JPH09318552A - Method and apparatus for detecting crystal orientation of substance - Google Patents

Method and apparatus for detecting crystal orientation of substance

Info

Publication number
JPH09318552A
JPH09318552A JP13373296A JP13373296A JPH09318552A JP H09318552 A JPH09318552 A JP H09318552A JP 13373296 A JP13373296 A JP 13373296A JP 13373296 A JP13373296 A JP 13373296A JP H09318552 A JPH09318552 A JP H09318552A
Authority
JP
Japan
Prior art keywords
light
semiconductor wafer
substance
detecting
crystal orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13373296A
Other languages
Japanese (ja)
Inventor
Takatoshi Maruyama
孝利 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP13373296A priority Critical patent/JPH09318552A/en
Publication of JPH09318552A publication Critical patent/JPH09318552A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus for detecting the crystal orientation automatically based on the quantity of light reflected from the surface of a semiconductor wafer irradiated with light and for automating the processing line of the semiconductor wafer. SOLUTION: When the surface of a GaAs semiconductor wafer 1 is irradiated with a light 9 from a projector 2 at an angle θ1 in the range of 10 deg.<θ1<30 deg., a reflected light 10 can be detected at a predetermined angle θ2 (45 deg.<θ2<135 deg.) because the irregularities on the surface have a predetermined regularity. Crystal orientation of the GaAs semiconductor wafer is determined by a direction dependent on a position where the difference of intensity of reflected light 10 thus detected is highest, i.e., the position of a photodetector set 14 in case of the most intense reflection light 10, and a direction dependent on the position of the photodetector set 14 in case or the least intense reflection light 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、物質の結晶方向を
検出する方法及びその装置に関し、特に、化合物半導体
ウェハの結晶方向を検出する方法及びその装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for detecting the crystallographic direction of a substance, and more particularly to a method and apparatus for detecting the crystallographic direction of a compound semiconductor wafer.

【0002】[0002]

【従来の技術】従来から、結晶にはある種の対称性があ
り、一定の結晶方向と常に同じ角度をなす2つの面が得
られることが知られている。また、GaAs半導体ウェ
ハ等の半導体ウェハでは、その薄片試料作製などの場合
にウェハの結晶方向の検出が重要となっている。例え
ば、GaAs半導体ウェハでレーザダイオードを製造す
るにあたりメサエッチを利用する場合にGaAs半導体
ウェハの結晶方向(<011>方向と<01T>方向)
が厳密に区別される必要がある。かかる結晶方向を一般
にメサ方向という。以下、<01T>のTはバー1ある
いは反転1を意味する。
2. Description of the Related Art It is conventionally known that a crystal has a certain symmetry, and two planes which always form the same angle with a certain crystal direction can be obtained. Further, in the case of semiconductor wafers such as GaAs semiconductor wafers, it is important to detect the crystallographic direction of the wafer when preparing a thin sample. For example, when a mesa etch is used in manufacturing a laser diode with a GaAs semiconductor wafer, the crystal directions of the GaAs semiconductor wafer (<011> direction and <01T> direction)
Must be strictly distinguished. Such a crystal direction is generally called a mesa direction. Hereinafter, T in <01T> means bar 1 or inversion 1.

【0003】この半導体ウェハのメサ方向は、一般にエ
ッチング法といわれる方法で検出することができる。か
かるエッチング法においては、結晶方向の検出をする半
導体ウェハとかかる半導体ウェハを腐食する腐食剤(エ
ッチング液)と顕微鏡によって、半導体ウェハの結晶方
向を検出することとなる。
The mesa direction of this semiconductor wafer can be detected by a method generally called an etching method. In such an etching method, the crystal orientation of the semiconductor wafer is detected by a semiconductor wafer that detects the crystal orientation, a corrosive agent (etching solution) that corrodes the semiconductor wafer, and a microscope.

【0004】図3に、従来からの半導体ウェハのエッチ
ングによる結晶方向の検出方法を表わす流れ図を示す。
かかるエッチング法は、腐食法とも呼ばれ、例えば、結
晶の方向が容易に解るようにGaAs半導体結晶に予め
マーキング等の異形状処理を施しておき(ステップ2
0)、かかるGaAs半導体結晶をGaAs半導体ウェ
ハにスライスし(ステップ30)、かかるGaAs半導
体ウェハの1枚を例えば水酸化カリュウム(KOH)等
の腐食剤で処理して(ステップ40)、その結晶転位な
どを選択的にエッチさせてエッチピットを出し(ステッ
プ50)、かかるエッチピットの方向を顕微鏡で見るこ
とによりGaAs半導体ウェハのメサ方向を検出する
(ステップ60)こととなる。
FIG. 3 is a flow chart showing a conventional method for detecting a crystal orientation by etching a semiconductor wafer.
Such an etching method is also called a corrosion method. For example, a GaAs semiconductor crystal is subjected to a different shape treatment such as marking in advance so that the crystal direction can be easily understood (step 2).
0), slicing the GaAs semiconductor crystal into GaAs semiconductor wafers (step 30), treating one of the GaAs semiconductor wafers with a corrosive agent such as potassium hydroxide (KOH) (step 40), and dislocation thereof. Etch pits are selectively etched to form etch pits (step 50), and the mesa direction of the GaAs semiconductor wafer is detected by observing the direction of the etch pits with a microscope (step 60).

【0005】図4に、GaAs半導体ウェハ1の結晶の
メサ方向を示す。かかるエッチングパターン(結晶模
様)8は、<001>方向に短く、<01T>方向に長
い模様となっている。
FIG. 4 shows the crystal mesa direction of the GaAs semiconductor wafer 1. The etching pattern (crystal pattern) 8 is short in the <001> direction and long in the <01T> direction.

【0006】また、GaAs半導体ウェハをアンモニア
系のエッチング液等でエッチングすると、スライス加工
面やラップ加工面では特有の微小凹凸模様のエッチング
パターンが出ることとなる。これを顕微鏡で400倍程
度に拡大して見ることにより、GaAs半導体ウェハの
メサ方向を知ることができることとなる。
Further, when a GaAs semiconductor wafer is etched with an ammonia-based etching solution or the like, an etching pattern having a unique fine concavo-convex pattern appears on the slice processed surface or the lap processed surface. By observing this with a microscope magnified about 400 times, the mesa direction of the GaAs semiconductor wafer can be known.

【0007】このようにして、従来の顕微鏡によるエッ
チング方法によって、化合物半導体ウェハの結晶方向が
検出されていた。
In this way, the crystal orientation of the compound semiconductor wafer has been detected by the conventional etching method using a microscope.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、図3に
示したような従来のエッチング方法によれば、半導体ウ
ェハの特有の微小凹凸模様のエッチングパターンを顕微
鏡で目視しているため、半導体ウェハのメサ方向を検出
する場合には、かかるメサ方向の検出が自動化できない
という問題があった。
However, according to the conventional etching method as shown in FIG. 3, since the etching pattern of the fine unevenness peculiar to the semiconductor wafer is visually observed with a microscope, the mesa of the semiconductor wafer is not observed. When detecting the direction, there is a problem that the detection of the mesa direction cannot be automated.

【0009】また、特に半導体ウェハの製造加工の途中
でメサ方向を検出する場合には、半導体ウェハの特有の
微小凹凸模様のエッチングパターンを顕微鏡で目視して
いるため、かかるメサ方向の検出が自動化できず製造加
工を中断するなどの場合が生じ、生産性が悪くなるとい
う問題があった。
Further, particularly in the case of detecting the mesa direction during the manufacturing process of the semiconductor wafer, the etching pattern of the minute unevenness pattern peculiar to the semiconductor wafer is visually observed with a microscope, and therefore the detection of the mesa direction is automated. There is a problem in that productivity may be deteriorated due to cases such as interruption of the manufacturing process due to failure.

【0010】従って、本発明の目的は、半導体ウェハの
製造時において半導体ウェハのメサ方向を自動的に検出
でき、半導体ウェハ加工ラインの自動化を図ることがで
きる生産性の高い低コストの半導体ウェハの結晶メサ方
向の検出方法及びその装置を提供することである。
Therefore, an object of the present invention is to provide a highly productive low-cost semiconductor wafer which can automatically detect the mesa direction of the semiconductor wafer during the manufacture of the semiconductor wafer and can automate the semiconductor wafer processing line. A method and an apparatus for detecting a crystal mesa direction.

【0011】[0011]

【課題を解決するための手段】本発明は、以上に述べた
目的を実現するため、半導体ウェハの表面に光を照射し
て光を反射させ、その反射した光の受光量を測定し、そ
の受光量によって半導体ウェハの結晶方向を検出する方
法を提供する。
In order to achieve the above-mentioned object, the present invention irradiates the surface of a semiconductor wafer with light to reflect the light, measures the amount of received light of the reflected light, and Provided is a method for detecting the crystal orientation of a semiconductor wafer according to the amount of received light.

【0012】また、前記目的を実現するため、半導体ウ
ェハの表面に光を照射する投光手段と、反射した光を受
けてその受光量を測定する受光手段と、受光量によって
半導体ウェハの結晶方向を検出する結晶方向検出手段と
を有する半導体ウェハの結晶方向の検出装置を提供す
る。
In order to achieve the above object, a light projecting means for irradiating the surface of the semiconductor wafer with light, a light receiving means for receiving the reflected light and measuring the amount of received light, and a crystal orientation of the semiconductor wafer according to the amount of received light There is provided a crystal orientation detecting device for detecting a crystal orientation of a semiconductor wafer, which comprises:

【0013】即ち、本発明の半導体ウェハの結晶方向の
検出方法及びその装置は、半導体ウェハの結晶のメサ方
向の検出を反射光の受光量の差によることとしたので、
半導体ウェハの製造時において半導体ウェハのメサ方向
を自動的に検出でき、半導体ウェハ加工ラインの自動化
を図ることができるようにしたものである。
That is, the semiconductor wafer crystal orientation detection method and apparatus according to the present invention are based on the fact that the detection of the crystal mesa orientation of the semiconductor wafer is based on the difference in the amount of reflected light received.
It is possible to automatically detect the mesa direction of the semiconductor wafer at the time of manufacturing the semiconductor wafer and to automate the semiconductor wafer processing line.

【0014】[0014]

【発明の実施の形態】以下本発明の半導体ウェハの結晶
メサ方向の検出方法及びその装置を詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The method and apparatus for detecting the crystal mesa direction of a semiconductor wafer according to the present invention will be described in detail below.

【0015】図1は本発明の実施の一形態を示す。この
装置は、GaAs半導体ウェハ1と、投光器2と受光器
3から成る光検知セット14から成っている。
FIG. 1 shows an embodiment of the present invention. This device comprises a GaAs semiconductor wafer 1 and a photo-sensing set 14 consisting of a light projector 2 and a light receiver 3.

【0016】かかるGaAs半導体ウェハ1は、エッチ
ング処理が施され、その表面に微細な凹凸(模様)を有
することとなっている。また、この表面の凹凸は、一定
の規則性を有する形状となっている(図4参照)。
The GaAs semiconductor wafer 1 is subjected to an etching process and has fine irregularities (patterns) on its surface. Further, the irregularities on the surface have a shape having a certain regularity (see FIG. 4).

【0017】また、投光器2は、GaAs半導体ウェハ
1に対して角度Θ1で設置され、受光器3は、GaAs
半導体ウェハ1に対して角度Θ2で設置されている。
The light projector 2 is installed at an angle Θ1 with respect to the GaAs semiconductor wafer 1, and the light receiver 3 is made of GaAs.
It is installed at an angle Θ2 with respect to the semiconductor wafer 1.

【0018】ここで、一般には表面に微細な凹凸がある
光反射面に光を当てるとその反射光は色々な方向に散乱
することとなるが、かかる本発明の構成で、投光器2か
ら角度Θ1が10°<Θ1<30°の範囲でGaAs半導
体ウェハ1の表面に光9を当てると、その表面の凹凸が
一定の規則性を有するため、その反射光10は一定の角
度Θ2(45°<Θ2<135°)のところで検出できる
こととなる。
Here, in general, when light is applied to a light-reflecting surface having fine irregularities on the surface, the reflected light is scattered in various directions. With the structure of the present invention, the angle θ 1 from the projector 2 is set. When the light 9 is applied to the surface of the GaAs semiconductor wafer 1 in the range of 10 ° <Θ1 <30 °, the reflected light 10 has a constant angle Θ2 (45 ° <45 ° <45 ° <45 ° <45) since the unevenness of the surface has a certain regularity. It can be detected at Θ2 <135 °).

【0019】かかる検出された反射光10の強弱の差が
最も大きい位置、即ち、最も強い反射光10の場合の光
検知セット14の位置によって求められる方向(<01
1>)と、最も弱い反射光10の場合の光検知セット1
4の位置によって求められる方向(<01T>)が、G
aAs半導体ウェハの結晶メサ方向となる。
The direction obtained by the position where the detected difference in intensity of the reflected light 10 is the largest, that is, the position of the photodetection set 14 in the case of the strongest reflected light 10 (<01
1>) and the light detection set 1 for the weakest reflected light 10
The direction (<01T>) obtained by the position of 4 is G
It becomes the crystal mesa direction of the aAs semiconductor wafer.

【0020】図2に、本発明の別の実施の一形態を示
す。この装置は、GaAs半導体ウェハ1と、投光器2
と受光器3から成る光検知セット14と、投光器4と受
光器5から成る光検知セット15と、2本の信号線13
と、信号比較器6と、出力信号線7から成っている。
FIG. 2 shows another embodiment of the present invention. This device comprises a GaAs semiconductor wafer 1 and a projector 2
And a photodetector 3, a photodetector set 14, a photodetector set 15 including a projector 4 and a photodetector 5, and two signal lines 13
And a signal comparator 6 and an output signal line 7.

【0021】検査試料がGaAs半導体ウェハ1である
場合には、反射光の強弱の差が最大となる結晶方向が垂
直(90°)であることが解っているため、GaAs半
導体ウェハ1の表面上でそれぞれ直行するX−Y軸上の
X軸上に光検知セット14を設置し、Y軸上に光検知セ
ット15を設置する。かかる光検知セット14、15の
それぞれの2つの投光器2、4は、GaAs半導体ウェ
ハ1に対して角度Θ1(Θ1=10°)で設置され、2つ
の受光器3、5は、GaAs半導体ウェハ1に対して角
度Θ2(Θ2=100°)で設置されている。更に、投光
器2と投光器4は、夫々の出射光9及び出射光11がG
aAs半導体ウェハ1表面の一点Aの位置で夫々反射す
るように設置されている。
When the inspection sample is the GaAs semiconductor wafer 1, it is known that the crystal direction in which the difference in the intensity of reflected light is maximum is vertical (90 °). The optical detection set 14 is installed on the X-axis and the optical detection set 15 is installed on the Y-axis. The two light projectors 2 and 4 of each of the light detection sets 14 and 15 are installed at an angle Θ1 (Θ1 = 10 °) with respect to the GaAs semiconductor wafer 1, and the two light receivers 3 and 5 are GaAs semiconductor wafer 1 respectively. Is installed at an angle Θ2 (Θ2 = 100 °). Further, in the projector 2 and the projector 4, the emitted light 9 and the emitted light 11 are respectively G
Each of the aAs semiconductor wafers 1 is installed so as to reflect at a point A on the surface of the semiconductor wafer 1.

【0022】また、受光器3及び受光器5には夫々信号
線13が接続されており、信号線13の他端には信号比
較器6が接続されている。かかる信号比較器6の信号出
力側に信号線7が接続されている。
A signal line 13 is connected to each of the light receiver 3 and the light receiver 5, and a signal comparator 6 is connected to the other end of the signal line 13. The signal line 7 is connected to the signal output side of the signal comparator 6.

【0023】ここで、投光器2からの出射光9は、Ga
As半導体ウェハ1表面上の点Aで反射し、その反射光
10は受光器3に入射することとなる。また、同様に、
投光器4からの出射光11は、GaAs半導体ウェハ1
表面上の点Aで反射し、その反射光12は受光器5に入
射することとなる。
Here, the emitted light 9 from the projector 2 is Ga
The light is reflected at a point A on the surface of the As semiconductor wafer 1, and the reflected light 10 enters the light receiver 3. Similarly,
The emitted light 11 from the projector 4 is the GaAs semiconductor wafer 1
The light is reflected at a point A on the surface, and the reflected light 12 enters the light receiver 5.

【0024】また、2つの光検知セット14、15はそ
の相対角度αを直角(α=90°)に保ち、出射光が常
に点Aで反射するようにその位置を変化させる。
The two light detection sets 14 and 15 maintain their relative angle α at a right angle (α = 90 °) and change their positions so that the emitted light is always reflected at the point A.

【0025】ここで、各位置での受光器3、5によって
検知された反射光10、12の受光量に比例した信号
が、2つの信号線13を通じて信号比較器6に入力され
る。
Here, a signal proportional to the amount of the reflected light 10, 12 detected by the light receivers 3, 5 at each position is input to the signal comparator 6 through the two signal lines 13.

【0026】かかる2つの入力信号を信号比較器6によ
って比較し、その差が最大となる位置で、2つの光検知
セットの出力のどちらが大きいか(又は、小さいか)を
決定し、メサ方向検出信号を出力信号線7から出力する
ようになっている。
The two input signals are compared by the signal comparator 6, and which of the outputs of the two photodetection sets is larger (or smaller) is determined at the position where the difference is maximum, and the mesa direction is detected. A signal is output from the output signal line 7.

【0027】以上のような半導体ウェハの結晶メサ方向
の検出装置の構成により、特に、メサ方向の検知方法を
反射光の受光量の差による検知方法としたので、半導体
ウェハの製造時において半導体ウェハのメサ方向を自動
的に検出でき、半導体ウェハ加工ラインの自動化を図る
ことができるようになった。
With the configuration of the crystal mesa direction detecting device of the semiconductor wafer as described above, the method of detecting the mesa direction is particularly the detection method based on the difference in the amount of received reflected light. The mesa direction can be automatically detected, and the semiconductor wafer processing line can be automated.

【0028】以上、本発明の形態例を示したが、図2に
おいて、2つの光検知セット14、15の相対角度αを
直角(α=90°)に保ち、出射光が常に点Aで反射す
るようにその位置を変化させる場合に、かかる2つの光
検知セット14、15を回転移動させる場合と、GaA
s半導体ウェハ1を点Aを中心に回転させる場合のどち
らでもよい。
The embodiment of the present invention has been described above. In FIG. 2, the relative angle α between the two photodetection sets 14 and 15 is kept at a right angle (α = 90 °), and the emitted light is always reflected at the point A. In the case of changing the position so that the two light detection sets 14 and 15 are rotated,
s It does not matter whether the semiconductor wafer 1 is rotated about the point A.

【0029】また、光検知セットを1つとして、GaA
s半導体ウェハ1を回転させることによって、反射光の
受光量が最大点となる位置と最少となる位置を検知する
ことによってメサ方向を検出することもできる。
In addition, with one optical detection set, GaA
s The mesa direction can also be detected by rotating the semiconductor wafer 1 to detect the position where the amount of received reflected light is the maximum point and the position where it is the minimum amount.

【0030】更に、結晶方向を検出する物質は、その表
面の凹凸に方向性があれば半導体ウェハには限られず、
また、結晶の方向性のパターンによっては図2の角度α
を適宜変化させて対応させることができる。
Further, the substance for detecting the crystal orientation is not limited to the semiconductor wafer as long as the surface irregularities are directional.
Depending on the crystal orientation pattern, the angle α in FIG.
Can be appropriately changed to correspond.

【0031】[0031]

【発明の効果】以上述べた通り、本発明の物質の結晶方
向の検出方法及びその装置によれば、結晶方向の検知方
法を反射光の受光量の差による検知方法としたので、特
に、半導体ウェハの製造時において半導体ウェハのメサ
方向を自動的に検出でき、半導体ウェハ加工ラインの自
動化を図ることができるようになった。
As described above, according to the method and apparatus for detecting the crystal direction of a substance of the present invention, the method for detecting the crystal direction is the detection method based on the difference in the amount of received reflected light. It has become possible to automatically detect the mesa direction of a semiconductor wafer at the time of manufacturing the wafer and to automate the semiconductor wafer processing line.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による半導体ウェハの結晶メサ方向の検
出装置の実施の一形態を示す概略図
FIG. 1 is a schematic diagram showing an embodiment of a device for detecting a crystal mesa direction of a semiconductor wafer according to the present invention.

【図2】本発明による半導体ウェハの結晶メサ方向の検
出装置の実施の一形態を示す概略図
FIG. 2 is a schematic view showing an embodiment of a device for detecting a crystal mesa direction of a semiconductor wafer according to the present invention.

【図3】従来の方法による半導体ウェハの結晶メサ方向
の検出方法の流れ図
FIG. 3 is a flow chart of a conventional method for detecting a crystal mesa direction of a semiconductor wafer.

【図4】半導体ウェハの結晶のエッチングパターンを示
した図
FIG. 4 is a diagram showing an etching pattern of crystals of a semiconductor wafer.

【符号の説明】[Explanation of symbols]

1 GaAs半導体ウェハ 2 投光器 3 受光器 4 投光器 5 受光器 6 信号比較器 7 信号線 8 エッチングパターン 9 光 10 反射光 11 光 12 反射光 13 信号線 14 光検知セット 15 光検知セット 1 GaAs semiconductor wafer 2 light emitter 3 light receiver 4 light emitter 5 light receiver 6 signal comparator 7 signal line 8 etching pattern 9 light 10 reflected light 11 light 12 reflected light 13 signal line 14 light detection set 15 light detection set

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】物質の結晶方向を検出する方法において、 前記物質の表面に光を照射して反射させ、 前記反射した光を受けてその受光量を測定し、 前記受光量によって物質の結晶方向を検出することを特
徴とする結晶方向検出方法。
1. A method for detecting a crystallographic direction of a substance, wherein the surface of the substance is irradiated with light to be reflected, the reflected light is received and the amount of received light is measured, and the crystallographic direction of the substance is determined by the amount of received light. A method for detecting a crystal orientation, which comprises:
【請求項2】物質の結晶方向を検出する方法において、 前記物質の表面に光を照射して反射させ、 前記反射した光を受けてその受光量を測定し、 前記光を照射する方向を変化させ、 前記光の照射の方向により変化する受光量を比較して前
記結晶方向を検出することを特徴とする結晶方向検出方
法。
2. A method for detecting the crystallographic direction of a substance, wherein the surface of the substance is irradiated with light to be reflected, the reflected light is received and the amount of received light is measured, and the direction of irradiation of the light is changed. Then, the crystal direction is detected by comparing the received light amount which changes depending on the irradiation direction of the light.
【請求項3】物質の結晶方向を検出する装置において、 前記物質の表面に光を照射する投光手段と、 前記反射した光を受けてその受光量を測定する受光手段
と、 前記受光量によって物質の結晶方向を検出する結晶方向
検出手段とを有する結晶方向検出装置。
3. An apparatus for detecting a crystallographic direction of a substance, comprising: a light projecting unit that irradiates the surface of the substance with light; a light receiving unit that receives the reflected light and measures a light receiving amount thereof; A crystal orientation detecting device having a crystal orientation detecting means for detecting a crystal orientation of a substance.
【請求項4】物質の結晶方向を検出する装置において、 前記物質の表面に光を照射する投光手段と、 前記反射した光を受けてその受光量を測定する受光手段
と、 前記投光手段及び前記受光手段の前記物質に対する方向
を変える方向移動手段と、 前記受光手段に接続され、前記方向移動手段によって変
化する受光量を比較して前記結晶方向を決定する受光量
比較手段と、を有する結晶方向検出装置。
4. A device for detecting the crystallographic direction of a substance, a light projecting unit for irradiating the surface of the substance with light, a light receiving unit for receiving the reflected light and measuring the amount of received light, and the light projecting unit. And a direction moving means for changing the direction of the light receiving means with respect to the substance, and a light receiving amount comparison means connected to the light receiving means and comparing the light receiving amount changed by the direction moving means to determine the crystal direction. Crystal orientation detector.
JP13373296A 1996-05-28 1996-05-28 Method and apparatus for detecting crystal orientation of substance Pending JPH09318552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13373296A JPH09318552A (en) 1996-05-28 1996-05-28 Method and apparatus for detecting crystal orientation of substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13373296A JPH09318552A (en) 1996-05-28 1996-05-28 Method and apparatus for detecting crystal orientation of substance

Publications (1)

Publication Number Publication Date
JPH09318552A true JPH09318552A (en) 1997-12-12

Family

ID=15111627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13373296A Pending JPH09318552A (en) 1996-05-28 1996-05-28 Method and apparatus for detecting crystal orientation of substance

Country Status (1)

Country Link
JP (1) JPH09318552A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007095816A (en) * 2005-09-27 2007-04-12 Sumitomo Electric Ind Ltd Substrate testing apparatus and substrate testing method
CN103151283A (en) * 2013-02-26 2013-06-12 常州天合光能有限公司 Method and device for detecting crystalline orientation of polycrystalline silicon wafer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007095816A (en) * 2005-09-27 2007-04-12 Sumitomo Electric Ind Ltd Substrate testing apparatus and substrate testing method
JP4670562B2 (en) * 2005-09-27 2011-04-13 住友電気工業株式会社 Substrate inspection apparatus and substrate inspection method
CN103151283A (en) * 2013-02-26 2013-06-12 常州天合光能有限公司 Method and device for detecting crystalline orientation of polycrystalline silicon wafer

Similar Documents

Publication Publication Date Title
US8514408B2 (en) Method and apparatus for real-time determination of curvature and azimuthal asymmetry of a surface
US7616299B2 (en) Surface inspection method and surface inspection apparatus
KR20180042399A (en) Method of evaluating semiconductor wafers and semiconductor wafers
JP2000216208A (en) Method and system for visual inspection and manufacture of semiconductor device
CN111415875A (en) Semiconductor detection device, detection method and semiconductor process device
US5995218A (en) Method for inspecting defects of wafer and inspection equipment thereof
CN107086184B (en) Epitaxial wafer evaluation method and epitaxial wafer
US6724474B1 (en) Wafer surface inspection method
JPH09318552A (en) Method and apparatus for detecting crystal orientation of substance
EP0335163B1 (en) Apparatus for detecting foreign matter on the surface of a substrate
CN112666166A (en) Silicon carbide micro-tube detection device and method
US8379196B2 (en) Method for judging whether semiconductor wafer is non-defective wafer by using laser scattering method
CN210006695U (en) Semiconductor detection device and semiconductor process device
JP2010283264A5 (en)
JP4449088B2 (en) Semiconductor wafer and manufacturing method thereof
JP5222635B2 (en) Inspection device and inspection method for inspection object
CN113227770A (en) Evaluation method and manufacturing method of semiconductor wafer, and manufacturing process management method of semiconductor wafer
WO2021246101A1 (en) Evaluation method, evaluation system, and manufacturing method for silicon wafer
JPH11111792A (en) Manufacture of semiconductor device
JP3336392B2 (en) Foreign matter inspection apparatus and method
JPH07211652A (en) Method and equipment for producing epitaxial wafer
JP5427808B2 (en) Inspection device
US20220415690A1 (en) Aligner apparatus
KR100464402B1 (en) Monitoring System and Method for Abnormal Consumables by Wet Cleaning Process
JP6476580B2 (en) Flat plate surface condition inspection apparatus and flat plate surface condition inspection method using the same