水性被膜と、該親水性被膜の上に0.1g/m〜0.5g/mの被着量で設けられたアルミナ粒子、シリカ粒子及びポリオキシエチレン系潤滑剤を含有する水系塗料を塗布乾燥してなる防汚性被膜とが形成されていることを特徴とする熱交換器用フィン材。 The surface of aluminum or an aluminum alloy base material, a hydrophilic containing a polymer compound as a main component a polyoxyethylene chain, which is provided in the deposition amount of 0.4g / m 2 ~1.2g / m 2 and coating the alumina particles is provided in the deposition amount of 0.1g / m 2 ~0.5g / m 2 on the hydrophilic coating, the silica particles and an aqueous coating material containing a polyoxyethylene-based lubricant coating A fin material for a heat exchanger, wherein a dried antifouling film is formed. 前記アルミナ粒子及びシリカ粒子は、Alが1重量部に対してSiOが0.25重量部〜1重量部となるように含有されていることを特徴とする請求項1に記載の熱交換器用フィン材。 The alumina particles and silica particles, according to claim 1, Al 2 O 3 is SiO 2 is characterized in that it is contained so as to be 0.25 part by weight to 1 parts by weight per 1 part by weight Fin material for heat exchanger. 表面の動摩擦係数が0.2以下であることを特徴とする請求項1又は2に記載の熱交換器用フィン材。   The fin material for a heat exchanger according to claim 1 or 2, wherein the coefficient of dynamic friction of the surface is 0.2 or less. 前記親水性被膜中にフッ素樹脂を含有していることを特徴とする請求項1から3のいずれか一項に記載の熱交換器用フィン材。   The heat exchanger fin material according to any one of claims 1 to 3, wherein the hydrophilic film contains a fluororesin. アルミニウム又はアルミニウム合金からなる基材の表面に、0.4g/m〜1.2g/mの被着量でポリオキシエチレン鎖を主成分とする高分子化合物を含有する親水性被膜を形成し、該親水性被膜の上に0.1g/m〜0.5g/mの被着量でアルミナ粒子、シリカ粒子及びポリオキシエチレン系潤滑剤を含有する水系塗料を塗布乾燥して防汚性被膜を形成することを特徴とする熱交換器用フィン材の製造方法。 The surface of aluminum or an aluminum alloy base material, forming a hydrophilic film containing a polymer compound as a main component a polyoxyethylene chain in the deposition amount of 0.4g / m 2 ~1.2g / m 2 and, parent alumina particles deposition quantity of 0.1g / m 2 ~0.5g / m 2 on the aqueous film, silica particles and polyoxyethylene lubricant by coating and drying an aqueous coating material containing an anti The manufacturing method of the fin material for heat exchangers characterized by forming a dirty film. 前記基材の表面に形成した前記親水性被膜を洗浄した後に前記防汚性被膜を形成することを特徴とする請求項5記載の熱交換器用フィン材の製造方法。   6. The method for producing a fin material for a heat exchanger according to claim 5, wherein the antifouling film is formed after washing the hydrophilic film formed on the surface of the substrate.
JP2014107078A 2014-05-23 2014-05-23 Fin material for heat exchanger and manufacturing method thereof Expired - Fee Related JP6374219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014107078A JP6374219B2 (en) 2014-05-23 2014-05-23 Fin material for heat exchanger and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014107078A JP6374219B2 (en) 2014-05-23 2014-05-23 Fin material for heat exchanger and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2015222155A true JP2015222155A (en) 2015-12-10
JP6374219B2 JP6374219B2 (en) 2018-08-15

Family

ID=54785259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014107078A Expired - Fee Related JP6374219B2 (en) 2014-05-23 2014-05-23 Fin material for heat exchanger and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6374219B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106766393A (en) * 2016-11-18 2017-05-31 绥阳县耐环铝业有限公司 The manufacture craft of plate-tube type evaporator
WO2017170772A1 (en) * 2016-03-30 2017-10-05 株式会社Uacj Hydrophilic coating, heat exchanger fin using same, and heat exchanger
JP2017193683A (en) * 2016-04-22 2017-10-26 三菱マテリアル電子化成株式会社 Liquid composition for antifouling film formation
WO2018225275A1 (en) * 2017-06-06 2018-12-13 パナソニックIpマネジメント株式会社 Heat exchanger on which anti-fouling film coating is formed
JP2019100675A (en) * 2017-12-07 2019-06-24 株式会社Uacj Precoat fin material
JP2020002274A (en) * 2018-06-28 2020-01-09 三菱アルミニウム株式会社 Hydrophilic coating, hydrophilic coated film, aluminum fin material for heat exchanger excellent in hydrophilicity, and heat exchanger
WO2020073616A1 (en) * 2018-06-05 2020-04-16 广东美的制冷设备有限公司 Heat exchanger, air conditioner, and refrigeration device

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59229197A (en) * 1983-06-08 1984-12-22 Nippon Parkerizing Co Ltd Surface treatment procedure for aluminum heat exchanger
JPS6050397A (en) * 1983-08-31 1985-03-20 Diesel Kiki Co Ltd Heat exchanger made of aluminum
JPS63262238A (en) * 1987-04-20 1988-10-28 スカイアルミニウム株式会社 Heat-exchanger fin material
JPS63262239A (en) * 1987-04-20 1988-10-28 スカイアルミニウム株式会社 Heat-exchanger fin material
US20020074110A1 (en) * 2000-12-15 2002-06-20 Carrier Corporation Method for making a film with improved wettability properties
JP2005321159A (en) * 2004-05-11 2005-11-17 Mitsubishi Alum Co Ltd Surface treatment material for heat exchanger and its manufacturing method
JP2008241237A (en) * 2007-03-01 2008-10-09 Kobe Steel Ltd Aluminum fin material for heat exchanger
JP2009233872A (en) * 2008-03-25 2009-10-15 Fujifilm Corp Hydrophilic member
JP2009235338A (en) * 2008-03-28 2009-10-15 Mitsubishi Electric Corp Coating composition, heat exchanger, air conditioner
JP2010155441A (en) * 2009-01-05 2010-07-15 Fujifilm Corp Hydrophilic member and method of manufacturing fin material for heat exchanger
JP2011235457A (en) * 2010-05-06 2011-11-24 Furukawa-Sky Aluminum Corp Metal coating material
JP2012078081A (en) * 2010-09-08 2012-04-19 Kobe Steel Ltd Aluminum-made fin material
JP2012076456A (en) * 2010-09-08 2012-04-19 Kobe Steel Ltd Fin material made from aluminum
JP2012117702A (en) * 2010-11-29 2012-06-21 Mitsubishi Alum Co Ltd Aluminum fin material for heat exchanger, method for manufacturing the same, and the heat exchanger
JP2013096631A (en) * 2011-10-31 2013-05-20 Mitsubishi Alum Co Ltd Heat exchanger
WO2013146077A1 (en) * 2012-03-28 2013-10-03 株式会社神戸製鋼所 Aluminum fin material
JP5312699B1 (en) * 2013-01-24 2013-10-09 株式会社神戸製鋼所 Aluminum fin material for heat exchanger
JP2013210144A (en) * 2012-03-30 2013-10-10 Kobe Steel Ltd Aluminum fin material
WO2014034514A1 (en) * 2012-09-03 2014-03-06 三菱電機株式会社 Anti-fouling coating, heat exchanger provided with same, and production method for same
JP2014105879A (en) * 2012-11-22 2014-06-09 Mitsubishi Alum Co Ltd Heat-exchanger aluminum fin material, heat-exchanger aluminum fin material manufacturing method, and heat exchanger comprising the heat-exchanger aluminum fin material

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59229197A (en) * 1983-06-08 1984-12-22 Nippon Parkerizing Co Ltd Surface treatment procedure for aluminum heat exchanger
JPS6050397A (en) * 1983-08-31 1985-03-20 Diesel Kiki Co Ltd Heat exchanger made of aluminum
JPS63262238A (en) * 1987-04-20 1988-10-28 スカイアルミニウム株式会社 Heat-exchanger fin material
JPS63262239A (en) * 1987-04-20 1988-10-28 スカイアルミニウム株式会社 Heat-exchanger fin material
US20020074110A1 (en) * 2000-12-15 2002-06-20 Carrier Corporation Method for making a film with improved wettability properties
JP2005321159A (en) * 2004-05-11 2005-11-17 Mitsubishi Alum Co Ltd Surface treatment material for heat exchanger and its manufacturing method
JP2008241237A (en) * 2007-03-01 2008-10-09 Kobe Steel Ltd Aluminum fin material for heat exchanger
JP2009233872A (en) * 2008-03-25 2009-10-15 Fujifilm Corp Hydrophilic member
JP2009235338A (en) * 2008-03-28 2009-10-15 Mitsubishi Electric Corp Coating composition, heat exchanger, air conditioner
JP2010155441A (en) * 2009-01-05 2010-07-15 Fujifilm Corp Hydrophilic member and method of manufacturing fin material for heat exchanger
JP2011235457A (en) * 2010-05-06 2011-11-24 Furukawa-Sky Aluminum Corp Metal coating material
JP2012078081A (en) * 2010-09-08 2012-04-19 Kobe Steel Ltd Aluminum-made fin material
JP2012076456A (en) * 2010-09-08 2012-04-19 Kobe Steel Ltd Fin material made from aluminum
JP2012117702A (en) * 2010-11-29 2012-06-21 Mitsubishi Alum Co Ltd Aluminum fin material for heat exchanger, method for manufacturing the same, and the heat exchanger
JP2013096631A (en) * 2011-10-31 2013-05-20 Mitsubishi Alum Co Ltd Heat exchanger
WO2013146077A1 (en) * 2012-03-28 2013-10-03 株式会社神戸製鋼所 Aluminum fin material
JP2013210144A (en) * 2012-03-30 2013-10-10 Kobe Steel Ltd Aluminum fin material
WO2014034514A1 (en) * 2012-09-03 2014-03-06 三菱電機株式会社 Anti-fouling coating, heat exchanger provided with same, and production method for same
JP2014105879A (en) * 2012-11-22 2014-06-09 Mitsubishi Alum Co Ltd Heat-exchanger aluminum fin material, heat-exchanger aluminum fin material manufacturing method, and heat exchanger comprising the heat-exchanger aluminum fin material
JP5312699B1 (en) * 2013-01-24 2013-10-09 株式会社神戸製鋼所 Aluminum fin material for heat exchanger

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170772A1 (en) * 2016-03-30 2017-10-05 株式会社Uacj Hydrophilic coating, heat exchanger fin using same, and heat exchanger
CN108885071A (en) * 2016-03-30 2018-11-23 株式会社Uacj Hydrophilic coating film and the aluminum fin and heat exchanger for using the hydrophilic coating film
CN108885071B (en) * 2016-03-30 2019-11-05 株式会社Uacj Hydrophilic coating film and the aluminum fin and heat exchanger for using the hydrophilic coating film
JP2017193683A (en) * 2016-04-22 2017-10-26 三菱マテリアル電子化成株式会社 Liquid composition for antifouling film formation
CN106766393A (en) * 2016-11-18 2017-05-31 绥阳县耐环铝业有限公司 The manufacture craft of plate-tube type evaporator
WO2018225275A1 (en) * 2017-06-06 2018-12-13 パナソニックIpマネジメント株式会社 Heat exchanger on which anti-fouling film coating is formed
JP2018204880A (en) * 2017-06-06 2018-12-27 パナソニックIpマネジメント株式会社 Heat exchanger formed with anti-staining coating film
JP2019100675A (en) * 2017-12-07 2019-06-24 株式会社Uacj Precoat fin material
WO2020073616A1 (en) * 2018-06-05 2020-04-16 广东美的制冷设备有限公司 Heat exchanger, air conditioner, and refrigeration device
JP2020002274A (en) * 2018-06-28 2020-01-09 三菱アルミニウム株式会社 Hydrophilic coating, hydrophilic coated film, aluminum fin material for heat exchanger excellent in hydrophilicity, and heat exchanger
JP7116882B2 (en) 2018-06-28 2022-08-12 Maアルミニウム株式会社 Hydrophilic paint, hydrophilic film, aluminum fin material for heat exchangers with excellent hydrophilicity, and heat exchangers

Also Published As

Publication number Publication date
JP6374219B2 (en) 2018-08-15

Similar Documents

Publication Publication Date Title
JP6374219B2 (en) Fin material for heat exchanger and manufacturing method thereof
JP5469350B2 (en) Aluminum fin material
CN109923367B (en) Antifouling highly hydrophilic sintered coating film and method for producing same, aluminum fin material for heat exchanger, and cooling/heating device
JP6470548B2 (en) Aluminum fin material for heat exchanger having antifouling property, method for producing the same, heat exchanger including the aluminum fin material, and air conditioner
JP6618903B2 (en) Method for coating hydrophilic film on aluminum fin material, aluminum fin material and aluminum heat exchanger
JP2019100675A (en) Precoat fin material
JP6101055B2 (en) Method for producing aluminum fin material for heat exchanger
JP6061755B2 (en) Aluminum fin material and manufacturing method thereof
JP6857996B2 (en) Surface treatment agent, film and surface treatment method
JP5135167B2 (en) Aluminum painted plate
JP5559227B2 (en) Aluminum fin material
JP2019113251A (en) Hydrophilic baked coat, aluminium fin material for heat exchanger, and heat exchanger
JP5653325B2 (en) Aluminum fin material
JP2010223520A (en) Aluminum fin material for heat exchanger
JP5698438B2 (en) Aluminum fin material for heat exchanger and heat exchanger using the same
JP3335285B2 (en) Pre-coated fin material for heat exchanger
JP6551949B2 (en) Aluminum fin material for heat exchanger having antifouling property, method for producing the same, and heat exchanger provided with the aluminum fin material
JP2014029249A (en) Fin material for heat exchanger, and heat exchanger
JP2014052184A (en) Aluminum fin material for heat exchanger, and heat exchanger using the same
WO2018110644A1 (en) Highly hydrophilic antifouling baked coating film, method for producing same, aluminum fin material for heat exchanger, heat exchanger, and cooling machine
JP2006043510A (en) Production method for molded product with frost-formation-suppressed coating film
WO2021199876A1 (en) Fin material formed of aluminum
CN117120795A (en) Aluminum fin material
JP3158989B2 (en) Heat exchanger components
WO2021199875A1 (en) Aluminum fin material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180719

R150 Certificate of patent or registration of utility model

Ref document number: 6374219

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees