JP2015217583A - 画像処理装置、画像処理方法、及びプログラム - Google Patents

画像処理装置、画像処理方法、及びプログラム Download PDF

Info

Publication number
JP2015217583A
JP2015217583A JP2014102387A JP2014102387A JP2015217583A JP 2015217583 A JP2015217583 A JP 2015217583A JP 2014102387 A JP2014102387 A JP 2014102387A JP 2014102387 A JP2014102387 A JP 2014102387A JP 2015217583 A JP2015217583 A JP 2015217583A
Authority
JP
Japan
Prior art keywords
image
image data
image processing
unit
deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014102387A
Other languages
English (en)
Other versions
JP6351368B2 (ja
Inventor
純平 芦田
Junpei Ashida
純平 芦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2014102387A priority Critical patent/JP6351368B2/ja
Publication of JP2015217583A publication Critical patent/JP2015217583A/ja
Application granted granted Critical
Publication of JP6351368B2 publication Critical patent/JP6351368B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ink Jet (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

【課題】サテライトなどによるバンディングやエッジの鮮鋭性低下などの画質劣化を低減したインクジェットプリンタを提供する。
【解決手段】センサ240は紙面230からサテライトを含む画質劣化の情報を計測し,画像劣化予測部260は次回以降の画質劣化の情報を予測し、これに基づきハーフトーン部210は次回以降のドットパターンを補正する。
【選択図】図2

Description

本発明は、インクを吐出する記録ヘッドによって、記録媒体上に画像を形成する画像処理装置、画像処理方法、及びプログラムに関するものである。
インクジェットプリンタにおいては、ヨレ,不吐,サテライト,インクミストといった種々の画質劣化要因が知られている。ヨレとは意図した紙面上の位置にドットが着弾しない(着弾誤差がある)事を意味する。不吐とはドットが吐出されるべきであるのに吐出されていない事を意味する。サテライトとは主滴に加えて発生する付加的なドットの事である。インクミストとは空気中に舞う微小のインク滴の事で紙面やヘッド表面などに付着する事である。これら画質劣化要因にはヘッドの表面状態に依存する場合など同じ劣化が繰り返し起きやすい(予測しやすい)現象と,エアフローに依存する場合などランダムに起きる(予測しにくい)現象とがある。前者を固定劣化要因,後者を不定劣化要因と呼ぶ事とする。
固定劣化要因の代表例として,サテライトについて詳しく説明する。図16はサテライトが発生した場合の紙面を表している。図16では、主滴1610,1620,1630,1640と、これらの主滴に伴うサテライト1615,1625,1635,1645を示している。サテライトはヘッド表面の状態(インクミストの付着など)やヘッドの移動速度,ノズルの目詰まりなどによってその着弾位置や大きさ,個数などが変わる。サテライトが主滴と同じ場所に着弾すればサテライトが画質へ与える影響は小さいが,主滴と離れた場所に着弾すると紙面の被覆率が変わるため意図した濃度とは違う濃度となり,濃度ムラなどを引き起こす。例えばシアンのサテライトが多い場合,全体的に青みがかるなど色ずれを起こす事もある。またエッジ近傍ではサテライトがエッジ領域を外れて空白の領域に着弾する事などによりシャープネスが低下する事もある。
特許文献1ではマルチパス記録方式のプリンタにおいて、ヘッドユニットに搭載したセンサを用いて濃度が低いことに起因する紙面上の濃度ムラを検出し,それを用いて以降のパスにおける出力濃度を補正する手法を開示している。マルチパス記録方式は、同一記録領域の記録データを複数のパスに分割し、記録媒体の搬送動作を挟んだ複数回の記録走査で同一記録領域を複数回に分けて記録する方式である。特許文献1は、センサによって濃度を検出した後に濃度補正できるパスの記録濃度比率を、濃度補正しないパスの記録濃度比率よりも高め、濃度が小さくムラが生じる場合に濃度補正できるパスの濃度を高くする手法である。
特開2009−262456号公報
特許文献1の手法を用いればサテライトに起因する濃度ムラを含む濃度ムラを部分的には低減できる。しかしながら,特許文献1の手法では濃度補正しないパスで発生する濃度ムラは補正できない。また,濃度ムラを検出した時点で出力濃度を超えてしまっている場合は補正できない。そのためエッジ近傍でサテライトが空白領域に着弾した場合などは補正できない。
本発明に係る画像処理装置は、ドットパターンに基づいてドットを記録する記録手段と、前記記録手段によって記録されたドットを示す画像データを取得する取得手段と、前記ドットパターンと前記取得手段で取得した画像データとに基づいて次回以降に前記記録手段で記録されるドットによる画質の劣化を予測する予測手段と、前記予測手段で予測された画質の劣化に基づいて、次回以降のドットパターンを補正する補正手段とを有することを特徴とする。
本発明によればサテライトなどの劣化要因が印刷出力画像に与える影響を低減し,高品質な画像を形成する事ができる。
実施形態1におけるヘッドユニットの構成例を説明する図である。 実施形態1の構成例を説明する図である。 実施形態1における劣化計測部の構成例を説明する図である。 実施形態1における劣化計測部の処理例を説明する図である。 実施形態1における劣化計測部の劣化要因の分類例を説明する図である。 実施形態1における劣化予測部の構成例を説明する図である。 実施形態1におけるハーフトーンの処理例を説明する図である。 実施形態1の変形例1における劣化予測部の構成例を説明する図である。 実施形態1の変形例2における誤差拡散係数を説明する図である。 実施形態2の構成例を説明する図である。 実施形態3のヘッドユニットの構成例を説明する図である。 実施形態3の構成例を説明する図である。 実施形態4の構成例を説明する図である。 従来のヘッドユニットの構成例を説明する図である。 マルチパス印刷の流れを説明する図である。 サテライトの発生例を説明する図である。
以下、本発明の実施形態について、図面を参照して説明する。なお、以下の実施の形態は特許請求の範囲に関わる本発明を限定するものではなく、また、本実施の形態で説明されている特徴の組み合わせの全てが本発明の解決手段に必須のものとは限らない。
<マルチパス記録方式>
以下、マルチパス記録方式について簡単に説明する。図14は従来のインクジェットプリンタの記録ヘッド部を示す図である。記録ヘッド1400は、C(シアン)、M(マゼンタ)、Y(イエロー)及びK(ブラック)インクをそれぞれ吐出するノズル列を備えるインクジェット記録ヘッドが構成されている。図示したように,各色は主走査方向上流側と下流側の2バンクにより構成されている。
図15は図14に示す記録ヘッドを備えたプリンタによるマルチパス記録(パス数が4の場合)を説明するための図である。図15(a)及び(b)は、記録ヘッド1500,形成画像1510,記録媒体(紙)1520を示している。ある時点において図15(a)のような状態であったとすると,記録ヘッド1500が主走査方向への記録動作で紙1520の終端に達するとヘッド長の1/4だけ副走査方向に紙を送り,次の記録動作では図15(b)のようになる。一般に,パス数Nで画像を形成する場合,紙送り幅はヘッド長の1/Nである。このような記録動作と紙送りとを繰り返す事で最終的な印刷画像が形成される。
<実施形態1>
本実施形態で用いるインクジェットプリンタのヘッドユニット(キャリッジ)の構成例を図1に示す。図示したように本実施形態におけるヘッドユニット100は,各色のノズル列110,120,130,140およびセンサ150を備える。ヘッドユニット100がマルチパス方式にて紙面に画像を形成する間,センサ150は紙面を随時撮像して一連の撮影画像データを取得する。なお、マルチパス方式のため印刷の中間状態を含む撮影画像が取得される。これにより印刷中に動的にサテライトの位置などを計測することができ、その結果に基づいて印刷画像を補正することができる。なお,センサ150はエリアセンサを用いて二次元の画像を一度に取得しても良いし,副走査方向のラインセンサを用いて一次元の画像から二次元の画像を構成しても良い。
本実施形態における処理の流れを図2のブロック図を用いて説明する。画像処理部200はハーフトーン部210,画質劣化計測部250,画質劣化予測部260を含む。画像処理部200は多値の原画像データを入力として,二値化されたドットパターンをヘッド220へ出力する。また、ハーフトーン部210は、ハーフトーン処理の結果得られるドットパターンを画質劣化計測部250へ出力する。ヘッド220は紙面230にインクを吐出する。この時,主滴と同時にサテライトなどの画質劣化要因も紙面に形成される事がある。センサ240は紙面230を撮影して,撮影画像を画像処理部200へと入力する。画質劣化計測部250はハーフトーン部210から出力されたドットパターンと撮影画像とを基に,紙面上の画質劣化を計測して劣化計測情報を取得する。画質劣化予測部260は画質劣化計測部250で計測された劣化計測情報から以後の画質劣化発生を予測して劣化予測情報をハーフトーン部210へ送る。予測は一走査(主走査方向に端から端までヘッドが移動する間)ごとに行う。すなわち,N走査目を印刷中には(N−1)番目までの走査から得られた劣化計測情報に基づく補正と,(N+1)番目以降の走査のための劣化計測情報収集とが行われている。
以降では,画像処理部200内の各要素の動作を詳細に説明する。
図3は画質劣化計測部250のブロック図である。画質劣化計測部250は、参照画像生成部310と、差分演算部320と、三値化部330と、クラスタリング部340と、解析部350とを含む。参照画像生成部310は入力された二値のドットパターンを用いて,撮影画像と同等の解像度を持つ多値画像をレンダリングして参照画像を示す参照画像データを生成する。参照画像は,画質劣化要因がない場合の理想状態を表している。図4に例を示す。図4において参照画像生成部310は、ドットパターン410に基づいて参照画像430を生成する。なお、点線は画素の境界を分かりやすくするためであり実際の画像中には存在しない。例えば,印刷の解像度が1200dpiで撮影画像が4800dpiであれば4倍に解像度変換すれば良いので,ドットパターン中の1ドットは4x4の大きさの円になる。
差分演算部320は撮影画像420と参照画像430との差分を算出して差分画像を示す差分データを生成する。撮影画像420には主滴やサテライトなどの画質劣化要因やセンサノイズなどが含まれている。一方,参照画像430には主滴のみが含まれているため,差分画像では画質劣化要因やセンサノイズが強調される。なお差分演算部320は,撮影画像と参照画像との位置ずれや回転を補正してから差分を演算する構成としても良い。
三値化部330は,所定の閾値Tに対して差分画像の注目画素の画素値をPとすると,“P>T”の場合は注目画素の画素値を“1”,“P<−T”の場合は注目画素の画素値を“−1”,それ以外の場合は注目画素の画素値を“0”とする。このようにして三値化部330は三値画像440を示す三値画像データを生成する。つまり、三値画像中の画素値が1の画素は、撮影画像420に含まれているものの、参照画像430には含まれない画素である。また、三値画像中の画素値が0の画素は、撮影画像420と参照画像430との差がないとみなせる画素である。三値画像中の画素値がー1の画素は、撮影画像420には含まれておらず、かつ参照画像430には含まれる画素である。なお,本実施形態では三値画像を例に挙げたが、カラーの場合には複数の閾値を用意してどの色であるか識別するS値画像(S=“色数”×2+1)を生成しても良い。図4の三値画像440において“+”は“1”を,“−”は“−1”を,空白の領域は“0”を表している。
クラスタリング部340は三値画像の中から“1”もしくは“−1”が連続している画素群を連結要素として抽出する。図4のクラスタリング結果450は三値画像440において検出されたクラスタリング結果を示しており、連結要素451,452,453,454がそれぞれ検出されている例を示している。この処理にはMorphological処理によって、例えば図4の441のような孤立点などのノイズの除去が含まれる。クラスタリング部340は、抽出した連結要素の座標を解析部に送る。
解析部350では各連結要素を解析し,各連結要素の重心位置や大きさ,符号,輪郭などを劣化計測情報として出力する。重心位置は例えば連結要素を構成する各画素の位置の平均として求める。大きさは例えば連結要素を構成する各画素の数として求める。符号は連結要素の画素値の正負である。輪郭は例えば図5に示すように、円状,棒状,三日月状,ドーナツ状などあらかじめ定義された形状のうちいずれか連結要素に一番近いものをパターン認識技術などにより選択する。なお、“該当なし”の場合を含めても良い。
なお,撮影画像内に多くのドットが含まれる場合、すなわち濃度が濃い場合,ドットと近傍のドットとが重なるため正確に各連結要素を検出する事は難しい。そのため濃度が低い領域を選択的に撮影しても良い。また,通常はヘッド長の1/F(Fはパス数)分ずつ紙送りしながら紙面の上方から順に印字するが,パスの順番を変える事で劣化計測情報が得やすい領域を先に印刷しても良い。
次に,図6を用いて画質劣化予測部260の動作を説明する。画質劣化予測部260は、リンク部610と統計部620と予測部630とを含む。リンク部610は,画質劣化計測部250から送られてきた劣化計測情報の各連結要素が,どのノズルに起因するものであるかを推定する。すなわち、各連結要素とノズルとを対応付けする。これは例えば最も近い主滴と同じノズルとしても良いし,テストチャートなどを印刷して得られた過去の統計データなどから求めても良い。図4の例では連結要素451は主滴411に,連結要素452は主滴412に,連結要素453および454は主滴413にそれぞれ対応付けされる。なお必ずしも全ての連結要素を対応付けしなくても良く,最も近い主滴までの距離が所定の値より遠い場合は“対応付けなし”としても良い。
統計部620では最近のM回(Mは自然数)の走査分の劣化計測情報を蓄積し,ノズルごとに統計をとる。例えば対応付けされている連結要素の大きさや輪郭ごと(円,棒,三日月,ドーナツなど)に各ノズルにおける連結要素の発生確率を求める。また、一走査内で一発目の吐出の場合や隣のノズルと同時吐出の場合など,より細かい場合分けをしても良い。さらに、より最近の劣化計測情報に重みをおくような重みづけをしても良い。この発生確率を基に,発生確率が所定の値以上であればその連結要素は固定劣化要因とし,所定の値以下であれば不定劣化要因とする。
このようにして得られた統計データは、予測部630へ送られる。ここで統計データは、劣化計測情報とノズルへの対応付け情報と発生確率とを含むものである。統計的な解析を行なう事で,例えば円状でかつ所定の範囲内の大きさの連結要素が,所定の値以上の発生確率であればその連結要素はサテライトであるなどの推定ができる。また符号が正負一対の三日月状の連結要素があれば,主滴の着弾誤差(ヨレ)だと考えられるが,その発生確率が高ければノズルの目詰まりなど固定劣化要因であると推定できるし,発生確率が低ければエアフローなどの不定劣化要因であると推定できる。符号が正であるドーナツ状の連結要素は,紙の吸収率などの影響によりドット径が想定(参照画像)よりも大きかったと推定できる。棒状は紙の繊維などと推定できる。以上のように統計データから様々な推定ができるため,それぞれの劣化特性に合わせて的中確率を向上させた予測が可能になる。
予測部630では,統計データを基に各固定劣化要因に関して次回以降の走査における画質劣化を予測する。すなわち、次回以降の走査における連結要素の重心位置や大きさ,形状などを予測する。例えば,50%以上の割合で円状の劣化要因が発生していたノズルは次の走査でも円状の劣化要因が発生すると予測する。ドーナツ状の劣化要因に関しては最頻値が繰り返されると予測する。三日月状の劣化要因に関しては直前の事象が繰り返されると予測する。なお,予測の方法は上記で説明した方法に限らない。例えば統計部620にて傾向や周期を解析してそれを基に固定劣化要因と不定劣化要因を切り分けても良い。傾向の例としては、例えば主滴に連結要素が少しずつ近づくという傾向や,サテライトの発生するノズル範囲が拡大するなどの傾向が挙げられる。さらに、傾向や周期を基に内部状態(例えばヘッド表面にインクミストが付着している)などを推定する事で次の走査における画質劣化を予測しても良い。
次に,図7を用いてハーフトーン部210の動作を説明する。ここでは,劣化予測情報として,サテライトが全ノズルに対し,主滴の一画素分左に発生すると予測されたとする。ハーフトーン方法としては4x4のディザマトリクス710を用いて入力画像の二値化を実行する事とする。ここで入力画像とは、ハーフトーン部210に入力される原画像データが示す多値画像のうちの、ディザマトリクスのサイズに対応する領域の画像のことを示す。ディザマトリクス710の各要素は(0,0)〜(3,3)のX−Y座標を用いて説明する。また、入力画像720の各画素も(0,0)〜(3,3)のX−Y座標を用いて説明する。例えばディザマトリクス710の要素(1,2)のマトリクス値は60である。
図7の入力画像720を入力すると,通常のディザ処理では要素ごとに画素値とマトリクス値とを比較して結果を出力する。つまり、画素値が対応するマトリクス値以上の場合、ドットのONを表す1を出力し、画素値が対応するマトリクス値よりも小さい場合、ドットのOFFを表す0を出力する。通常のディザ処理の結果は、二値化結果730のようになる。
一方,本実施形態のディザ処理では,閾値の小さい要素から二値化を行い,二値化結果が1の場合(ドットがONの場合)、その画素の周辺画素に対してサテライト補正を行う。サテライトの大きさ(紙面の被覆率)を主滴の半分とすると,サテライトの補正として,ドットがONとなった画素の左隣の画素の画素値から主滴の半分に相当する値である128を減算する。例えば,入力画像の画素(0,1)の二値化結果は1になるので,画素(0、1)の左側の画素である入力画像の画素(0,0)から主滴の半分に相当する128を減算する。つまり、サテライトによってドットがONとなる画素の左隣の画素に対して主滴の半分が付着することが予測されているので、そのサテライトによる付着を考慮した処理を行なう。すなわち、サテライトが付着する画素の画素値をサテライトに相当する値で減算する処理を行なう。入力画像740はこのような処理により,サテライトの補正が行われた入力画像であり、二値化結果750はこのサテライト補正がされた入力画像740をディザマトリクス710と比較した比較結果を示す。画素(0,2)を比較してみると、通常のディザ処理の二値化結果730では、対応する閾値よりも大きいのでドットがONとなっている。一方、本実施形態のディザ処理では、画素(0,3)の結果、画素(0,2)の画素値が減算されおり、この結果、画素(0,2)のドットはONにはならない。なお,ここでは4x4画素の領域における処理を説明したが,これを入力画像4x4画素ごとに繰り返す事で画像全域を二値化できる。
なお,補正位置と補正値はサテライトの発生予測位置と大きさに準じて適宜決定することができる。例えばサテライトの発生位置が主滴の左上でサテライトの被覆率が主滴の1/4と予測されていれば,ドットをONとした画素の左上の画素の画素値から主滴の1/4に相当する64を減算すれば良い。つまり、サテライトが発生すると予測されたノズルによって記録されるドットを含む所定範囲内のドットのドットパターンが予測された画質の劣化要因に基づいて補正される処理を行なえばよい。
通常のディザ処理による二値化結果730および本実施形態のディザ処理による二値化結果750をそれぞれドットに置き換えるとドットイメージ760,770のようになる。ドットイメージ760は、ドットがONである1の画素の左隣の画素が、ドットがOFFである0の画素である場合に、サテライトによって主滴の半分がドットとして現れる様子を示している。一方、ドットイメージ770においても、ドットがONである1の画素の左隣の画素が、ドットがOFFである0の画素である場合に、サテライトによって主滴の半分がドットとして現れる様子を示している。しかしながら、ドットイメージ770は、予測に基づいて画素値が減算された入力画像に基づいているのでドットイメージ760と比較して主滴の数が減っている。例えば、先に説明した画素(0,2)の位置のドットは、二値化結果750ではONにはならないものの、画素(0,3)の位置のドットのサテライトによって主滴の半分がドットとして現れている。
この図7においては,主滴の左隣にサテライトが発生すると仮定した。この時,主滴による紙面の被覆率を100%,サテライトによる紙面の被覆率を50%とすると,ドットイメージ760の場合は主滴が10個,サテライトが4個なので濃度は10/16+0.5*4/16=12/16になる。ドットイメージ770の場合は主滴が8個,サテライトが6個なので濃度は8/16+0.5*6/16=11/16になる。入力画像の各画素値は160であり入力画像が表す濃度は160であるため,ドットイメージ770の方がサテライトの影響を低減して入力画像により近い濃度(160/255)を実現できている。
以上説明したように,本実施形態ではヘッドに搭載されたセンサを用いて画質劣化の発生を予測し,次の走査の印刷データを補正する事で画質向上を達成する例を説明した。この時,各画質劣化要因を形状,大きさなどから識別する事によって,より予測精度を高めるができる。
なお,上記実施形態では走査単位で予測と補正を行ったが,一走査内で予測と補正を行っても良い。この場合,例えばヘッドが画像の左から右へと印刷している時,画像の左端を印刷時に得た劣化計測情報を基に同じ走査内の残りの画像を補正する。この時,ハーフトーンはヘッドの移動にしたがって段階的に行う。
劣化計測情報,劣化予測情報は上記実施形態で説明したものに限定されない。例えばサテライトの大きさ,形,色味,数などを計測および予測しても良い。また、クラスタリング部340でのノイズ除去の際に過去の撮影画像などを用いても良い。また、ディザマトリクスとして4x4のマトリクスを用いて説明したが任意の大きさで実現できる。例えば128x128のブルーノイズマスクに対して本手法を適用しても良い。
また、上記実施形態の図7の例では、入力画像の例として同じ画素値が含まれる例を説明したが、もちろん、この例に限られるものではない。たとえばエッジ近傍の入力画像についても同様にサテライトの発生を予測して補正することができる。特に、エッジ近傍でもサテライトの発生が予測できていれば空白領域にサテライトが着弾しないように制御できる。
<変形例1>
上記実施形態では固定劣化要因のみに対して予測に基づく補正を行ったが,不定劣化要因の補正を加えても良い。図8に本変形例における画質劣化予測部260の構成例を示す。リンク部810,統計部820,予測部830の処理は図6と同様である。本変形例では統計部820から不定劣化要因の情報をマスク部840へ送り,マスク部840において補償画像データを生成する処理を追加する。
統計部820での処理により固定劣化要因の位置を特定できている。そこで、図3の差分演算部から出力される差分画像中からその不定劣化要因の位置以外をマスクして除外する事によって,例えばインクミストや一時的な不吐などの不定劣化要因のみが含まれる補償画像データを生成できる。この補償画像データを次の走査の画像から減算する事で,不定劣化要因による理想とのずれを打ち消すように次の走査のためのドットパターンを生成できる。
<変形例2>
上記実施形態ではディザによるハーフトーンの場合を説明したが,誤差拡散を利用しても良い。この場合、図2におけるハーフトーン部210内部の処理が異なるだけで,他は同様である。
誤差拡散処理では量子化前後の画素値の差(量子化誤差)に例えば図9の拡散係数910をかけた値を注目画素の周囲の画素へ加算する事で濃度を保存している。例えば、図9の例では、「*」で示す注目画素の量子化誤差の値を7/16倍した値を注目画素の右隣に画素に加算する。同様に、他の拡散係数をかけた値を注目画素の周囲の画素に加算する。一般に,注目画素の入力画素値をXとすると,量子化誤差は入力画素値と量子化代表値の差であるので,注目画素のドットがONの時は(X−255)であり,注目画素のドットがOFFの時はXである。
本変形例では,サテライトが発生すると予測されている時,ドットがONの場合の注目画素の量子化誤差の算出に用いる量子化代表値を変更する。例えばサテライト発生位置を一画素分左とし,そのサテライトの被覆率を50%とする。この時,量子化代表値は255*1.5=382.5とする。すなわちドットがONの場合に対する量子化誤差は(X−382.5)となる。つまり、ドットがONになるということは、そのドットに付随するサテライトが生じることになる。そこで、サテライトによる濃度上昇を予測し、サテライトによる濃度上昇分の濃度を周囲の画素の画素値から減算するように、量子化代表値の値をサテライトの被覆率に応じて変更する。ただし,左隣の画素がONの場合の注目画素については上記量子化代表値の変更は行わない。つまり、サテライトの発生方向の画素のドットがONとなる場合、その発生方向の画素に対する補正は行なわない。これにより,主走査方向に2画素連続してONの場合は左隣の主滴とサテライトが重なる事から,この場合は補正しない事で正しく濃度を保存できる。
これにより,サテライトによる濃度上昇分を誤差として周囲に拡散できるため,より正確に意図した濃度で印刷できる。なおここでは量子化代表値を変更する例を説明したが、量子化代表値でなく拡散係数を制御しても良い。
<実施形態2>
上記実施形態ではヘッドに搭載されたセンサを用いて画質劣化を走査ごとに計測したが,本実施形態ではヘッドにセンサを搭載せず、1ページ印刷後にスキャナで印刷画像を読み込む事で画質劣化を計測する。なおスキャナはインクジェットプリンタに搭載のものを用いても良いし,専用のフラットベッドスキャナやデジタルカメラなどを用いても良い。
本実施形態のブロック図を図10に示す。スキャナ1040以外は実施形態1で説明した図2と同様であるが,サテライトの計測,補正はページごとに行う。すなわち実施形態1では前の走査で計測した画質劣化を用いて次の走査を補正したが,本実施形態では,前ページで計測した画質劣化を用いて次ページでの画質劣化を予測し,次ページの画像を補正する。なお画質劣化を計測するページは,画質劣化が計測しやすいようにドットをまばらに配置し,かつ全ノズルを複数回使うようにデザインしたテストチャートとする。
例えばサテライトの特性はページごとに変化し得るので,サテライト予測精度は低下する可能性がある。しかしセンサの追加なしで,画質劣化の防止が実現できる。
<実施形態3>
上記実施形態1および2では,マルチパス方式を用いたインクジェットプリンタに関して説明したが,本実施形態ではフルマルチ方式を用いたインクジェットプリンタを用いる場合について説明する。なお、フルマルチ方式とは、ページ幅以上のヘッド長をもつヘッドをページ高さ方向に1度走査する事で印刷を完了する方式のことである。本実施形態におけるヘッドユニットの構成例を図11に示す。ヘッドユニット1100は固定されており,各ノズル列1110,1130,1150,1170の長さは紙面幅(フルサイズ)を包含するサイズに相当する。紙1190(ロール紙など)が連続的に図の上方へ送られる事で印刷される。印刷中,各センサ1120,1140,1160,1180は紙面1190を断続的に撮影する。
本実施形態における処理の流れを図12に示す。実施形態1の図2と同様に,紙面の撮影画像から画質劣化を計測し,それを基に予測した画質劣化をハーフトーン部へフィードバックする事で画質劣化を低減する。ただし,フルマルチ方式では印刷は一走査で完了するので,走査内で随時計測および補正を行う。すなわち紙先頭近傍を印刷中に得た劣化計測情報を用いてそれ以降の補正を行う。なお,紙先頭の領域は劣化計測情報収集を目的としたパターンを印刷し,後処理でその領域を切り取っても良い。
各センサの役割について図12と図11を用いて説明する。センサ1120の撮影画像を用いて画質劣化計測部1250−1はノズル列1110に係る画質劣化を計測する。センサ1140の撮影画像を用いて画質劣化計測部1250−2はノズル列1130に係る画質劣化を計測する。ただしセンサ1140で撮影する画像にはノズル列1110から出力されたドットとノズル列1130から出力されたドットが含まれる。そのため,センサ1140の画像からセンサ1120の画像を減算する事で画質劣化計測部1250−2はノズル列1130に係る画質劣化のみを計測する。同様に,画質劣化計測部1250−3はセンサ1160の撮影画像からノズル列1150に係る画質劣化を計測し,画質劣化計測部1250−4はセンサ1180の撮影画像からノズル列1170に係る画質劣化を計測する。以上により各ノズル列それぞれのサテライト位置などの画質劣化を高精度に計測する。画質劣化予測部1260,ハーフトーン部1210の動作は実施形態1と同様である。
以上説明したように,フルマルチ方式のインクジェットプリンタを用いた実施形態においても同様の効果が得られる事を示した。なお,上記実施形態ではノズル列数と同じ数のセンサをヘッドユニットに具備したが,より少ない数のセンサでも実現できる。例えばセンサ1180のみの構成である場合,撮影画像には全ノズル列分のドットが含まれるが,ドットの位置などを基にどのノズルであるか識別しても良い。また,例えばセンサ1120のみの構成である場合,ノズル列1110の情報のみが得られるが,他のノズル列はノズル列1110と同様であると予測しても良い。
<実施形態4>
本実施形態では,図13に図示するようにプリンタ1320およびスキャナ1340はクラウド1300(サーバ群)に接続されており,クラウド1300内でサテライトを考慮したドットパターンを算出する。
原画像データは例えばPC(図示せず)などからクラウド1300へ送られる。クラウド1300はスキャナ1340によりスキャンされた印刷画像(過去の印刷画像)を基に,サテライトなどの印刷の不具合を解析する事で最適なドットパターンを得る。これは例えばクラウド1300内で他の同機種のデータを収集したり,サテライトを含む印刷を繰り返しシミュレーションするなどして,上記印刷の不具合が起きた時でも画質が劣化しない最適なドット配置を算出する。これにより,繰り返しシミュレーションなど計算負荷の大きい処理であっても,クラウド1300の豊富な計算資源とデータを活用する事で高速かつ高品質な処理が可能である。
<他の実施形態>
また、本発明は、上述した実施形態の機能(例えば、上記の各部の処理を各工程に対応させたフローチャートにより示される処理)を実現するソフトウェアのプログラムコードを記録した記憶媒体を、システム或いは装置に供給することによっても実現できる。この場合、そのシステム或いは装置のコンピュータ(又はCPUやMPU)が、コンピュータが読み取り可能に記憶媒体に格納されたプログラムコードを読み出し実行することにより、上述した実施形態の機能を実現する。

Claims (20)

  1. ドットパターンに基づいてドットを記録する記録手段と、
    前記記録手段によって記録されたドットを示す画像データを取得する取得手段と、
    前記ドットパターンと前記取得手段で取得した画像データとに基づいて次回以降に前記記録手段で記録されるドットによる画質の劣化を予測する予測手段と、
    前記予測手段で予測された画質の劣化に基づいて、次回以降のドットパターンを補正する補正手段と
    を有することを特徴とする画像処理装置。
  2. 前記予測手段は、前記ドットパターンを示す参照画像データと前記取得手段で取得した前記画像データとの差分データに基づいて前記画質の劣化を予測することを特徴とする請求項1に記載の画像処理装置。
  3. 前記予測手段は、前記差分データと前記参照画像データとから、画質の劣化に起因する、少なくとも1つの画素を含む画素群とノズルとを対応付けすることを特徴とする請求項2に記載の画像処理装置。
  4. 前記予測手段は、前記画素群の形状、大きさ、または重心の少なくとも1つを、対応付けされているノズルごとに統計的に解析して、ノズルごとの画質の劣化要因を決定することを特徴とする請求項3に記載の画像処理装置。
  5. 前記予測手段は、ノズルごとに、前記画質の劣化要因の発生確率を求め、前記発生確率が所定の値以上である場合、次回以降の前記記録手段による記録のときに該ノズルに該画質の劣化要因が発生すると予測し、
    前記補正手段は、前記画質の劣化要因が発生すると予測されたノズルによって記録されるドットを含む所定範囲内のドットのドットパターンを、予測された画質の劣化要因に基づいて補正することを特徴とする請求項4に記載の画像処理装置。
  6. 前記劣化要因は、サテライトを含み、
    前記補正手段は、前記サテライトが発生するノズルのサテライトの発生方向の画素の濃度を低くすることを特徴とする請求項5に記載の画像処理装置。
  7. 前記補正手段は、前記サテライトが発生するノズルのサテライトの発生方向の画素のドットがONとなる場合、該発生方向の画素に対する補正を行わない請求項6に記載の画像処理装置。
  8. 前記予測手段は、前記発生確率が前記所定の値以上である場合の画質劣化要因のドットを前記差分データから除外した補償画像データを生成し、
    前記補正手段は、前記補償画像データをさらに用いて前記補正を行うことを特徴とする請求項5から7のいずれか一項に記載の画像処理装置。
  9. 前記ドットパターンは、原画像データをハーフトーン処理することで生成されることを特徴とする請求項1から8のいずれか一項に記載の画像処理装置。
  10. 前記補正手段は、前記原画像データの画素値を変更することで前記補正を行なうことを特徴とする請求項9に記載の画像処理装置。
  11. 前記補正手段は、前記ハーフトーン処理に用いる量子化代表値を変更することで前記補正を行なうことを特徴とする請求項9に記載の画像処理装置。
  12. 前記補正手段は、前記ハーフトーン処理に用いる誤差拡散の拡散係数を変更することで前記補正を行なうことを特徴とする請求項9に記載の画像処理装置。
  13. 前記ハーフトーン処理は、ディザ処理であり、
    前記画質の劣化の要因は、サテライトを含み、
    前記補正手段は、ディザマトリクスに含まれる閾値の小さい画素から順に、変更した後の画素値との比較を行うことで次回以降のドットパターンを生成することを特徴とする請求項10に記載の画像処理装置。
  14. 前記取得手段は、前記記録手段によって記録されたドットを撮影した撮影画像データを前記画像データとして取得することを特徴とする請求項1から13のいずれか一項に記載の画像処理装置。
  15. 前記取得手段は、前記記録手段によって一走査の記録が終わったドットを撮影した撮影画像データを前記画像データとして取得することを特徴とする請求項1から13のいずれか一項に記載の画像処理装置。
  16. 前記取得手段は、前記記録手段に含まれるノズル列を包含する領域を撮影した撮影画像データを前記画像データとして取得することを特徴とする請求項1から13のいずれか一項に記載の画像処理装置。
  17. 前記ノズル列を包含する領域は、ドットを記録する記録媒体の幅に対応することを特徴とする請求項16に記載の画像処理装置。
  18. 前記取得手段は、
    複数の撮影手段によって複数の撮影画像データを取得し、
    前記複数の撮影画像データの差分に基づいて、それぞれの撮影手段の画像データを取得することを特徴とする請求項17に記載の画像処理装置。
  19. ドットパターンに基づいてドットを記録手段によって記録する記録ステップと、
    前記記録ステップによって記録されたドットを示す画像データを取得する取得ステップと、
    前記ドットパターンと前記取得ステップで取得した画像データとに基づいて次回以降に前記記録手段で記録されるドットによる画質の劣化を予測する予測ステップと、
    前記予測ステップで予測された画質の劣化に基づいて、次回以降のドットパターンを補正する補正ステップと
    を有することを特徴とする画像処理方法。
  20. コンピュータを、請求項1から18のいずれか一項に記載の画像処理装置として機能させるためのプログラム。
JP2014102387A 2014-05-16 2014-05-16 画像処理装置、画像処理方法、及びプログラム Active JP6351368B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014102387A JP6351368B2 (ja) 2014-05-16 2014-05-16 画像処理装置、画像処理方法、及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014102387A JP6351368B2 (ja) 2014-05-16 2014-05-16 画像処理装置、画像処理方法、及びプログラム

Publications (2)

Publication Number Publication Date
JP2015217583A true JP2015217583A (ja) 2015-12-07
JP6351368B2 JP6351368B2 (ja) 2018-07-04

Family

ID=54777406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014102387A Active JP6351368B2 (ja) 2014-05-16 2014-05-16 画像処理装置、画像処理方法、及びプログラム

Country Status (1)

Country Link
JP (1) JP6351368B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289750A (ja) * 2005-04-08 2006-10-26 Fuji Photo Film Co Ltd 画像処理方法及び装置並びにこれを備えた画像形成装置
JP2007160563A (ja) * 2005-12-09 2007-06-28 Canon Inc インクジェット記録装置及びインクジェット記録方法
JP2008087312A (ja) * 2006-09-29 2008-04-17 Fuji Xerox Co Ltd 画像処理装置、画像処理プログラム及び液滴吐出装置
JP2009262456A (ja) * 2008-04-25 2009-11-12 Canon Inc 画像形成装置及び画像形成方法
JP2013052614A (ja) * 2011-09-05 2013-03-21 Ricoh Co Ltd 画像処理方法、画像処理プログラム及び情報処理装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289750A (ja) * 2005-04-08 2006-10-26 Fuji Photo Film Co Ltd 画像処理方法及び装置並びにこれを備えた画像形成装置
JP2007160563A (ja) * 2005-12-09 2007-06-28 Canon Inc インクジェット記録装置及びインクジェット記録方法
JP2008087312A (ja) * 2006-09-29 2008-04-17 Fuji Xerox Co Ltd 画像処理装置、画像処理プログラム及び液滴吐出装置
JP2009262456A (ja) * 2008-04-25 2009-11-12 Canon Inc 画像形成装置及び画像形成方法
JP2013052614A (ja) * 2011-09-05 2013-03-21 Ricoh Co Ltd 画像処理方法、画像処理プログラム及び情報処理装置

Also Published As

Publication number Publication date
JP6351368B2 (ja) 2018-07-04

Similar Documents

Publication Publication Date Title
EP3305532B1 (en) Image inspection device, image inspection method, program, and ink jet printing system
JP5746596B2 (ja) 事前情報の無い印刷物の画像データを使用する、インクジェットプリンタにおけるインクジェットの不足及び欠落を検出するためのシステム及び方法
US9649839B2 (en) Image processing apparatus and image processing method
JP2018054560A (ja) 画像検査方法及び装置、プログラム並びに画像記録システム
US10013626B2 (en) Image processing apparatus and image processing method setting division size for dividing image data
JP6598558B2 (ja) 画像処理装置、画像処理方法およびプログラム
JP6448346B2 (ja) インクジェット記録装置およびインクジェット記録方法
JP6562754B2 (ja) 画像処理装置、画像処理方法およびプログラム
US8836994B2 (en) Data processing system and data processing method forming a high-quality image on a printing medium by selecting a mask pattern data group based on a frequency characteristic of the input image data and mask pattern data group
JP2008018632A (ja) 印刷装置、印刷装置制御プログラム、当該プログラムを記憶した記憶媒体及び印刷装置制御方法、画像処理装置、画像処理プログラム、当該プログラムを記憶した記憶媒体及び画像処理方法、並びに補正領域情報生成装置、補正領域情報生成プログラム、当該プログラムを記憶した記憶媒体及び補正領域情報生成方法
JP5308735B2 (ja) 印刷画像検査装置および印刷方法
US9150009B1 (en) Printing apparatus, printing method, and program
JP6351368B2 (ja) 画像処理装置、画像処理方法、及びプログラム
US8941880B2 (en) Image processing apparatus, image processing method, and program
JP2023104774A (ja) 吐出制御装置、インクジェット印刷システム、印刷条件決定方法及びプログラム
US9162498B2 (en) Ink jet printing apparatus and image processing apparatus
JP5883313B2 (ja) 画像記録装置、補正係数取得方法および画像記録方法
JP2015143011A (ja) インクジェット記録装置および画像処理装置
JP6971765B2 (ja) 制御装置、制御方法、およびプログラム
US20240109334A1 (en) Defective nozzle locating mechanism
US8804198B2 (en) Printing data generating apparatus, printing data generating method, and printing data generating program
JP5843582B2 (ja) 画像処理装置および画像処理方法
US9375919B2 (en) Inkjet printing apparatus, inkjet printing method, and non-transitory computer-readable storage medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180605

R151 Written notification of patent or utility model registration

Ref document number: 6351368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151