JP2015200805A - Optical filter, light quantity diaphragm device, and imaging equipment - Google Patents

Optical filter, light quantity diaphragm device, and imaging equipment Download PDF

Info

Publication number
JP2015200805A
JP2015200805A JP2014079905A JP2014079905A JP2015200805A JP 2015200805 A JP2015200805 A JP 2015200805A JP 2014079905 A JP2014079905 A JP 2014079905A JP 2014079905 A JP2014079905 A JP 2014079905A JP 2015200805 A JP2015200805 A JP 2015200805A
Authority
JP
Japan
Prior art keywords
transparent substrate
periodic structure
film
light
optical filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014079905A
Other languages
Japanese (ja)
Other versions
JP2015200805A5 (en
JP6336806B2 (en
Inventor
若林 孝幸
Takayuki Wakabayashi
孝幸 若林
柳 道男
Michio Yanagi
道男 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Electronics Inc
Original Assignee
Canon Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Electronics Inc filed Critical Canon Electronics Inc
Priority to JP2014079905A priority Critical patent/JP6336806B2/en
Publication of JP2015200805A publication Critical patent/JP2015200805A/en
Publication of JP2015200805A5 publication Critical patent/JP2015200805A5/en
Application granted granted Critical
Publication of JP6336806B2 publication Critical patent/JP6336806B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lens Barrels (AREA)
  • Diaphragms For Cameras (AREA)
  • Blocking Light For Cameras (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical filter having an increased accuracy of preventing reflection at an interface between a transparent substrate and a film layer or between a transparent substrate and an air layer in order to solve problems of an existing fine concavo-convex periodic structure that an ideal arrangement is difficult to achieve and low reflection characteristics are not utilized enough in a recent situation where imaging equipment such as digital cameras and video cameras is becoming smaller and smaller and reflecting light on the surface of an ND filter used as a light quantity adjusting member can cause a ghost image.SOLUTION: A fine concavo-convex periodic structure is formed on a surface of a transparent substrate to have a pitch and a height not larger than the wavelengths of visible light, and the structure is characterized in having an index of refraction which continuously varies from the base material side to the surface layer side.

Description

本発明は、反射防止効果に優れた光学機能フィルムに関し、詳しくは屈折率を連続的に変化させた反射防止フィルムを用いた光学フィルタ、光量絞り装置及び撮像機器に関する。   The present invention relates to an optical functional film having an excellent antireflection effect, and particularly relates to an optical filter, a light amount diaphragm device, and an imaging device using an antireflection film whose refractive index is continuously changed.

従来から、デジタルカメラやビデオカメラ等の光学機器には、その光量調節のために絞り装置が組み込まれている。この絞り装置は、CCD等の固体撮像素子に入射する光量を絞り羽根の開閉により調節するものであり、被写界が明るい場合には、より小さく絞り込まれるようになっている。従って、快晴時や高輝度の被写体を撮影する際には光量を減衰させるために絞りは小絞りとなるが、そのままでは光は絞りで回折し、撮影した画像の劣化を引き起こしてしまうことがある。また、CCD等の固体撮像素子が高感度化することにより、更に光量を減衰させる必要があり、この画像劣化の傾向は顕著になっている。   2. Description of the Related Art Conventionally, an aperture device is incorporated in an optical apparatus such as a digital camera or a video camera in order to adjust the amount of light. This diaphragm device adjusts the amount of light incident on a solid-state imaging device such as a CCD by opening and closing diaphragm blades, and is narrowed down more when the object field is bright. Therefore, when shooting a clear or high-luminance subject, the aperture becomes a small aperture to attenuate the amount of light, but if it is left as it is, the light may be diffracted by the aperture and cause deterioration of the captured image. . In addition, as the sensitivity of a solid-state imaging device such as a CCD becomes higher, it is necessary to further attenuate the amount of light, and this tendency of image degradation is remarkable.

そこで、この問題の対策として、絞り羽根に光量調整部材としてフィルム状のND(Neutral Density)フィルタを取り付けて、絞り開口が大きい状態で光量を減衰することが行われている。具体的には、絞り羽根の一部に絞り羽根とは異なる別部材から成るNDフィルタを接着剤で貼り付け、被写体が高輝度の際には、NDフィルタを光軸上に位置させ、通過光量を制限する。このため、絞り開口が小さくなり過ぎるまで絞り込むことを回避し、絞り開口を一定の大きさに維持することができる。更に、光量調節機能として濃度勾配を有するNDフィルタを使用し、このNDフィルタを光軸上に移動させることにより、更なる光量調節を行うこともある。また、絞り羽根にNDフィルタを接着せずに、NDフィルタを独立して光学的作用を持たせた種々の絞り装置も提案されている。   Therefore, as a countermeasure for this problem, a film-like ND (Neutral Density) filter is attached to the diaphragm blade as a light quantity adjusting member to attenuate the light quantity in a state where the diaphragm opening is large. Specifically, an ND filter made of another member different from the diaphragm blade is attached to a part of the diaphragm blade with an adhesive, and when the subject has high brightness, the ND filter is positioned on the optical axis, Limit. For this reason, it is possible to avoid narrowing down until the aperture opening becomes too small, and to maintain the aperture opening at a constant size. Further, an ND filter having a density gradient is used as a light amount adjustment function, and the light amount may be further adjusted by moving the ND filter on the optical axis. In addition, various diaphragm devices have been proposed in which the ND filter is independently provided with an optical action without bonding the ND filter to the diaphragm blades.

上述したような絞り装置におけるNDフィルタは、一般に真空蒸着等により透明基板上に多層膜を形成したものが用いられている。例えば、特許文献1に示すように、基材上に、該基材側から表層側に向かって屈折率が連続的に変化する屈折率傾斜膜からなる反射防止層を設け、該反射防止層の基材面と接触する部分の屈折率が該基材の屈折率よりも高い膜が用いられている。また、特許文献2においては、透明基板上の微細凹凸周期構造上に、反射率を低減させるための反射防止膜であるAl膜と、透過率を低減させるための光吸収層であるTixOy膜を交互に積層し、反射防止効果を高めるために最表層に低屈折材料であるSiO膜を光学膜厚n×d(n:屈折率、d:物理膜厚)でλ/4(λ=500〜600nm)蒸着したNDフィルタが開示されている。 As the ND filter in the diaphragm device as described above, a filter in which a multilayer film is formed on a transparent substrate by vacuum deposition or the like is generally used. For example, as shown in Patent Document 1, an antireflection layer made of a gradient refractive index film whose refractive index continuously changes from the base material side to the surface layer side is provided on the base material. A film in which the refractive index of the portion in contact with the substrate surface is higher than the refractive index of the substrate is used. Further, in Patent Document 2, on the fine uneven periodic structure on the transparent substrate, and the Al 2 O 3 film is an antireflection film for reducing reflection is the light-absorbing layer for reducing the permeability In order to increase the antireflection effect by laminating TixOy films alternately, a SiO 2 film, which is a low refractive material, is used as the outermost layer in order to increase the antireflection effect. λ = 500-600 nm) deposited ND filters are disclosed.

特開2004−012657号公報JP 2004-012657 A 特開2008−076844号公報JP 2008-077684 A

近年では、デジタルカメラやビデオカメラ等の撮像機器の小型化が進み、光量調整部材として用いられるNDフィルタ表面での反射光が、ゴーストの原因となる場合がある。通常はPET樹脂等から成る透明基板の片面にND膜を成膜し、他面に反射防止膜としてAR膜を成膜したり、或いは透明基板の両面にND膜を成膜している。図5はND膜の膜構成図を示しており、透明基板上にAl膜と、TixOy膜を交互に積層し、最表層にMgF膜を蒸着し、ND膜を成膜している。図7はNDフィルタの界面における反射の説明図であり、その1例として透明基板の片面にND膜2、他面にAR膜3が成膜されている。反射は屈折率の異なる物質の界面で起こるため、空気とAR膜3の界面a、AR膜3と透明基板1の界面b、透明基板1とND膜2の界面c、ND膜2と空気の界面dの4つの面において光の反射が生ずる。また、ND膜2やAR膜3が多層膜であれば、その中の各層の界面でも反射がある。その中でも、特にAR膜3と透明基板1の界面b、透明基板1とND膜2の界面c、の反射率を低減させるのが最も効果的である。しかし、実際には微細凹凸周期構造を理想的な等ピッチ構成に配列させることは困難であり、実際の製品として理論値の反射率まで反射を低減出来ていない問題がある。 In recent years, downsizing of imaging devices such as digital cameras and video cameras has progressed, and reflected light on the surface of an ND filter used as a light amount adjusting member may cause ghost. Usually, an ND film is formed on one side of a transparent substrate made of PET resin or the like, and an AR film is formed on the other side as an antireflection film, or an ND film is formed on both sides of the transparent substrate. FIG. 5 shows a film configuration diagram of the ND film. Al 2 O 3 films and TixOy films are alternately stacked on a transparent substrate, an MgF 2 film is deposited on the outermost layer, and an ND film is formed. Yes. FIG. 7 is an explanatory diagram of reflection at the interface of the ND filter. As an example, the ND film 2 is formed on one side of the transparent substrate, and the AR film 3 is formed on the other side. Since reflection occurs at the interface between substances having different refractive indexes, the interface a between the air and the AR film 3, the interface b between the AR film 3 and the transparent substrate 1, the interface c between the transparent substrate 1 and the ND film 2, and the ND film 2 and the air. Light reflection occurs on the four surfaces of the interface d. In addition, if the ND film 2 and the AR film 3 are multilayer films, there is reflection also at the interface of each layer therein. Among them, it is most effective to reduce the reflectance of the interface b between the AR film 3 and the transparent substrate 1 and the interface c between the transparent substrate 1 and the ND film 2. However, in practice, it is difficult to arrange the fine irregular periodic structures in an ideal equal pitch configuration, and there is a problem that the reflection cannot be reduced to the theoretical reflectivity as an actual product.

本発明の目的は、上述の問題点を解消し、従来方法では反射を低減することの困難な透明基板と膜層、もしくは透明基板と空気層の界面における反射防止効果の精度を向上させた光学フィルタを提供することにある。   An object of the present invention is to solve the above-mentioned problems and improve the accuracy of the antireflection effect at the interface between the transparent substrate and the film layer or the transparent substrate and the air layer, which is difficult to reduce the reflection by the conventional method. To provide a filter.

上記した課題を解決するために、本発明に係る光学フィルタの技術的特徴は、透明基板の表面に可視光波長以下のピッチと高さを有する微細凹凸周期構造を形成し、該微細凹凸周期構造に基材側から表層側に向かって屈折率が連続的に変化する特性を付加したことを特徴とする。   In order to solve the above-described problems, the technical feature of the optical filter according to the present invention is that a fine uneven periodic structure having a pitch and height below the visible light wavelength is formed on the surface of the transparent substrate, and the fine uneven periodic structure is formed. A characteristic is that the refractive index continuously changes from the base material side to the surface layer side.

本発明に係る光学フィルタによれば、光学フィルタの基板上に可視光波長以下のピッチと高さを有する凹凸部から成る微細凹凸周期構造を形成し、基板から膜もしくは空気層へその微細凹凸周期構造内の屈折率を小さくなるように設定することで、透明基板と膜、もしくは透明基板と空気層との界面で発生する反射光を効率的に低減することができる。   According to the optical filter of the present invention, a fine uneven periodic structure composed of uneven portions having a pitch and height below the visible light wavelength is formed on the substrate of the optical filter, and the fine uneven cycle period from the substrate to the film or the air layer. By setting the refractive index in the structure to be small, reflected light generated at the interface between the transparent substrate and the film or between the transparent substrate and the air layer can be efficiently reduced.

ビデオカメラに使用される撮影光学系例Examples of photographic optics used in video cameras 本実施例における微細凹凸周期構造の構成図Configuration diagram of fine irregular periodic structure in this example 微細周期構造の模式図Schematic diagram of fine periodic structure 微細周期構造 形成プロセスFine periodic structure formation process NDフィルタ膜の構成図ND filter membrane configuration diagram 真空チャンバ構成図Vacuum chamber configuration diagram フィルムでの反射率発生箇所Where the reflectance occurs on the film NDフィルタ構成の例Example of ND filter configuration

(実施例1)
本発明を実施例に基づいて詳細に説明する。図1は撮影光学系の構成図を示し、レンズ21、光量絞り装置22、レンズ23〜25、ローパスフィルタ26、CCD等から成る固体撮像素子27が順次に配列されている。光量絞り装置22においては、絞り羽根支持板28に一対の絞り羽根29a、29bが可動に取り付けられている。絞り羽根29aには、絞り羽根29a、29bにより形成される略菱形形状の開口部を通過する光量を減光するためのNDフィルタ30が接着されている。
(Example 1)
The present invention will be described in detail based on examples. FIG. 1 is a configuration diagram of a photographing optical system, in which a solid-state image pickup device 27 including a lens 21, a light amount diaphragm device 22, lenses 23 to 25, a low-pass filter 26, a CCD, and the like are sequentially arranged. In the light quantity diaphragm device 22, a pair of diaphragm blades 29 a and 29 b are movably attached to the diaphragm blade support plate 28. An ND filter 30 for dimming the amount of light passing through the substantially rhombic opening formed by the diaphragm blades 29a and 29b is bonded to the diaphragm blade 29a.

図3は本実施例で使用する蛾目(Moth eye)構造から成る微細凹凸周期構造の模式図を示している。図1のNDフィルタ30の表面には、図3に示すように厚さ約100μmのPET(ポリエチレンテレフタレート)から成る透明基板31上に円錐形状の突起部32が等間隔で無数に配置された微細凹凸周期構造33が設けられている。   FIG. 3 is a schematic diagram of a fine uneven periodic structure having a Moth eye structure used in this embodiment. On the surface of the ND filter 30 in FIG. 1, as shown in FIG. 3, an infinite number of conical projections 32 are arranged at equal intervals on a transparent substrate 31 made of PET (polyethylene terephthalate) having a thickness of about 100 μm. An uneven periodic structure 33 is provided.

本実施例における透明基板31として、PET(ポリエチレンテレフタレート)樹脂フィルムを使用している。しかしPET以外にも、透明性及び機械的強度を有するフィルム状の合成樹脂基板を使用することも可能である。例を挙げれば、PEN(ポリエチレンナフタレート)、アクリル系樹脂、ポリカーボネート、ポリイミド系樹脂、ノルボルネン系樹脂、ポリスチレン、ポリ塩化ビニル、ポリアリレート、ポリスルホン、ポリエーテルスルホン、ポリエーテルイミド等である。また、透明基板31の厚さとしては、NDフィルタ30としての剛性を保持しながら、可能な限り薄いことが好ましい。具体的には、その厚さとして300μm以下とすることが好ましく、より好ましくは50〜100μmとすることが好ましい。   A PET (polyethylene terephthalate) resin film is used as the transparent substrate 31 in the present embodiment. However, in addition to PET, it is also possible to use a film-like synthetic resin substrate having transparency and mechanical strength. Examples include PEN (polyethylene naphthalate), acrylic resin, polycarbonate, polyimide resin, norbornene resin, polystyrene, polyvinyl chloride, polyarylate, polysulfone, polyethersulfone, polyetherimide, and the like. The thickness of the transparent substrate 31 is preferably as thin as possible while maintaining the rigidity of the ND filter 30. Specifically, the thickness is preferably 300 μm or less, more preferably 50 to 100 μm.

各突起部32の高さ方向に対し、突起部32の最頂部から最底部に向かうにつれて突起部32の体積は徐々に増加し、それに対応した有効屈折率も突起部32の最頂部から最底部に向かい連続的に分布する。そのため、空気層から透明基板31に向かって滑らかな有効屈折率分布を有し、この微細凹凸周期構造33に光が入射した場合には、急激な屈折率差がないため、光は殆ど反射されずに透明基板31内に到達する。   With respect to the height direction of each projection 32, the volume of the projection 32 gradually increases from the top to the bottom of the projection 32, and the corresponding effective refractive index also increases from the top to the bottom of the projection 32. It is distributed continuously toward. Therefore, it has a smooth effective refractive index distribution from the air layer toward the transparent substrate 31, and when light is incident on the fine concavo-convex periodic structure 33, there is no abrupt refractive index difference, so that the light is almost reflected. Without reaching the transparent substrate 31.

なお、良好な反射防止効果を得るために、突起部32は図3に示すように円錐形状にすることが好ましいが、円錐形状の代りに、四角錐形状の突起部、或いは他の多角錐形状、更には逆円錐形状の凹部とした微細凹凸周期構造33を用いてもよい。   In order to obtain a good antireflection effect, it is preferable that the protrusion 32 has a conical shape as shown in FIG. 3, but instead of the conical shape, a quadrangular pyramidal protrusion or other polygonal pyramid shape. Further, a fine uneven periodic structure 33 having an inverted conical recess may be used.

また、微細凹凸周期構造33の凹凸パターンのピッチPは可視光領域の波長(λ=400〜700nm)よりも小さいことが好ましく、本実施例では300nmとしている。ピッチPが大きくなり、可視光領域の波長、例えば550nmとなると、光の回折現象が発生し画像劣化の原因となる。ピッチPを小さくなるほど反射防止効果が得られる波長も低波長側に拡大されてくるが、ピッチPを小さくするほど微細凹凸周期構造33の形成が困難になるため、ピッチPは100〜300nmが好ましい。   The pitch P of the concave / convex pattern of the fine concave / convex periodic structure 33 is preferably smaller than the wavelength (λ = 400 to 700 nm) in the visible light region, and is set to 300 nm in this embodiment. When the pitch P is increased and becomes a wavelength in the visible light region, for example, 550 nm, a light diffraction phenomenon occurs and causes image degradation. As the pitch P is decreased, the wavelength at which the antireflection effect is obtained is also expanded to the lower wavelength side. However, as the pitch P is decreased, it becomes difficult to form the fine uneven periodic structure 33. Therefore, the pitch P is preferably 100 to 300 nm. .

また、微細凹凸周期構造33の凸部或いは凹部の高さDと、微細凹凸周期構造33のピッチPとの比(アスペクト比)D/Pが大きい場合に反射防止効果が大きくなり、D/Pが0.2以上であることが好ましく、より好ましくは1以上である。しかし、この高さDも可視光領域の波長よりも小さくすることが好ましい。   Further, when the ratio (aspect ratio) D / P between the height D of the convex portion or the concave portion of the fine uneven periodic structure 33 and the pitch P of the fine uneven periodic structure 33 is large, the antireflection effect becomes large. Is preferably 0.2 or more, more preferably 1 or more. However, this height D is also preferably smaller than the wavelength in the visible light region.

微細凹凸周期構造33を構成する突起部32を形成するには、例えば、形成すべき微細凹凸周期構造と逆の形状を有する型を用いて、熱や圧力を加えて基板の表面に微細凹凸周期構造を転写する。或いは、半導体製造技術を用いて基板31の表面に直接、微細凹凸周期構造を形成することができる。また、基板の表面に光硬化樹脂で膜を形成し、形成すべき微細凹凸周期構造と逆の形状を有する型を密着させて、光硬化樹脂を固化させる方法がある。   In order to form the protrusions 32 constituting the fine uneven periodic structure 33, for example, using a mold having a shape opposite to the fine uneven periodic structure to be formed, heat and pressure are applied to the surface of the substrate to form the fine uneven period. Transcribe the structure. Alternatively, the fine uneven periodic structure can be formed directly on the surface of the substrate 31 using a semiconductor manufacturing technique. Further, there is a method in which a film is formed with a photo-curing resin on the surface of the substrate, and a mold having a shape opposite to that of the fine concavo-convex periodic structure to be formed is adhered to solidify the photo-curing resin.

本実施例においては図4に示すように、アルミ金型4にアクリルなどのモノマーである光硬化樹脂5を充填し、その上から透明基板1を置いた後に、光照射して離型する方法で透明基板1上に微細凹凸周期溝を転写する方法について説明する。   In this embodiment, as shown in FIG. 4, a method of filling an aluminum mold 4 with a photocurable resin 5 that is a monomer such as acrylic, placing a transparent substrate 1 thereon, and then releasing the mold by light irradiation. Now, a method for transferring the fine uneven periodic grooves on the transparent substrate 1 will be described.

この方法にて、微細凹凸周期構造内の屈折率を連続的に変化させる構造の製作方法を説明する。   A method of manufacturing a structure in which the refractive index in the fine uneven periodic structure is continuously changed by this method will be described.

屈折率を連続的に変化させる構造を製作する一例として、酸化金属粒子を光硬化樹脂に添加させる方法を用いる。その酸化金属粒子の粒径は、微細凹凸周期構造が数百nmであるため、それ以下が好ましく、より好ましくは数十nm、最も好ましくは数nmがより望ましい。その酸化金属粒子を酸化ジルコニウム(粒径10〜20nm)に選定した場合を例に挙げる。   As an example of manufacturing a structure in which the refractive index is continuously changed, a method of adding metal oxide particles to a photocurable resin is used. The particle size of the metal oxide particles is preferably less than that because the fine uneven periodic structure is several hundred nm, more preferably several tens nm, and most preferably several nm. The case where the metal oxide particles are selected as zirconium oxide (particle size: 10 to 20 nm) is taken as an example.

屈折率を変化させる原理としては、光硬化樹脂内に添加する酸化金属粒子の配合率wt%を調整することにより、光硬化樹脂の屈折率n1よりも屈折率が高い特性n0にコントロールが可能となる。   The principle of changing the refractive index is that it is possible to control the characteristic n0 having a refractive index higher than the refractive index n1 of the photocurable resin by adjusting the blending ratio wt% of the metal oxide particles added to the photocurable resin. Become.

上述した方法により、屈折率の変化領域は、光硬化樹脂の選択により自由に設定が可能である。   By the method described above, the refractive index changing region can be freely set by selecting a photo-curing resin.

例えば、ウレタンアクリレートに酸化ジルコニウムを0wt%から70wt%に配合した場合、屈折率は1.52(n1) 〜 1.66(n0)領域で特性を変化させることが可能となる。   For example, when zirconium oxide is added to urethane acrylate in an amount of 0 wt% to 70 wt%, the refractive index can be changed in the range of 1.52 (n1) to 1.66 (n0).

上述した性質を利用し、光硬化樹脂内の酸化金属粒子配合率を変化させることで屈折率を連続的に可変させる。その手段としては、振動や遠心などにより酸化金属粒子を分散させる方法が挙げられる。なお透明基板側の屈折率は、透明基板の屈折率に極力合わせるように光硬化樹脂を選定した方がよい。   Utilizing the properties described above, the refractive index is continuously varied by changing the compounding ratio of the metal oxide particles in the photocurable resin. As the means, a method of dispersing metal oxide particles by vibration or centrifugation can be mentioned. In addition, it is better to select a photocurable resin so that the refractive index on the transparent substrate side matches the refractive index of the transparent substrate as much as possible.

このようにして形成した図2のような屈折率が連続的に変化する微細凹凸周期構造の表面形状をAFMで測定したところ、高さ350nm、ピッチ300nmの凹凸パターンが形成された。   When the surface shape of the fine concavo-convex periodic structure with the refractive index continuously changing as shown in FIG. 2 was measured by AFM, a concavo-convex pattern having a height of 350 nm and a pitch of 300 nm was formed.

図6は、図3において形成した微細凹凸周期構造の面もしくはその裏面に、金属膜、金属酸化物、誘電体膜等の積層膜から成る無機質膜であるND膜を形成するための真空蒸着機チャンバの構成図を示している。チャンバ61内には、蒸着源62、回転可能な蒸着傘63が設けられ、この蒸着傘63には成膜部位に開口部を設けた蒸着パターン形成マスク52と蒸着治具51が配置されている。蒸着治具51は、この蒸着傘63と共にZ軸を中心に回転し成膜が行われる。   FIG. 6 shows a vacuum deposition apparatus for forming an ND film, which is an inorganic film made of a laminated film such as a metal film, a metal oxide, or a dielectric film, on the surface of the fine irregular periodic structure formed in FIG. The block diagram of the chamber is shown. A vapor deposition source 62 and a rotatable vapor deposition umbrella 63 are provided in the chamber 61, and a vapor deposition pattern forming mask 52 having an opening at a film formation site and a vapor deposition jig 51 are disposed in the vapor deposition umbrella 63. . The vapor deposition jig 51 rotates with the vapor deposition umbrella 63 about the Z axis to form a film.

図5は上述の方法により透明基板もしくは微細凹凸周期構造上に成膜した無機硬質膜であるND膜構成図を示している。透明基板もしくは微細凹凸周期構造上には、第1、3、5層に反射率を低減させるための反射防止膜であるAl膜72と、第2、4、6層に透過率を低減させるための光吸収層であるTixOy膜73とを交互に積層している。更に、反射防止効果を高めるために最表層の第11層に低屈折材料であるMgF膜を光学膜厚n×d(n:屈折率、d:物理膜厚)でλ/4(λ=500〜600nm)蒸着し、11構成のND膜とされている。 FIG. 5 shows an ND film configuration diagram which is an inorganic hard film formed on a transparent substrate or a fine uneven periodic structure by the above-described method. On the transparent substrate or the fine uneven periodic structure, the first, third, and fifth layers have an Al 2 O 3 film 72 that is an antireflection film for reducing the reflectance, and the second, fourth, and sixth layers have transmittance. A TixOy film 73 that is a light absorption layer for reduction is alternately laminated. Further, in order to enhance the antireflection effect, an MgF 2 film, which is a low refractive material, is applied to the outermost layer as the eleventh layer at an optical film thickness n × d (n: refractive index, d: physical film thickness) of λ / 4 (λ = 500 to 600 nm) is deposited to form an ND film having an 11 structure.

反射防止膜としては透明誘電体が使用することができ、Al膜72の他にSiO、SiO、MgF、ZrO、TiO等が使用することができる。また、光吸収層としては可視領域の波長を吸収する特性を有する材料を使用することができ、TiOx膜73の他にTi、Ni、Cr、NiCr、NiFe、Nb等の金属、合金、酸化物が使用することができる。 As the antireflection film, a transparent dielectric can be used. In addition to the Al 2 O 3 film 72, SiO 2 , SiO, MgF 2 , ZrO 2 , TiO 2 or the like can be used. The light absorbing layer can be made of a material having a characteristic of absorbing a wavelength in the visible region. In addition to the TiOx film 73, metals such as Ti, Ni, Cr, NiCr, NiFe, and Nb, alloys, and oxides can be used. Can be used.

そして、蒸着時に反射率をモニタリングすることにより、Al膜の膜厚を制御することにより反射率を小さくすることが可能である。光透過率はTixOy膜の総膜厚によって変化し、このTixOy膜の総膜厚が厚くなるほど光透過率は低下する。また、λ=400〜700nmの波長範囲内での光透過率の平坦性は、上述のTixOy膜組成のyによって変化し、適切に選択することにより光透過率分布は平坦となる。なお、積層する層数や使用材料は、目的の特性により変わってくる。 Then, by monitoring the reflectance during vapor deposition, it is possible to reduce the reflectance by controlling the film thickness of the Al 2 O 3 film. The light transmittance varies depending on the total thickness of the TixOy film, and the light transmittance decreases as the total thickness of the TixOy film increases. Further, the flatness of the light transmittance within the wavelength range of λ = 400 to 700 nm varies depending on y of the above TixOy film composition, and the light transmittance distribution becomes flat when appropriately selected. Note that the number of layers to be stacked and the materials used vary depending on the target characteristics.

このようなND膜は真空蒸着法、スパッタ法、イオンプレーティング法等の成膜法により成膜することができるが、本実施例においては上述のように真空蒸着法により成膜した。そして、最表層のMgF膜を成膜した後に、透明基板を真空蒸着機から取り出し、必要に応じ、ND膜が成膜された透明基板を裏面として、再び蒸着治具51にセットし、真空蒸着機において蒸着する。 Such an ND film can be formed by a film forming method such as a vacuum evaporation method, a sputtering method, or an ion plating method. In this embodiment, the film was formed by a vacuum evaporation method as described above. Then, after forming the outermost MgF 2 film, the transparent substrate is taken out from the vacuum deposition machine, and if necessary, the transparent substrate on which the ND film is formed is set as the back surface on the deposition jig 51 and vacuumed. Vapor deposition is performed in a vapor deposition machine.

そして成膜が完了した後に、透明基板を真空蒸着機から取り出し、透明基板上に形成された複数のNDフィルタを個々の形状にプレス抜きを行う。   After the film formation is completed, the transparent substrate is taken out from the vacuum vapor deposition machine, and a plurality of ND filters formed on the transparent substrate are pressed into individual shapes.

このようにして製作したNDフィルタについて、図8のような複数の構成サンプルを製作し、光量絞り装置の絞り羽根に取り付け撮像画像を評価した。まず、あたり実験として表1に示すように、透明基板上の片面へ微細凹凸周期構造を形成したサンプルを製作して反射率の確認を行った。透明基板の最大反射率は9%であるのに対し、微細凹凸周期構造を片面に形成すると、最大反射率は5%に低減した。改善策として、本実施例のように屈折率を連続的に変化させた微細凹凸周期構造を片面に形成すると、最大反射率は4%以下に低減し効果がみられた。   For the ND filter manufactured in this way, a plurality of constituent samples as shown in FIG. First, as shown in Table 1, as a per experiment, a sample in which a fine uneven periodic structure was formed on one surface on a transparent substrate was manufactured, and the reflectance was confirmed. While the maximum reflectance of the transparent substrate is 9%, the maximum reflectance is reduced to 5% when the fine uneven periodic structure is formed on one side. As an improvement measure, when a fine concavo-convex periodic structure in which the refractive index was continuously changed as in this example was formed on one side, the maximum reflectance was reduced to 4% or less, and an effect was observed.

微細凹凸周期構造がある場合の本発明の実施例における最大反射率(λ=400〜700nm)と従来との比較結果を表1に示す。

Figure 2015200805
Table 1 shows a comparison result between the maximum reflectance (λ = 400 to 700 nm) and the conventional example in the example of the present invention when there is a fine uneven periodic structure.
Figure 2015200805

(実施例2)
実施例2においては、図8(a)に示す透明基板の片面に微細凹凸周期構造を設け、透明基板の両側にND膜を成膜したNDフィルタを製作する。透明基板1には実施例1と同様に、厚さ100μmのPET樹脂フィルムを用い、図3に示すような微細凹凸周期構造を用いる。実施例1と同様、アルミ金型4にアクリルなどのモノマーである光硬化樹脂5を充填し、その上から透明基板1を置き光照射して離型する方法で透明基板1上に微細凹凸周期溝を転写する方法で透明基板1の片面に転写する。このようにして、微細凹凸周期構造が転写された透明基板1の表面形状をAFMで測定したところ、高さ350nm、ピッチ300nmの凹凸が形成されたことが確認できた。
(Example 2)
In Example 2, an ND filter in which a fine uneven periodic structure is provided on one side of a transparent substrate shown in FIG. 8A and ND films are formed on both sides of the transparent substrate is manufactured. As in Example 1, the transparent substrate 1 is made of a PET resin film having a thickness of 100 μm and a fine uneven periodic structure as shown in FIG. In the same manner as in Example 1, an aluminum mold 4 is filled with a photo-curing resin 5 that is a monomer such as acrylic, and a transparent substrate 1 is placed on the aluminum mold 4 and irradiated with light to release the mold. The groove is transferred to one side of the transparent substrate 1 by a transfer method. Thus, when the surface shape of the transparent substrate 1 to which the fine uneven periodic structure was transferred was measured by AFM, it was confirmed that unevenness having a height of 350 nm and a pitch of 300 nm was formed.

上述の方法により、片面に微細凹凸周期構造を形成した透明基板1を用いて、微細凹凸周期構造上に濃度0.5のND膜2を両面にそれぞれ成膜することにより、濃度1.0(透過率10%)のNDフィルタを形成した。なお、本実施例2におけるND膜2の成膜方法は実施例1と同じである。   By using the transparent substrate 1 having a fine uneven periodic structure formed on one side by the above-described method, an ND film 2 having a concentration of 0.5 is formed on both surfaces of the fine uneven periodic structure, thereby providing a concentration of 1.0 ( An ND filter having a transmittance of 10% was formed. The method for forming the ND film 2 in the second embodiment is the same as that in the first embodiment.

このようにして作製したNDフィルタを光量絞り装置の絞り羽根に取り付け撮像画像を評価した。表2に示すように、透明基板1に微細凹凸周期構造を形成したNDフィルタについては、微細凹凸周期構造面での反射率が低減され、ゴーストは見られなかった。さらには、本実施例の屈折率を連続的に変化させた微細凹凸周期構造を採用した場合、反射率は0.50%以下となり大幅な反射率改善が見られた。   The ND filter produced in this way was attached to the diaphragm blade of the light quantity diaphragm device, and the captured image was evaluated. As shown in Table 2, with respect to the ND filter in which the fine uneven periodic structure was formed on the transparent substrate 1, the reflectance on the fine uneven periodic structure surface was reduced, and no ghost was seen. Furthermore, when the fine uneven periodic structure in which the refractive index of this example was continuously changed was adopted, the reflectance was 0.50% or less, and a significant improvement in reflectance was observed.

よって、透明基板の両面に本実施例の構成をした微細凹凸周期構造を形成することにより、更なる特性の改善が見込める。またND濃度は、単濃度以外にも連続的に濃度変化する構成にも有効である。   Therefore, further improvement of characteristics can be expected by forming the fine uneven periodic structure having the configuration of the present embodiment on both surfaces of the transparent substrate. Further, the ND concentration is effective not only for a single concentration but also for a configuration in which the concentration changes continuously.

微細凹凸周期構造がある場合の本発明の実施例におけるゴーストと最大反射率(λ=400〜700nm)と従来との比較結果を表2に示す。最大反射率の2つの値は、図8に示す方向に進む光の最大反射率である。

Figure 2015200805
Table 2 shows a comparison result between the ghost, the maximum reflectance (λ = 400 to 700 nm) and the conventional example in the example of the present invention when there is a fine uneven periodic structure. The two values of the maximum reflectance are the maximum reflectance of light traveling in the direction shown in FIG.
Figure 2015200805

実施例3においては、図8(b)に示す透明基板の片面に微細凹凸周期構造を設け、AR膜の代替とする。その透明基板の反対面にはND膜を成膜したNDフィルタを製作する。透明基板1には実施例1と同様に、厚さ100μmのPET樹脂フィルムを用い、図3に示すような微細凹凸周期構造を用いる。実施例1と同様、アルミ金型4にアクリルなどのモノマーである光硬化樹脂5を充填し、その上から透明基板1を置き光照射して離型する方法で透明基板1上に微細凹凸周期溝を転写する方法で透明基板1の片面に転写する。このようにして、微細凹凸周期構造が転写された透明基板1の表面形状をAFMで測定したところ、高さ350nm、ピッチ300nmの凹凸が形成されたことが確認できた。   In Example 3, a fine uneven periodic structure is provided on one side of the transparent substrate shown in FIG. 8B to replace the AR film. An ND filter having an ND film formed on the opposite surface of the transparent substrate is manufactured. As in Example 1, the transparent substrate 1 is made of a PET resin film having a thickness of 100 μm and a fine uneven periodic structure as shown in FIG. In the same manner as in Example 1, an aluminum mold 4 is filled with a photo-curing resin 5 that is a monomer such as acrylic, and a transparent substrate 1 is placed on the aluminum mold 4 and irradiated with light to release the mold. The groove is transferred to one side of the transparent substrate 1 by a transfer method. Thus, when the surface shape of the transparent substrate 1 to which the fine uneven periodic structure was transferred was measured by AFM, it was confirmed that unevenness having a height of 350 nm and a pitch of 300 nm was formed.

上述の方法により、片面に微細凹凸周期構造を形成した透明基板1を用いて、微細凹凸周期構造上に濃度0.5のND膜2を片面に成膜することにより、濃度0.5(透過率32%)のNDフィルタを形成した。なお、本実施例2におけるND膜2の成膜方法は実施例1と同じである。   By using the transparent substrate 1 having a fine concavo-convex periodic structure formed on one side by the above-described method, an ND film 2 having a concentration of 0.5 is formed on one side on the fine concavo-convex periodic structure, thereby providing a concentration 0.5 (transmission). An ND filter with a rate of 32% was formed. The method for forming the ND film 2 in the second embodiment is the same as that in the first embodiment.

このようにして作製したNDフィルタを光量絞り装置の絞り羽根に取り付け撮像画像を評価した。表3に示すように、透明基板1に微細凹凸周期構造を形成したNDフィルタについては、微細凹凸周期構造面での反射率が低減され、ゴーストは見られなかった。さらには、本実施例の屈折率を連続的に変化させた微細凹凸周期構造を採用した場合、ND膜面反射率は0.30%以下、微細凹凸周期構造面反射率は3.00%以下となり大幅な反射率改善が見られた。   The ND filter produced in this way was attached to the diaphragm blade of the light quantity diaphragm device, and the captured image was evaluated. As shown in Table 3, with respect to the ND filter having the fine uneven periodic structure formed on the transparent substrate 1, the reflectance on the fine uneven periodic structure surface was reduced, and no ghost was seen. Furthermore, when the fine uneven periodic structure in which the refractive index of this example is continuously changed is adopted, the ND film surface reflectance is 0.30% or less, and the fine uneven periodic structure surface reflectance is 3.00% or less. As a result, the reflectance was greatly improved.

よって、透明基板の両面に本実施例の構成をした微細凹凸周期構造を形成することにより、更なる特性の改善が見込める。またND濃度は、単濃度以外にも連続的に濃度変化する構成にも有効である。   Therefore, further improvement of characteristics can be expected by forming the fine uneven periodic structure having the configuration of the present embodiment on both surfaces of the transparent substrate. Further, the ND concentration is effective not only for a single concentration but also for a configuration in which the concentration changes continuously.

微細凹凸周期構造がある場合の本発明の実施例におけるゴーストと最大反射率(λ=400〜700nm)と従来のAR膜がある場合との比較結果を表3に示す。最大反射率の2つの値は、図8に示す方向に進む光の最大反射率である。

Figure 2015200805
Table 3 shows a comparison result between the ghost, the maximum reflectance (λ = 400 to 700 nm), and the conventional AR film in the example of the present invention when there is a fine uneven periodic structure. The two values of the maximum reflectance are the maximum reflectance of light traveling in the direction shown in FIG.
Figure 2015200805

反射光を効率的に低減した光学フィルタ、光学フィルタを備えた光量絞り装置およびこれを搭載した撮像機器を提供できる。   It is possible to provide an optical filter that efficiently reduces reflected light, a light amount diaphragm device that includes the optical filter, and an imaging device equipped with the same.

1:透明基板
2:ND膜
3:AR膜
4:アルミ金型
5:光硬化樹脂
21:レンズ
22:光量絞り装置
23:レンズ
24:レンズ
25:レンズ
26:ローパスフィルタ
27:固体撮像素子
28:絞り羽根支持板
29:絞り羽根
30:NDフィルタ
31:透明基板
32:突起部
33:微細凹凸周期構造
51:蒸着治具
61:チャンバ
62:蒸着源
63:蒸着傘
1: Transparent substrate 2: ND film 3: AR film 4: Aluminum mold 5: Photo-curing resin 21: Lens 22: Light quantity reduction device 23: Lens 24: Lens 25: Lens 26: Low-pass filter 27: Solid-state imaging device 28: Diaphragm blade support plate 29: Diaphragm blade 30: ND filter 31: Transparent substrate 32: Projection 33: Fine uneven periodic structure 51: Deposition jig 61: Chamber 62: Deposition source 63: Deposition umbrella

Claims (7)

透明基板の表面に可視光波長以下のピッチと高さを有する微細凹凸周期構造を形成し、該微細凹凸周期構造は透明基板側から表層側に向かって屈折率が連続的に変化する特性を有していることを特徴とする光学フィルタ。   A fine uneven periodic structure having a pitch and height below the visible light wavelength is formed on the surface of the transparent substrate, and the fine uneven periodic structure has a characteristic that the refractive index continuously changes from the transparent substrate side to the surface layer side. An optical filter characterized by that. 透明基板の両面に可視光波長以下のピッチと高さを有する微細凹凸周期構造を形成し、少なくとも前記透明基板の片面の前記微細凹凸周期構造上もしくは該裏面に無機硬質膜が成膜されていることを特徴とする光学フィルタ。   A fine uneven periodic structure having a pitch and height below the visible light wavelength is formed on both surfaces of the transparent substrate, and an inorganic hard film is formed on at least the fine uneven periodic structure on one side of the transparent substrate or on the back surface thereof. An optical filter characterized by the above. 前記透明基板は合成樹脂から成ることを特徴とする請求項1又は2に記載の光学フィルタ。   The optical filter according to claim 1, wherein the transparent substrate is made of a synthetic resin. 前記無機硬質膜は金属又は金属酸化物から成る光吸収層と、誘電体層が積層されていることを特徴とする請求項1〜3の何れか1つの請求項に記載の光学フィルタ。   The optical filter according to any one of claims 1 to 3, wherein the inorganic hard film is formed by laminating a light absorption layer made of a metal or a metal oxide and a dielectric layer. 前記無機硬質膜の可視光透過濃度は一定濃度もしくは連続的に濃度が変化する領域を有することを特徴とする請求項4に記載の光学フィルタ。   The optical filter according to claim 4, wherein the visible light transmission density of the inorganic hard film has a constant density or a region where the density continuously changes. 開口を形成するための絞り羽根と、前記開口を通過する光の光量を調節する光学フィルタを有する光量絞り装置において、請求項1〜5の何れか1つの請求項に記載の光学フィルタを備えたことを特徴とする光量絞り装置。   A light quantity diaphragm device having diaphragm blades for forming an opening and an optical filter for adjusting the light quantity of light passing through the opening, comprising the optical filter according to any one of claims 1 to 5. A light quantity diaphragm device characterized by that. 光学系と、該光学系を通過する光量を制限する請求項6に記載の光量絞り装置と、前記光学系によって形成される像を受像する固体撮像素子とを有することを特徴とする撮像機器。   An imaging apparatus comprising: an optical system; a light quantity diaphragm device according to claim 6 that limits an amount of light that passes through the optical system; and a solid-state imaging device that receives an image formed by the optical system.
JP2014079905A 2014-04-09 2014-04-09 ND filter, light quantity diaphragm device, and imaging device Active JP6336806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014079905A JP6336806B2 (en) 2014-04-09 2014-04-09 ND filter, light quantity diaphragm device, and imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014079905A JP6336806B2 (en) 2014-04-09 2014-04-09 ND filter, light quantity diaphragm device, and imaging device

Publications (3)

Publication Number Publication Date
JP2015200805A true JP2015200805A (en) 2015-11-12
JP2015200805A5 JP2015200805A5 (en) 2017-04-20
JP6336806B2 JP6336806B2 (en) 2018-06-06

Family

ID=54552090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014079905A Active JP6336806B2 (en) 2014-04-09 2014-04-09 ND filter, light quantity diaphragm device, and imaging device

Country Status (1)

Country Link
JP (1) JP6336806B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI677703B (en) * 2017-12-21 2019-11-21 日商信越化學工業股份有限公司 Antireflective film, method of producing antireflective film, and eyeglass type display
WO2024122424A1 (en) * 2022-12-06 2024-06-13 デクセリアルズ株式会社 Anti-reflection body, and optical element

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240854A (en) * 2006-03-08 2007-09-20 Nissan Motor Co Ltd Antireflection structure
JP2008058438A (en) * 2006-08-30 2008-03-13 Canon Electronics Inc Optical filter
JP2008076844A (en) * 2006-09-22 2008-04-03 Canon Electronics Inc Optical filter
US20110149399A1 (en) * 2009-12-18 2011-06-23 National Taiwan University Anti-reflection structure and method for fabricating the same
JP2012063393A (en) * 2010-09-14 2012-03-29 Canon Inc Optical element and optical device with the same
JP2012126103A (en) * 2010-12-17 2012-07-05 Asahi Kasei Corp Fine structure laminate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240854A (en) * 2006-03-08 2007-09-20 Nissan Motor Co Ltd Antireflection structure
JP2008058438A (en) * 2006-08-30 2008-03-13 Canon Electronics Inc Optical filter
JP2008076844A (en) * 2006-09-22 2008-04-03 Canon Electronics Inc Optical filter
US20110149399A1 (en) * 2009-12-18 2011-06-23 National Taiwan University Anti-reflection structure and method for fabricating the same
JP2012063393A (en) * 2010-09-14 2012-03-29 Canon Inc Optical element and optical device with the same
JP2012126103A (en) * 2010-12-17 2012-07-05 Asahi Kasei Corp Fine structure laminate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI677703B (en) * 2017-12-21 2019-11-21 日商信越化學工業股份有限公司 Antireflective film, method of producing antireflective film, and eyeglass type display
US10996378B2 (en) 2017-12-21 2021-05-04 Shin-Etsu Chemical Co., Ltd. Antireflective film, method of producing antireflective film, and eyeglass type display
WO2024122424A1 (en) * 2022-12-06 2024-06-13 デクセリアルズ株式会社 Anti-reflection body, and optical element

Also Published As

Publication number Publication date
JP6336806B2 (en) 2018-06-06

Similar Documents

Publication Publication Date Title
JP4988282B2 (en) Optical filter
JP6317954B2 (en) Lens unit, imaging module, and electronic device
CN101135743B (en) Optical filter and camera device
JP2013041027A (en) Optical filter
US20150085369A1 (en) Laminated body, imaging element package, imaging apparatus, and electronic apparatus
WO2016035245A1 (en) Laminate, imaging device package, image acquisition apparatus, and electronic equipment
JP2008276112A (en) Nd filter
US8665520B2 (en) Neutral density optical filter and image pickup apparatus
JP2010078803A (en) Optical element and optical system having it
JP2015004919A (en) Anti-reflection film and optical element having the same
US10551534B2 (en) Optical element, optical system, image pickup apparatus, and lens apparatus
JP2013257405A (en) Antireflection film, optical element having the same, optical system, and optical instrument
JP6336806B2 (en) ND filter, light quantity diaphragm device, and imaging device
JP5031496B2 (en) Optical system and imaging apparatus having the same
JP2009162852A (en) Optical element
KR101058992B1 (en) Optical elements and optical instruments
JP2010066704A (en) Optical element, optical system, and optical apparatus
US7295391B1 (en) ND filter for aperture device and aperture device comprising ND filter
CN104020515B (en) Transfer mold and manufacturing method for structure
JP5554012B2 (en) Optical filter and imaging apparatus using the optical filter
JP5543515B2 (en) camera
JP2008065227A (en) Nd filter
JP2015219338A (en) Optical filter
JP5711921B2 (en) Optical filter and gradation ND filter
JP6386785B2 (en) MICROSTRUCTURE, OPTICAL FILTER AND OPTICAL DEVICE

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170317

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170322

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180507

R150 Certificate of patent or registration of utility model

Ref document number: 6336806

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250