JP6119785B2 - Foreign matter inspection device, foreign matter inspection method - Google Patents

Foreign matter inspection device, foreign matter inspection method Download PDF

Info

Publication number
JP6119785B2
JP6119785B2 JP2015053389A JP2015053389A JP6119785B2 JP 6119785 B2 JP6119785 B2 JP 6119785B2 JP 2015053389 A JP2015053389 A JP 2015053389A JP 2015053389 A JP2015053389 A JP 2015053389A JP 6119785 B2 JP6119785 B2 JP 6119785B2
Authority
JP
Japan
Prior art keywords
inspection
light
foreign matter
pattern
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015053389A
Other languages
Japanese (ja)
Other versions
JP2015111161A (en
Inventor
憲寛 樽本
憲寛 樽本
祐介 新井
祐介 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2015053389A priority Critical patent/JP6119785B2/en
Publication of JP2015111161A publication Critical patent/JP2015111161A/en
Application granted granted Critical
Publication of JP6119785B2 publication Critical patent/JP6119785B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

本発明は、基材にパターンを形成した対象物上に付着した異物を検出するための異物検査装置および異物検査方法に関する。   The present invention relates to a foreign matter inspection apparatus and a foreign matter inspection method for detecting foreign matter attached on an object having a pattern formed on a substrate.

半導体集積回路やカラーフィルタ等を製造するために用いるフォトマスクなどの基板は、製造工程で様々な異物が付着する可能性がある。このような異物は、半導体集積回路やカラーフィルタ等の製造時における品質低下などの要因となるので、異物が付着していないか、その有無を検査する必要がある。   A substrate such as a photomask used for manufacturing a semiconductor integrated circuit, a color filter, or the like may be attached with various foreign substances in the manufacturing process. Such foreign matters cause deterioration in quality during the manufacture of semiconductor integrated circuits, color filters, etc., and therefore it is necessary to inspect whether foreign matters are attached or not.

特許文献1の検査方法では、基板に光を照射し、基板表面から散乱反射した光を2つの光検出器で検出する。一方の検出器には偏光フィルタを設けておき、2つの検出器で検出した検出信号の差に基づいて、基板上の異物を検出する。   In the inspection method of Patent Document 1, light is irradiated onto a substrate, and light scattered and reflected from the substrate surface is detected by two photodetectors. One detector is provided with a polarizing filter, and foreign matter on the substrate is detected based on a difference between detection signals detected by the two detectors.

特開2006−3245号公報JP 2006-3245 A

近年、半導体集積回路やカラーフィルタ等の高精細化に伴い、フォトマスクのパターンもより細かなものになっている。このようにパターンが細かいと、パターンに比べ異物が相対的に大きくなる。   In recent years, with higher definition of semiconductor integrated circuits and color filters, photomask patterns have become finer. When the pattern is fine in this way, the foreign matter is relatively larger than the pattern.

特許文献1の方法は、パターンに比べて小さい異物を検出するために、ローパスフィルタを用いてパターンによる検出信号を分離する。従って、検出精度が異物とパターンの相対的な大きさに左右され、上記のように異物がパターンに比べ相対的に大きい場合では検出精度が低下する恐れがあった。また、パターンの形状によっては、エッジ部分での検出信号が大きくなる傾向がある場合もあり、これが検出精度に影響を与えることも考えられる。   In the method of Patent Document 1, in order to detect a foreign object smaller than a pattern, a detection signal based on the pattern is separated using a low-pass filter. Therefore, the detection accuracy depends on the relative size of the foreign object and the pattern, and when the foreign object is relatively larger than the pattern as described above, the detection accuracy may be lowered. Also, depending on the shape of the pattern, the detection signal at the edge portion tends to be large, which may affect the detection accuracy.

本発明は、前述した問題点に鑑みてなされたものであり、その目的は、精度よく異物を検出可能な異物検査装置等を提供することである。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a foreign substance inspection apparatus and the like that can detect foreign substances with high accuracy.

前述した課題を解決するための第1の発明は、基材にパターンを形成した対象物上の異物を検査する異物検査装置であって、前記対象物に検査光を照射するリング状の光源部と、前記対象物の法線方向に反射した前記検査光を受光する受光部と、を有し、前記光源部から照射される検査光の方向が、前記対象物の平面方向に近接し、前記光源部は、前記対象物の検査領域の周囲から前記検査領域へと検査光を照射し、前記光源部から照射される検査光の方向が、前記対象物の法線方向に対し80°以上90°未満の角度をなし、前記対象物はフォトマスクであり、前記パターンは、幅が0.5μm程度のものを少なくとも含み、前記異物は、幅が1.0μm程度のものを少なくとも含むことを特徴とする異物検査装置である。 1st invention for solving the subject mentioned above is a foreign material inspection apparatus which inspects the foreign material on the target object which formed the pattern in the base material, Comprising: The ring-shaped light source part which irradiates inspection light to the target object And a light receiving unit that receives the inspection light reflected in the normal direction of the object, the direction of the inspection light emitted from the light source unit is close to the plane direction of the object, The light source unit emits inspection light from the periphery of the inspection region of the object to the inspection region, and the direction of the inspection light irradiated from the light source unit is 80 ° or more 90 ° with respect to the normal direction of the object. The object is a photomask, the pattern includes at least a pattern having a width of about 0.5 μm, and the foreign matter includes at least a pattern having a width of about 1.0 μm. It is a foreign matter inspection device.

本発明では、光源部から照射される検査光の方向を対象物の平面方向に近接させ、対象物の法線方向に反射した検査光を受光部で受光する。こうすると、光源部から対象物に照射される検査光に関して、エッジ部分を始めパターン上を散乱反射したものは大部分が受光部の方向を外れる。一方、対象物上の異物を散乱反射する場合には、検査光の一部が受光部に向かい、受光部で受光される。従って、適切な信号強度の閾値を設定することにより、異物を検出できる。
本発明では、ローパスフィルタ等を用いた信号処理が特に必要ないので、異物とパターンの相対的なサイズに検出精度が影響されることもない。また、パターンから反射した検査光の受光部での受光量を、上記のようにして抑えることで、検査の対象物のパターンも限定されることがなく、検査時の各種の設定も簡易である。
In the present invention, the direction of the inspection light emitted from the light source unit is brought close to the plane direction of the object, and the inspection light reflected in the normal direction of the object is received by the light receiving unit. If it carries out like this, regarding the inspection light irradiated to a target object from a light source part, most things which scattered and reflected on the pattern including an edge part will remove | deviate from the direction of a light receiving part. On the other hand, when the foreign matter on the object is scattered and reflected, a part of the inspection light is directed to the light receiving unit and received by the light receiving unit. Therefore, a foreign object can be detected by setting an appropriate signal intensity threshold.
In the present invention, since signal processing using a low-pass filter or the like is not particularly necessary, the detection accuracy is not affected by the relative size of the foreign matter and the pattern. In addition, by suppressing the amount of the inspection light reflected from the pattern at the light receiving unit as described above, the pattern of the inspection object is not limited, and various settings at the time of inspection are simple. .

前記光源部は、記対象物の検査領域の周囲から前記検査領域へと検査光を照射し、前記光源部から照射される検査光の方向が、前記対象物の法線方向に対し80°以上90°未満の角度をなすことより、上記した異物の検出をより好適に行うことができる。 The light source unit of the previous SL is irradiated with inspection light to the inspection area from the surrounding test area of the object, the direction of the inspection light emitted from the light source unit, 80 ° with respect to the normal direction of the object it can be carried out more in an angle of less than 90 °, the detection of the foreign matter as described above more appropriately.

また、前記受光部が、偏光フィルタを介して前記検査光を受光することが望ましい。
検査光がパターン上を反射した際には、パターンの形状等に起因して所定の偏光方向の成分が強くなることがある。しかし、上記のように偏光フィルタを設けることで、この成分をカットし、パターンから反射した検査光について、受光部での受光量をさらに抑えることができる。
Moreover, it is desirable that the light receiving unit receives the inspection light via a polarizing filter.
When the inspection light is reflected on the pattern, the component in the predetermined polarization direction may become strong due to the pattern shape or the like. However, by providing the polarizing filter as described above, it is possible to cut the component and further reduce the amount of light received by the light receiving unit for the inspection light reflected from the pattern.

第2の発明は、基材にパターンを形成した対象物上の異物を検査する異物検査方法であって、リング状の光源部から前記対象物に検査光を照射して、前記対象物の法線方向に反射した前記検査光を受光部で受光し、前記光源部から照射される検査光の方向が、前記対象物の平面方向に近接し、前記光源部は、前記対象物の検査領域の周囲から前記検査領域へと検査光を照射し、前記光源部から照射される検査光の方向が、前記対象物の法線方向に対し80°以上90°未満の角度をなし、前記対象物はフォトマスクであり、前記パターンは、幅が0.5μm程度のものを少なくとも含み、前記異物は、幅が1.0μm程度のものを少なくとも含むことを特徴とする異物検査方法である。
また、前記受光部が、偏光フィルタを介して前記検査光を受光することが望ましい。
2nd invention is a foreign material inspection method which inspects the foreign material on the target object which formed the pattern in the base material, Comprising: A test light is irradiated to the target object from a ring-shaped light source part, and the method of the target object The inspection light reflected in the line direction is received by a light receiving unit, the direction of the inspection light emitted from the light source unit is close to the plane direction of the object, and the light source unit is an inspection region of the object. The inspection light is irradiated from the surroundings to the inspection region, and the direction of the inspection light irradiated from the light source unit forms an angle of 80 ° or more and less than 90 ° with respect to the normal direction of the object, It is a photomask, wherein the pattern includes at least a pattern having a width of about 0.5 μm, and the foreign substance includes at least a pattern having a width of about 1.0 μm.
Moreover, it is desirable that the light receiving unit receives the inspection light via a polarizing filter.

本発明によれば、精度よく異物を検出可能な異物検査装置等を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the foreign material inspection apparatus etc. which can detect a foreign material accurately can be provided.

異物検査装置1について示す図The figure shown about the foreign material inspection apparatus 1 検査の対象物20について示す図The figure shown about the test object 20 異物検査方法を説明する図Diagram explaining foreign substance inspection method 検出結果の比較について示す図Diagram showing comparison of detection results

以下、図面に基づいて、本発明の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

(1.異物検査装置1の構成)
まず、図1を参照して、本実施形態の異物検査装置1について説明する。図1(a)は異物検査装置1の概略構成を示す図であり、図1(b)は光源部11や受光部12等を示す斜視図である。
(1. Configuration of the foreign matter inspection apparatus 1)
First, the foreign substance inspection apparatus 1 of the present embodiment will be described with reference to FIG. FIG. 1A is a diagram illustrating a schematic configuration of the foreign matter inspection apparatus 1, and FIG. 1B is a perspective view illustrating the light source unit 11, the light receiving unit 12, and the like.

図に示す異物検査装置1は、フォトマスクなどの対象物20上に異物が付着しているかを検査するものであり、光源部11、受光部12、偏光フィルタ14、検出処理部15等を有する。   A foreign matter inspection apparatus 1 shown in the figure inspects whether foreign matter is attached to an object 20 such as a photomask, and includes a light source unit 11, a light receiving unit 12, a polarization filter 14, a detection processing unit 15, and the like. .

光源部11は、対象物20上の検査領域20aに検査光40を照射する。光源としては、例えばメタルハライドランプやLEDランプを用いることができるが、これに限ることはない。   The light source unit 11 irradiates the inspection light 20 onto the inspection region 20 a on the object 20. For example, a metal halide lamp or an LED lamp can be used as the light source, but the light source is not limited thereto.

光源部11は、平面上中空部分を有するリング状に構成され、検査領域20aの周囲から検査領域20aへと検査光40を照射する。光源部11は、検査光40の方向が、対象物20の法線方向と直交する方向である対象物20の平面方向に近接するように配置される。図1(a)の縦方向が対象物20の法線方向に対応し、図1(a)の横方向は対象物20の平面方向に対応する。   The light source unit 11 is configured in a ring shape having a hollow portion on a plane, and irradiates the inspection light 40 from the periphery of the inspection region 20a to the inspection region 20a. The light source unit 11 is arranged so that the direction of the inspection light 40 is close to the plane direction of the object 20 which is a direction orthogonal to the normal direction of the object 20. The vertical direction in FIG. 1A corresponds to the normal direction of the object 20, and the horizontal direction in FIG. 1A corresponds to the plane direction of the object 20.

後述するが、本実施形態では、検査光40の照射方向が、対象物20の法線方向に対し、80°以上90°未満の角度θをなすことが特に望ましい。   As will be described later, in the present embodiment, it is particularly desirable that the irradiation direction of the inspection light 40 forms an angle θ of 80 ° or more and less than 90 ° with respect to the normal direction of the object 20.

受光部12は、対象物20の検査領域20aで散乱反射した検査光40のうち、対象物20の法線方向に向かう一部を、偏光フィルタ14を介して受光する。なお、図1では、説明のため、散乱反射した検査光40のうち対象物20の法線方向に向かうもののみを表示している。   The light receiving unit 12 receives a part of the inspection light 40 scattered and reflected by the inspection region 20 a of the object 20 in the normal direction of the object 20 via the polarizing filter 14. In FIG. 1, for the sake of explanation, only the inspection light 40 that is scattered and reflected is displayed in the normal direction of the object 20.

受光部12は、対物レンズ121、リレーレンズ122、およびエリアカメラ123等により構成される。受光部12では、対物レンズ121に入射した検査光40が、リレーレンズ122によりエリアカメラ123まで導かれる。エリアカメラ123は、CCD(Charge Coupled Device)やCMOS(Complementary Metal-oxide Semiconductor)等の電子撮像部等を備える。このエリアカメラ123は、TDI(Time Delay Integration)等の電子撮像部等を備えるラインカメラに置き換えても何ら支障はない。これにより、受光した検査光40に基づく被写体像を2次元の画像信号、例えば信号強度をグレースケールで表したグレースケール画像に変換する。ただし、受光部12は検査光40を受光しこれを信号に変換するものであれば良く、その構成は上記に限らない。   The light receiving unit 12 includes an objective lens 121, a relay lens 122, an area camera 123, and the like. In the light receiving unit 12, the inspection light 40 incident on the objective lens 121 is guided to the area camera 123 by the relay lens 122. The area camera 123 includes an electronic imaging unit such as a charge coupled device (CCD) or a complementary metal-oxide semiconductor (CMOS). The area camera 123 can be replaced with a line camera including an electronic imaging unit such as TDI (Time Delay Integration). Thereby, the subject image based on the received inspection light 40 is converted into a two-dimensional image signal, for example, a gray scale image in which the signal intensity is expressed in gray scale. However, the light receiving unit 12 only needs to receive the inspection light 40 and convert it into a signal, and the configuration is not limited to the above.

検出処理部15は、上記の画像信号を受光部12から取得し、その信号強度に基づいて異物の有無を判定する。検出処理部15は、制御部、記憶部、通信部等を備えた汎用のコンピュータで実現でき、上記の判定処理を行うためのプログラムを記憶部に格納する。   The detection processing unit 15 acquires the image signal from the light receiving unit 12 and determines the presence or absence of a foreign substance based on the signal intensity. The detection processing unit 15 can be realized by a general-purpose computer including a control unit, a storage unit, a communication unit, and the like, and stores a program for performing the above-described determination processing in the storage unit.

(2.対象物20)
図2(a)は、検査の対象となる対象物20について示す図である。対象物20は透明の基材21上にパターン22を形成したものである。図に示すように、パターン22の断面は略水平の上面を有する矩形状になっており、パターン22の幅および間隔は0.5μm程度である。なお、対象物20は例えばフォトマスクであり、ガラス基板である基材21上で、金属系薄膜によるパターン22を形成したものである。ただし対象物20の種類、あるいは基材21やパターン22の材質がこれらに限定されることはない。例えば、対象物20は半導体集積回路やカラーフィルタなどであってもよい。
(2. Object 20)
FIG. 2A is a diagram showing the object 20 to be inspected. The object 20 is obtained by forming a pattern 22 on a transparent substrate 21. As shown in the drawing, the cross section of the pattern 22 has a rectangular shape having a substantially horizontal upper surface, and the width and interval of the pattern 22 are about 0.5 μm. In addition, the target object 20 is a photomask, for example, and forms the pattern 22 by a metal type thin film on the base material 21 which is a glass substrate. However, the type of the object 20 or the material of the base material 21 or the pattern 22 is not limited to these. For example, the object 20 may be a semiconductor integrated circuit or a color filter.

図2(b)は、対象物20上に異物30が付着した状態を示す図である。この異物30の幅は1.0μm程度であり、パターン22の幅や間隔に比べ2倍程度大きい。   FIG. 2B is a diagram illustrating a state in which the foreign object 30 is attached on the object 20. The width of the foreign material 30 is about 1.0 μm, which is about twice as large as the width and interval of the pattern 22.

(3.異物検査装置1による異物検査方法)
次に、図1に示す異物検査装置1による異物検査方法について説明する。なお、異物検査の前段階では、対象物20のセットとアライメント、検査領域20aの設定、および光学系のキャリブレーションなどが行われる。
(3. Foreign object inspection method by foreign object inspection apparatus 1)
Next, a foreign matter inspection method by the foreign matter inspection apparatus 1 shown in FIG. 1 will be described. It should be noted that the object 20 is set and aligned, the inspection area 20a is set, the optical system is calibrated, etc., before the foreign substance inspection.

異物検査装置1による異物検査時には、図1で示したように、光源部11から検査光40を照射する。検査光40は、対象物20上の検査領域20aに、対象物20の法線方向に対する角度θで入射する。   At the time of foreign matter inspection by the foreign matter inspection device 1, as shown in FIG. The inspection light 40 enters the inspection region 20 a on the object 20 at an angle θ with respect to the normal direction of the object 20.

図3に示すように、検査光40は、検査領域20aにおいて、パターン22または異物30上を散乱反射(図の点線で示す)する。   As shown in FIG. 3, the inspection light 40 is scattered and reflected (indicated by a dotted line in the drawing) on the pattern 22 or the foreign material 30 in the inspection region 20a.

検査光40のうち、異物30上を反射したものは、異物30の形状により様々な方向に散乱し、その一部が対象物20の法線方向に向かい、受光部12で受光されることになる。   Of the inspection light 40, the light reflected on the foreign material 30 is scattered in various directions depending on the shape of the foreign material 30, and a part thereof is directed in the normal direction of the object 20 and received by the light receiving unit 12. Become.

なお、光源部11から照射され、異物30を反射した検査光40は様々な偏光方向の成分が含まれたランダム偏光の状態である。このうち偏光フィルタ14の偏光方向の成分が、図1に示す偏光フィルタ14を透過して受光部12で受光される。   Note that the inspection light 40 irradiated from the light source unit 11 and reflected from the foreign material 30 is in a randomly polarized state including components of various polarization directions. Among these components, the polarization direction component of the polarizing filter 14 passes through the polarizing filter 14 shown in FIG.

一方、検査光40は、エッジ部分を始めパターン22上でも散乱反射するが、検査光40が正反射する方向の成分が大きく、大部分が受光部12の方向を外れる。   On the other hand, the inspection light 40 is scattered and reflected on the pattern 22 including the edge portion, but the component in the direction in which the inspection light 40 is regularly reflected is large, and most of the inspection light 40 deviates from the direction of the light receiving unit 12.

なお、検査光40がパターン22上を反射した際には、パターン22の形状等に起因して所定の偏光方向の成分が強くなることがある。前記の偏光フィルタ14は、この成分をカットし、パターン22から反射した検査光40の受光部12での受光量をさらに抑えるために設けられる。異物検査時には、この効果が最大限得られるように、上記した所定の偏光方向と直交する方向に偏光フィルタ14の偏光方向を合わせるなどして、偏光フィルタ14の配置を調整する。   When the inspection light 40 is reflected on the pattern 22, a component in a predetermined polarization direction may become strong due to the shape of the pattern 22 or the like. The polarizing filter 14 is provided to cut this component and further suppress the amount of light received by the light receiving unit 12 of the inspection light 40 reflected from the pattern 22. At the time of foreign matter inspection, the arrangement of the polarization filter 14 is adjusted by adjusting the polarization direction of the polarization filter 14 in a direction orthogonal to the predetermined polarization direction so as to obtain the maximum effect.

以上により、受光部12では、異物30上を反射した検査光40のみ受光できる。また、異物30上を反射した検査光40が互いに干渉することで、異物30より若干広い範囲で、検査光40の検出信号が強くなる効果もある。   As described above, the light receiving unit 12 can receive only the inspection light 40 reflected on the foreign material 30. In addition, since the inspection light 40 reflected on the foreign matter 30 interferes with each other, the detection signal of the inspection light 40 is enhanced in a slightly wider range than the foreign matter 30.

図4は、検査光40を照射する角度θを様々に変化させ、各ケースにおいて、受光部12で検査光40を受光した信号強度を示したグラフである。図4(a)はθ=30°、図4(b)はθ=70°、図4(c)はθ=80°の場合を示す。各グラフにおいて、横軸は対象物20上の所定位置からの距離(pixel)を示し、縦軸は信号強度(グレースケールの階調値)を示す。   FIG. 4 is a graph showing the signal intensity at which the inspection light 40 is received by the light receiving unit 12 in various cases while changing the angle θ at which the inspection light 40 is irradiated. 4A shows the case of θ = 30 °, FIG. 4B shows the case of θ = 70 °, and FIG. 4C shows the case of θ = 80 °. In each graph, the horizontal axis indicates the distance (pixel) from a predetermined position on the object 20, and the vertical axis indicates the signal intensity (grayscale gradation value).

図に示すように、本実施形態では、上述した理由により、角度θが大きくなるにつれて異物部分での信号強度が卓越する傾向にある。特に図4(c)に示すθ=80°の場合になると、異物部分の信号強度が、エッジ部分を始めパターンの部分に比べ非常に高く、検出容易となっている。従って、検査光40の角度θを80°以上90°未満とすることが、異物検出時に特に望ましいことがわかる。検出処理部15では、この信号強度を、予め定めた閾値50と比較し、該閾値50以上の部分があれば異物30を検出したと判定するようにしておく。   As shown in the figure, in the present embodiment, for the reason described above, the signal intensity at the foreign material portion tends to become superior as the angle θ increases. Particularly in the case of θ = 80 ° shown in FIG. 4C, the signal intensity of the foreign substance portion is very high as compared with the pattern portion including the edge portion, and detection is easy. Therefore, it can be seen that the angle θ of the inspection light 40 is preferably 80 ° or more and less than 90 ° when detecting foreign matter. The detection processing unit 15 compares the signal intensity with a predetermined threshold value 50, and determines that the foreign object 30 has been detected if there is a portion with the threshold value 50 or more.

一方、図4(a)に示すθ=30°の場合、エッジ部分等パターンの部分での信号強度も高くなっており、閾値による異物30の検出が困難となる。また、図4(b)に示すθ=70°の場合では、異物部分の信号強度がパターンのエッジ部分等に比べて高く、異物を検出することが可能であるものの、閾値の設定には注意を要する。   On the other hand, in the case of θ = 30 ° shown in FIG. 4A, the signal intensity at the pattern portion such as the edge portion is also high, and it is difficult to detect the foreign matter 30 by the threshold value. In addition, in the case of θ = 70 ° shown in FIG. 4B, the signal intensity of the foreign matter portion is higher than that of the edge portion of the pattern and the foreign matter can be detected. Cost.

以上説明したように、本実施形態では、光源部11から照射される検査光40の方向を対象物20の平面方向に近接させ、対象物20の法線方向に反射した検査光40を受光部12で受光する。こうすると、光源部11から対象物20に照射される検査光40に関して、エッジ部分を始めパターン22上を散乱反射したものは大部分が受光部12の方向を外れる。一方、異物30上を散乱反射した場合には様々な方向に検査光40が散乱し、その一部が受光部12に向かい、受光部12で受光される。従って、適切な信号強度の閾値50を設定することにより、異物30を好適に検出できる。特に本実施形態では、光源部11から照射する検査光40の方向が、対象物20の法線方向に対して80°以上90°未満の角度θをなすようにすることで、異物30の検出をより好適に行うことができる。   As described above, in the present embodiment, the direction of the inspection light 40 emitted from the light source unit 11 is brought close to the plane direction of the object 20, and the inspection light 40 reflected in the normal direction of the object 20 is received by the light receiving unit. 12 receives light. In this way, most of the inspection light 40 irradiated from the light source unit 11 to the object 20 that is scattered and reflected on the pattern 22 including the edge portion deviates from the direction of the light receiving unit 12. On the other hand, when the foreign matter 30 is scattered and reflected, the inspection light 40 is scattered in various directions, and a part of the inspection light 40 is directed to the light receiving unit 12 and received by the light receiving unit 12. Therefore, the foreign object 30 can be suitably detected by setting an appropriate signal intensity threshold value 50. In particular, in the present embodiment, the direction of the inspection light 40 irradiated from the light source unit 11 makes an angle θ of 80 ° or more and less than 90 ° with respect to the normal direction of the object 20, thereby detecting the foreign matter 30. Can be performed more suitably.

このように、本発明ではローパスフィルタ等を用いた信号処理が特に必要でないので、異物30とパターン22の相対的なサイズに検出精度が影響されることもない。また、パターン22から反射した検査光40の受光部12での受光量を、前記のようにして抑えることで、対象物20のパターン22も限定されることがなく、検査時の各種の設定も簡易である。加えて、フィルタリングによる信号処理等を行わないので、受光部12の解像度等は特に考慮しなくてもよく、レンズ等が安価に構成できる。また、検査領域20aの精密な位置合わせ等が必要でなく、装置の振動やフォーカスのズレ等の影響を受けにくい利点もある。   Thus, in the present invention, since signal processing using a low-pass filter or the like is not particularly necessary, the detection accuracy is not affected by the relative sizes of the foreign material 30 and the pattern 22. In addition, by suppressing the amount of the inspection light 40 reflected from the pattern 22 by the light receiving unit 12 as described above, the pattern 22 of the object 20 is not limited, and various settings at the time of inspection can be performed. It is simple. In addition, since signal processing or the like by filtering is not performed, the resolution and the like of the light receiving unit 12 do not need to be taken into consideration, and a lens or the like can be configured at low cost. In addition, there is an advantage that precise alignment of the inspection region 20a is not required, and that the inspection region 20a is not easily affected by vibrations of the apparatus, a focus shift, and the like.

また、受光部12は偏光フィルタ14を介して検査光40の受光を行う。この偏光フィルタ14の偏光方向を調整することで、前記したように、パターン22から反射した検査光40について、受光部12での受光量をさらに抑えることができる。   In addition, the light receiving unit 12 receives the inspection light 40 through the polarizing filter 14. By adjusting the polarization direction of the polarizing filter 14, the amount of light received by the light receiving unit 12 can be further suppressed for the inspection light 40 reflected from the pattern 22 as described above.

ただし、本発明はこれに限ることはない。例えば、光源部11はリング状のものでなくともよく、平面上の一部の方向から検査光40を照射するものであってもよい。また、必要に応じて、受光部12で検査光40を受光した信号に対しバンドパスフィルタなどのフィルタリング処理等を行うことも可能である。   However, the present invention is not limited to this. For example, the light source unit 11 does not have to be ring-shaped and may irradiate the inspection light 40 from a part of the plane. Further, if necessary, it is also possible to perform a filtering process such as a band-pass filter on the signal that has received the inspection light 40 by the light receiving unit 12.

以上、添付図面を参照しながら、本発明の好適な実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、本願で開示した技術的思想の範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to such examples. It will be apparent to those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea disclosed in the present application, and these naturally belong to the technical scope of the present invention. Understood.

1:異物検査装置
11:光源部
12:受光部
14:偏光フィルタ
15:検出処理部
20:対象物
21:基材
22:パターン
30:異物
40:検査光
1: Foreign object inspection apparatus 11: Light source unit 12: Light receiving unit 14: Polarizing filter 15: Detection processing unit 20: Object 21: Base material 22: Pattern 30: Foreign object 40: Inspection light

Claims (4)

基材にパターンを形成した対象物上の異物を検査する異物検査装置であって、
前記対象物に検査光を照射するリング状の光源部と、
前記対象物の法線方向に反射した前記検査光を受光する受光部と、
を有し、
前記光源部から照射される検査光の方向が、前記対象物の平面方向に近接し、
前記光源部は、前記対象物の検査領域の周囲から前記検査領域へと検査光を照射し、
前記光源部から照射される検査光の方向が、前記対象物の法線方向に対し80°以上90°未満の角度をなし、
前記対象物はフォトマスクであり、
前記パターンは、幅が0.5μm程度のものを少なくとも含み、
前記異物は、幅が1.0μm程度のものを少なくとも含むことを特徴とする異物検査装置。
A foreign matter inspection apparatus for inspecting foreign matter on an object having a pattern formed on a substrate,
A ring-shaped light source for irradiating the object with inspection light;
A light receiving unit for receiving the inspection light reflected in the normal direction of the object;
Have
The direction of the inspection light emitted from the light source unit is close to the plane direction of the object,
The light source unit irradiates inspection light from the periphery of the inspection area of the object to the inspection area,
The direction of the inspection light emitted from the light source unit forms an angle of 80 ° or more and less than 90 ° with respect to the normal direction of the object,
The object is a photomask;
The pattern includes at least a pattern having a width of about 0.5 μm,
The foreign matter inspection device includes at least a foreign matter having a width of about 1.0 μm.
前記受光部が、偏光フィルタを介して前記検査光を受光することを特徴とする請求項1に記載の異物検査装置。 The foreign object inspection apparatus according to claim 1, wherein the light receiving unit receives the inspection light via a polarizing filter. 基材にパターンを形成した対象物上の異物を検査する異物検査方法であって、
リング状の光源部から前記対象物に検査光を照射して、前記対象物の法線方向に反射した前記検査光を受光部で受光し、
前記光源部から照射される検査光の方向が、前記対象物の平面方向に近接し、
前記光源部は、前記対象物の検査領域の周囲から前記検査領域へと検査光を照射し、
前記光源部から照射される検査光の方向が、前記対象物の法線方向に対し80°以上90°未満の角度をなし、
前記対象物はフォトマスクであり、
前記パターンは、幅が0.5μm程度のものを少なくとも含み、
前記異物は、幅が1.0μm程度のものを少なくとも含むことを特徴とする異物検査方法。
A foreign matter inspection method for inspecting foreign matter on an object having a pattern formed on a substrate,
Irradiating inspection light to the object from a ring-shaped light source part, and receiving the inspection light reflected in the normal direction of the object by a light receiving part,
The direction of the inspection light emitted from the light source unit is close to the plane direction of the object,
The light source unit irradiates inspection light from the periphery of the inspection area of the object to the inspection area,
The direction of the inspection light emitted from the light source unit forms an angle of 80 ° or more and less than 90 ° with respect to the normal direction of the object,
The object is a photomask;
The pattern includes at least a pattern having a width of about 0.5 μm,
The foreign matter inspection method includes at least a foreign matter having a width of about 1.0 μm.
前記受光部が、偏光フィルタを介して前記検査光を受光することを特徴とする請求項3に記載の異物検査方法。   The foreign matter inspection method according to claim 3, wherein the light receiving unit receives the inspection light through a polarizing filter.
JP2015053389A 2015-03-17 2015-03-17 Foreign matter inspection device, foreign matter inspection method Active JP6119785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015053389A JP6119785B2 (en) 2015-03-17 2015-03-17 Foreign matter inspection device, foreign matter inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015053389A JP6119785B2 (en) 2015-03-17 2015-03-17 Foreign matter inspection device, foreign matter inspection method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012195367A Division JP6212843B2 (en) 2012-09-05 2012-09-05 Foreign matter inspection device, foreign matter inspection method

Publications (2)

Publication Number Publication Date
JP2015111161A JP2015111161A (en) 2015-06-18
JP6119785B2 true JP6119785B2 (en) 2017-04-26

Family

ID=53526031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015053389A Active JP6119785B2 (en) 2015-03-17 2015-03-17 Foreign matter inspection device, foreign matter inspection method

Country Status (1)

Country Link
JP (1) JP6119785B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59152625A (en) * 1983-02-21 1984-08-31 Hitachi Ltd Device for detecting foreign matter
JPS60124833A (en) * 1983-12-09 1985-07-03 Hitachi Ltd Appearance inspecting device of lsi wafer
JPS60218845A (en) * 1984-04-16 1985-11-01 Hitachi Ltd Apparatus for testing foreign matter
JPS6211139A (en) * 1985-06-28 1987-01-20 Hitachi Electronics Eng Co Ltd Apparatus for inspecting foreign matter
JPS6270739A (en) * 1985-09-25 1987-04-01 Hitachi Electronics Eng Co Ltd Apparatus for inspecting foreign matter
JPS62261044A (en) * 1986-05-06 1987-11-13 Hitachi Electronics Eng Co Ltd Foreign matter inspector
JPH04343003A (en) * 1991-05-20 1992-11-30 K L Ee Technol Center:Kk Detecting apparatus of fluorescence of semiconductor/ mask
JP3573587B2 (en) * 1997-02-05 2004-10-06 株式会社ルネサステクノロジ Micro-defect inspection method and apparatus, exposure method and semiconductor substrate manufacturing method
JPH11237344A (en) * 1998-02-19 1999-08-31 Hitachi Ltd Method and apparatus for inspection of defect
DE19903486C2 (en) * 1999-01-29 2003-03-06 Leica Microsystems Method and device for the optical examination of structured surfaces of objects
JP5167542B2 (en) * 2008-09-03 2013-03-21 シーシーエス株式会社 Inspection illumination device and inspection method

Also Published As

Publication number Publication date
JP2015111161A (en) 2015-06-18

Similar Documents

Publication Publication Date Title
US10436576B2 (en) Defect reviewing method and device
US8416292B2 (en) Defect inspection apparatus and method
KR101192053B1 (en) Apparatus and method for detecting semiconductor substrate anomalies
KR101376831B1 (en) Surface defect detecting apparatus and control method thereof
JP2016145887A (en) Inspection device and method
US20150369750A1 (en) Confocal Line Inspection Optical System
JP6119784B2 (en) Foreign object inspection method
JP2010181328A (en) Device, program and method for inspecting surface of solar battery wafer
WO2011099537A1 (en) Defect inspection method and device thereof
JP6212843B2 (en) Foreign matter inspection device, foreign matter inspection method
JP2008026306A (en) Pattern defect inspecting method, pattern defect inspecting apparatus, method for manufacturing photomask product and method for manufacturing substrate for display device
WO2017163697A1 (en) Detection device and detection method
JP2009236760A (en) Image detection device and inspection apparatus
JP6119785B2 (en) Foreign matter inspection device, foreign matter inspection method
JP6259634B2 (en) Inspection device
JP2009222525A (en) Substrate inspection method and substrate inspection device
JP5760066B2 (en) Defect inspection apparatus and defect inspection method
JP2014052217A (en) Foreign matter inspection device, foreign matter inspection method
JP2017138246A (en) Inspection device, inspection method, and image sensor
JP5531405B2 (en) Periodic pattern unevenness inspection method and inspection apparatus
TWI688820B (en) Impurity removal assembly of light-transmitting thin film on mask glass substrate
JP3827812B2 (en) Surface defect inspection apparatus and surface defect inspection method
US10199282B2 (en) Inspection apparatus and method of manufacturing semiconductor device using the same
JP6009787B2 (en) Optimal imaging position detection method, optimal imaging position detection apparatus, photomask manufacturing method, and semiconductor device manufacturing method
JP6476580B2 (en) Flat plate surface condition inspection apparatus and flat plate surface condition inspection method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170313

R150 Certificate of patent or registration of utility model

Ref document number: 6119785

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150