JP2015206675A - Surface state inspection method for flat substrate, and surface state inspection device for flat substrate using surface state inspection method - Google Patents
Surface state inspection method for flat substrate, and surface state inspection device for flat substrate using surface state inspection method Download PDFInfo
- Publication number
- JP2015206675A JP2015206675A JP2014087105A JP2014087105A JP2015206675A JP 2015206675 A JP2015206675 A JP 2015206675A JP 2014087105 A JP2014087105 A JP 2014087105A JP 2014087105 A JP2014087105 A JP 2014087105A JP 2015206675 A JP2015206675 A JP 2015206675A
- Authority
- JP
- Japan
- Prior art keywords
- light
- scattered light
- substrate
- defect
- flat substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 180
- 238000007689 inspection Methods 0.000 title claims abstract description 59
- 238000000034 method Methods 0.000 title claims abstract description 31
- 230000007547 defect Effects 0.000 claims abstract description 139
- 238000001514 detection method Methods 0.000 claims abstract description 60
- 230000001678 irradiating effect Effects 0.000 claims description 7
- 238000010586 diagram Methods 0.000 description 10
- 230000000630 rising effect Effects 0.000 description 9
- 239000013078 crystal Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 230000005856 abnormality Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 230000009194 climbing Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/89—Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
- G01N21/892—Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/30—Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Abstract
Description
本発明は、半導体ウェハ、マスク、ディスク基板、液晶基板、ガラス基板、透明フィルム等のような平板基板の表面に付着している異物、キズ・ヒビ、結晶欠陥等の表面状態の異常を光散乱方式で検査する、平板基板の表面状態検査技術に関し、特に、結晶欠陥、スクラッチ、スリップ、ウォータマーク、積層欠陥など平板基板表面に生じている凹凸の欠陥を識別検査する平板基板の表面状態検出方法、及びその方法を用いた平板基板の表面状態検査装置に関する。 The present invention light scatters abnormal surface conditions such as foreign matter, scratches, and crystal defects adhering to the surface of a flat substrate such as a semiconductor wafer, mask, disk substrate, liquid crystal substrate, glass substrate, and transparent film. The present invention relates to a technique for inspecting the surface state of a flat substrate, in particular, a method for detecting the surface state of a flat substrate, in particular for discriminating and checking defects in the surface of the flat substrate such as crystal defects, scratches, slips, watermarks, and stacking faults And a flat substrate surface state inspection apparatus using the method.
電子デバイス等が形成される基板に僅かでも異物(ゴミや欠陥)が存在すると、不良品の生成につながるおそれがあるため、基板の異物や表面状態の検査が不可欠になっている。また、基板の表面状態の検査は、不良品の除去とともに電子デバイスの製造工程中における不良発生原因を特定することを目的としているが、そのためには、検出された欠陥の種類・寸法などを知ることが重要となる。 If even a small amount of foreign matter (dust or defect) is present on a substrate on which an electronic device or the like is formed, it may lead to generation of a defective product, and thus inspection of the foreign matter and surface state of the substrate is indispensable. In addition, the inspection of the surface condition of the substrate is aimed at identifying the cause of the occurrence of defects in the manufacturing process of the electronic device along with the removal of defective products. For this purpose, the type and size of detected defects are known. It becomes important.
半導体ウェハ等の平板基板上に生じる欠陥種としては、異物、キズ・ヒビなどの他、結晶欠陥、スリップ、研磨傷(スクラッチ)、珪酸の円形模様(ウォータマーク)、積層欠陥、球状異物などがあげられる。ここで、結晶欠陥、スリップ、スクラッチは凹状の欠陥であり、一方、球状異物、ウォータマーク、積層欠陥は凸状の欠陥に分類することができる。 Defect types generated on a flat substrate such as a semiconductor wafer include foreign matter, scratches, cracks, etc., crystal defects, slips, polishing scratches (scratches), circular patterns of silica (watermarks), stacking faults, spherical foreign matters, etc. can give. Here, crystal defects, slips, and scratches are concave defects, while spherical foreign substances, watermarks, and stacking faults can be classified as convex defects.
平板基板の表面状態の検査は、指向性の良いレーザ光を基板表面に照射し、基板表面から反射される散乱光を散乱光受光器で検出し、レーザ光の照射点を二次元走査して基板表面全体を検査する方法が一般的に用いられている。例えば、下記特許文献1に記載の透明平板基板の異物検査装置では、透明平板基板に投光系により検出光を照射し、前記透明平板基板に存在する異物による散乱光を、受光系により受光して前記透明平板基板に存在する異物を検出する異物検査装置において、前記透明平板基板の一方の面(以下、表面)に設けられ、前記透明平板基板の基板法線に対して所定の入射角で前記検出光を前記表面に照射する投光系と、前記表面側に設けられ、前記検出光の照射点を基準として、前記投光系と反対側の位置に設けられた前記受光系とを備え、前記受光系は、前記投光系から照射される前記検出光が、前記表面上の異物に照射された際に生じる第1の散乱光と、前記検出光が前記透明平板基板を透過し、他の一方の面(以下、裏面)に存在する異物に照射された際に生じる第2の散乱光とを集光する集光レンズと、前記集光レンズからの前記第1の散乱光と前記第2の散乱光とを、それぞれ2経路に分光する光学素子と、前記第1の散乱光を受光する第1の散乱光受光センサ−と、前記第2の散乱光を受光する第2の散乱光受光センサ−とを備えたことを特徴とする透明平板基板の異物検査装置が開示されている。 Inspecting the surface state of a flat substrate involves irradiating the substrate surface with laser light with good directivity, detecting scattered light reflected from the substrate surface with a scattered light receiver, and scanning the laser light irradiation point two-dimensionally. A method for inspecting the entire substrate surface is generally used. For example, in the foreign matter inspection apparatus for a transparent flat substrate described in Patent Document 1 below, the transparent flat substrate is irradiated with detection light by a light projecting system, and scattered light due to the foreign matter existing on the transparent flat substrate is received by a light receiving system. In the foreign matter inspection apparatus for detecting foreign matter existing on the transparent flat plate substrate, the foreign flat plate substrate is provided on one surface (hereinafter referred to as a front surface) of the transparent flat plate substrate at a predetermined incident angle with respect to the substrate normal of the transparent flat plate substrate. A light projecting system for irradiating the surface with the detection light; and the light receiving system provided on the surface side and provided at a position opposite to the light projecting system with respect to the irradiation point of the detection light. In the light receiving system, the first scattered light generated when the detection light irradiated from the light projecting system is irradiated on the foreign matter on the surface, and the detection light is transmitted through the transparent flat plate substrate, Foreign matter present on the other side (hereinafter, back side) A condensing lens that condenses the second scattered light generated when irradiated, and an optical that separates the first scattered light and the second scattered light from the condensing lens into two paths, respectively. A transparent flat plate comprising: an element; a first scattered light receiving sensor that receives the first scattered light; and a second scattered light receiving sensor that receives the second scattered light. A foreign matter inspection apparatus for a substrate is disclosed.
特許文献1に記載の異物検査装置は、検出光であるレーザ光を照射する投光器と、レーザ光が照射された異物からの散乱光を受光する受光センサーとからなる一対の散乱光照射・受光システムをXY方向に走査することで、基板に付着する異物等の検査を行うものである。しかし、特許文献1が開示する技術では、ウェハの表面状態に何らかの異常があることが散乱光からわかるが、それらが凸状の欠陥であるのか、あるいは凹状の欠陥であるかを識別できない、という問題がある。 A foreign matter inspection apparatus described in Patent Literature 1 includes a pair of scattered light irradiation / light reception systems including a projector that emits laser light that is detection light and a light receiving sensor that receives scattered light from the foreign matter irradiated with the laser light. Is scanned in the X and Y directions to inspect foreign matter and the like adhering to the substrate. However, in the technology disclosed in Patent Document 1, it can be seen from the scattered light that there is some abnormality in the surface state of the wafer, but it cannot be distinguished whether they are convex defects or concave defects. There's a problem.
特許文献2には、レーザ光を複数の方向から基板に照射する技術が開示されている。特許文献2は、検査対象物の表面に異なる角度から複数のレーザ光を同一点に照射する複数の投光器と、同一点の異物からの散乱光を検出して散乱光強度に応じた散乱光強度信号を検出する検出器とを備えた異物検査装置に関するものである。かかる特許文献2が開示する技術は、複数のレーザー光源から、レーザ光を同一点に照射し、同一点にレーザ光を照射することで、散乱光強度を検出器が検出できるレベルにまで上げることを目的としている。このため、特許文献2が開示する技術でも、特許文献1が開示する技術と同様に、ウェハの表面状態に異常があることを検出できても、それらが凸状の欠陥であるのか、あるいは凹状の欠陥であるかの識別をすることができない、という問題がある。 Patent Document 2 discloses a technique for irradiating a substrate with laser light from a plurality of directions. Patent Document 2 discloses a plurality of projectors that irradiate the surface of a test object with a plurality of laser beams from different angles and a scattered light intensity corresponding to the scattered light intensity by detecting scattered light from a foreign substance at the same point. The present invention relates to a foreign substance inspection apparatus including a detector that detects a signal. The technique disclosed in Patent Document 2 irradiates laser light to the same point from a plurality of laser light sources and irradiates the same point with laser light, thereby increasing the scattered light intensity to a level that can be detected by the detector. It is an object. For this reason, even in the technique disclosed in Patent Document 2 and the technique disclosed in Patent Document 1, even if it can be detected that there is an abnormality in the surface state of the wafer, it is a convex defect or a concave shape. There is a problem that it is impossible to identify whether the defect is a defect.
このように従来の散乱光を用いて透明平板基板の表面状態を検査する技術においては、表面状態に生じている異常が凸状のものか凹状のものであるかを区別することができなかった。そのため、例えば電子デバイス製造工程中におけるどの工程で、どのような不良が発生しているのかを特定することができなかった。 As described above, in the technique of inspecting the surface state of the transparent flat plate substrate using the conventional scattered light, it has not been possible to distinguish whether the abnormality occurring in the surface state is convex or concave. . Therefore, for example, in which process during the electronic device manufacturing process, what kind of defect has occurred cannot be specified.
そこで本発明の課題は、例えば電子デバイス等が形成される平板基板に生じた欠陥の種別を識別することのできる平板基板の表面状態検査方法、その方法を利用した表面状態検査装置を提供することにある。 Accordingly, an object of the present invention is to provide a surface state inspection method for a flat substrate that can identify the type of defect that has occurred in, for example, a flat substrate on which an electronic device or the like is formed, and a surface state inspection device that uses the method. It is in.
上記課題を解決するため、請求項1に記載の発明は、ステージ上に載置された平板基板の表面に、投光系により照射される検出光を走査すると共に、表面からの散乱光を受光系により検出し、検出した受光系からの出力信号により、前記平板基板の表面の欠陥種が凹条欠陥又は凸状欠陥のいずれかであるかを検査する平板基板の表面状態検査装置において、
前記平板基板の表面に前記平板基板の基板法線に対して所定の入射角で前記検出光を照射点に照射する投光系と、
前記基板法線に対して前記投光系と反対側の空間に設けられ、前記散乱光を受光する受光系と、
前記受光系が受光した散乱光を検出する複数の散乱光検出器と、
前記各散乱光検出器に同一の前記散乱光が入光しないよう受光範囲を制限する受光範囲制限手段と、
前記各散乱光検出器で検出された散乱光強度の波形を比較し、平板基板の欠陥種が凹状欠陥又は凸状欠陥のいずれであるかを判定する波形比較判定手段
とを備えたことを特徴とする平板基板の表面状態検査装置である。
In order to solve the above-mentioned problem, the invention described in claim 1 scans the surface of the flat substrate placed on the stage with the detection light irradiated by the light projecting system and receives the scattered light from the surface. In the surface state inspection apparatus for the flat plate substrate that inspects whether the defect type on the surface of the flat plate substrate is a grooved defect or a convex defect by the detected output signal from the light receiving system,
A light projecting system that irradiates an irradiation point with the detection light at a predetermined incident angle with respect to a substrate normal of the flat substrate to the surface of the flat substrate;
A light receiving system provided in a space opposite to the light projecting system with respect to the substrate normal, and receiving the scattered light;
A plurality of scattered light detectors for detecting scattered light received by the light receiving system;
A light receiving range limiting means for limiting a light receiving range so that the same scattered light does not enter each of the scattered light detectors;
Comparing the waveform of the scattered light intensity detected by each of the scattered light detectors, and a waveform comparison / determination means for determining whether the defect type of the flat plate substrate is a concave defect or a convex defect. It is the surface state inspection apparatus of the flat-plate board | substrate.
請求項2に記載の発明は、請求項1に記載の平板基板の表面状態検査装置であって、前記照射点と前記散乱光を受光する前記受光系の受光口の下側端部とを結んだときの前記基板法線に対する角度を、前記照射点からの正反射光の基板法線に対する角度よりも小さい角度となるように前記受光系が設定されていることを特徴とする。 According to a second aspect of the present invention, there is provided the flat substrate surface state inspection apparatus according to the first aspect, wherein the irradiation point is connected to a lower end portion of the light receiving port of the light receiving system that receives the scattered light. The light receiving system is set so that an angle with respect to the substrate normal at that time is smaller than an angle with respect to the substrate normal of specularly reflected light from the irradiation point.
請求項3に記載の発明は、請求項1に記載の平板基板の表面状態検査装置であって、前記複数の散乱光検出器は、前記受光系に備えられ、前記散乱光を分割するハーフミラーにより分光された各散乱光を、それぞれ検出する二つの散乱光検出器であることを特徴とする。 A third aspect of the present invention is the flat substrate surface state inspection apparatus according to the first aspect, wherein the plurality of scattered light detectors are provided in the light receiving system and divide the scattered light. Two scattered light detectors for detecting each of the scattered lights separated by the above-described method.
請求項4に記載の発明は、ステージの上に載置された平板基板の表面に、投光系により照射される検出光を走査すると共に、表面からの散乱光を受光系により検出し、検出した受光系からの出力信号により、前記平板基板の表面の欠陥種が凹条欠陥又は凸状欠陥のいずれかであるかを検査する平板基板の表面状態検査装置において、
前記平板基板の表面に前記平板基板の基板法線に対して所定の入射角で前記検出光を照射点に照射する投光系と、
前記基板法線に対して前記投光系と反対側の空間に設けられ、前記散乱光を受光する第1の受光系と、
前記表面側で、前記検出光の照射点のほぼ頭上に設けられ、前記散乱光を受光する第2の受光系と
前記受光系に備えられ、前記各散乱光検出器に同一の前記散乱光が入光しないよう受光範囲を制限する受光範囲制限手段と、
前記各散乱光検出器で検出された散乱光強度の波形を比較し、平板基板の表面欠陥が凹状欠陥又は凸状欠陥のいずれであるかを判定する波形比較判定手段
とを備えたことを特徴とする平板基板の表面状態検査装置である。
The invention according to claim 4 scans the surface of the flat substrate placed on the stage with the detection light irradiated by the light projecting system, and detects the scattered light from the surface by the light receiving system, and detects it. According to the output signal from the light receiving system, in the surface state inspection apparatus for the flat plate substrate for inspecting whether the defect type on the surface of the flat plate substrate is a concave defect or a convex defect,
A light projecting system that irradiates an irradiation point with the detection light at a predetermined incident angle with respect to a substrate normal of the flat substrate to the surface of the flat substrate;
A first light receiving system provided in a space opposite to the light projecting system with respect to the substrate normal, and receiving the scattered light;
On the surface side, provided substantially above the irradiation point of the detection light, provided in a second light receiving system and the light receiving system for receiving the scattered light, and the same scattered light is applied to each scattered light detector. A light receiving range limiting means for limiting the light receiving range so as not to enter,
Comparing the waveform of the scattered light intensity detected by each of the scattered light detectors, and a waveform comparison and determination means for determining whether the surface defect of the flat plate substrate is a concave defect or a convex defect. It is the surface state inspection apparatus of the flat-plate board | substrate.
請求項5に記載の発明は、請求項4に記載の平板基板の表面状態検査装置であって、前記照射点と前記散乱光を受光する前記受光系の受光口の下側端部とを結んだときの前記基板法線に対する角度を、前記照射点からの正反射光の基板法線に対する角度よりも小さい角度となるように前記受光系が設定されていることを特徴とする。 A fifth aspect of the present invention is the flat substrate surface state inspection apparatus according to the fourth aspect, wherein the irradiation point is connected to the lower end of the light receiving port of the light receiving system that receives the scattered light. The light receiving system is set so that an angle with respect to the substrate normal at that time is smaller than an angle with respect to the substrate normal of specularly reflected light from the irradiation point.
請求項6に記載の発明は、ステージの上に載置された平板基板の表面に、投光系により照射される検出光を走査すると共に、所定間隔で前記走査方向と直交する軸方向に送りながら、表面からの散乱光を受光系により検出し、検出した受光系からの出力信号により、前記平板基板の表面の欠陥種が凹状欠陥又は凸状欠陥のいずれかであるかを検査する平板基板の表面状態検査方法において
前記平板基板の表面に前記平板基板の基板法線に対して所定の入射角で前記検出光を照射点に照射し、
前記基板法線に対して前記投光系と反対側の空間に設けられ、前記照射点と前記受光系の前記散乱光を受光する受光口の下側端部とを結んだときの前記基板法線に対する角度を、前記照射点からの正反射光を受光しないよう前記受光系の前記基板放線に対する角度を調整し、
前記受光口から入光した前記散乱光が、重複して前記検出器に入光しないよう受光範囲を制限し、複数の前記検出器により前記散乱光の強度を検出し、
前記各散乱光検出器で検出された散乱光強度の波形を比較し、平板基板の表面欠陥が凹状欠陥又は凸状欠陥のいずれであるかを判定することを特徴とする平板基板の表面状態検査方法である。
The invention according to claim 6 scans the surface of the flat substrate placed on the stage with the detection light irradiated by the light projecting system and sends it in an axial direction perpendicular to the scanning direction at a predetermined interval. However, a flat substrate that detects scattered light from the surface by a light receiving system and inspects whether the defect type on the surface of the flat substrate is a concave defect or a convex defect by an output signal from the detected light receiving system In the surface state inspection method, the surface of the flat substrate is irradiated with the detection light at a predetermined incident angle with respect to the normal of the flat substrate,
The substrate method when the irradiation point is provided in a space opposite to the light projecting system with respect to the substrate normal, and the lower end portion of the light receiving port for receiving the scattered light of the light receiving system is connected. Adjusting the angle with respect to the substrate ray of the light receiving system so as not to receive regular reflection light from the irradiation point,
Limiting the light receiving range so that the scattered light entering from the light receiving port does not overlap the detector and detecting the intensity of the scattered light by a plurality of the detectors,
Comparing the waveform of the scattered light intensity detected by each of the scattered light detectors to determine whether the surface defect of the flat substrate is a concave defect or a convex defect, Is the method.
請求項7記載の発明は、請求項6に記載の平板基板の表面状態検査方法であって、前記散乱光をハーフミラーにより二つに分光し、分光された各散乱光の強度を二つの散乱光検出器で検出することを特徴とする。 A seventh aspect of the invention is the surface state inspection method for a flat substrate according to the sixth aspect, wherein the scattered light is split into two by a half mirror, and the intensity of each scattered light is scattered into two It detects with a photodetector.
請求項8に記載の発明は、ステージの上に載置された平板基板の表面に、投光系により照射される検出光を走査すると共に、所定間隔で前記走査方向と直交する軸方向に送りながら、表面からの散乱光を受光系により検出し、検出した受光系からの出力信号により、前記平板基板の表面の欠陥種が凹状欠陥又は凸状欠陥のいずれかであるかを検査する平板基板の表面状態検査方法において、
前記平板基板の表面に前記平板基板の基板法線に対して所定の入射角で前記検出光を照射点に照射し、
前記基板法線に対して前記投光系と反対側の空間に設けられ、前記照射点と前記受光系の前記散乱光の受光口の下側端部とを結んだときの前記基板法線に対する角度を、前記照射点からの正反射光を受光しないよう設定された第1の受光系により前記散乱光を受光し、
前記表面側で、前記検出光の前記照射点のほぼ頭上に設けられ、前記散乱光を受光する第2の受光系により前記散乱光を受光し、
前記第1の受光系と、前記第2の受光系で検出された前記散乱の強度の波形を比較し、前記平板基板の表面欠陥が凹状欠陥又は凸欠陥ののいずれであるかを判定する
ことを特徴とする平板基板の表面状態検査方法である。
The invention according to claim 8 scans the surface of the flat substrate placed on the stage with the detection light irradiated by the light projecting system, and sends it in the axial direction perpendicular to the scanning direction at predetermined intervals. However, a flat substrate that detects scattered light from the surface by a light receiving system and inspects whether the defect type on the surface of the flat substrate is a concave defect or a convex defect by an output signal from the detected light receiving system In the surface condition inspection method of
Irradiating the irradiation point with the detection light at a predetermined incident angle with respect to the substrate normal of the flat substrate on the surface of the flat substrate;
Provided in the space opposite to the light projecting system with respect to the substrate normal, and with respect to the substrate normal when the irradiation point and the lower end of the scattered light receiving port of the light receiving system are connected Receiving the scattered light by a first light receiving system whose angle is set so as not to receive specularly reflected light from the irradiation point;
On the surface side, the scattered light is received by a second light receiving system that is provided almost overhead of the irradiation point of the detection light and receives the scattered light,
Comparing the waveform of the scattering intensity detected by the first light receiving system and the second light receiving system to determine whether the surface defect of the flat substrate is a concave defect or a convex defect; This is a method for inspecting the surface state of a flat plate substrate.
本発明により、従来は検出することのできなかった平板基板の欠陥種を識別することができる平板基板の表面状態検査方法、その方法を利用した表面状態検査装置を提供することができる。また、これにより、例えば電子デバイス等の半導体製造工程における不良発生原因を特定することができ半導体デバイス等の製造プロセスを改善することが可能となる。 According to the present invention, it is possible to provide a surface state inspection method for a flat substrate that can identify a defect type of a flat substrate that could not be detected conventionally, and a surface state inspection device that uses the method. Thereby, for example, it is possible to identify the cause of failure in a semiconductor manufacturing process such as an electronic device, and to improve the manufacturing process of the semiconductor device or the like.
以下、図面を参照して本発明の実施形態について説明するが、本発明はこれらに限定されるものではない。図1は、本発明の一実施の形態である平板基板の表面状態検査装置1の構成を示した図である。平板基板100の表面に基板に対する法線101に対して所定の入射角θで、投光系10を構成するレーザ光源110から検出光(レーザ光)11が照射される。これにより平板基板100による正反射光12、散乱光13,14、15が受光系20を構成する受光口210から受光系20に入光する。なお、正反射光の基板法線101に対する反射角度はθである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto. FIG. 1 is a diagram showing a configuration of a flat substrate surface condition inspection apparatus 1 according to an embodiment of the present invention. The surface of the flat substrate 100 is irradiated with detection light (laser light) 11 from a laser light source 110 constituting the light projecting system 10 at a predetermined incident angle θ with respect to the normal 101 to the substrate. As a result, the specularly reflected light 12 and scattered light 13, 14, 15 from the flat plate substrate 100 enter the light receiving system 20 from the light receiving port 210 constituting the light receiving system 20. Note that the reflection angle of the specularly reflected light with respect to the substrate normal 101 is θ.
正反射光12が受光口210に入光しないように受光系20の傾斜角度を調整する。図1においては、照射点90と受光口210の下側端部とを結んだときの法線101に対する角度をθよりも小さい角度(θ1)とすることで正反射光12が受光系20に受光しないように設定している。ここでこの実施の形態の説明にあたっては、受光系20に入光する散乱光を受光口210の下側端部に入光する散乱光14、そして受光口210の上側端部に入光する散乱光15とし、散乱光14と散乱光15との間にある散乱光の全体を散乱光13と定義している。 The inclination angle of the light receiving system 20 is adjusted so that the regular reflection light 12 does not enter the light receiving opening 210. In FIG. 1, the regular reflected light 12 is received by the light receiving system 20 by setting the angle with respect to the normal 101 when the irradiation point 90 and the lower end of the light receiving opening 210 are connected to an angle (θ 1 ) smaller than θ. Is set not to receive light. Here, in the description of this embodiment, scattered light that enters the light receiving system 20 enters the lower end of the light receiving opening 210 and scattered light that enters the upper end of the light receiving opening 210. The entire scattered light between the scattered light 14 and the scattered light 15 is defined as the scattered light 13.
図1において、受光口210から入光した散乱光14は、鏡筒200から鏡筒220に入り、遮光手段であるマスク240で遮光される。一方鏡筒200に設けられているハーフミラー50により分光された散乱光14は、鏡筒221に入光し、散乱光検出器231に入光する。 In FIG. 1, the scattered light 14 entering from the light receiving opening 210 enters the lens barrel 220 from the lens barrel 200 and is shielded by a mask 240 which is a light shielding means. On the other hand, the scattered light 14 dispersed by the half mirror 50 provided in the lens barrel 200 enters the lens barrel 221 and enters the scattered light detector 231.
平板基板の表面状態検査装置1においては、散乱光13のうち、散乱光14側の約半分の散乱光は散乱光検出器231に入光し、それ以外の散乱光13(散乱光15側の約半分の散乱光)は、散乱光検出器230に入光する。散乱光検出器230、散乱光検出器231からは、受光した散乱光の強度に応じた出力信号(電気信号)の波形が出力される。なお、照射点90が鏡面である場合には散乱光は生じず、正反射光12のみとなる。 In the flat substrate surface state inspection apparatus 1, about half of the scattered light 13 scattered light on the scattered light 14 side enters the scattered light detector 231, and the other scattered light 13 (on the scattered light 15 side). About half of the scattered light) enters the scattered light detector 230. From the scattered light detector 230 and the scattered light detector 231, a waveform of an output signal (electric signal) corresponding to the intensity of the received scattered light is output. In addition, when the irradiation point 90 is a mirror surface, scattered light is not generated and only the regular reflection light 12 is obtained.
図2は異物や欠陥のない平板基板100の凹状欠陥91にレーザ光源110から検出光11を照射したときに生じる散乱光の様子を示した図である。ここで、図2(a)は、平板基板100の凹状欠陥91の下り面(右肩下がり面)にレーザ光源110から検出光11を照射したときに生じる散乱光14、散乱光15、そして散乱光13の生じる様子を示した図である。 FIG. 2 is a view showing a state of scattered light generated when the detection light 11 is irradiated from the laser light source 110 onto the concave defect 91 of the flat substrate 100 having no foreign matter or defect. Here, FIG. 2A shows scattered light 14, scattered light 15, and scattered light generated when the detection light 11 is irradiated from the laser light source 110 onto the downward surface (right shoulder downward surface) of the concave defect 91 of the flat substrate 100. It is the figure which showed a mode that the light 13 produced.
凹状欠陥91の下り面(右肩下がり面)に検出光11が照射された場合に生じる散乱光のうち、散乱光14側の散乱光の強度は強く、散乱光15側に行く(反時計回り方向になる)に従い散乱光の強度が弱くなることが、本発明においてはじめて知見された。 Of the scattered light generated when the detection light 11 is irradiated on the downward surface (lower shoulder surface) of the concave defect 91, the intensity of the scattered light on the scattered light 14 side is strong and goes to the scattered light 15 side (counterclockwise). It has been found for the first time in the present invention that the intensity of scattered light becomes weaker in accordance with the direction).
図2(b)は、平板基板100の凹状欠陥91の上り面(右肩上がり面)にレーザ光源110から検出光11を照射したときに生じる散乱光14−1、散乱光15−1、散乱光13の生じる様子を示した図である。凹状欠陥91の上り面(右肩上がり面)に検出光11が照射された場合に生じる散乱光のうち散乱光14−1側の散乱光の強度は強く、散乱光15−1側に行く(時計回りの方向になる)に従い散乱光13の強度は弱くなることが、本発明においてはじめて知見された。 FIG. 2B shows scattered light 14-1, scattered light 15-1, scattered light generated when the detection light 11 is irradiated from the laser light source 110 to the rising surface (right shoulder rising surface) of the concave defect 91 of the flat substrate 100. It is the figure which showed a mode that the light 13 produced. Of the scattered light generated when the detection light 11 is irradiated on the upward surface (upwardly rising surface) of the concave defect 91, the intensity of the scattered light on the scattered light 14-1 side is strong and goes to the scattered light 15-1 side ( It was discovered for the first time in the present invention that the intensity of the scattered light 13 becomes weaker in the clockwise direction.
図3は凸状欠陥92にレーザ光源110から検出光11を照射したときに生じる散乱光の様子を示した図である。ここで、図3(a)は、平板基板100の凸状欠陥92の上り面(右肩上がり面)に検出光11を照射したときに生じる散乱光14、散乱光15、散乱光14の生じる様子を示した図である。凸状欠陥92の上り面(右肩上がり面)に検出光11が照射された場合には、散乱光14側の散乱光の強度が強く、散乱光15側に行く(時計回りの方向になる)に従い散乱光13の強度が弱くなることが、本発明においてはじめて知見された。 FIG. 3 is a diagram showing a state of scattered light generated when the detection light 11 is irradiated from the laser light source 110 onto the convex defect 92. Here, FIG. 3A shows that the scattered light 14, the scattered light 15, and the scattered light 14 are generated when the detection light 11 is irradiated on the upward surface (right shoulder upward surface) of the convex defect 92 of the flat substrate 100. It is the figure which showed a mode. When the detection light 11 is irradiated on the upward surface (right shoulder upward surface) of the convex defect 92, the intensity of the scattered light on the scattered light 14 side is strong and goes to the scattered light 15 side (clockwise direction). It was found for the first time in the present invention that the intensity of the scattered light 13 becomes weaker in accordance with ().
図3(b)は、平板基板100の凸状欠陥92の下り面(右肩下がり面)にレーザ光源110から検出光11を照射したときに生じる散乱光14−1、散乱光15−1、散乱光13の生じる様子を示した図である。凸状欠陥92の下り面(右肩下がり面)に検出光11が照射された場合に生じる散乱光の強度は、散乱光15−1側に行く(反時計回りの方向になる)に従い、散乱光13の強度は弱くなることが、本発明においてはじめて知見された。 FIG. 3B shows scattered light 14-1, scattered light 15-1 generated when the detection light 11 is irradiated from the laser light source 110 onto the down surface (right shoulder-down surface) of the convex defect 92 of the flat substrate 100. It is the figure which showed a mode that the scattered light 13 produced. The intensity of the scattered light generated when the detection light 11 is irradiated on the downward surface (right shoulder downward surface) of the convex defect 92 is scattered as it goes toward the scattered light 15-1 (counterclockwise direction). It has been found for the first time in the present invention that the intensity of the light 13 becomes weak.
図4は平板基板の表面状態検査装置1により、平板基板100の表面の微細な凹状欠陥に検出光11を照射したときに生じる散乱光がどのように散乱光検出器230、散乱光検出器231に入光するかを示した図である。 FIG. 4 shows how the scattered light generated by irradiating the fine concave defects on the surface of the flat substrate 100 with the detection light 11 by the flat substrate surface state inspection apparatus 1 is the scattered light detector 230 and the scattered light detector 231. It is the figure which showed whether it enters into.
図4(a)に示すように、ハーフミラー50により分光され散乱光16は散乱光検出器231に入光するが、ハーフミラー50を透過した散乱光16はマスク240により遮光され散乱光検出器230には入光しない。即ち、散乱光16側の散乱光13は散乱光検出器231に入光し、散乱光17側の散乱光13は散乱光検出器230に入光する。 As shown in FIG. 4A, the scattered light 16 dispersed by the half mirror 50 enters the scattered light detector 231, but the scattered light 16 transmitted through the half mirror 50 is blocked by the mask 240 and scattered light detector. 230 does not enter. That is, the scattered light 13 on the scattered light 16 side enters the scattered light detector 231, and the scattered light 13 on the scattered light 17 side enters the scattered light detector 230.
平板基板100を移動させ、検出光11を凹状欠陥91の下り面から凹状欠陥91の登り面(右肩上がりの面)へと走査し、検出光11が凹状欠陥の登り面(右肩上がりの面)に照射されたときの散乱光がどのように散乱光検出器230、散乱光検出器231に入光するかを示したのが図4(b)である。図4(b)に示すように、凹状欠陥91の登り面(右肩上がりの面)に検出光11が照射された場合には、受光口210の上側端の散乱光19は、散乱光検出器230に入光する。一方、ハーフミラー50により分光された散乱光19は、マスク241により遮光され散乱光検出器231には入光しない。一方、受光口210の下側端部からの散乱光18のうちハーフミラー50で分光された散乱光18は、散乱光検出器231に入光するが、ハーフミラー50を透過した散乱光18は、散乱光検出器230にはマスク240により遮光され入光しない。 The flat substrate 100 is moved, and the detection light 11 is scanned from the descending surface of the concave defect 91 to the ascending surface (upwardly rising surface) of the recessed defect 91. FIG. 4B shows how the scattered light incident on the surface) enters the scattered light detector 230 and the scattered light detector 231. As shown in FIG. 4B, when the detection light 11 is irradiated on the climbing surface (upwardly rising surface) of the concave defect 91, the scattered light 19 at the upper end of the light receiving opening 210 is detected as scattered light. The light enters the device 230. On the other hand, the scattered light 19 dispersed by the half mirror 50 is blocked by the mask 241 and does not enter the scattered light detector 231. On the other hand, of the scattered light 18 from the lower end of the light receiving opening 210, the scattered light 18 dispersed by the half mirror 50 enters the scattered light detector 231, but the scattered light 18 transmitted through the half mirror 50 is The scattered light detector 230 is shielded by the mask 240 and does not enter.
このようにして凹状欠陥91に検出光11を照射し、凹状欠陥91の下り面(右肩下がり面)から上り面(右肩上がり面)へと検出光11を走査させたときに、散乱光検出器230と散乱光検出器231に現れる波形を示したのが図4(c)である。凹状欠陥91に検出光を照射したときに、散乱光検出器230と、散乱光検出器231から出力される電気信号の波形を比較すると、先ず散乱光検出器231に散乱光の検出波形が現れ、その後散乱光検出器230にそれと類似した検出波形が現れる。これは、図4(a)に示す散乱光17側の散乱光13よりも、散乱光16側の散乱光13の強度が強いため、凹状欠陥91の右肩下がりの面に検出光が照射されたときは散乱光検出器231から図4(c)のような信号が出力され、図4(b)に示すように右肩上がりの面に検出光が照射されるようになると散乱光19側の散乱光13が、散乱光18側の散乱光13よりも強くなるため、散乱光検出器231から出力される信号の波形が弱まるに伴い、散乱光検出器230からそれと類似した信号の波形が出力さるからである。検出器230と検出器231との波形を比較することで欠陥種の種別を判断するのが波形比較判定手段(図外)である。なお、波形比較判定手段は、通常用いられている波形チェッカーや波形判定デジタイザーなど、波形比較ができるものであれば良い。 When the detection light 11 is irradiated onto the concave defect 91 in this way, and the detection light 11 is scanned from the downward surface (right shoulder-lowering surface) to the upward surface (right-shoulder upward surface) of the concave defect 91, the scattered light is scattered. FIG. 4C shows waveforms that appear in the detector 230 and the scattered light detector 231. When comparing the waveform of the electrical signal output from the scattered light detector 230 and the scattered light detector 231 when the concave defect 91 is irradiated with the detection light, first, the detected waveform of the scattered light appears in the scattered light detector 231. Thereafter, a detection waveform similar to that appears in the scattered light detector 230. This is because the intensity of the scattered light 13 on the scattered light 16 side is stronger than the scattered light 13 on the scattered light 17 side shown in FIG. 4 (c) is output from the scattered light detector 231, and when the detection light is irradiated on the surface that rises to the right as shown in FIG. 4 (b), the scattered light 19 side Since the scattered light 13 becomes stronger than the scattered light 13 on the scattered light 18 side, the waveform of the signal output from the scattered light detector 231 becomes similar to that of the signal output from the scattered light detector 231. It is because it outputs. It is waveform comparison determination means (not shown) that determines the type of defect type by comparing the waveforms of the detector 230 and the detector 231. The waveform comparison / determination means may be any means that can perform waveform comparison, such as a commonly used waveform checker or waveform determination digitizer.
図5は平板基板100の表面に微細な凸状の欠陥がある場合に、その凸状の欠陥に検出光11を照射したときに、散乱光がどのように散乱光検出器に入光するかを示した図である。 FIG. 5 shows how the scattered light enters the scattered light detector when the convex defect is irradiated with the detection light 11 when the surface of the flat substrate 100 has a minute convex defect. FIG.
図5(a)に示すように、凸状欠陥92の上り面(右肩上がり面)に検出光11が照射された場合には、散乱光16−1側の散乱光は、ハーフミラー50により分光された散乱光16−1は散乱光検出器231に入光するが、ハーフミラー50を透過した散乱光16−1は、マスク240により遮光され散乱光検出器230には入光しない。一方、散乱光17−1側の散乱光13は散乱光検出器230に入光するが、ハーフミラー50により分光された散乱光17−1はマスク241により遮光され散乱光検出器231には入光しない。 As shown in FIG. 5A, when the detection light 11 is irradiated on the rising surface (right shoulder rising surface) of the convex defect 92, the scattered light on the scattered light 16-1 side is caused by the half mirror 50. The dispersed scattered light 16-1 enters the scattered light detector 231, but the scattered light 16-1 transmitted through the half mirror 50 is blocked by the mask 240 and does not enter the scattered light detector 230. On the other hand, the scattered light 13 on the scattered light 17-1 side enters the scattered light detector 230, but the scattered light 17-1 dispersed by the half mirror 50 is blocked by the mask 241 and enters the scattered light detector 231. Does not shine.
平板基板100を移動させ、検出光11を凸状欠陥92の上り面から凸状欠陥92の下り面(右肩下がりの面)へと走査したときに生じる散乱光がどのように散乱光検出器230、散乱光231に入光するかを示したのが図5(b)である。図5(b)に示すように、凸状欠陥92の下り面(右肩下がりの面)に検出光11が照射された場合には、散乱光18−1はマスク240により遮光され散乱光検出器230には入光しないが、ハーフミラー50により分光された散乱光18−1は散乱光検出器231に入光する。一方、受光口210の上側端部に入光する散乱光19−1は、散乱光検出器230の入光するが、ハーフミラー50で分光された散乱光19−1はマスク241により遮光され、散乱光検出器231には入光しない。 How is the scattered light detected when the flat substrate 100 is moved and the detection light 11 is scanned from the up surface of the convex defect 92 to the down surface of the convex defect 92 (downwardly facing surface)? FIG. 5B shows whether the light 230 enters the scattered light 231. As shown in FIG. 5 (b), when the detection light 11 is irradiated on the downward surface (the surface on the right shoulder) of the convex defect 92, the scattered light 18-1 is shielded by the mask 240 and the scattered light is detected. The scattered light 18-1 split by the half mirror 50 enters the scattered light detector 231, although it does not enter the device 230. On the other hand, the scattered light 19-1 entering the upper end of the light receiving opening 210 enters the scattered light detector 230, but the scattered light 19-1 dispersed by the half mirror 50 is shielded by the mask 241. It does not enter the scattered light detector 231.
このようにして凸状欠陥92に検出光11を照射し、凸状欠陥92の上り面(右肩上がり面)から下り面(右肩下がり面)へと検出光を走査したときに、散乱光検出器230と散乱光検出器231に現れる波形を示したのが図5(c)である。凸状欠陥92に検出光11を照射したときに、散乱光検出器230と、散乱光検出器231から出力される信号の波形を比較すると、先ず散乱光検出器230に散乱光の波形が現れ、その後散乱光検出器231にそれと類似した波形が現れることがわかった。これは、図5(a)に示す散乱光16−1側の散乱光13よりも、散乱光17−1側の散乱光の強度が強いため、凸状欠陥92の右肩上がりの面に検出光が照射されたときは散乱光検出器230から図5(c)のような信号が出力され、図5(b)に示すように右肩上がりの面に検出光が照射されるようになると散乱光18−1側の散乱光13が、散乱光19−1側の散乱光13よりも強くなるため、散乱光検出器231から散乱光検出器230から出力されたような信号波形が出力さる。 When the detection light 11 is irradiated onto the convex defect 92 in this way and the detection light is scanned from the upward surface (right shoulder rising surface) to the downward surface (right shoulder downward surface) of the convex defect 92, the scattered light is scattered. FIG. 5C shows waveforms that appear in the detector 230 and the scattered light detector 231. When the waveform of the signal output from the scattered light detector 230 and the scattered light detector 231 is compared when the convex defect 92 is irradiated with the detection light 11, the scattered light waveform first appears in the scattered light detector 230. Thereafter, it was found that a similar waveform appeared in the scattered light detector 231. This is detected on the upwardly rising surface of the convex defect 92 because the intensity of the scattered light on the scattered light 17-1 side is stronger than the scattered light 13 on the scattered light 16-1 side shown in FIG. When the light is irradiated, a signal as shown in FIG. 5C is output from the scattered light detector 230, and when the detection light comes to radiate to the surface that rises to the right as shown in FIG. 5B. Since the scattered light 13 on the scattered light 18-1 side is stronger than the scattered light 13 on the scattered light 19-1 side, a signal waveform as output from the scattered light detector 230 is output from the scattered light detector 231. .
図6は本発明の一実施例である平板基板の表面状態検査装置2の構成を示した図である。図6に示す平板基板の表面状態検査装置2は、投光系を構成するレーザ光源110、受光系を構成する受光口70、受光口70から入光した散乱光を分光するハーフミラー50、ハーフミラー50で分光された散乱光をそれぞれ検出する検出器30、検出器40、検出器30又は検出器40に入光する散乱光の範囲を制限するスリット32、スリット42、そしてスリット32、スリット42からの散乱光の一部を遮光するマスク31、マスク41を備える。また、平板基板の表面状態検査装置2は平板基板100をX軸−Y軸方向移動するXYステージ80、そして投光系と受光系の高さを制御する高さ制御変異センサー60を備える。なお、波形比較判定手段を備えるが図示されてはいない。 FIG. 6 is a diagram showing a configuration of a flat substrate surface state inspection apparatus 2 according to an embodiment of the present invention. The flat substrate surface state inspection apparatus 2 shown in FIG. 6 includes a laser light source 110 that constitutes a light projecting system, a light receiving port 70 that constitutes a light receiving system, a half mirror 50 that splits scattered light incident from the light receiving port 70, and a half A detector 30 for detecting scattered light separated by the mirror 50, a detector 40, a slit 32 for limiting the range of scattered light entering the detector 30 or the detector 40, a slit 42, and a slit 32, a slit 42 A mask 31 and a mask 41 are provided to block part of the scattered light from the light. The flat substrate surface condition inspection apparatus 2 includes an XY stage 80 that moves the flat substrate 100 in the X-axis-Y-axis direction, and a height control variation sensor 60 that controls the heights of the light projecting system and the light receiving system. Although waveform comparison / determination means is provided, it is not shown.
図7は、上述した平板基板の表面状態検査装置2により、シリコンカーバイドのウェハ102の欠陥種(凹状欠陥、凸状欠陥)について検査した結果を示した図である。●が凸状欠陥を表しており、×が凹状欠陥を表している。 FIG. 7 is a view showing a result of inspecting a defect type (concave defect, convex defect) of the silicon carbide wafer 102 by the flat substrate surface condition inspection apparatus 2 described above. ● represents a convex defect, and x represents a concave defect.
図8は平板基板の表面状態検査装置2の検出器30、検出器40から出力された出力信号の波形を示した図である。図7に示すウェハ102の×の箇所からは図8に示すような波形が検出された。このような波形が検出された場合には、上述したようにその欠陥種は凹状欠陥である。 FIG. 8 is a diagram showing waveforms of output signals output from the detector 30 and the detector 40 of the surface state inspection apparatus 2 for the flat substrate. A waveform as shown in FIG. 8 was detected from the position of x on the wafer 102 shown in FIG. When such a waveform is detected, the defect type is a concave defect as described above.
図9は平板基板の表面状態検査装置2の検出器30、検出器40から出力された一部の波形を示した図である。図7に示すウェハ102の●の箇所からは図9に示すような波形が検出された。このような波形が検出された場合は、上述したようにそこの欠陥種は凸状欠陥である。 FIG. 9 is a diagram showing a part of waveforms output from the detector 30 and the detector 40 of the surface state inspection apparatus 2 for the flat substrate. A waveform as shown in FIG. 9 was detected from the position of ● on the wafer 102 shown in FIG. When such a waveform is detected, the defect type there is a convex defect as described above.
平板基板の表面状態検査装置2により、図7に示すウェハ102の欠陥種が検査された結果に基づいて、レーザ顕微鏡によりウェハ102の凹状欠陥を確認した結果が図10である。この結果、平板基板の表面状態検査装置2によるウェハ102の凹状欠陥とレーザ顕微鏡によるウェハ102の凹状欠陥とがほぼ一致した。 FIG. 10 shows the result of confirming the concave defect of the wafer 102 by the laser microscope based on the result of the inspection of the defect type of the wafer 102 shown in FIG. 7 by the surface state inspection apparatus 2 of the flat substrate. As a result, the concave defect of the wafer 102 by the surface state inspection apparatus 2 for the flat plate substrate and the concave defect of the wafer 102 by the laser microscope almost coincided.
同様にレーザ顕微鏡により、ウェハ102の凸状欠陥を確認した結果が図11である。この結果、平板基板の表面状態検査装置2によるウェハ102の凸状欠陥とレーザ顕微鏡によるウェハ102の凸状欠陥とがほぼ一致した。 Similarly, FIG. 11 shows the result of confirming the convex defect of the wafer 102 by the laser microscope. As a result, the convex defect of the wafer 102 by the flat substrate surface state inspection apparatus 2 and the convex defect of the wafer 102 by the laser microscope almost coincided.
図12は本発明の第2の実施の形態である平板基板の表面状態検査装置3の構成を示した図である。図12に示す平板基板の表面状態検査装置3は、2つの散乱光検出器330a、330bを鏡筒320の端部に設け、受光口310の下側から反時計回りに略半分の散乱光13は散乱光検出器330aが受光し、受光口310の上側から時計回りに略半分の散乱光13を散乱光検出器330bが受光するように構成されている。なお、スリット41により、検出器330a、検出器330bの視野を制限することができるように構成されている。 FIG. 12 is a diagram showing the configuration of the flat substrate surface condition inspection apparatus 3 according to the second embodiment of the present invention. The flat substrate surface state inspection apparatus 3 shown in FIG. 12 has two scattered light detectors 330 a and 330 b at the end of the lens barrel 320, and approximately half of the scattered light 13 counterclockwise from the lower side of the light receiving port 310. The scattered light detector 330a receives light, and the scattered light detector 330b receives approximately half of the scattered light 13 clockwise from the upper side of the light receiving port 310. Note that the slit 41 is configured to limit the field of view of the detector 330a and the detector 330b.
図13は本発明の第3の実施の形態である平板基板の表面状態検査装置4の構成を示した図である。図13に示す平板基板の表面状態検査装置4は、平板基板100の表面に平板基板の基板法線に対して所定の入射角でレーザ光源110から検出光11を照射し、基板法線に対してレーザ光源110と反対側の空間に、照射点からの正反射光を受光しないよう設定された第1の受光系400により散乱光13を受光し、受光した散乱光13を検出器1400で検出する。また、検出光11の照射点のほぼ頭上に設け散乱光13−1を受光する第2の受光系410を設け、散乱光検出器1410により散乱光13−1を検出する。そして、第1の受光系400と、第2の受光系410とで検出された散乱光強度の波形である各散乱光検出器1400、1410からの出力信号の波形を比較し、平板基板の表面欠陥種が凹又は凸のいずれであるかを判定する。 FIG. 13 is a diagram showing the configuration of a flat substrate surface condition inspection apparatus 4 according to the third embodiment of the present invention. The flat substrate surface condition inspection apparatus 4 shown in FIG. 13 irradiates the surface of the flat substrate 100 with the detection light 11 from the laser light source 110 at a predetermined incident angle with respect to the normal of the flat substrate, and the normal to the substrate normal. Then, the scattered light 13 is received by the first light receiving system 400 set so as not to receive the specularly reflected light from the irradiation point in the space opposite to the laser light source 110, and the received scattered light 13 is detected by the detector 1400. To do. In addition, a second light receiving system 410 that receives the scattered light 13-1 is provided substantially above the irradiation point of the detection light 11, and the scattered light 13-1 is detected by the scattered light detector 1410. Then, the waveforms of the output signals from the scattered light detectors 1400 and 1410 which are the waveforms of the scattered light intensity detected by the first light receiving system 400 and the second light receiving system 410 are compared, and the surface of the flat plate substrate is compared. It is determined whether the defect type is concave or convex.
1 2 3 4 平板基板の表面状態検査装置
10 投光系
20 受光系
12 正反射光
13 14 15 16 17 18 19 散乱光
41 スリット
50 ハーフミラー
80 XYステージ
90 照射点
91 凹状欠陥
92 凸状欠陥
100 平板基板
101 基板法線
102 ウェハ
110 レーザ光源
200 220 221 鏡筒
210 受光口
240 241 マスク
230 231 330a 330b 散乱光検出器
1400 受光系
1 2 3 4 Flat substrate surface condition inspection apparatus 10 Light projection system 20 Light reception system 12 Regular reflection light 13 14 15 16 17 18 19 Scattered light 41 Slit 50 Half mirror 80 XY stage 90 Irradiation point 91 Concave defect 92 Convex defect 100 Flat substrate 101 Substrate normal 102 Wafer 110 Laser light source 200 220 221 Lens barrel 210 Light receiving port 240 241 Mask 230 231 330a 330b Scattered light detector 1400 Light receiving system
Claims (8)
前記平板基板の表面に前記平板基板の基板法線に対して所定の入射角で前記検出光を照射点に照射する投光系と、
前記基板法線に対して前記投光系と反対側の空間に設けられ、前記散乱光を受光する受光系と、
前記受光系が受光した散乱光を検出する複数の散乱光検出器と、
前記各散乱光検出器に同一の前記散乱光が入光しないよう受光範囲を制限する受光範囲制限手段と、
前記各散乱光検出器で検出された散乱光強度の波形を比較し、平板基板の欠陥種が凹状欠陥又は凸状欠陥のいずれであるかを判定する波形比較判定手段
とを備えたことを特徴とする平板基板の表面状態検査装置。 The surface of the flat substrate placed on the stage is scanned with the detection light irradiated by the light projecting system, and the scattered light from the surface is received while being sent at a predetermined interval in the axial direction perpendicular to the scanning direction. In the surface state inspection apparatus for the flat plate substrate that inspects whether the defect type on the surface of the flat plate substrate is a grooved defect or a convex defect by the detected output signal from the light receiving system,
A light projecting system that irradiates an irradiation point with the detection light at a predetermined incident angle with respect to a substrate normal of the flat substrate to the surface of the flat substrate;
A light receiving system provided in a space opposite to the light projecting system with respect to the substrate normal, and receiving the scattered light;
A plurality of scattered light detectors for detecting scattered light received by the light receiving system;
A light receiving range limiting means for limiting a light receiving range so that the same scattered light does not enter each of the scattered light detectors;
Comparing the waveform of the scattered light intensity detected by each of the scattered light detectors, and a waveform comparison / determination means for determining whether the defect type of the flat plate substrate is a concave defect or a convex defect. An apparatus for inspecting the surface state of a flat substrate.
前記平板基板の表面に前記平板基板の基板法線に対して所定の入射角で前記検出光を照射点に照射する投光系と、
前記基板法線に対して前記投光系と反対側の空間に設けられ、前記散乱光を受光する第1の受光系と、
前記表面側で、前記検出光の照射点のほぼ頭上に設けられ、前記散乱光を受光する第2の受光系と
前記受光系に備えられ、前記各散乱光検出器に同一の前記散乱光が入光しないよう受光範囲を制限する受光範囲制限手段と、
前記各散乱光検出器で検出された散乱光強度の波形を比較し、平板基板の表面欠陥が凹状欠陥又は凸状欠陥のいずれであるかを判定する波形比較判定手段
とを備えたことを特徴とする平板基板の表面状態検査装置。 The surface of the flat substrate placed on the stage is scanned with the detection light irradiated by the light projecting system, and the scattered light from the surface is received while being sent at a predetermined interval in the axial direction perpendicular to the scanning direction. In the surface state inspection apparatus for the flat plate substrate that inspects whether the defect type on the surface of the flat plate substrate is a grooved defect or a convex defect by the detected output signal from the light receiving system,
A light projecting system that irradiates an irradiation point with the detection light at a predetermined incident angle with respect to a substrate normal of the flat substrate to the surface of the flat substrate;
A first light receiving system provided in a space opposite to the light projecting system with respect to the substrate normal, and receiving the scattered light;
On the surface side, provided substantially above the irradiation point of the detection light, provided in a second light receiving system and the light receiving system for receiving the scattered light, and the same scattered light is applied to each scattered light detector. A light receiving range limiting means for limiting the light receiving range so as not to enter,
Comparing the waveform of the scattered light intensity detected by each of the scattered light detectors, and a waveform comparison and determination means for determining whether the surface defect of the flat plate substrate is a concave defect or a convex defect. An apparatus for inspecting the surface state of a flat substrate.
前記平板基板の表面に前記平板基板の基板法線に対して所定の入射角で前記検出光を照射点に照射し、
前記基板法線に対して前記投光系と反対側の空間に設けられ、前記照射点と前記受光系の前記散乱光を受光する受光口の下側端部とを結んだときの前記基板法線に対する角度を、前記照射点からの正反射光を受光しないよう前記受光系の前記基板放線に対する角度を調整し、
前記受光口から入光した前記散乱光が、重複して前記検出器に入光しないよう受光範囲を制限し、複数の前記検出器により前記散乱光の強度を検出し、
前記各散乱光検出器で検出された散乱光強度の波形を比較し、平板基板の表面欠陥が凹状欠陥又は凸状欠陥のいずれであるかを判定することを特徴とする平板基板の表面状態検査方法。 The surface of the flat substrate placed on the stage is scanned with the detection light irradiated by the light projecting system, and the scattered light from the surface is received while being sent at a predetermined interval in the axial direction perpendicular to the scanning direction. In the method for inspecting the surface state of a flat substrate, the flat substrate is inspected whether the defect type on the surface of the flat substrate is a concave defect or a convex defect, based on the detected output signal from the light receiving system. Irradiating an irradiation point with the detection light at a predetermined incident angle with respect to the substrate normal of the flat substrate to the surface of
The substrate method when the irradiation point is provided in a space opposite to the light projecting system with respect to the substrate normal, and the lower end portion of the light receiving port for receiving the scattered light of the light receiving system is connected. Adjusting the angle with respect to the substrate ray of the light receiving system so as not to receive regular reflection light from the irradiation point,
Limiting the light receiving range so that the scattered light entering from the light receiving port does not overlap the detector and detecting the intensity of the scattered light by a plurality of the detectors,
Comparing the waveform of the scattered light intensity detected by each of the scattered light detectors to determine whether the surface defect of the flat substrate is a concave defect or a convex defect, Method.
前記平板基板の表面に前記平板基板の基板法線に対して所定の入射角で前記検出光を照射点に照射し、
前記基板法線に対して前記投光系と反対側の空間に設けられ、前記照射点と前記受光系の前記散乱光の受光口の下側端部とを結んだときの前記基板法線に対する角度を、前記照射点からの正反射光を受光しないよう設定された第1の受光系により前記散乱光を受光し、
前記表面側で、前記検出光の前記照射点のほぼ頭上に設けられ、前記散乱光を受光する第2の受光系により前記散乱光を受光し、
前記第1の受光系と、前記第2の受光系で検出された前記散乱の強度の波形を比較し、前記平板基板の表面欠陥が凹状欠陥又は凸欠陥ののいずれであるかを判定する
ことを特徴とする平板基板の表面状態検査方法。 The surface of the flat substrate placed on the stage is scanned with the detection light irradiated by the light projecting system, and the scattered light from the surface is received while being sent at a predetermined interval in the axial direction perpendicular to the scanning direction. In the method of inspecting the surface state of the flat substrate, inspecting whether the defect type on the surface of the flat substrate is a concave defect or a convex defect, based on the detected output signal from the light receiving system,
Irradiating the irradiation point with the detection light at a predetermined incident angle with respect to the substrate normal of the flat substrate on the surface of the flat substrate;
Provided in the space opposite to the light projecting system with respect to the substrate normal, and with respect to the substrate normal when the irradiation point and the lower end of the scattered light receiving port of the light receiving system are connected Receiving the scattered light by a first light receiving system whose angle is set so as not to receive specularly reflected light from the irradiation point;
On the surface side, the scattered light is received by a second light receiving system that is provided almost overhead of the irradiation point of the detection light and receives the scattered light,
Comparing the waveform of the scattering intensity detected by the first light receiving system and the second light receiving system to determine whether the surface defect of the flat substrate is a concave defect or a convex defect; A method for inspecting the surface state of a flat substrate characterized by the above.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014087105A JP6476580B2 (en) | 2014-04-21 | 2014-04-21 | Flat plate surface condition inspection apparatus and flat plate surface condition inspection method using the same |
TW103132064A TWI534425B (en) | 2014-04-21 | 2014-09-17 | A method of inspecting a surface state of a flat substrate, and a surface state checking device using a flat substrate |
KR1020140128155A KR101698642B1 (en) | 2014-04-21 | 2014-09-25 | Method for inspecting surface state of flat substrate and apparatus for inspecting surface state of flat substrate using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014087105A JP6476580B2 (en) | 2014-04-21 | 2014-04-21 | Flat plate surface condition inspection apparatus and flat plate surface condition inspection method using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015206675A true JP2015206675A (en) | 2015-11-19 |
JP6476580B2 JP6476580B2 (en) | 2019-03-06 |
Family
ID=54430592
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014087105A Active JP6476580B2 (en) | 2014-04-21 | 2014-04-21 | Flat plate surface condition inspection apparatus and flat plate surface condition inspection method using the same |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6476580B2 (en) |
KR (1) | KR101698642B1 (en) |
TW (1) | TWI534425B (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3877814A (en) * | 1973-02-07 | 1975-04-15 | Ppg Industries Inc | Method of and apparatus for detecting concave and convex portions in a specular surface |
JPH07239304A (en) * | 1994-02-28 | 1995-09-12 | Fuji Xerox Co Ltd | Detector for detecting defect of surface layer |
JPH1139651A (en) * | 1997-07-17 | 1999-02-12 | Fuji Electric Co Ltd | Hard disk surface inspecting device |
JP2005172813A (en) * | 2003-11-21 | 2005-06-30 | Samsung Electronics Co Ltd | Reference value setting device of specimen inspecting apparatus, and reference value setting method using the same |
JP2009047513A (en) * | 2007-08-17 | 2009-03-05 | Kokusai Gijutsu Kaihatsu Co Ltd | Inspection apparatus |
JP2010169453A (en) * | 2009-01-20 | 2010-08-05 | Yamanashi Gijutsu Kobo:Kk | Device and method for inspecting foreign matter |
JP2010236985A (en) * | 2009-03-31 | 2010-10-21 | Hitachi High-Technologies Corp | Disk surface defect inspection method and apparatus |
JP2012032251A (en) * | 2010-07-30 | 2012-02-16 | Hitachi High-Technologies Corp | Defect inspection method and defect inspection apparatus |
JP2013140061A (en) * | 2012-01-02 | 2013-07-18 | Yamanashi Gijutsu Kobo:Kk | Method for detecting foreign substance on front and back sides of transparent flat substrate, and foreign substance inspection device using the method |
JP2013210232A (en) * | 2012-03-30 | 2013-10-10 | Hitachi High-Technologies Corp | Optical inspection method and device for magnetic media |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11258157A (en) | 1998-03-12 | 1999-09-24 | Shin Etsu Handotai Co Ltd | Foreign matter-inspecting apparatus |
JP3669686B2 (en) * | 1999-11-18 | 2005-07-13 | 松下電器産業株式会社 | Scattered light measurement method, urine test method, and scattered light measurement device |
WO2006087213A2 (en) * | 2005-02-18 | 2006-08-24 | Schott Ag | Method and device for detecting and/or classifying defects |
JP5416600B2 (en) | 2010-01-22 | 2014-02-12 | 株式会社日立ハイテクノロジーズ | Defect inspection apparatus and method |
JP5869817B2 (en) | 2011-09-28 | 2016-02-24 | 株式会社日立ハイテクノロジーズ | Defect inspection method and defect inspection apparatus |
-
2014
- 2014-04-21 JP JP2014087105A patent/JP6476580B2/en active Active
- 2014-09-17 TW TW103132064A patent/TWI534425B/en active
- 2014-09-25 KR KR1020140128155A patent/KR101698642B1/en active IP Right Grant
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3877814A (en) * | 1973-02-07 | 1975-04-15 | Ppg Industries Inc | Method of and apparatus for detecting concave and convex portions in a specular surface |
JPH07239304A (en) * | 1994-02-28 | 1995-09-12 | Fuji Xerox Co Ltd | Detector for detecting defect of surface layer |
JPH1139651A (en) * | 1997-07-17 | 1999-02-12 | Fuji Electric Co Ltd | Hard disk surface inspecting device |
JP2005172813A (en) * | 2003-11-21 | 2005-06-30 | Samsung Electronics Co Ltd | Reference value setting device of specimen inspecting apparatus, and reference value setting method using the same |
JP2009047513A (en) * | 2007-08-17 | 2009-03-05 | Kokusai Gijutsu Kaihatsu Co Ltd | Inspection apparatus |
JP2010169453A (en) * | 2009-01-20 | 2010-08-05 | Yamanashi Gijutsu Kobo:Kk | Device and method for inspecting foreign matter |
JP2010236985A (en) * | 2009-03-31 | 2010-10-21 | Hitachi High-Technologies Corp | Disk surface defect inspection method and apparatus |
JP2012032251A (en) * | 2010-07-30 | 2012-02-16 | Hitachi High-Technologies Corp | Defect inspection method and defect inspection apparatus |
JP2013140061A (en) * | 2012-01-02 | 2013-07-18 | Yamanashi Gijutsu Kobo:Kk | Method for detecting foreign substance on front and back sides of transparent flat substrate, and foreign substance inspection device using the method |
JP2013210232A (en) * | 2012-03-30 | 2013-10-10 | Hitachi High-Technologies Corp | Optical inspection method and device for magnetic media |
Also Published As
Publication number | Publication date |
---|---|
TW201541070A (en) | 2015-11-01 |
KR101698642B1 (en) | 2017-01-20 |
KR20150121640A (en) | 2015-10-29 |
TWI534425B (en) | 2016-05-21 |
JP6476580B2 (en) | 2019-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2010197367A (en) | Detection apparatus for particle on glass and detection method using the same | |
JP2013036948A (en) | Defect inspection device | |
KR102279169B1 (en) | Detection apparatus and detection method | |
EP3413037B1 (en) | Inspection device for sheet-like objects, and inspection method for sheet-like objects | |
JP6119784B2 (en) | Foreign object inspection method | |
JPS6219739A (en) | Method and device for inspection | |
TW202127557A (en) | Method and apparatus for inspecting defect of silicon wafer | |
US8379196B2 (en) | Method for judging whether semiconductor wafer is non-defective wafer by using laser scattering method | |
JP6476580B2 (en) | Flat plate surface condition inspection apparatus and flat plate surface condition inspection method using the same | |
JP6212843B2 (en) | Foreign matter inspection device, foreign matter inspection method | |
JPH085569A (en) | Particle measuring apparatus and particle inspection method | |
TWI485392B (en) | Foreign body inspection device and inspection method | |
KR101785069B1 (en) | Darkfield illumination device | |
JP6330211B2 (en) | Surface state inspection method for flat substrate and flat surface state inspection apparatus using the same | |
WO2022201910A1 (en) | Foreign matter inspection device and foreign matter inspection method | |
JP2005347448A (en) | Semiconductor wafer testing apparatus and method | |
CN117080108B (en) | Wafer detection device and detection method | |
KR20110097182A (en) | Alien substance inspection apparatus and inspection method | |
JPH11111792A (en) | Manufacture of semiconductor device | |
KR100729034B1 (en) | A macro defect inspection device on wafer surface | |
KR101018207B1 (en) | Beam scanner and surface measurement apparatus | |
KR20060056695A (en) | Apparatus for inspecting surface defect and its method | |
JP6119785B2 (en) | Foreign matter inspection device, foreign matter inspection method | |
KR20240085764A (en) | Apparatus detecting fine particle and automatic optical inspector including the same, and method detecting fine particle | |
JP2009236519A (en) | Defect inspection device and defect inspection method using it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170405 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180131 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180205 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180323 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180807 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180816 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181227 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190121 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6476580 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |