JPH11111792A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH11111792A
JPH11111792A JP27407797A JP27407797A JPH11111792A JP H11111792 A JPH11111792 A JP H11111792A JP 27407797 A JP27407797 A JP 27407797A JP 27407797 A JP27407797 A JP 27407797A JP H11111792 A JPH11111792 A JP H11111792A
Authority
JP
Japan
Prior art keywords
silicon wafer
semiconductor device
light
fine particles
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27407797A
Other languages
Japanese (ja)
Inventor
Yasushi Sasaki
康 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP27407797A priority Critical patent/JPH11111792A/en
Publication of JPH11111792A publication Critical patent/JPH11111792A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a semiconductor device, wherein the particles attached on the surface of a semiconductor substrate in the manufacturing process of the semiconductor device are inspected with high reliability and high sensitivity, and the defects of the elements that are considered supposedly that the particles are the cause are prevented. SOLUTION: An epitaxial growing layer 2 of a silicon single crystal is formed on the surface of a silicon wafer 1, formed by a CZ method and a FZ method. Under a state wherein the surface is polished, the laser beam of a laser light source 11 is projected. A particle 3 is inspected by detecting the scattered light by light-receiving parts 12a-12d. A COP 4 at the surface of the silicon wafer 1 is eliminated by the epitaxial growing, and mis-detection of the particles can be prevented. By polishing the surface of the epitaxial growing layer 2 again, haze caused by the micro-roughness of the surface of the silicon wafer can be prevented. Furthermore, even when the laser light is projected in a direction of 90 deg. with respect to the surface of the silicon wafer 1, the particle 3 can be detected with high reliability. Furthermore, the optical intensity of the scattered light is enhanced, so that the detection sensitivity can be enhanced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置の製造方
法に関し、特に半導体基板の表面上に付着した0.1μ
m以下の微粒子を検出する工程を含む製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a semiconductor device having a thickness of 0.1 .mu.m on a surface of a semiconductor substrate.
The present invention relates to a production method including a step of detecting fine particles of m or less.

【0002】[0002]

【従来の技術】半導体装置の製造方法では、半導体基板
の表面に微粒子等が付着していると、以降の製造工程に
おいて素子欠陥が生じる原因となる。このため、半導体
装置の製造の初期に、半導体基板の表面に微粒子が付着
しているか否かの検査が行われる。従来、この種の検査
においては、CZ法又はFZ法により引き上げ成長した
シリコン単結晶で構成されるシリコンウェハに対して行
われており、その表面上に付着した微粒子をレーザ光散
乱による検査装置で検出していた。しかしながら、CZ
法又はFZ法により形成したシリコンウェハの表面上に
はサイズが0.07〜0.15μmの分布を有し、かつ
6インチウェハにおいて数百個程度のCOP(Cristal
Originated Particle )と称する四角形の凹面状の欠陥
が存在することが知られている。
2. Description of the Related Art In a method of manufacturing a semiconductor device, if particles or the like adhere to the surface of a semiconductor substrate, element defects may be caused in a subsequent manufacturing process. For this reason, at the beginning of the manufacture of the semiconductor device, an inspection is performed to determine whether or not fine particles are attached to the surface of the semiconductor substrate. Conventionally, this type of inspection is performed on a silicon wafer composed of a silicon single crystal pulled up and grown by the CZ method or the FZ method, and fine particles attached on the surface are inspected by an inspection apparatus by laser light scattering. Had been detected. However, CZ
Has a distribution of 0.07 to 0.15 μm in size on the surface of a silicon wafer formed by the FZ method or the FZ method, and about several hundred COPs (Cristal
It is known that there is a rectangular concave defect called Originated Particle).

【0003】このため、このようなシリコンウェハに対
してレーザ光散乱による0.1μm以下の微粒子検出し
た場合には、表面上に付着した微粒子と表面上に存在す
るCOPが分離されずに検出されてしまうことになる。
そこで、従来では、0.1μm以下の微粒子とCOPと
の分離を図るために、シリコンウェハの表面に対して入
射させるレーザー光の入射角をシリコンウェハの表面に
対してそれまでの90゜の角度から10゜の斜め入射角
に変更し、この入射角によって生じる微粒子とCOPと
の散乱光の状態の違い、すなわち微粒子では散乱光が顕
著であることを利用して両者を判別する手法が採用され
ている。
For this reason, when particles of 0.1 μm or less are detected by laser light scattering on such a silicon wafer, the particles adhering to the surface and the COP existing on the surface are detected without being separated. Would be.
Therefore, conventionally, in order to separate the fine particles of 0.1 μm or less from the COP, the incident angle of the laser beam incident on the surface of the silicon wafer is set to 90 ° with respect to the surface of the silicon wafer. The angle of incidence is changed from 10 ° to an oblique incident angle of 10 °, and a method of discriminating between the two using the difference in the state of the scattered light between the fine particles and the COP caused by this incident angle, that is, the fact that the scattered light is remarkable in the fine particles is adopted. ing.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、この手
法では、検出された散乱光の光強度がすべて微粒子によ
るものであることが保証されず、散乱光のみで微粒子を
検出することは困難である。その理由はシリコンウェハ
表面上のCOPの大きさは一定ではないので入射角を1
0゜に変更しても散乱よる乱反射を完全に抑えられず分
離が不完全なものになるからである。また、入射角を1
0°程度にしても検出する微粒子の粒径がさらに小さく
なるにつれてシリコンウェハの表面直下に点在するCO
Pをも検出してしまうこともある。その理由は、微粒子
の粒径が小さくなるにつれて入射するレーザー光の強度
も強くしなければならず、それにより入射レーザ光のシ
リコンウェハ中への透過率が増加するからである。さら
に、シリコンウェハの表面に対して斜めにレーザ光を入
射させると、微粒子における散乱光の光強度が全体的に
弱められ、検出感度が低下するという問題も生じる。
However, in this method, it is not guaranteed that the light intensity of the detected scattered light is entirely due to the fine particles, and it is difficult to detect the fine particles only by the scattered light. The reason is that the size of the COP on the silicon wafer surface is not constant, so
This is because even if the angle is changed to 0 °, diffuse reflection due to scattering cannot be completely suppressed, resulting in incomplete separation. Also, if the incident angle is 1
Even if it is about 0 °, as the particle diameter of the fine particles to be detected becomes smaller, CO scattered just below the surface of the silicon wafer
P may also be detected. The reason is that as the particle diameter of the fine particles becomes smaller, the intensity of the incident laser light must be increased, thereby increasing the transmittance of the incident laser light into the silicon wafer. Further, when the laser light is obliquely incident on the surface of the silicon wafer, the light intensity of the scattered light in the fine particles is weakened as a whole, causing a problem that the detection sensitivity is lowered.

【0005】本発明の目的は、導体装置の製造工程で行
われる半導体基板の表面上に付着した0.1μm以下の
微粒子を、COPと混同することなく高い信頼度で検出
することを可能にした検査方法を含む半導体装置の製造
方法を提供することにある。
An object of the present invention is to make it possible to detect fine particles of 0.1 μm or less adhering on the surface of a semiconductor substrate in a process of manufacturing a conductor device with high reliability without being confused with COP. An object of the present invention is to provide a method of manufacturing a semiconductor device including an inspection method.

【0006】[0006]

【課題を解決するための手段】本発明は、製造工程の一
部に半導体基板の表面に付着した微粒子を検査する工程
を含む半導体装置の製造方法において、前記半導体基板
の表面に単結晶層をエピタキシャル成長し、かつこの単
結晶層の表面を研磨した上で前記微粒子検査工程を実行
することを特徴とする。この微粒子検査工程は、前記半
導体基板に成長した単結晶層の表面に対してほぼ垂直方
向からレーザ光を投射し、前記単結晶層の表面において
反射される前記レーザ光の散乱光を検出し、この散乱光
の光強度特性に基づいて微粒子を検出する。この場合、
前記単結晶層の表面に対してレーザ光を走査しながら投
射し、各投射位置でのそれぞれの散乱光から微粒子を検
出する手法が採用される。また、前記散乱光を複数の受
光部で受光し、かつ各受光部での散乱光の光強度分布か
ら微粒子を検出する。
According to the present invention, there is provided a method of manufacturing a semiconductor device, which includes a step of inspecting fine particles adhering to the surface of a semiconductor substrate as part of the manufacturing process. After the epitaxial growth and polishing of the surface of the single crystal layer, the fine particle inspection step is performed. In this fine particle inspection step, a laser beam is projected from a direction substantially perpendicular to the surface of the single crystal layer grown on the semiconductor substrate, and scattered light of the laser light reflected on the surface of the single crystal layer is detected. Fine particles are detected based on the light intensity characteristics of the scattered light. in this case,
A method is employed in which laser light is projected onto the surface of the single crystal layer while being scanned, and fine particles are detected from scattered light at each projection position. Further, the scattered light is received by a plurality of light receiving units, and fine particles are detected from the light intensity distribution of the scattered light at each light receiving unit.

【0007】エピタキシャル成長された単結晶層は、エ
ピタキシャル成長時に通常行われる水素処理によって半
導体基板表面上のCOPが縮小されるため、エピタキシ
ャル成長された単結晶層の表面ではCOPは消滅する。
また、エピタキシャル成長された単結晶層の表面を再研
磨するので表面のマイクロラフネスが無くなりヘイズと
呼ばれる阻害要因も無くなる。その上で、単結晶層の表
面にレーザ光を投射して微粒子の検査を行うため、CO
Pによる混同やヘイズによる阻害もなくなり、微粒子を
高い信頼度、かつ高い感度で検査することが可能とな
る。
[0007] In the epitaxially grown single crystal layer, the COP on the surface of the semiconductor substrate is reduced by the hydrogen treatment usually performed during the epitaxial growth, so that the COP disappears on the surface of the epitaxially grown single crystal layer.
In addition, since the surface of the single crystal layer epitaxially grown is polished again, micro roughness of the surface is eliminated, and an obstruction factor called haze is also eliminated. On top of that, in order to inspect the fine particles by projecting a laser beam on the surface of the single crystal layer, CO 2
Confusion due to P and hindrance due to haze are also eliminated, and fine particles can be inspected with high reliability and high sensitivity.

【0008】[0008]

【発明の実施の形態】次に、本発明の実施形態について
図面を参照して説明する。図1は本発明の第1の実施形
態を説明するための工程断面図である。先ず、図1
(a)のような、CZ法又はFZ法で引き上げ成長した
シリコン単結晶からなるシリコンウェハ1の表面を鏡面
状に研磨する。しかる後、図1(b)のように、前記シ
リコンウェハ1の表面にシリコン単結晶からなるエピタ
キシャル成長層2を成長する処理を行ない、さらに、こ
のエピタキシャル成長層2の表面を再研磨する。その上
で、図1(c)のように、前記エピタキシャル成長層2
の表面を研磨したシリコンウェハ1の表面に対してレー
ザ光源11から出射されるレーザ光14を投射し、かつ
その反射光を受光部12で検出することで、表面に付着
している微粒子3の検査を実行する。このシリコンウェ
ハ1では、前記したエピタキシャル成長により、エピタ
キシャル成長前にはシリコンウェハの表面上に存在した
COP4はエピタキシャル成長時に通常行われる水素処
理によって縮小され、エピタキシャル成長層2の表面上
ではほとんど完全に消滅される。さらに,エピタキシャ
ル成長するだけではなく、その表面を研磨するのでエピ
タキシャル成長表面特有のマイクロラフネスがなくなり
ヘイズと呼ばれる微粒子検出時の阻害要因も防止でき
る。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a process sectional view for explaining the first embodiment of the present invention. First, FIG.
As shown in (a), the surface of a silicon wafer 1 made of a silicon single crystal pulled and grown by the CZ method or the FZ method is polished into a mirror surface. Thereafter, as shown in FIG. 1B, a process of growing an epitaxial growth layer 2 made of silicon single crystal on the surface of the silicon wafer 1 is performed, and the surface of the epitaxial growth layer 2 is polished again. Then, as shown in FIG.
The laser light 14 emitted from the laser light source 11 is projected onto the surface of the silicon wafer 1 whose surface has been polished, and the reflected light is detected by the light receiving unit 12, whereby the fine particles 3 adhering to the surface are removed. Perform inspection. In the silicon wafer 1, the COP 4 existing on the surface of the silicon wafer before the epitaxial growth is reduced by the hydrogen treatment usually performed during the epitaxial growth by the above-described epitaxial growth, and almost completely disappears on the surface of the epitaxial growth layer 2. Furthermore, not only the epitaxial growth but also the polishing of the surface eliminates the micro-roughness peculiar to the epitaxial growth surface, thereby preventing a hindrance, which is a hindrance in detecting fine particles.

【0009】しかる上で、前記シリコンウェハを図2に
示す検査装置において、微粒子検査を行う。この検査装
置は、被検査対象であるシリコンウェハ1を載置する載
置台10の表面に対して90゜の方向からレーザ光を投
射するレーザ光源11と、前記シリコンウェハ1の表面
に対して90°以外の傾斜された方向に向けられて、前
記投射されたレーザ光がシリコンウェハの表面で反射さ
れたうち、レーザ光投射部に向けて正規反射される以外
のレーザ光を検出する複数の受光部12a〜12dとを
備えている。なお、この受光部12a〜12dは、1個
または数個の受光部を移動させることで、異なる方向へ
のレーザ光の反射強度を検出するようにしてもよい。そ
して、前記受光部には、各受光部で受光されたレーザ光
の光強度を入力して所定の演算処理を行う処理部13が
接続されている。
Then, the silicon wafer is inspected for fine particles by the inspection apparatus shown in FIG. The inspection apparatus includes a laser light source 11 for projecting a laser beam from a direction of 90 ° to a surface of a mounting table 10 on which a silicon wafer 1 to be inspected is mounted, A plurality of light receiving portions for detecting laser light other than being regularly reflected toward the laser light projecting portion while the projected laser light is reflected on the surface of the silicon wafer while being directed in an inclined direction other than °. Parts 12a to 12d. The light receiving units 12a to 12d may detect the reflection intensity of the laser light in different directions by moving one or several light receiving units. The light receiving unit is connected to a processing unit 13 for inputting the light intensity of the laser beam received by each light receiving unit and performing a predetermined calculation process.

【0010】このような検査装置において、前記シリコ
ンウェハ1に対する微粒子の検査を行う場合には、図1
の工程により前記エピタキシャル成長層2を形成したシ
リコンウェハ1を図2の検査装置の載置台10上に載置
した上で、図3に示すように前記レーザ光源11から前
記シリコンウェハのエピタキシャル成長層2の表面に対
して90゜の方向からレーザ光14を入射する。このと
き、シリコンウェハ1に対してレーザ光を相対移動させ
ることで、シリコンウェハ1のほぼ全面に対してレーザ
光を走査させながら投射を行う。そして、その反射光を
前記各受光部12a〜12dで検出する。このとき、各
受光部12a〜12dはシリコンウェハ1の表面に対し
て傾斜された位置に配置されているため、各受光部12
a〜12dでは前記レーザ光の正規反射光以外の、乱反
射された散乱光を受光することになる。
In such an inspection apparatus, when inspecting the silicon wafer 1 for fine particles, FIG.
After the silicon wafer 1 on which the epitaxial growth layer 2 has been formed in the step (1), is mounted on the mounting table 10 of the inspection apparatus shown in FIG. 2, and as shown in FIG. Laser light 14 is incident on the surface from a direction of 90 °. At this time, the laser beam is moved relative to the silicon wafer 1 so that the projection is performed while scanning the laser beam over almost the entire surface of the silicon wafer 1. Then, the reflected light is detected by each of the light receiving sections 12a to 12d. At this time, since each of the light receiving units 12a to 12d is arranged at a position inclined with respect to the surface of the silicon wafer 1,
In a to 12d, diffusely reflected scattered light other than the regular reflected light of the laser light is received.

【0011】したがって、図3のように、シリコンウェ
ハ1の表面に微粒子3が存在すると、前記レーザ光14
は微粒子3によって散乱されるため、受光部12a〜1
2dの多くにおいて比較的に高い光強度での受光が行わ
れ、これらの受光部12a〜12dで検出された散乱光
の光強度の分布に基づいて、処理部13において所定の
演算処理が実行されることで、前記シリコンウェハ1の
表面の光散乱状態が認識され、この散乱状態から微粒子
3の存在が検出される。このとき、レーザ光14はシリ
コンウェハの表面に対して90゜の方向から入射してい
るため、10゜程度の角度で入射する場合に比較して凸
状の微粒子3に柑する散乱光の光強度を促進し、さらに
エピタキシャル成長層2が成長されたシリコンウェハ1
の表面は完全にCOPが消滅しているため、これによる
誤検出も回避でき、0.1μm以下の微粒子を捕獲率9
5%以上という高信頼度、かつ高感度で検出できること
になる。
Therefore, as shown in FIG. 3, when the fine particles 3 exist on the surface of the silicon wafer 1, the laser light 14
Are scattered by the fine particles 3, and therefore, the light receiving portions 12a-1
Light is received at a relatively high light intensity in many of the 2d, and a predetermined calculation process is executed in the processing unit 13 based on the distribution of the light intensity of the scattered light detected by these light receiving units 12a to 12d. Accordingly, the light scattering state on the surface of the silicon wafer 1 is recognized, and the presence of the fine particles 3 is detected from the scattering state. At this time, since the laser beam 14 is incident on the surface of the silicon wafer from the direction of 90 °, the light of the scattered light falling on the convex fine particles 3 is smaller than the case where the laser beam is incident at an angle of about 10 °. A silicon wafer 1 on which the strength is promoted and on which an epitaxial growth layer 2 is grown
Since the COP has completely disappeared on the surface of the substrate, erroneous detection due to this can be avoided, and the capture rate of fine particles of 0.1 μm or less is 9%.
It can be detected with high reliability of 5% or more and high sensitivity.

【0012】したがって、この微粒子の検査を行った後
に、所定の条件を満足する高品質のシリコンウェハに対
して通常の半導体装置の製造工程を実行することによ
り、微粒子が原因とされる素子欠陥が生じることがない
高信頼度の半導体装置を製造することが可能となる。ま
た、微粒子が顕著で所定の条件を満たさないシリコンウ
ェハの場合には、エピタキシャル成長や研磨をやり直す
ことで、その信頼性を改善することが可能となる。
Therefore, after inspecting the fine particles, a normal semiconductor device manufacturing process is performed on a high-quality silicon wafer satisfying a predetermined condition, so that element defects caused by the fine particles are eliminated. It is possible to manufacture a highly reliable semiconductor device that does not occur. In the case of a silicon wafer having remarkable fine particles and not satisfying a predetermined condition, the reliability can be improved by repeating the epitaxial growth and the polishing.

【0013】[0013]

【発明の効果】以上説明したように本発明は、シリコン
ウェハの表面にエピタキシャル成長によりシリコン単結
晶を形成し、かつその表面を研磨した状態で微粒子の検
査を行うので、シリコンウェハの表面のCOPを無くし
て微粒子として誤検出することが防止でき、0.1枚m
以下の微粒子を95%の高感度の検出率で検出すること
が可能とななる。また、エピタキシャル成長したシリコ
ン単結晶の表面を再研磨することにより、シリコンウェ
ハ表面のマイクロラフネスによって起こるヘイズも防止
できる。さらに、レーザ光をシリコンウェハの表面に対
して90°の方向から投射した場合でも微粒子を高信頼
度で検出できるため、散乱光の光強度を高くして検出感
度を高めることも可能である。
As described above, according to the present invention, since a silicon single crystal is formed on the surface of a silicon wafer by epitaxial growth and the fine particles are inspected while the surface is polished, the COP on the surface of the silicon wafer can be reduced. It is possible to prevent misdetection as fine particles by eliminating
The following fine particles can be detected with a highly sensitive detection rate of 95%. Further, by re-polishing the surface of the epitaxially grown silicon single crystal, haze caused by micro-roughness on the surface of the silicon wafer can be prevented. Further, even when the laser beam is projected from the direction of 90 ° to the surface of the silicon wafer, the fine particles can be detected with high reliability, so that the light intensity of the scattered light can be increased to increase the detection sensitivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の製造方法における微粒子検査を行うシ
リコンウェハの処理工程を説明するための図である。
FIG. 1 is a view for explaining a processing step of a silicon wafer for performing a particle inspection in a manufacturing method of the present invention.

【図2】本発明の製造方法における微粒子検査を行うた
めの検査装置の概略構成図である。
FIG. 2 is a schematic configuration diagram of an inspection device for performing a particle inspection in the manufacturing method of the present invention.

【図3】シリコンウェハの表面上の微粒子の検査状態を
示す模式図である。
FIG. 3 is a schematic diagram showing an inspection state of fine particles on a surface of a silicon wafer.

【符号の説明】 1 シリコンウェハ 2 エピタキシャル成長層 3 微粒子 4 COP 10 載置台 11 レーザ光源 12a〜12d 受光部 13 処理部 14 レーザ光[Description of Signs] 1 silicon wafer 2 epitaxial growth layer 3 fine particles 4 COP 10 mounting table 11 laser light sources 12a to 12d light receiving unit 13 processing unit 14 laser light

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 製造工程の一部に半導体基板の表面に付
着した微粒子を検査する工程を含む半導体装置の製造方
法において、前記半導体基板の表面に単結晶層をエピタ
キシャル成長し、かつこの単結晶層の表面を研磨した上
で前記微粒子検査工程を実行することを特徴とする半導
体装置の製造方法。
1. A method for manufacturing a semiconductor device, comprising a step of inspecting fine particles adhering to a surface of a semiconductor substrate as a part of a manufacturing process, wherein a single crystal layer is epitaxially grown on the surface of the semiconductor substrate, and A method of manufacturing a semiconductor device, wherein the fine particle inspection step is performed after polishing the surface of the semiconductor device.
【請求項2】 前記微粒子検査工程は、前記半導体基板
に成長した単結晶層の表面に対してほぼ垂直方向からレ
ーザ光を投射し、前記単結晶層の表面において反射され
る前記レーザ光の散乱光を検出し、この散乱光の光強度
特性に基づいて微粒子を検出する請求項1に記載の半導
体装置の製造方法。
2. The method according to claim 1, wherein the step of inspecting the fine particles includes projecting laser light from a direction substantially perpendicular to the surface of the single crystal layer grown on the semiconductor substrate, and scattering the laser light reflected on the surface of the single crystal layer. 2. The method for manufacturing a semiconductor device according to claim 1, wherein light is detected, and fine particles are detected based on a light intensity characteristic of the scattered light.
【請求項3】 前記単結晶層の表面に対してレーザ光を
走査しながら投射し、各投射位置でのそれぞれの散乱光
から微粒子を検出する請求項2に記載の半導体装置の製
造方法。
3. The method of manufacturing a semiconductor device according to claim 2, wherein the laser beam is projected onto the surface of the single-crystal layer while scanning, and fine particles are detected from scattered light at each projection position.
【請求項4】 前記散乱光を複数の受光部で受光し、か
つ各受光部での散乱光の光強度分布から微粒子を検出す
る請求項3に記載の半導体装置の製造方法。
4. The method of manufacturing a semiconductor device according to claim 3, wherein the scattered light is received by a plurality of light receiving portions, and fine particles are detected from a light intensity distribution of the scattered light at each light receiving portion.
【請求項5】 前記半導体基板は、CZ(チョクラルス
キー法)またはFZ(フロティング・ゾーン法)により
形成されたシリコンウェハで構成され、このシリコンウ
ェハの表面が研磨された上でシリコン単結晶がエピタキ
シャル成長され、かつその表面が再研磨されてなる請求
項1ないし4のいずれかに記載の半導体装置の製造方
法。
5. The semiconductor substrate is composed of a silicon wafer formed by CZ (Czochralski method) or FZ (floating zone method), and the surface of the silicon wafer is polished and a silicon single crystal is formed. 5. The method of manufacturing a semiconductor device according to claim 1, wherein the semiconductor device is epitaxially grown and its surface is polished again.
JP27407797A 1997-10-07 1997-10-07 Manufacture of semiconductor device Pending JPH11111792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27407797A JPH11111792A (en) 1997-10-07 1997-10-07 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27407797A JPH11111792A (en) 1997-10-07 1997-10-07 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH11111792A true JPH11111792A (en) 1999-04-23

Family

ID=17536663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27407797A Pending JPH11111792A (en) 1997-10-07 1997-10-07 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH11111792A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001027600A1 (en) * 1999-10-14 2001-04-19 Sumitomo Metal Industries., Ltd. Method for inspecting surface of semiconductor wafer
KR100636011B1 (en) * 2000-09-26 2006-10-18 삼성전자주식회사 Defect detection apparatus
JP2017142209A (en) * 2016-02-12 2017-08-17 株式会社Sumco Method for evaluating epitaxial wafer and epitaxial wafer
CN109187580A (en) * 2018-11-01 2019-01-11 上海超硅半导体有限公司 A kind of detection method of silicon polished defect

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001027600A1 (en) * 1999-10-14 2001-04-19 Sumitomo Metal Industries., Ltd. Method for inspecting surface of semiconductor wafer
US6726319B1 (en) 1999-10-14 2004-04-27 Sumitomo Mitsubishi Silicon Corporation Method for inspecting surface of semiconductor wafer
KR100636011B1 (en) * 2000-09-26 2006-10-18 삼성전자주식회사 Defect detection apparatus
JP2017142209A (en) * 2016-02-12 2017-08-17 株式会社Sumco Method for evaluating epitaxial wafer and epitaxial wafer
CN109187580A (en) * 2018-11-01 2019-01-11 上海超硅半导体有限公司 A kind of detection method of silicon polished defect

Similar Documents

Publication Publication Date Title
US7616299B2 (en) Surface inspection method and surface inspection apparatus
US7869025B2 (en) Optical inspection method and optical inspection system
JP5509581B2 (en) Semiconductor wafer evaluation method
JP2008216054A (en) Device and method for inspecting test object
JP2001503148A (en) Surface inspection system and method for distinguishing pits and particles on a wafer surface
KR100327340B1 (en) Inspection method of wafer surface
JPH11111792A (en) Manufacture of semiconductor device
JPS63143831A (en) Optical apparatus for detecting defect on face plate
JP2010283264A (en) Method for determining non-defective semiconductor wafer using laser scattering method
JP2010283264A5 (en)
JP5417793B2 (en) Surface inspection method
JPH085569A (en) Particle measuring apparatus and particle inspection method
JP2005043277A (en) Quality evaluation method of semiconductor wafer
JPH09210918A (en) Foreign matter sensing optical system for surface of silicon wafer
JP6476580B2 (en) Flat plate surface condition inspection apparatus and flat plate surface condition inspection method using the same
JP2006112871A (en) Inspection method of semiconductor substrate, and its inspection device
JP7400667B2 (en) Silicon wafer inspection method, silicon wafer manufacturing method
JP3620641B2 (en) Inspection method of semiconductor wafer
JPH09318552A (en) Method and apparatus for detecting crystal orientation of substance
JPH07119703B2 (en) Surface defect inspection device
JPH0694629A (en) Inspecting apparatus for crystal defect
JPS6186637A (en) Pattern-defect detecting method
JP2001257243A (en) Method for measurig fine particle on silicon wafer surface
JPS63122119A (en) Inspective method for photomask for reduction stepper
JPH07211652A (en) Method and equipment for producing epitaxial wafer