JPH0694629A - Inspecting apparatus for crystal defect - Google Patents

Inspecting apparatus for crystal defect

Info

Publication number
JPH0694629A
JPH0694629A JP24607792A JP24607792A JPH0694629A JP H0694629 A JPH0694629 A JP H0694629A JP 24607792 A JP24607792 A JP 24607792A JP 24607792 A JP24607792 A JP 24607792A JP H0694629 A JPH0694629 A JP H0694629A
Authority
JP
Japan
Prior art keywords
light
defect
wafer
osf
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24607792A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamaguchi
博史 山口
Shingo Sekiguchi
眞吾 関口
Masamitsu Nishikawa
政光 西川
Masahito Nozawa
雅人 野沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24607792A priority Critical patent/JPH0694629A/en
Publication of JPH0694629A publication Critical patent/JPH0694629A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable measurement of a crystal defect with a high throughput by providing a photosensor having a light-sensing surface being perpendicular to the direction of bending reflection which is different from the direction of regular reflection of a light beam on a complete specular surface and specific to a section gradient of the defect. CONSTITUTION:A scanning direction 9 of a laser beam being parallel to the orientation flat 6 of an Si wafer is made the direction of the axis X, while the direction of an oxidation-induced defect 5 being perpendicular to the orientation flat 6 is made the direction of the axis Y. On the occasion when beam scanning is executed in the direction of the axis X in which the defect 5 exists, an angle of incidence of an incident light 7 is made thetai. When the beam is cast on the defect 5 it is bent by an angle 2theta to the direction of the axis Y by a gradient theta (which is a section gradient of a crystal transformation defect and has uniformity) and reflected. By disposing light-sensing parts 10a and 10b on extensions of reflected lights 8a and 8b deviating by angles + or -2theta from a plane Y-Z in respect to an angle thetai of reflection on this plane, so that the light-sensing surfaces thereof are positioned perpendicularly thereto, only the reflected lights by the defect 5 can be sensed. As to a diffusedly reflected light by a particle or the like, it is advisable to provide a large light-sensing part additionally for receiving it.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、結晶欠陥検査装置に係
り、特にシリコンウェハ表面に現われる酸化誘起欠陥
(以下OSFと称する:Oxidation induced Stacking F
ault)のように、その形状に方位性の特色をもつ欠陥の
検査に有効な結晶欠陥検査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crystal defect inspection apparatus, and more particularly to an oxidation induced stacking F (hereinafter referred to as OSF) which appears on the surface of a silicon wafer.
For example, the present invention relates to a crystal defect inspecting apparatus effective for inspecting defects having a directional characteristic in its shape.

【0002】[0002]

【従来の技術】従来、シリコンウェハ等の被検査物の結
晶欠陥検査装置においては、次のような方法があり、そ
の1として、光学系を通して拡大した被検査物像をCC
Dカメラ等の撮像素子にて撮影し、デジタル画像とした
後画像処理により結晶欠陥の個数を計測する方法があ
る。
2. Description of the Related Art Conventionally, in a crystal defect inspection apparatus for an object to be inspected such as a silicon wafer, there are the following methods.
There is a method in which the number of crystal defects is measured by image processing after imaging with an image sensor such as a D camera to obtain a digital image.

【0003】また、その2として被検査物面をレーザビ
ームにより走査し、その反射成分中の乱反射成分を光電
子増倍管を用いてとらえ結晶欠陥とみなして処理・計測
する方法がある。
As the second method, there is a method in which the surface of the object to be inspected is scanned with a laser beam, the diffuse reflection component in the reflection component is caught by using a photomultiplier tube, and is treated and measured as a crystal defect.

【0004】[0004]

【発明が解決しようとする課題】前述のその1の方法で
は、本来の結晶欠陥とパーティクル等とを区別し・計測
する上で画像情報の精度が高く、検査対象画像上での形
状の特徴判別処理が可能であり、欠陥計測精度が一致率
90%以上にも高いという長所がある。
According to the above-mentioned method 1, the accuracy of the image information is high in distinguishing and measuring the original crystal defects and the particles, and the feature determination of the shape on the image to be inspected is performed. It has the advantage that it can be processed and the defect measurement accuracy is as high as 90% or more.

【0005】ところが、光学系を通して拡大した一視野
ごとの画像について画像処理を実施することになるた
め、スループットが極端に低いという問題がある。光学
系の倍率にもよるが、例えば8”ウェハの全面をすき間
なく検査する場合にはウェハ1枚当り数十時間から数百
時間の検査時間がかかるという現状である。
However, since the image processing is performed on the image for each visual field enlarged through the optical system, there is a problem that the throughput is extremely low. Although it depends on the magnification of the optical system, for example, in the case of inspecting the entire surface of an 8 ″ wafer with no gap, it takes tens to hundreds of hours to inspect each wafer.

【0006】また、前述のその2の方法では、レーザビ
ームによる連続走査の出力信号をリアルタイムで処理で
きるため、スループットが良いという長所がある。例え
ば8”ウェハの全面検査では数分から数十分で処理が完
了する。ところが、結晶欠陥とパーティクル等との区別
がしにくく、欠陥だけを計測するには不向きであり、現
状では結晶欠陥のみの検査には使われていない。
Further, the above-mentioned second method has an advantage that the throughput is good because the output signal of continuous scanning by the laser beam can be processed in real time. For example, in the entire surface inspection of an 8 ″ wafer, the processing is completed in several minutes to several tens of minutes. However, it is difficult to distinguish between crystal defects and particles, and it is unsuitable to measure only defects. Not used for inspection.

【0007】このように従来の方法ではそれぞれ欠点が
存在する一方、例えばウェハに代表される被検査物の今
後の動向としては、メモリの大容量化に伴い、結晶欠陥
の発生個数を極めて少なく抑える製造技術が進んでお
り、1M 世代のOSF密度は200個/cm2 程度であっ
たが16M 世代のOSF密度は数個/ウェハに移行する
ことが予想され、今後益々全面検査におけるスループッ
トの向上と計測精度の向上が検査性能上必要となる。こ
の結果、このままでは従来の結晶欠陥検査技術と要求さ
れるウェハ製造技術とは、益々技術較差が広がり、結晶
欠陥検査技術の大幅な改良が望まれる。本発明は、かか
る点をふまえ高いスループットで高精度の欠陥計測を可
能とした結晶欠陥検査装置の提供を目的とする。
As described above, while the conventional methods have their respective drawbacks, as a future trend of the object to be inspected represented by, for example, a wafer, the number of crystal defects generated is suppressed to a very small number as the memory capacity increases. Manufacturing technology is advanced, and 1M generation OSF density is 200 / cm 2 The OSF density of the 16M generation is expected to shift to several pieces / wafer, although it was about the same level, and it is necessary to improve the throughput and the measurement accuracy in the full inspection in the future in terms of inspection performance. As a result, the technical difference between the conventional crystal defect inspection technique and the required wafer manufacturing technique is further widened as it is, and a significant improvement in the crystal defect inspection technique is desired. In view of the above point, the present invention has an object to provide a crystal defect inspection apparatus capable of highly accurate defect measurement with high throughput.

【0008】[0008]

【課題を解決するための手段】上述の目的を達成する本
発明の構成は、表面に結晶欠陥が露出して存在する被検
査物に対し、光ビームを走査しつつ一定角度にて照射す
る投光器を備え、この投光器からの光ビームの上記結晶
欠陥が無い鏡面における正反射方向とは異なる上記結晶
欠陥の断面勾配に特有の屈曲反射方向に垂直な受光面を
有する受光器を備えたことを要旨とする。
The structure of the present invention which achieves the above object is a projector for irradiating an object to be inspected having crystal defects exposed on its surface with a light beam while irradiating it at a constant angle. And a light receiver having a light receiving surface perpendicular to a bending reflection direction peculiar to the cross-sectional gradient of the crystal defect different from the specular reflection direction on the mirror surface without the crystal defect of the light beam from the projector. And

【0009】[0009]

【作用】本来結晶欠陥のない完全な鏡面での光ビームの
入射角と反射角とは等しくなっており、この鏡面上にパ
ーティクル等が存在する場合には乱反射が生じてしま
い、更に結晶欠陥では結晶面の面方位により左右される
がその形状方位が決まっており、しかもその断面勾配も
若干の勾配誤差があるものの略一定の角度が定まってい
るという属性がある。
The angle of incidence and the angle of reflection of the light beam on a perfect mirror surface, which is essentially free from crystal defects, are equal, and if particles or the like are present on this mirror surface, diffuse reflection occurs, and further, crystal defects The crystal orientation depends on the plane orientation of the crystal plane, but the shape orientation is determined, and the cross-sectional gradient has a certain constant angle although there is a slight gradient error.

【0010】かかる鏡面上での反射やパーティクル等の
乱反射と結晶欠陥による形状方位性及び断面勾配の決定
とを光ビームの反射方向にて区別するように構成したこ
とにより、結晶欠陥のみの光ビームによる信号を取り出
すことができ、しかもリアルタイムにて計測を行なうこ
とができる。
Since the reflection on the mirror surface or the diffuse reflection of particles or the like and the determination of the shape orientation and the sectional gradient due to the crystal defect are distinguished by the reflection direction of the light beam, the light beam having only the crystal defect is formed. The signal can be taken out and the measurement can be performed in real time.

【0011】[0011]

【実施例】ここで、図1ないし図9を参照して本発明の
実施例を説明する。図2は、本発明の実施例の結晶欠陥
検査装置の概略構成図であり、被検査物としてはシリコ
ンウェハを例にとり説明する。
Embodiments of the present invention will now be described with reference to FIGS. FIG. 2 is a schematic configuration diagram of a crystal defect inspection apparatus according to an embodiment of the present invention, and a silicon wafer will be described as an example of the inspection object.

【0012】図2において、回転可能な検査ステージ1
2上には、ウェハ4が吸着されており、このウェハ4の
表面3には投光部1よりレーザビームが走査されつつ照
射される。また、ウェハ4の表面3にて反射したレーザ
ビームは、受光部2にて受光され、ついで処理部13に
出力される。
In FIG. 2, a rotatable inspection stage 1
A wafer 4 is adsorbed on the surface 2, and the surface 3 of the wafer 4 is irradiated with a laser beam while being scanned by the light projecting unit 1. The laser beam reflected on the surface 3 of the wafer 4 is received by the light receiving section 2 and then output to the processing section 13.

【0013】投光部1は、レーザヘッド1a、レーザヘ
ッド1aからのレーザビームを反射する反射鏡1b、反
射鏡1bからのレーザビームを走査させるための駆動部
1cを有するポリゴンミラー1d、スキャンレンズであ
るf・θレンズ1eからなり、ウェハ4の表面3に向け
て一定角度θi にて走査しつつレーザビームが照射され
る。他方、ウェハ4からの反射光を受光する受光部2
は、集光レンズ2bと受光器2aとを有する。
The light projecting section 1 includes a laser head 1a, a reflecting mirror 1b for reflecting the laser beam from the laser head 1a, a polygon mirror 1d having a driving section 1c for scanning the laser beam from the reflecting mirror 1b, and a scan lens. The laser beam is emitted while scanning the surface 3 of the wafer 4 at a constant angle θ i . On the other hand, the light receiving section 2 that receives the reflected light from the wafer 4
Has a condenser lens 2b and a light receiver 2a.

【0014】かかる概略構造にあって、絞り込まれたレ
ーザビームはウェハ4の表面3上にて走査されつつ照射
され、鏡面のウェハ表面3では入射角θi と反射角θo
とが等しく振り分けられる。このため受光部2を反射レ
ーザビームの進行方向に配置ししかもその進行方向と垂
直に受光面(集光レンズ2b)を位置させれば反射レー
ザビームを受光することができる。
In such a schematic structure, the narrowed laser beam is irradiated while being scanned on the surface 3 of the wafer 4, and the incident angle θ i and the reflection angle θ o on the mirror-finished wafer surface 3.
And are equally distributed. Therefore, the reflected laser beam can be received by arranging the light receiving section 2 in the traveling direction of the reflected laser beam and arranging the light receiving surface (condensing lens 2b) perpendicular to the traveling direction.

【0015】さて、本実施例ではウェハ4の表面3に露
出して存在するOSFは結晶転位欠陥であり、形状的に
方位性と断面勾配の一定性を有しており、このOSFに
レーザビームを照射すればその断面勾配の一定性故に反
射レーザビームが一定方向に屈曲することに着目してい
る。つまり、レーザビームの屈曲方向に受光部4を置け
ばOSFに該当する反射レーザビームのみを受光するこ
とができる。
In the present embodiment, the OSF exposed and present on the surface 3 of the wafer 4 is a crystal dislocation defect and has a constant orientation and cross-sectional gradient in terms of shape, and this OSF has a laser beam. It is noticed that the reflected laser beam bends in a certain direction due to the constant cross-sectional gradient when irradiated with. That is, if the light receiving section 4 is placed in the bending direction of the laser beam, only the reflected laser beam corresponding to the OSF can be received.

【0016】ここで、ウェハ4上でのOSFにつき図3
以下にて説明する。前述したようにウェハ4のOSF5
は結晶転位欠陥であるので、ウェハ4でのカッティング
であるオリフラ6の方向を0°とするとき、結晶の面方
位によってOSF5の発生状況が異なり、図3に示すよ
うに面方位(100)では図3(a)の90°の関係、
面方位(111)では図3(b)の120°の関係、面
方位(511)では図3(c)の105°の関係をそれ
ぞれ有する。
The OSF on the wafer 4 is shown in FIG.
This will be described below. As described above, the OSF 5 of the wafer 4
Is a crystal dislocation defect. Therefore, when the orientation of the orientation flat 6 which is the cutting on the wafer 4 is set to 0 °, the generation state of the OSF 5 varies depending on the crystal plane orientation, and as shown in FIG. The relationship of 90 ° in FIG.
The plane orientation (111) has the relationship of 120 ° in FIG. 3B, and the plane orientation (511) has the relationship of 105 ° in FIG. 3C.

【0017】また、図3に示すOSF5の断面は、図4
(b)に示すように一定の角度θを有している。すなわ
ち、図4(a)に示すOSF5のA−A断面をみると、
図4(b)に示すように平坦鏡面に対してθの勾配を有
し、この勾配が一定となっている。したがってこの勾配
にレーザビームが照射された場合には、その角度θだけ
レーザビームが屈曲して反射されることになる。
The cross section of the OSF 5 shown in FIG. 3 is shown in FIG.
As shown in (b), it has a constant angle θ. That is, looking at the AA cross section of the OSF 5 shown in FIG.
As shown in FIG. 4B, there is a slope of θ with respect to the flat mirror surface, and this slope is constant. Therefore, when the laser beam is applied to this gradient, the laser beam is bent and reflected by the angle θ.

【0018】かかる状況を図1(c)にて説明する。ウ
ェハ4のオリフラ6と平行なレーザビーム走査方向9を
X軸方向とし、オリフラ6と垂直なるOSF方向をY軸
方向とする。今、OSF5が存在するX軸方向へレーザ
ビームを走査するにつき、ウェハ4に対して入射光7を
ウェハ4の垂直Z軸に対して入射角θi となし、しかも
Y軸方向に沿った光路をとるように入射させるとき、平
坦なる鏡面ウェハ上(OSF等がない場合)では、レー
ザビームはY−Z平面内において反射角θi にて反射す
る。
This situation will be described with reference to FIG. A laser beam scanning direction 9 parallel to the orientation flat 6 of the wafer 4 is defined as an X-axis direction, and an OSF direction perpendicular to the orientation flat 6 is defined as a Y-axis direction. Now, when the laser beam is scanned in the X-axis direction in which the OSF 5 exists, the incident light 7 is made to the wafer 4 at an incident angle θ i with respect to the vertical Z-axis of the wafer 4, and the optical path is along the Y-axis direction. On the flat mirror surface wafer (when there is no OSF etc.), the laser beam is reflected at a reflection angle θ i in the YZ plane.

【0019】しかしながら、ウェハ4上に存在するOS
F5にレーザビームが入射した場合、図1(a)または
図1(b)に示すように勾配θによってY軸方向に対し
て角度2θだけ屈曲して反射され、反射光8a又は8b
が生ずる。すなわち、X軸方向に走査されたY軸方向に
沿うレーザビームは、OSF等のない鏡面ではそのまま
Y軸方向に沿って反射することになるが、OSF5に当
った場合には断面勾配θによって角度2θだけY軸方向
からそれることになる。
However, the OS existing on the wafer 4
When the laser beam is incident on F5, as shown in FIG. 1 (a) or 1 (b), it is reflected by being bent at an angle 2θ with respect to the Y-axis direction due to the gradient θ, and reflected light 8a or 8b.
Occurs. That is, the laser beam scanned along the Y-axis direction in the X-axis direction is reflected along the Y-axis direction as it is on the mirror surface without the OSF, but when it hits the OSF 5, the cross-sectional gradient θ causes an angle difference. It will deviate by 2θ from the Y-axis direction.

【0020】したがって、図1(c)にてY−Z平面上
の反射角θi に対し、この平面を±2θなる角度だけ外
れた反射光8a,8bの延長線上に受光面を垂直に位置
させた受光部10a,10bを配置すれば、OSF5に
よる反射光のみを受光することができる。
Therefore, in FIG. 1C, the light receiving surface is vertically positioned on the extension line of the reflected lights 8a and 8b which deviate from the reflection angle θ i on the YZ plane by ± 2θ. If the light receiving portions 10a and 10b are arranged, only the light reflected by the OSF 5 can be received.

【0021】図5(a),(b)はOSF5による入射
光7と反射光8a,8bを平面から見たものであり、勾
配θによる屈曲角2θを示すと共に、受光部10a,1
0bでは反射した屈曲角に余裕を取り±θk なる開口を
有するようにしている。こうすることにより、勾配誤差
が若干あってもそれに対応することができる。また、図
5(a)のOSFと図5(b)のOSFとは、面方位に
より異なる異方位性OSFを示すものであるが、Y方位
性OSFとして検出するためには、検査ステージ12に
よりウェハ4自体を回転させることにより、図5
(a),(b)の場合はオリフラ6を90°回転させる
ようにすることにより、Y方位OSF5が検出できる。
FIGS. 5 (a) and 5 (b) are plan views of the incident light 7 and the reflected light 8a, 8b by the OSF 5, showing the bending angle 2θ by the gradient θ and the light receiving parts 10a, 1.
At 0b, there is a margin for the reflected bending angle, and an opening of ± θ k is provided. By doing so, even if there is a slight gradient error, it can be dealt with. Further, the OSF of FIG. 5A and the OSF of FIG. 5B indicate different orientation OSFs depending on the plane orientation, but in order to detect as the Y orientation OSF, the inspection stage 12 is used. By rotating the wafer 4 itself, FIG.
In the cases of (a) and (b), the Y orientation OSF 5 can be detected by rotating the orientation flat 6 by 90 °.

【0022】図1、図5ではOSF5の勾配θに対して
垂直方向に(OSF方向に)レーザビームを入射させた
例を示しているが、図6はOSF5のθ勾配に沿ってレ
ーザビームを入射させた場合を示している。
Although FIGS. 1 and 5 show an example in which a laser beam is incident in a direction perpendicular to the gradient θ of the OSF 5 (in the OSF direction), FIG. 6 shows the laser beam along the θ gradient of the OSF 5. The figure shows the case of incidence.

【0023】この場合には、入射光7が図6(a)の如
く勾配θの面の法線に近い場合は、Z軸に対してθi
θの反射角を有し、逆に図6(b)の如く勾配θの面の
法線と離れている場合には、Z軸に対してθi +θの反
射角を有する。したがって、図6に示すように異方位性
OSFを検出するためには、そのままでは反射方向8
c,8dは図5の如く、検出するための方向と一致せ
ず、受光部10a,10bには反射光が到達しない。し
たがって、OSF5を検出するためには、Y方向OSF
としてウェハ位置を設定し、方位特性を考慮する必要が
生ずる。
In this case, when the incident light 7 is close to the normal to the surface of the gradient θ as shown in FIG. 6A, θ i − with respect to the Z axis.
When it has a reflection angle of θ and is distant from the normal line of the surface of the gradient θ as shown in FIG. 6B, it has a reflection angle of θ i + θ with respect to the Z axis. Therefore, as shown in FIG.
As shown in FIG. 5, c and 8d do not coincide with the detection direction, and the reflected light does not reach the light receiving portions 10a and 10b. Therefore, in order to detect the OSF5, the Y-direction OSF is detected.
As a result, it becomes necessary to set the wafer position and consider the orientation characteristic.

【0024】図7はウェハ4の表面に存在するパーティ
クル等を示しており、図7(a)はウェハ面の傷、図7
(b)は汚れ、図7(c)はパーティクルを表わしてい
る。この場合には、OSFとは異なりレーザビームによ
る反射光8e,8f,8gはその方向が定まらず、典型
的な乱反射となる。そして、反射光8e,8f,8gの
光強度がY方向性OSFと同等の場合には受光部10
a,10bでの受光がOSFかパーティクル等によるノ
イズかを区別できない。
FIG. 7 shows particles and the like existing on the surface of the wafer 4, and FIG. 7A shows a flaw on the wafer surface.
7B shows dirt and FIG. 7C shows particles. In this case, unlike the OSF, the directions of the reflected lights 8e, 8f, and 8g by the laser beam are not fixed, and typical diffused reflection occurs. When the light intensity of the reflected light 8e, 8f, 8g is equivalent to that of the Y-directional OSF, the light receiving unit 10
It is impossible to distinguish whether the light received at a and 10b is OSF or noise due to particles or the like.

【0025】したがって、かかる場合を考慮して図8に
示すように受光部10a,10bの他に更に大きな受光
部10cを追加し乱反射光用の受光を行なうようにすれ
ばよい。なお、11は受光部11cのマスクを示す。か
かる配置構造の出力波形は、図9に示すようになり、O
SF5のみの場合には図9(a)に示す受光部10a,
10bのいずれかにピークが生じ、受光部10cには出
力は生じない。また、パーティクル等のノイズでは、図
9(b)に示すように受光部10cのみにピークが生じ
ノイズであることが判明する。更に、図9(c)のよう
に受光部10a,10b,10c全てにピークが生じた
場合には、大きなパーティクル等であると判断でき、ノ
イズが判別できる。
Therefore, in consideration of such a case, a larger light receiving portion 10c may be added in addition to the light receiving portions 10a and 10b as shown in FIG. 8 so as to receive diffused reflected light. Reference numeral 11 represents a mask of the light receiving unit 11c. The output waveform of such an arrangement structure is as shown in FIG.
In the case of only SF5, the light receiving section 10a shown in FIG.
A peak is generated in any of 10b and no output is generated in the light receiving section 10c. In addition, it is found that noise such as particles causes noise because only a peak occurs in the light receiving unit 10c as shown in FIG. 9B. Further, when peaks occur in all the light receiving portions 10a, 10b, 10c as shown in FIG. 9C, it can be determined that the particles are large particles and the like, and noise can be determined.

【0026】[0026]

【発明の効果】以上説明したように、OSFの結晶の面
方位性と断面勾配の一定性を利用して、ウェハ上におけ
るOSFのみの反射光を受光することが可能となり、O
SFの計測精度が高くしかもレーザビームの走査による
リアルタイム処理によりスループットが良い検査装置を
得ることができる。
As described above, it is possible to receive the reflected light of only the OSF on the wafer by utilizing the plane orientation of the crystal of the OSF and the constant cross-sectional gradient.
It is possible to obtain an inspection apparatus having high SF measurement accuracy and good throughput through real-time processing by scanning a laser beam.

【図面の簡単な説明】[Brief description of drawings]

【図1】OSFの検出のための説明図。FIG. 1 is an explanatory diagram for detecting an OSF.

【図2】結晶欠陥検出装置全体の概略構成図。FIG. 2 is a schematic configuration diagram of the entire crystal defect detection device.

【図3】ウェハ上でのOSF発生の方位図。FIG. 3 is an azimuth diagram of OSF generation on a wafer.

【図4】OSFの平面及び断面図。4A and 4B are a plan view and a cross-sectional view of an OSF.

【図5】図4の平面を回転状態と共に示す図。FIG. 5 is a diagram showing the plane of FIG. 4 together with a rotated state.

【図6】異方位性OSFの反射状態図。FIG. 6 is a reflection state diagram of an anisotropic orientation OSF.

【図7】ノイズ要因による乱反射状態図。FIG. 7 is an irregular reflection state diagram due to noise factors.

【図8】ノイズ判別のための受光部の構成図。FIG. 8 is a configuration diagram of a light receiving unit for noise determination.

【図9】受光部による出力信号例を示す波形図。FIG. 9 is a waveform diagram showing an example of an output signal from the light receiving unit.

【符号の説明】[Explanation of symbols]

1 投光部 2,10a,10b,10c 受光部 3 ウェハ表面 4 ウェハ 5 OSF 6 オリフラ 7 入射光 8a,8b,8c,8d,8e,8f,8g 反射光 9 走査方向 12 検査ステージ 13 処理部 DESCRIPTION OF SYMBOLS 1 Light emitting part 2, 10a, 10b, 10c Light receiving part 3 Wafer surface 4 Wafer 5 OSF 6 Orient flat 7 Incident light 8a, 8b, 8c, 8d, 8e, 8f, 8g Reflected light 9 Scanning direction 12 Inspection stage 13 Processing part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野沢 雅人 東京都府中市東芝町1番地 株式会社東芝 府中工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masato Nozawa No. 1 Toshiba-cho, Fuchu-shi, Tokyo Toshiba Corporation Fuchu factory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 表面に結晶欠陥が露出して存在する被検
査物に対し、光ビームを走査しつつ一定角度にて照射す
る投光器を備え、この投光器からの光ビームの上記結晶
欠陥が無い鏡面における正反射方向とは異なる上記結晶
欠陥の断面勾配に特有の屈曲反射方向に垂直な受光面を
有する受光器を備えた結晶欠陥検査装置。
1. A mirror surface which is provided with a light projector for irradiating an object to be inspected having crystal defects exposed on the surface with a light beam while irradiating the light beam at a constant angle, the mirror surface having no crystal defects of the light beam. 2. A crystal defect inspection apparatus including a photodetector having a light receiving surface perpendicular to a bending reflection direction specific to the cross-sectional gradient of the crystal defect different from the specular reflection direction in FIG.
JP24607792A 1992-09-16 1992-09-16 Inspecting apparatus for crystal defect Pending JPH0694629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24607792A JPH0694629A (en) 1992-09-16 1992-09-16 Inspecting apparatus for crystal defect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24607792A JPH0694629A (en) 1992-09-16 1992-09-16 Inspecting apparatus for crystal defect

Publications (1)

Publication Number Publication Date
JPH0694629A true JPH0694629A (en) 1994-04-08

Family

ID=17143137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24607792A Pending JPH0694629A (en) 1992-09-16 1992-09-16 Inspecting apparatus for crystal defect

Country Status (1)

Country Link
JP (1) JPH0694629A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018037560A (en) * 2016-08-31 2018-03-08 富士電機株式会社 Silicon carbide semiconductor base substance, crystal axis alignment method for the same, and method of manufacturing silicon carbide semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018037560A (en) * 2016-08-31 2018-03-08 富士電機株式会社 Silicon carbide semiconductor base substance, crystal axis alignment method for the same, and method of manufacturing silicon carbide semiconductor device

Similar Documents

Publication Publication Date Title
JP3669101B2 (en) Substrate inspection method and apparatus using diffracted light
JP4306800B2 (en) Optical scanning system for surface inspection
US6222624B1 (en) Defect inspecting apparatus and method
JP4802481B2 (en) Surface inspection apparatus, surface inspection method, and exposure system
US5805278A (en) Particle detection method and apparatus
US5717485A (en) Foreign substance inspection apparatus
US5471066A (en) Defect inspection apparatus of rotary type
EP0265229A2 (en) Particle detection method and apparatus
US5659390A (en) Method and apparatus for detecting particles on a surface of a semiconductor wafer having repetitive patterns
US7616299B2 (en) Surface inspection method and surface inspection apparatus
US20050110986A1 (en) Scanning system for inspecting anamolies on surfaces
JPH0915163A (en) Method and equipment for inspecting foreign substance
JPS6182147A (en) Method and device for inspecting surface
JP3105702B2 (en) Optical defect inspection equipment
JP2999712B2 (en) Edge defect inspection method and apparatus
JP2002340811A (en) Surface evaluation device
JP2539182B2 (en) Foreign matter inspection method on semiconductor wafer
JPH0694629A (en) Inspecting apparatus for crystal defect
JP3432273B2 (en) Foreign matter inspection device and foreign matter inspection method
JPH0783840A (en) Rotary defect inspection device
JP3218726B2 (en) Foreign matter inspection device
JPS61104658A (en) Array of semiconductor solid-state image pickup element
JPH0619334B2 (en) Surface defect detection method
JP2001264262A (en) Surface foreign matter inspecting method and surface foreign matter inspecting device
JPH0545303A (en) Defect inspecting apparatus