JP2001264262A - Surface foreign matter inspecting method and surface foreign matter inspecting device - Google Patents

Surface foreign matter inspecting method and surface foreign matter inspecting device

Info

Publication number
JP2001264262A
JP2001264262A JP2000070774A JP2000070774A JP2001264262A JP 2001264262 A JP2001264262 A JP 2001264262A JP 2000070774 A JP2000070774 A JP 2000070774A JP 2000070774 A JP2000070774 A JP 2000070774A JP 2001264262 A JP2001264262 A JP 2001264262A
Authority
JP
Japan
Prior art keywords
light
foreign matter
wafer
optical system
test object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000070774A
Other languages
Japanese (ja)
Inventor
Koichiro Komatsu
宏一郎 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2000070774A priority Critical patent/JP2001264262A/en
Publication of JP2001264262A publication Critical patent/JP2001264262A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a surface foreign matter inspecting method and inspecting device capable of conveniently making a total inspection for comparatively large foreign matter or a flaw or the like on a wafer or a liquid crystal substrate in a state of inspection standard is constant. SOLUTION: This device has illumination optical systems 3 and 4 illuminating substantially the whole face of an object 1 to be inspected, light receiving optical systems 5 and 7 collectively receiving scattered light from foreign matter adhered to a surface of the object for detecting the total quantity of scattered light by their pupil faces, and a spatial filter part 6 extracting light of a particular direction from the object.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体回路素子や
液晶表示素子等の製造工程中において、該素子の表面に
付着した異物の検査方法及び検査装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for inspecting foreign matter adhering to the surface of a semiconductor circuit element or a liquid crystal display element during a manufacturing process thereof.

【0002】[0002]

【従来の技術】半導体回路素子や液晶表示素子の製造工
程において、ゴミなどの異物が付着すると回路パターン
に欠陥が生じてしまい所望の性能を得ることができなく
なってしまう。このため、レーザ光を走査して異物から
の散乱光を検出する高感度の異物検査装置が従来から数
多く提案されている。ところが、これら従来の異物検査
装置はレーザスポットを走査するため処理時間が長くな
り、製造されるすべての製品の検査を行うことは事実上
不可能である。そこで、従来技術の異物検査装置による
検査は抜き取り検査で行われているのが現状である。し
かし、異物の付着は偶発的に起こるため全数検査するこ
とが望ましい。
2. Description of the Related Art In a manufacturing process of a semiconductor circuit element or a liquid crystal display element, if foreign matter such as dust adheres, a defect occurs in a circuit pattern and a desired performance cannot be obtained. For this reason, many high-sensitivity foreign-matter inspection apparatuses that scan laser light to detect scattered light from foreign matter have been conventionally proposed. However, these conventional foreign-matter inspection apparatuses require a long processing time because they scan laser spots, and it is practically impossible to inspect all manufactured products. Therefore, at present, the inspection by the conventional foreign matter inspection apparatus is performed by a sampling inspection. However, it is desirable to perform a 100% inspection because the attachment of foreign matter occurs accidentally.

【0003】また、上述のような異物の付着に起因する
欠陥に対して冗長回路を設けることにより、ある程度の
欠陥が存在しても回路特性を維持することができるよう
にする技術が開発されてきている。このため、上述のよ
うな高感度の異物検査をすべての製品に行う必然性は低
くなってきている。特に、半導体回路素子の場合には一
枚の基板に20個から100個程度の複数個の製品を作
るのが一般的となっている。このため、数個の欠陥が存
在する場合に不良品と判断して再工事や破棄してしまう
と製品の歩留まりが悪くなってしまい、製造コストが増
えてしまう場合もある。そこで、製造するすべての製品
について検査員による外観検査により比較的大きな異物
が付着しているかどうかを確認していることが多い。
In addition, a technique has been developed to provide a redundant circuit for a defect caused by the adhesion of a foreign substance as described above, so that circuit characteristics can be maintained even if a certain degree of defect exists. ing. Therefore, the necessity of performing the above-described high-sensitivity foreign substance inspection on all products has been reduced. Particularly, in the case of a semiconductor circuit element, it is common to manufacture a plurality of products of about 20 to 100 pieces on one substrate. For this reason, if there are several defects, if they are determined to be defective and reconstructed or discarded, the yield of the products will be reduced, and the production cost may be increased. Therefore, it is often the case that a relatively large foreign matter is attached to all the products to be manufactured by visual inspection by an inspector.

【0004】[0004]

【発明が解決しようとする課題】ところが、検査員によ
る目視検査では検査員個人の技量の影響を受けやすいの
で、検査基準が変動しやすいという欠点がある。さら
に、目視外観検査では膜厚むらやパターン異常を同時に
検査するため、照明が異物検査に最適になるように設置
されていない。このことから、焼き付けられたパターン
の影響で異物や傷を発見できない場合がある。
However, the visual inspection performed by the inspector is susceptible to the skill of the inspector, and thus has the disadvantage that the inspection standard tends to fluctuate. Further, in the visual appearance inspection, since the film thickness unevenness and the pattern abnormality are simultaneously inspected, the illumination is not installed so as to be optimal for the foreign matter inspection. For this reason, foreign substances and scratches may not be found due to the effect of the printed pattern.

【0005】本発明は上記問題に鑑みてなされたもので
あり、検査基準が一定の状態でウエハや液晶基板上の比
較的大きな異物、傷等の全数検査を簡便に行うことがで
きる表面異物検査方法及び検査装置を提供することを目
的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has a surface inspection system capable of easily performing a 100% inspection of relatively large foreign objects and scratches on a wafer or a liquid crystal substrate with a fixed inspection standard. It is an object to provide a method and an inspection device.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、被検物のほぼ全面に照明光を照射する工
程と、前記被検物の表面に付着した異物からの散乱光を
受光光学系により一括して受光し、前記受光光学系のほ
ぼ瞳面で前記散乱光の全光量を検出する工程と、前記被
検物からの特定の方向の光を取り出す工程と、を有する
ことを特徴とする表面異物検査方法を提供する。ここ
で、異物には、ゴミ、塵などに加えて、散乱光を生ずる
傷なども含まれる。
In order to solve the above-mentioned problems, the present invention provides a step of irradiating almost the entire surface of a test object with illumination light, and a method of scattering light from a foreign substance adhering to the surface of the test object. Receiving the light in a batch by the light receiving optical system, detecting the total amount of the scattered light substantially at the pupil plane of the light receiving optical system, and extracting light in a specific direction from the test object. A method for inspecting a surface foreign matter is provided. Here, the foreign matter includes not only dust and dirt but also flaws that generate scattered light.

【0007】また、好ましい態様では、前記被検物を所
定軸を中心に回転させる工程と、前記受光光学系で検出
された全光量の最小値と所定の閾値とを比較し、前記被
検物体の前記異物に関する良否判定を行う工程とを有す
ることが望ましい。
In a preferred aspect, the step of rotating the test object about a predetermined axis and the minimum value of the total amount of light detected by the light receiving optical system are compared with a predetermined threshold value. And determining whether the foreign matter is good or bad.

【0008】また、本発明は、被検物のほぼ全面に照明
する照明光学系と、前記被検物の表面に付着した異物か
らの散乱光を一括して受光し、前記受光光学系のほぼ瞳
面で前記散乱光の全光量を検出する受光光学系と、前記
被検物からの特定の方向の光を取り出す空間フィルタ部
とを有することを特徴とする表面異物検査装置を提供す
る。
The present invention is also directed to an illumination optical system for illuminating substantially the entire surface of a test object, and collectively receiving scattered light from a foreign substance adhering to the surface of the test object. Provided is a surface foreign matter inspection device, comprising: a light receiving optical system that detects the total amount of the scattered light on a pupil plane; and a spatial filter unit that extracts light in a specific direction from the test object.

【0009】また、好ましい態様では、前記被検物を所
定軸を中心に回転させる回転部と、前記受光光学系で検
出された全光量の最小値と所定の閾値とを比較し、前記
被検物体の前記異物に関する良否判定を行う比較演算部
とを有することが望ましい。
In a preferred aspect, the rotation unit for rotating the object around a predetermined axis is compared with a minimum value of the total amount of light detected by the light receiving optical system and a predetermined threshold value. It is preferable that the apparatus further includes a comparison operation unit that performs quality judgment on the foreign matter of the object.

【0010】また、好ましい態様では、前記空間フィル
タ部は、前記受光光学系の瞳面近傍に設けられているこ
とが望ましい。
[0010] In a preferred aspect, it is desirable that the spatial filter section is provided near a pupil plane of the light receiving optical system.

【0011】[0011]

【発明の実施の形態】以下、添付図面に基いて本発明の
実施の形態にかかる異物検査装置について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a foreign matter inspection apparatus according to an embodiment of the present invention will be described with reference to the accompanying drawings.

【0012】(第1実施形態)図1は第1の実施形態に
かかる異物検査装置の構成を示す図である。被検物体で
あるウエハ1は、不図示の搬送装置により所定位置へ搬
送され、水平面内で回転可能なホルダ2に吸着される。
光源3からの照明光は、照明光学系である凹面鏡4によ
り反射されウエハ1の全面を所定の角度で照明する。凹
面鏡4による照明光学系では、凹面鏡4により光路が折
り曲げられるため、光源3と被検物体1とが干渉しない
ように凹面鏡4を傾けている。また、ウエハ1上の任意
のいずれかの位置を照明する光束は、入射角度が一様
で、かつ一定の範囲に入っていることが望ましい。この
ため、光源3は照明光学系の瞳面の位置である凹面鏡4
からおよそ焦点距離だけ離れた位置に配置されている。
ウエハ1に対する入射角度はウエハ面の法線を0度とし
て60度から90度の範囲で、かつウエハ上の任意の一
点を照明する光束の開口数(Numerical Aperture)は
0.1以下であることが望ましい。また、入射角度が大
きい場合には、ウエハ1を照明する光束の幅が細くなる
ので、凹面鏡4は必ずしも円形である必要性はなく帯状
の形状にしてもよい。
(First Embodiment) FIG. 1 is a view showing a configuration of a foreign substance inspection apparatus according to a first embodiment. The wafer 1 as a test object is transferred to a predetermined position by a transfer device (not shown), and is attracted to a holder 2 that can rotate in a horizontal plane.
Illumination light from the light source 3 is reflected by the concave mirror 4 which is an illumination optical system, and illuminates the entire surface of the wafer 1 at a predetermined angle. In the illumination optical system using the concave mirror 4, since the optical path is bent by the concave mirror 4, the concave mirror 4 is inclined so that the light source 3 and the test object 1 do not interfere with each other. It is desirable that the light beam illuminating any arbitrary position on the wafer 1 has a uniform incident angle and falls within a certain range. For this reason, the light source 3 is a concave mirror 4 which is a position on the pupil plane of the illumination optical system.
It is located at a position that is approximately a focal distance from the camera.
The incident angle with respect to the wafer 1 is in the range of 60 to 90 degrees with the normal to the wafer surface being 0 degree, and the numerical aperture of a light beam illuminating an arbitrary point on the wafer is 0.1 or less. Is desirable. Further, when the incident angle is large, the width of the light beam illuminating the wafer 1 becomes narrow. Therefore, the concave mirror 4 does not necessarily have to be circular and may be formed in a band shape.

【0013】ウエハ1上に異物が付着していると、前述
した照明光を四方八方へ等方的に散乱する。この散乱光
をウエハ1のほぼ垂直方向上方に設けられた受光光学系
である凹面鏡5で集光し、受光光学系の瞳面近傍に設け
られた空間フィルタ6を介してSPD(シリコンフォト
ダイオード)や光電子増倍管などの光電変換素子7で電
気信号に変換し、制御・演算処理部8に送る。制御・演
算処理部8内は、ホルダ2を軸Aを中心に回転させる駆
動機構9に信号を送り、ウエハ1を回転させる。光電変
換素子7は回転しているウエハからの受光光量を連続的
に検出する。次に、制御・演算処理部8は、該受光光量
の最小値を求める。また、制御・演算処理部8は、予め
設定してある閾値を記憶している。そして、制御・演算
処理部8は、前記最小の光量と前記閾値とを比較するこ
とにより、ウエハ1の良否を判定する。ウエハ1の良否
判定結果は工程管理システムに送られ、良品と判断され
たウエハは次の工程に進められる。他方、不良品と判断
されたウエハは、パターンを剥がしてもう一度同じ工程
処理を施す再工事、またはパターンを研磨して最初の工
程からやり直すリサイクル処理にまわされる。
If foreign matter is attached to the wafer 1, the above-described illumination light is isotropically scattered in all directions. This scattered light is condensed by a concave mirror 5 which is a light receiving optical system provided substantially vertically above the wafer 1, and is passed through a spatial filter 6 provided near a pupil plane of the light receiving optical system to form an SPD (silicon photodiode). The signal is converted into an electric signal by a photoelectric conversion element 7 such as a photomultiplier or a photomultiplier tube and sent to a control / arithmetic processing unit 8. The control / arithmetic processing unit 8 sends a signal to a drive mechanism 9 that rotates the holder 2 about the axis A, and rotates the wafer 1. The photoelectric conversion element 7 continuously detects the amount of light received from the rotating wafer. Next, the control / arithmetic processing unit 8 obtains the minimum value of the received light amount. The control / arithmetic processing unit 8 stores a preset threshold value. Then, the control / arithmetic processing unit 8 determines the quality of the wafer 1 by comparing the minimum light amount with the threshold value. The result of the pass / fail judgment of the wafer 1 is sent to the process management system, and the wafer judged to be non-defective is advanced to the next step. On the other hand, a wafer determined to be defective is subjected to rework in which the pattern is peeled off and the same process is performed again, or recycle processing in which the pattern is polished and the process is restarted from the first process.

【0014】異物からの散乱光の光量は、異物の径が大
きくなるほど大きくなる。いくつもの回路素子をまたが
り上述の冗長回路では対応ができないような致命的な影
響を与える大きな異物からは、強い散乱光が発生し大き
な異物信号を得ることになる。また、前述の冗長回路で
救済が可能な程度の比較的小さい異物がウエハ上に多数
存在する場合には、光電変換素子7が受光光学系5の瞳
近傍に設けられているので、それぞれの異物からの散乱
光が積算され大きな異物信号となる。従来検査員の目視
検査でも、比較的小さな異物は検出しにくいことに加え
て、上述のように冗長回路で対応(救済)可能であるこ
と、又は検出したものをすべて不良品扱いすると歩留ま
りの低下を引き起こすこと等からある程度の異物が存在
しても次の工程に進めてしまっている。実際には発塵対
策がなされたクリーンルーム内で作業が行われるので、
発生する異物のうち大きいものはほとんど除去されてお
り、ウエハに付着する異物は比較的小さいものばかりで
ある。このため、基本的には小さい径の異物の数の合計
(総数)が所定の値を超えるかどうかを見ていることに
等しくなると考えてよい。
The amount of scattered light from the foreign material increases as the diameter of the foreign material increases. From a large foreign matter that has a fatal effect that cannot be dealt with by the above-described redundant circuit over several circuit elements, strong scattered light is generated and a large foreign matter signal is obtained. When there are many relatively small foreign matters on the wafer that can be relieved by the above-described redundant circuit, the photoelectric conversion element 7 is provided near the pupil of the light receiving optical system 5. The scattered light from the light beam is integrated to produce a large foreign matter signal. In addition to the fact that relatively small foreign matter is difficult to detect even with conventional visual inspection, the yield can be reduced if the redundant circuit can be used (remedy) as described above, or if all detected items are treated as defective. Therefore, even if a certain amount of foreign matter is present, the process proceeds to the next step. Actually, the work is performed in a clean room where dust measures have been taken,
Among the generated foreign substances, large ones are almost completely removed, and foreign matters adhering to the wafer are relatively small. For this reason, it may be basically considered that it is equal to seeing whether the total (total number) of the number of foreign substances having a small diameter exceeds a predetermined value.

【0015】異物からの散乱光は、異物の大きさによっ
て方向特性はあるものの全方位に等方的に広がる。これ
に対して、ウエハ1の表面に成形されている回路パター
ンに照明光が入射すると、パターンが繰り返されている
方向と周期とに応じて回折光が生じる。この回折光が受
光光学系の光電変換素子に入射すると、異物が付着して
いない場合であっても、信号強度が高くなってしまい疑
似的に異物信号が生じたものと制御・演算処理部8によ
って判断されてしまう。
The scattered light from the foreign matter has a directional characteristic depending on the size of the foreign matter, but isotropically spreads in all directions. On the other hand, when the illumination light is incident on the circuit pattern formed on the surface of the wafer 1, diffracted light is generated according to the direction and the period in which the pattern is repeated. When this diffracted light is incident on the photoelectric conversion element of the light receiving optical system, even if no foreign matter is attached, the signal strength is increased and a control signal is generated as if the foreign matter signal was generated in a pseudo manner. It will be judged by.

【0016】そこで、ウエハ1を軸Aを中心として回転
して回折光の生じる方向を変化させてやりパターンから
の回折光の影響が最も少ない状態で異物からの散乱光量
を計測するようにして疑似の異物信号を検出してしまう
のを避ける。図2は、繰り返しのパターンを有するウエ
ハを被検物体としてホルダ2を一回転させた場合の前記
受光光学系が受光する光量の変化の一例を示す図であ
る。ここで、横軸は回転角度(度)、縦軸は受光量の光
量をそれぞれ表している。パターンの繰り返しの方向が
前記照明光の入射方向に平行になり、パターンからの回
折光が受光光学系の受光する範囲に入るときに受光光量
が大きくなる。また、実際の半導体ウエハに形成されて
いるパターンは、必ずしも縦横つまり繰り返しパターン
の方向が直交しているものだけではない。そこで、受光
光学系にパターンからの回折光が入射しない条件とし
て、ウエハ1を回転させて受光光量が最小となる位置で
の受光光量をウエハの良否の判定に用いる。さらに、実
際の半導体ウエハのパターンの繰返し周期は一定ではな
いため、空間フィルタ6を設けパターンからの不要な回
折光が光電変換素子7に入射することを避けることが望
ましい。
Therefore, the wafer 1 is rotated about the axis A to change the direction in which the diffracted light is generated, and the amount of scattered light from the foreign material is measured in a state where the influence of the diffracted light from the pattern is minimal. Avoid detecting the foreign object signal. FIG. 2 is a diagram showing an example of a change in the amount of light received by the light receiving optical system when the holder 2 is rotated once with a wafer having a repetitive pattern as a test object. Here, the horizontal axis represents the rotation angle (degree), and the vertical axis represents the amount of received light. The repetition direction of the pattern becomes parallel to the incident direction of the illumination light, and the amount of received light increases when the diffracted light from the pattern enters a range where the light receiving optical system receives light. In addition, the pattern formed on the actual semiconductor wafer is not limited to the one in which the vertical and horizontal directions, that is, the directions of the repeated patterns are orthogonal. Therefore, as a condition under which the diffracted light from the pattern does not enter the light receiving optical system, the amount of received light at a position where the amount of received light is minimized by rotating the wafer 1 is used to determine the quality of the wafer. Furthermore, since the actual repetition period of the pattern of the semiconductor wafer is not constant, it is desirable to provide the spatial filter 6 and to prevent unnecessary diffracted light from the pattern from entering the photoelectric conversion element 7.

【0017】図2(b)は、空間フィルタ6の構成を示
す図である。照明光学系4の光軸と受光光学系5の光軸
を含む平面PPを進行する光が入射しないように遮光帯
SDが設けられている。ウエハ1からの光は開口部AP
を通過する。また、この遮光帯SDの幅は光源3が照明
光学系4、ウエハ1、受光光学系5を介して空間フィル
タ6上に形成する光源像の大きさLよりわずかに大きく
することが望ましい。さらに、光電変換素子の受光領域
を、図2(b)に示すような空間フィルタ6の開口部と
同じ形状にしてもよい。
FIG. 2B is a diagram showing the configuration of the spatial filter 6. A light-shielding band SD is provided so that light traveling on a plane PP including the optical axis of the illumination optical system 4 and the optical axis of the light-receiving optical system 5 does not enter. The light from the wafer 1 passes through the opening AP.
Pass through. It is desirable that the width of the light-shielding band SD is slightly larger than the size L of the light source image formed on the spatial filter 6 by the light source 3 via the illumination optical system 4, the wafer 1, and the light receiving optical system 5. Further, the light receiving region of the photoelectric conversion element may have the same shape as the opening of the spatial filter 6 as shown in FIG.

【0018】(第2実施形態)本発明の第2実施形態に
かかる表面検査装置の構成を示す図である。本表面検査
装置は、光学系に屈折光学系を用いている。上記第1の
実施形態と同様に回転可能なホルダ12に載置されたウ
エハ11に、光源13からの光束を照明光学系14を介
して第1の実施形態と同様に大きな入射角度で照射させ
る。ウエハ11上に付着した異物で散乱された光は、ウ
エハ11のほぼ垂直上方に設けられた受光レンズ15で
受光光学系の瞳面近傍に集光される。そして、この瞳面
近傍に設けられた絞り又は空間フィルタ16を通過した
光は、光電変換素子17で光電変換され、受光信号とし
て制御・演算処理部18に送られる。制御・演算処理部
18は、第1の実施形態と同様にホルダ12の駆動機構
に信号を送り、ホルダ12を軸Aを中心として回転させ
て受光光量の最小値を求める。その後、第1の実施形態
と同様にウエハ11の良否判定を行う。また、空間フィ
ルタ16は第1の実施形態と同様にウエハ11に形成さ
れたパターンからの回折光が光電変換素子17に入射し
ないように図2(b)に示すような形状をしていること
が望ましい。
(Second Embodiment) FIG. 6 is a view showing a configuration of a surface inspection apparatus according to a second embodiment of the present invention. This surface inspection apparatus uses a refractive optical system as an optical system. Similarly to the first embodiment, the light beam from the light source 13 is applied to the wafer 11 mounted on the rotatable holder 12 through the illumination optical system 14 at a large incident angle similarly to the first embodiment. . The light scattered by the foreign matter adhering to the wafer 11 is collected near the pupil plane of the light receiving optical system by the light receiving lens 15 provided substantially vertically above the wafer 11. The light passing through the stop or the spatial filter 16 provided near the pupil plane is photoelectrically converted by the photoelectric conversion element 17 and sent to the control / arithmetic processing unit 18 as a light receiving signal. The control / arithmetic processing unit 18 sends a signal to the drive mechanism of the holder 12 as in the first embodiment, and rotates the holder 12 about the axis A to obtain the minimum value of the amount of received light. Thereafter, the quality of the wafer 11 is determined in the same manner as in the first embodiment. The spatial filter 16 has a shape as shown in FIG. 2B so that diffracted light from a pattern formed on the wafer 11 does not enter the photoelectric conversion element 17 as in the first embodiment. Is desirable.

【0019】次に、照明光束の断面形状について説明す
る。大きな入射角のもとでは照明光の入射する方向とウ
エハ11の法線を含む面内での照明光束は、ウエハの大
きさに入射角の余弦を乗じた程度の大きさになる。この
ため、光束を大きく広げてしまうと、ウエハ11の大き
さよりも大きな領域を照明することになるので照明効率
が低下してしまう。これに対し、照明光の入射する方向
とウエハ11の法線を含む面に垂直な方向では、入射角
の如何にかかわらず少なくともウエハの大きさの照明光
束が必要となる。照明効率を向上させるために、本実施
形態の照明光学系14は図4に斜視図を示すように、2
つの円筒レンズ14a,14bから構成されている。円
筒レンズ14aは照明光の入射する方向とウエハ11の
法線を含む面、つまり図4の紙面を含む方向に屈折力を
有し、円筒レンズ14bは図4の紙面に垂直な方向に屈
折力を有するように配置されている。各円筒レンズ14
a,14bは、光源13がそれぞれの円筒レンズ14
a,14bの焦点位置近傍になるように配置されてお
り、ウエハ11上の任意の点に照射される光束の中心は
ほぼ平行になっている。
Next, the sectional shape of the illumination light beam will be described. At a large incident angle, the illuminating light flux in a plane including the direction in which the illuminating light is incident and the normal line of the wafer 11 is about the size of the wafer multiplied by the cosine of the incident angle. For this reason, if the light beam is greatly expanded, an area larger than the size of the wafer 11 will be illuminated, and the illumination efficiency will be reduced. On the other hand, in the direction in which the illumination light is incident and the direction perpendicular to the plane including the normal line of the wafer 11, an illumination light flux of at least the size of the wafer is required regardless of the incident angle. In order to improve the illumination efficiency, the illumination optical system 14 of the present embodiment is configured as shown in FIG.
It is composed of two cylindrical lenses 14a and 14b. The cylindrical lens 14a has a refractive power in a direction including the direction in which the illumination light is incident and the normal line of the wafer 11, that is, a direction including the paper surface in FIG. 4, and the cylindrical lens 14b has a refractive power in a direction perpendicular to the paper surface in FIG. Are arranged. Each cylindrical lens 14
a and 14b are light sources 13 each of which is a cylindrical lens 14;
Arrangements are made so as to be in the vicinity of the focal positions of a and 14b, and the center of a light beam applied to an arbitrary point on the wafer 11 is substantially parallel.

【0020】また、平面円盤状のウエハのエッジ部で
は、照明光が強く反射し不要なノイズ光となる。特に、
本実施形態ではウエハ11を大きな入射角で照明するた
め、光源13に近い側のウエハのエッジ部から反射した
ノイズ光が受光光学系に入射してしまう可能性がある。
そこで、平面円盤状のウエハのエッジ部が光らないよう
にし、かつウエハ面の有効領域には照明光が入射すると
いう条件を満足する必要がある。このため、本実施形態
では、ウエハのエッジ部からの反射光が発生しないよう
に、ウエハ11の光源側に衝立て20を設けている。
Further, at the edge of the flat disk-shaped wafer, the illumination light is strongly reflected and becomes unnecessary noise light. In particular,
In the present embodiment, since the wafer 11 is illuminated at a large incident angle, noise light reflected from the edge of the wafer on the side closer to the light source 13 may enter the light receiving optical system.
Therefore, it is necessary to satisfy the condition that the edge portion of the planar disk-shaped wafer does not emit light and that the illumination light enters the effective area of the wafer surface. For this reason, in the present embodiment, the screen 20 is provided on the light source side of the wafer 11 so that light reflected from the edge of the wafer is not generated.

【0021】次に、衝立て20の形状について説明す
る。衝立ては、例えば図5(a)に示すように、上面か
ら見た場合ウエハ11の曲率中心と衝立て20の曲率中
心とが一致するような半円形の形状である。照明光束は
平行光なので衝立ての影は照明光束の中心軸に対して平
行に形成される。ここで、照明光が入射してくる方向に
対して角度φだけずれた方向で上記条件を満足するため
に必要な衝立ての高さを求める。
Next, the shape of the screen 20 will be described. The screen has, for example, a semicircular shape such that the center of curvature of the wafer 11 and the center of curvature of the screen 20 coincide with each other when viewed from above, as shown in FIG. Since the illumination light beam is parallel light, the shadow of the screen is formed parallel to the central axis of the illumination light beam. Here, the height of the partition necessary to satisfy the above condition is obtained in a direction shifted by an angle φ from the direction in which the illumination light is incident.

【0022】照明光はウエハ面に対して入射角θで照射
され、ウエハ11の半径をR(図5(a)では外周Bで
示す),ウエハ11の有効領域の半径をr(図5(a)
では外周B’で示す)、ウエハ11の中心から衝立て2
0までの距離をL、ウエハ面からの衝立ての高さをhと
それぞれ表す。このとき、照明光はウエハ11の有効領
域B’を照明し、かつウエハ11のエッジ部Bに入射し
ない必要がある。この場合高さhは、次式を満足するこ
とが望ましい。
The illumination light is applied to the wafer surface at an incident angle θ, the radius of the wafer 11 is indicated by R (indicated by the outer periphery B in FIG. 5A), and the radius of the effective area of the wafer 11 is indicated by r (FIG. a)
, The outer periphery B ′), and the screen 2
The distance to 0 is represented by L, and the height of the screen from the wafer surface is represented by h. At this time, the illumination light needs to illuminate the effective area B ′ of the wafer 11 and not to enter the edge B of the wafer 11. In this case, it is desirable that the height h satisfies the following expression.

【0023】[0023]

【数1】 (Equation 1)

【0024】実際には、ウエハ11のエッジ部分からの
強い反射ノイズ光はウエハの周囲2mm程度の幅の範囲
で角が丸まっている部分である。このため、ウエハ11
の半径Rには、ウエハの周囲の角が丸まっている部分を
引いた値を用いることが更に好ましい。
Actually, the strong reflected noise light from the edge portion of the wafer 11 is a portion having a rounded corner within a range of about 2 mm around the wafer. Therefore, the wafer 11
It is more preferable to use a value obtained by subtracting a portion where the corner around the wafer is rounded as the radius R of.

【0025】図5(c)は、ウエハの半径R=100m
m、有効領域の半径r=95mm、入射角度が88度、
ウエハから衝立てまでの距離L=105mmの条件にお
ける衝立ての形状を示す図である。図5(c)の横軸は
照明光束の中心軸から衝立ての方位角φ、縦軸はウエハ
面から衝立てが上方に出ている長さh(単位:mm)を
それぞれ示している。そして、それぞれの方位角φに対
して形状の上限値HIと下限値LOとを示している。衝
立ての高さhは少なくとも上限値HIと下限値LOとの
間に入っていることが必要となる。ここで、ウエハの有
効領域までの範囲を計算したので、方位角φは±64度
(=Arcsin(95/105))までの範囲について計算してあ
る。また、迷光の混入を避けるために、有効領域よりも
外側には光が入射しないことが望ましい。
FIG. 5C shows a radius R of a wafer = 100 m.
m, effective area radius r = 95 mm, incident angle is 88 degrees,
It is a figure which shows the shape of a screen on the condition of the distance L = 105 mm from a wafer to a screen. The horizontal axis of FIG. 5C indicates the azimuth φ of the screen from the central axis of the illumination light beam, and the vertical axis indicates the length h (unit: mm) of the screen from the wafer surface. The upper limit HI and the lower limit LO of the shape are shown for each azimuth angle φ. The height h of the screen must be at least between the upper limit HI and the lower limit LO. Here, since the range up to the effective area of the wafer was calculated, the azimuth angle φ was calculated in the range up to ± 64 degrees (= Arcsin (95/105)). Further, in order to avoid mixing of stray light, it is desirable that light does not enter outside the effective area.

【0026】また、実際の工程で処理されるウエハは厚
みにバラツキを有しているので、衝立て20で遮光する
範囲をウエハの厚さに合わせて変更することが望まし
い。そのため、ウエハ11がホルダ12に載置された
際、ウエハ面の高さ計測のため光源21からの細い光束
をウエハ11の表面に斜めに照射する。ウエハ面11で
反射した光束は、PSD(受光位置検出素子Posio
n SensitiveDetector)22に入射
する。ウエハ11の厚さ等に起因して高さが変化する
と、PSD22に入射する光束の位置がズレる。PSD
22は、このズレ量を検出し制御・演算処理部18に伝
える。制御・演算処理部18ではウエハ11面の高さを
計算し、ウエハ11のエッジ部に照明光が入射せず、有
効領域のみに照明光が照射されるように、駆動装置23
にて衝立て20の位置を移動させる。また、衝立て20
を動かさないで固定しておき、ホルダ12を上下動して
もよい。
Since the thickness of a wafer processed in an actual process varies, it is desirable to change the range of light shielding by the screen 20 according to the thickness of the wafer. Therefore, when the wafer 11 is placed on the holder 12, a thin light beam from the light source 21 is obliquely applied to the surface of the wafer 11 for measuring the height of the wafer surface. The luminous flux reflected by the wafer surface 11 is detected by a PSD (light receiving position detecting element Posio).
n Sensitive Detector 22. When the height changes due to the thickness of the wafer 11 or the like, the position of the light beam incident on the PSD 22 shifts. PSD
Reference numeral 22 detects the amount of deviation and transmits the detected amount to the control / arithmetic processing unit 18. The control / arithmetic processing unit 18 calculates the height of the surface of the wafer 11 and drives the driving device 23 so that the illumination light does not enter the edge of the wafer 11 and the illumination light is applied only to the effective area.
The position of the screen 20 is moved with. In addition, the screen 20
May be fixed without moving, and the holder 12 may be moved up and down.

【0027】さらに、ウエハ11に付着した異物からの
散乱光の強度はあまり強くないため、照明光学系、ウエ
ハホルダ、受光光学系は検査画像を取り込む際に不要な
外乱光が入射しないよう構成することが望ましい。この
ため、少なくとも照明光学系、ウエハホルダ、受光光学
系部分は、ウエハの出し入れ口に開閉可能なシャッター
が設けられている暗箱内に入れておくことが望ましい。
なお、この暗箱の中は被検物体であるウエハに異物が付
着しないように、いわゆるHEPA(High Efficiency P
articulate Air Filter)やULPA(Ultra Low Penetra
tion Air filter)と呼ばれる集塵フィルタつきの空気清
浄装置からの空気を層流になるように循環させてやるこ
とが望ましい。
Further, since the intensity of the scattered light from the foreign matter adhering to the wafer 11 is not so strong, the illumination optical system, the wafer holder, and the light receiving optical system should be configured so that unnecessary disturbance light does not enter when capturing the inspection image. Is desirable. For this reason, it is desirable that at least the illumination optical system, the wafer holder, and the light receiving optical system are placed in a dark box provided with a shutter that can be opened and closed at a wafer entrance.
In this dark box, a so-called HEPA (High Efficiency PEPA) is used to prevent foreign matter from adhering to the wafer as a test object.
articulate Air Filter) and ULPA (Ultra Low Penetra)
It is desirable to circulate the air from an air purifier equipped with a dust collecting filter called a lamination air filter in a laminar flow.

【0028】以上の説明では、第1の実施形態として照
明光学系および受光光学系に反射光学系を用いた例を示
し、第2の実施形態として照明光学系および受光光学系
に屈折光学系を用いた例を示したが、これらの照明光学
系および受光光学系は組み替えて用いてもよい。また、
光源3,13は、光ファイバー出射端などの二次光源を
用いてもよい、さらに、上記各実施例では、受光光学系
は被検物体1の鉛直上方に配置されているが、本発明は
この構成に限られるものではない。
In the above description, an example in which a reflection optical system is used for the illumination optical system and the light receiving optical system is shown as the first embodiment, and a refractive optical system is used for the illumination optical system and the light receiving optical system as the second embodiment. Although an example in which the illumination optical system and the light receiving optical system are used is shown, the illumination optical system and the light receiving optical system may be interchanged. Also,
The light sources 3 and 13 may use a secondary light source such as an optical fiber emission end. Further, in each of the above embodiments, the light receiving optical system is disposed vertically above the object 1 to be measured. It is not limited to the configuration.

【0029】[0029]

【発明の効果】以上説明したように、本発明によれば、
簡便な信号処理系でウエハ表面の異物や傷を検査し、検
査したウエハの良否判別を短時間で行うことができる。
このため、製造工程のウエハ(プロセスウエハ)の全数
検査を行うことができ、偶発的な異物の発生による半導
体製品の歩留まりの低下を防ぐことができる。さらに、
本発明の装置を用いることによりクリーンルーム内で最
も発塵の可能性の高い人間をウエハから遠ざけることが
できるので、検査時に偶発的な異物の付着を抑えること
ができる。
As described above, according to the present invention,
Foreign matter and scratches on the wafer surface can be inspected by a simple signal processing system, and the quality of the inspected wafer can be determined in a short time.
Therefore, it is possible to perform a 100% inspection of all wafers (process wafers) in the manufacturing process, and it is possible to prevent a decrease in the yield of semiconductor products due to accidental generation of foreign matter. further,
By using the apparatus of the present invention, a person who is most likely to generate dust in the clean room can be kept away from the wafer, so that accidental attachment of foreign substances during inspection can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態にかかる表面検査装置の
構成を示す図である。
FIG. 1 is a diagram showing a configuration of a surface inspection apparatus according to a first embodiment of the present invention.

【図2】(a)は回折光の強度、(b)は空間フィルタ
の構成を示す図である。
2A is a diagram illustrating the intensity of a diffracted light, and FIG. 2B is a diagram illustrating a configuration of a spatial filter.

【図3】本発明の第2実施形態にかかる表面検査装置の
構成を示す図である。
FIG. 3 is a diagram illustrating a configuration of a surface inspection apparatus according to a second embodiment of the present invention.

【図4】本発明にかかる表面検査装置の照明光学系の構
成を示す図である。
FIG. 4 is a diagram showing a configuration of an illumination optical system of the surface inspection apparatus according to the present invention.

【図5】本発明にかかる表面検査装置の衝立ての形状等
を示す図である。
FIG. 5 is a view showing a shape of a screen of the surface inspection apparatus according to the present invention;

【符号の説明】[Explanation of symbols]

1,11 ウエハ 2,12 ホルダ 3,13 光源 4 凹面反射鏡 5 凹面反射鏡 6,16 空間フィルタ 7,17 光電変換素子 8,18 制御・演算処理部 9,19 駆動機構 A 回転軸 AP 開口部 SD 遮光帯 14 照明光学系 15 受光レンズ 20 衝立て 21 光源 22 PSD 23 駆動装置 Reference Signs List 1,11 Wafer 2,12 Holder 3,13 Light source 4 Concave reflecting mirror 5 Concave reflecting mirror 6,16 Spatial filter 7,17 Photoelectric conversion element 8,18 Control / arithmetic processing unit 9,19 Driving mechanism A Rotating axis AP Opening SD light-shielding band 14 illumination optical system 15 light-receiving lens 20 screen 21 light source 22 PSD 23 driving device

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F065 AA24 AA49 AA61 CC17 DD12 FF01 FF09 FF41 GG12 HH03 HH12 JJ16 JJ17 JJ18 LL04 LL08 LL19 LL30 MM04 QQ25 QQ28 TT03 2G051 AA51 AA73 AB01 AB02 BB07 BB09 BB17 CA02 CA03 CB05 CB06 CC07 DA08 DA13 EB01 4M106 AA01 CA41 CA43 DB13 DB14 DB19 DJ06 DJ11 DJ18 DJ20 DJ21 DJ27  ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference) 2F065 AA24 AA49 AA61 CC17 DD12 FF01 FF09 FF41 GG12 HH03 HH12 JJ16 JJ17 JJ18 LL04 LL08 LL19 LL30 MM04 QQ25 QQ28 TT03 2G051 AA51 AA07 CB07 DA03 CB07 DA02 EB01 4M106 AA01 CA41 CA43 DB13 DB14 DB19 DJ06 DJ11 DJ18 DJ20 DJ21 DJ27

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 被検物のほぼ全面に照明光を照射する工
程と、 前記被検物の表面に付着した異物からの散乱光を受光光
学系により一括して受光し、前記受光光学系のほぼ瞳面
で前記散乱光の全光量を検出する工程と、 前記被検物からの特定の方向の光を取り出す工程と、を
有することを特徴とする表面異物検査方法。
A step of irradiating substantially the entire surface of the test object with illumination light; and a step of collectively receiving scattered light from a foreign substance adhering to the surface of the test object by a light receiving optical system; A surface foreign matter inspection method, comprising: detecting a total amount of the scattered light substantially on a pupil surface; and extracting light in a specific direction from the test object.
【請求項2】 前記被検物を所定軸を中心に回転させる
工程と、 前記受光光学系で検出された前記全光量の最小値と所定
の閾値とを比較し、前記被検物体の前記異物に関する良
否判定を行う工程と、を有することを特徴とする請求項
1に記載の表面異物検査方法。
2. A step of rotating the test object around a predetermined axis; comparing a minimum value of the total amount of light detected by the light receiving optical system with a predetermined threshold value; 2. The method according to claim 1, further comprising the step of: determining whether the surface is good or bad.
【請求項3】 被検物のほぼ全面を照明する照明光学系
と、 前記被検物の表面に付着した異物からの散乱光を一括し
て受光し、前記受光光学系のほぼ瞳面で前記散乱光の全
光量を検出する受光光学系と、 前記被検物からの特定の方向の光を取り出す空間フィル
タ部と、を有することを特徴とする表面異物検査装置。
3. An illumination optical system for illuminating substantially the entire surface of the test object, and collectively receiving scattered light from a foreign substance adhering to the surface of the test object. A surface foreign matter inspection device comprising: a light receiving optical system that detects a total amount of scattered light; and a spatial filter that extracts light in a specific direction from the test object.
【請求項4】 前記被検物を所定軸を中心に回転させる
回転部と、 前記受光光学系で検出された前記全光量の最小値と所定
の閾値とを比較し、前記被検物体の前記異物に関する良
否判定を行う比較演算部と、を有することを特徴とする
請求項3に記載の表面異物検査装置。
4. A rotating unit for rotating the test object around a predetermined axis, a minimum value of the total light amount detected by the light receiving optical system and a predetermined threshold value are compared, and the rotation of the test object is 4. The surface foreign matter inspection device according to claim 3, further comprising: a comparison operation unit that performs a pass / fail determination on the foreign matter.
【請求項5】 前記空間フィルタ部は、前記受光光学系
の瞳面近傍に設けられていることを特徴とする請求3又
は4記載の表面異物検査装置。
5. The surface foreign matter inspection apparatus according to claim 3, wherein the spatial filter is provided near a pupil plane of the light receiving optical system.
JP2000070774A 2000-03-14 2000-03-14 Surface foreign matter inspecting method and surface foreign matter inspecting device Withdrawn JP2001264262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000070774A JP2001264262A (en) 2000-03-14 2000-03-14 Surface foreign matter inspecting method and surface foreign matter inspecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000070774A JP2001264262A (en) 2000-03-14 2000-03-14 Surface foreign matter inspecting method and surface foreign matter inspecting device

Publications (1)

Publication Number Publication Date
JP2001264262A true JP2001264262A (en) 2001-09-26

Family

ID=18589454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000070774A Withdrawn JP2001264262A (en) 2000-03-14 2000-03-14 Surface foreign matter inspecting method and surface foreign matter inspecting device

Country Status (1)

Country Link
JP (1) JP2001264262A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008534963A (en) * 2005-03-31 2008-08-28 ケイエルエイ−テンコー・テクノロジーズ・コーポレーション Wideband reflective optical system for wafer inspection
JP2010017792A (en) * 2008-07-09 2010-01-28 Disco Abrasive Syst Ltd Grinding device and scratch detection device
CN113959954A (en) * 2021-09-02 2022-01-21 宝宇(武汉)激光技术有限公司 Laser ultrasonic energy compensation method and system for nondestructive testing of pipe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008534963A (en) * 2005-03-31 2008-08-28 ケイエルエイ−テンコー・テクノロジーズ・コーポレーション Wideband reflective optical system for wafer inspection
JP2010017792A (en) * 2008-07-09 2010-01-28 Disco Abrasive Syst Ltd Grinding device and scratch detection device
CN113959954A (en) * 2021-09-02 2022-01-21 宝宇(武汉)激光技术有限公司 Laser ultrasonic energy compensation method and system for nondestructive testing of pipe
CN113959954B (en) * 2021-09-02 2022-10-28 宝宇(武汉)激光技术有限公司 Laser ultrasonic energy compensation method and system for nondestructive testing of pipes

Similar Documents

Publication Publication Date Title
KR100861604B1 (en) Optical inspection method and apparatus utilizing a variable angle design
JP5032114B2 (en) Patterned or non-patterned wafer and other specimen inspection systems
US5790247A (en) Technique for determining defect positions in three dimensions in a transparent structure
JP3669101B2 (en) Substrate inspection method and apparatus using diffracted light
JP5355922B2 (en) Defect inspection equipment
WO1997013140A9 (en) Technique for determining defect positions in three dimensions in a transparent structure
US9588056B2 (en) Method for particle detection on flexible substrates
US20090213215A1 (en) Defect inspection apparatus and method
JP2009025003A (en) Surface state inspection device
JPS6330570B2 (en)
US6396579B1 (en) Method, apparatus, and system for inspecting transparent objects
JP6039119B1 (en) Defect inspection equipment
JPH11316195A (en) Surface defect detecting device of transparent plate
JP5288672B2 (en) Surface defect inspection equipment
JP2001264262A (en) Surface foreign matter inspecting method and surface foreign matter inspecting device
JP2006017685A (en) Surface defect inspection device
JP2001305071A (en) Defect inspecting device
JP2821460B2 (en) Inspection device for transparent substrate
JP3078784B2 (en) Defect inspection equipment
JP2004257776A (en) Inspection device for light transmission body
JPH09218162A (en) Surface defect inspection device
JPH04344447A (en) Detecting device for defect in transparent glass substrate
JP2005156416A (en) Method and apparatus for inspecting glass substrate
JP3406951B2 (en) Surface condition inspection device
JPH07128250A (en) Foreign matter inspection device for photomask for manufacturing semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605