JP2015198209A - Circuit board and method for manufacturing the same - Google Patents

Circuit board and method for manufacturing the same Download PDF

Info

Publication number
JP2015198209A
JP2015198209A JP2014076666A JP2014076666A JP2015198209A JP 2015198209 A JP2015198209 A JP 2015198209A JP 2014076666 A JP2014076666 A JP 2014076666A JP 2014076666 A JP2014076666 A JP 2014076666A JP 2015198209 A JP2015198209 A JP 2015198209A
Authority
JP
Japan
Prior art keywords
circuit board
fine particles
insulating substrate
bonding
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014076666A
Other languages
Japanese (ja)
Other versions
JP6323128B2 (en
Inventor
典恵 松原
Norie Matsubara
典恵 松原
將元 田中
Masamoto Tanaka
將元 田中
石川 信二
Shinji Ishikawa
信二 石川
隆之 清水
Takayuki Shimizu
隆之 清水
北村 直也
Naoya Kitamura
直也 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd, Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2014076666A priority Critical patent/JP6323128B2/en
Publication of JP2015198209A publication Critical patent/JP2015198209A/en
Application granted granted Critical
Publication of JP6323128B2 publication Critical patent/JP6323128B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a circuit board excellent in bond strength between an insulation substrate and a metal plate bonded to the insulation substrate and including a wiring circuit formed thereon and also excellent in bonding reliability by reducing the occurrence of peeling, warpage or the like due to thermal cycles from low temperatures to high temperatures.SOLUTION: A circuit board includes an insulation substrate, a metal plate bonded to one surface or both surfaces of the insulation substrate, and a bonding layer bonding the insulation substrate with the metal plate. The bonding layer comprises: a metal coating formed on one surface or both surfaces of the insulation substrate and made of active metal capable of forming an eutectic with Ni; and a Ni sintered layer formed by sintering Ni particles. Further, Ni particles in the Ni sintered layer are Ni fine particles having an average particle size of 15-150 nm as measured through SEM observation, and the thickness of the Ni sintered layer is 10-200 μm.

Description

この発明は、パワー半導体デバイス等の用途に好適な回路基板及びその製造方法に係り、特に、セラミックス材料からなる絶縁基板とこの絶縁基板に接合されて配線回路が形成される金属板との間の接合強度に優れ、低温から高温までの冷熱サイクルによる反りや剥離等の発生を低減し、絶縁基板と金属板との間の接合信頼性に優れた回路基板及びその製造方法に関する。   The present invention relates to a circuit board suitable for applications such as power semiconductor devices and a manufacturing method thereof, and in particular, between an insulating substrate made of a ceramic material and a metal plate bonded to the insulating substrate to form a wiring circuit. The present invention relates to a circuit board excellent in bonding strength, reduced in warp and peeling due to a cooling cycle from low temperature to high temperature, and excellent in bonding reliability between an insulating substrate and a metal plate, and a manufacturing method thereof.

パワー半導体デバイスは、例えば高電圧、大電流の条件下での動作が可能なモータ制御系のインバータ等として広く使用されており、一般に、窒化アルミニウム(AlN)、窒化珪素(Si3N4)、アルミナ(Al2O3)等のセラミックス材料からなる絶縁基板の片面又は両面に、CuやCu合金、AlやAl合金等の導電性に優れた金属からなる回路パターンや金属板(以下、これらいずれか一方又は両方の回路パターンや金属板を単に「金属板」と称する。)が接合された回路基板として構成されている。 Power semiconductor devices are widely used as, for example, inverters for motor control systems that can operate under conditions of high voltage and large current.In general, aluminum nitride (AlN), silicon nitride (Si 3 N 4 ), On one or both sides of an insulating substrate made of a ceramic material such as alumina (Al 2 O 3 ), a circuit pattern or a metal plate made of a metal having excellent conductivity such as Cu, Cu alloy, Al or Al alloy (hereinafter, any of these) One or both of the circuit patterns and the metal plate are simply referred to as a “metal plate”).

しかしながら、このような絶縁基板の片面又は両面に金属板が接合された回路基板は、デバイス製造時にはこの回路基板をその支持部材にハンダ付け等で接合する接合工程で高温に晒され、また、デバイス使用時にはその動作/休止による周期的な発熱と冷却による温度変化に晒される等、大きな温度変化に晒される機会が多く、この大きな温度変化に晒された際に、絶縁基板を構成するセラミックス材料と金属板との間の大きな熱膨張率の差に起因して、これら絶縁基板と金属板との間に大きな熱応力が作用し、接合強度が低下するほか、回路基板に反りが発生することがあり、また、その絶縁基板と金属板との間に剥離が発生することもある。例えば、絶縁基板として使用される窒化珪素基板の線熱膨張係数(CTE:40〜400℃)が(2.6〜2.8)×10-6/Kであるのに対し、金属板として使用されるCu板の線熱膨張係数(CTE:0〜100℃)が17×10-6/Kであり、これら窒化珪素基板とCu板との間には大きな熱膨張率差が存在する。 However, a circuit board in which a metal plate is bonded to one or both sides of such an insulating substrate is exposed to a high temperature in a bonding process in which the circuit board is bonded to its support member by soldering or the like during device manufacture. When used, there are many opportunities to be exposed to large temperature changes, such as periodic heat generation due to its operation / rest and cooling, and when exposed to such large temperature changes, the ceramic material constituting the insulating substrate Due to the large difference in thermal expansion coefficient with the metal plate, a large thermal stress acts between the insulating substrate and the metal plate, resulting in a decrease in bonding strength and warping of the circuit board. In addition, peeling may occur between the insulating substrate and the metal plate. For example, the linear thermal expansion coefficient (CTE: 40 to 400 ° C.) of a silicon nitride substrate used as an insulating substrate is (2.6 to 2.8) × 10 −6 / K, whereas it is used as a metal plate. The Cu plate has a linear thermal expansion coefficient (CTE: 0 to 100 ° C.) of 17 × 10 −6 / K, and there is a large difference in thermal expansion coefficient between the silicon nitride substrate and the Cu plate.

そこで、従来においても、このような回路基板における絶縁基板と金属板との間の熱膨張率の差に起因する種々の問題、特に絶縁基板と金属板との間の接合強度や冷熱サイクル特性に関する問題を解消するために、様々な提案がなされている。   Therefore, in the past, various problems caused by the difference in the coefficient of thermal expansion between the insulating substrate and the metal plate in such a circuit board, particularly the bonding strength between the insulating substrate and the metal plate and the thermal cycle characteristics. Various proposals have been made to solve the problem.

例えば、特許文献1には、窒化物系セラミック部材(絶縁基板)と金属部材との間をTi、Zr、及びNbから選ばれた活性金属を含むAg-Cu系ロウ材層で接合する際に、Ag-Cu系ロウ材層中のAg成分とCu成分とが溶け別れた組織を生成するようにし、これによって、熱膨張率の異なるセラミックス部材と金属部材とを接合した後の冷却過程で生じる残留応力や外部から加えられる外部応力に起因し、接合後の冷却過程や使用時の冷熱サイクルの負荷により発生するクラックや破壊等の問題を解消できるとしたセラミックス−金属接合体が提案されている。   For example, in Patent Document 1, when a nitride-based ceramic member (insulating substrate) and a metal member are joined with an Ag—Cu brazing material layer containing an active metal selected from Ti, Zr, and Nb. , A structure in which the Ag component and the Cu component in the Ag-Cu-based brazing material layer are melted apart to form a structure, which is generated in the cooling process after joining the ceramic member and the metal member having different coefficients of thermal expansion. There has been proposed a ceramic-metal joint that can solve problems such as cracking and breakage caused by the cooling process after joining and the load of the cooling cycle during use due to residual stress and external stress applied from the outside. .

また、特許文献2には、絶縁基板と金属板との間に、平均粒径1〜100nmの金属微粒子とTi、Zr、Hf、Nbから選ばれた活性金属とを含む接合剤を介在させ、前記金属微粒子の融点未満の接合温度に加熱し、前記絶縁基板と金属板とを接合することにより、欠陥の発生が少なくて接合信頼性に優れた回路基板を製造する方法が提案されている。   In Patent Document 2, a bonding agent containing metal fine particles having an average particle diameter of 1 to 100 nm and an active metal selected from Ti, Zr, Hf, and Nb is interposed between an insulating substrate and a metal plate. There has been proposed a method of manufacturing a circuit board with less defects and excellent bonding reliability by heating to a bonding temperature lower than the melting point of the metal fine particles and bonding the insulating substrate and the metal plate.

更に、特許文献3には、セラミックス基板と金属板との間に金属ナノ粒子を含有する層を介在させ、200〜300℃で加熱処理して前記金属ナノ粒子が焼結した焼結層を形成し、この焼結層により、前記セラミックス基板とは金属ナノ粒子がセラミックス基板の表面で焼結して発現するアンカー効果で接合し、また、金属板とは金属接合で接合し、これによってセラミックス基板への熱応力を緩和し、また、金属板の板厚を比較的厚くして放熱効果にも優れた半導体モジュール用セラミックス回路基板を製造することが提案されている。   Furthermore, in Patent Document 3, a layer containing metal nanoparticles is interposed between a ceramic substrate and a metal plate, and a heat treatment is performed at 200 to 300 ° C. to form a sintered layer in which the metal nanoparticles are sintered. The sintered layer is bonded to the ceramic substrate by an anchor effect in which metal nanoparticles are sintered on the surface of the ceramic substrate, and bonded to the metal plate by metal bonding. It has been proposed to manufacture a ceramic circuit board for a semiconductor module that relieves the thermal stress on the metal plate and has a relatively thick metal plate and has an excellent heat dissipation effect.

更にまた、特許文献4には、Al又はAl合金等からなる支持部材と、銀又は銀含有複合材等からなる接合層と、窒化物系等の非酸化物系絶縁基板と、前記接合層と、Al又はAl合金等からなる回路配線板とがこの順で積層されていると共に、前記絶縁基板の両面に酸化物層が形成されており、また、前記接合層については金属酸化物粒子及び還元剤からなる接合材を絶縁基板と回路配線版等の間に挟み込んで加熱加圧下に前記金属酸化物粒子を還元させて焼結させる接合技術で形成し、これによって、高温条件での温度サイクルによる反りの発生を低減し、接合信頼性や放熱性に優れた半導体モジュール用回路基板が提案されている。   Furthermore, Patent Document 4 includes a support member made of Al or an Al alloy, a bonding layer made of silver or a silver-containing composite material, a non-oxide insulating substrate such as a nitride, and the bonding layer. A circuit wiring board made of Al, Al alloy, or the like is laminated in this order, and an oxide layer is formed on both surfaces of the insulating substrate. A bonding material made of an agent is sandwiched between an insulating substrate and a circuit wiring board, etc., and formed by a bonding technique in which the metal oxide particles are reduced and sintered under heat and pressure, thereby resulting in a temperature cycle under high temperature conditions. There has been proposed a circuit board for a semiconductor module that reduces the occurrence of warpage and has excellent bonding reliability and heat dissipation.

ところで、近年、環境への意識の高まりに伴って環境対応型の電動自動車の普及が急速に進んでいるが、このような電動自動車においては、高電圧、高電流下での動作が可能なインバータ等としてパワー半導体デバイスが使用されている。そして、このような電動自動車の分野においては、より一層の普及のために、更に小型でかつ低コストであって高効率な電動システムの開発が求められており、これに伴って、インバータシステムについても更なる小型化、低コスト化、高効率化等が求められている。   By the way, in recent years, environmentally friendly electric vehicles are rapidly spreading along with the growing awareness of the environment. In such electric vehicles, inverters that can operate under high voltage and high current. For example, power semiconductor devices are used. In the field of such electric vehicles, there is a demand for the development of smaller, lower-cost, high-efficiency electric systems for further spread. However, further downsizing, cost reduction, and higher efficiency are demanded.

そして、このような要請に応えるために、これまでインバータシステムのパワー半導体デバイスとして用いられてきたシリコン(Si)基板のデバイス(Siデバイス)に代えて、破壊電界強度や熱伝導度に優れ、Siデバイスの2〜3倍の電流密度での動作や200℃以上、時には250℃以上の高温での動作が可能であって、更なる高出力密度化が期待される炭化珪素(SiC)基板のデバイス(SiCデバイス)の開発が進んでおり、車載用途では耐圧600〜1200V、定格電流100〜400Aの大容量デバイスの開発が期待されている。   In order to meet these demands, instead of silicon (Si) substrate devices (Si devices) that have been used as power semiconductor devices in inverter systems so far, they have superior breakdown electric field strength and thermal conductivity. Silicon carbide (SiC) substrate devices that can operate at a current density two to three times that of the device, operate at a high temperature of 200 ° C or higher, and sometimes at a high temperature of 250 ° C or higher. Development of (SiC devices) is advancing, and development of large-capacity devices with a withstand voltage of 600 to 1200 V and a rated current of 100 to 400 A is expected for in-vehicle applications.

このような背景の下で、回路基板についても特に高温でのより一層の接合強度や接合信頼性が強く求められているが、例えば特許文献1や特許文献3においては−40℃⇔125℃の温度範囲の冷熱サイクル試験を実施し、また、特許文献4においては−45℃⇔200℃の温度範囲の冷熱サイクル試験を実施しているに過ぎず、従来においては、必ずしも十分な接合信頼性や耐冷熱サイクル特性が達成されているとは言えない。   Against this background, circuit boards are also required to have higher bonding strength and bonding reliability especially at high temperatures. For example, in Patent Document 1 and Patent Document 3, the temperature is −40 ° C. to 125 ° C. A thermal cycle test in a temperature range is performed, and in Patent Document 4, only a thermal cycle test in a temperature range of −45 ° C. to 200 ° C. is performed. It cannot be said that the cold-heat cycle characteristics are achieved.

特開平05-201,777号公報Japanese Patent Laid-Open No. 05-201,777 特開2006-120,973号公報JP 2006-120,973 A 特開2006-228,804号公報JP 2006-228,804 A 特開2012-138,541号公報JP 2012-138,541 A

そこで、本発明者らは、セラミックス材料からなる絶縁基板とこの絶縁基板に接合されて配線回路が形成される金属板との間の接合強度に優れ、低温から高温までの冷熱サイクルによる反りや剥離等の発生を低減し信頼性を向上させることができる回路基板を開発すべく鋭意検討を行った結果、絶縁基板と金属板との間を接合する接合層を活性金属の金属被膜と所定の厚さのNi焼結層とで構成することにより、絶縁基板と金属板との間の熱膨張率の差に基づく問題を解消し、優れた接合強度及び接合信頼性を有する回路基板が得られることを見出し、本発明を完成した。   Therefore, the present inventors have excellent bonding strength between an insulating substrate made of a ceramic material and a metal plate bonded to the insulating substrate to form a wiring circuit, and warp or peel off due to a cooling cycle from low temperature to high temperature. As a result of intensive investigations to develop a circuit board that can reduce the occurrence of defects and improve reliability, a bonding layer for bonding between an insulating substrate and a metal plate is formed with a metal film of an active metal and a predetermined thickness. By forming the Ni sintered layer, the problem based on the difference in thermal expansion coefficient between the insulating substrate and the metal plate can be solved, and a circuit board having excellent bonding strength and bonding reliability can be obtained. The present invention has been completed.

従って、本発明の目的は、絶縁基板とこの絶縁基板に接合されて配線回路が形成される金属板との間の接合強度に優れていると共に、低温から高温までの冷熱サイクルによる反りや剥離等の発生を低減して接合信頼性に優れている回路基板を提供することにある。
また、本発明の他の目的は、このように接合強度及び接合信頼特性に優れた回路基板の製造方法を提供することにある。
Accordingly, an object of the present invention is excellent in bonding strength between an insulating substrate and a metal plate bonded to the insulating substrate to form a wiring circuit, and is also warped or peeled off by a cooling cycle from a low temperature to a high temperature. It is an object of the present invention to provide a circuit board that is excellent in bonding reliability by reducing the occurrence of the above.
Another object of the present invention is to provide a method of manufacturing a circuit board having excellent bonding strength and bonding reliability.

すなわち、本発明は、絶縁基板と、前記絶縁基板の片面又は両面に接合される金属板と、これら絶縁基板と金属板との間を接合する接合層とを有する回路基板であり、前記接合層は、Niと共晶物形成可能な活性金属からなると共に前記絶縁基板の片面又は両面に形成された金属被膜と、この金属被膜と前記金属板との間に形成され、Ni粒子が焼結し互いに結合したNi焼結層とからなり、前記Ni焼結層は、そのNi粒子がSEM観察で測定された平均粒径15〜150nmのNi微細粒子であると共に、その厚さが10〜200μmであることを特徴とする回路基板である。   That is, the present invention is a circuit board having an insulating substrate, a metal plate bonded to one or both surfaces of the insulating substrate, and a bonding layer for bonding between the insulating substrate and the metal plate. Is formed of an active metal capable of forming a eutectic with Ni and formed on one or both surfaces of the insulating substrate, and between the metal coating and the metal plate, and Ni particles are sintered. The Ni sintered layer is composed of Ni sintered layers bonded to each other. The Ni sintered layer is Ni fine particles having an average particle diameter of 15 to 150 nm measured by SEM observation, and has a thickness of 10 to 200 μm. There is a circuit board characterized by being.

また、本発明は、絶縁基板と、前記絶縁基板の片面又は両面に接合される金属板と、これら絶縁基板と金属板との間を接合する接合層とを有する回路基板であり、前記接合層が、Niと共晶物形成可能な活性金属からなると共に前記絶縁基板の片面又は両面に形成された金属被膜と、この金属被膜と前記金属板との間に形成され、Ni粒子が焼結し互いに結合したNi焼結層とからなり、前記Ni焼結層は、そのNi粒子がSEM観察で測定された平均粒径15〜150nmのNi微細粒子とSEM観察で測定された平均粒径0.5〜10μmのNi細粒子との混合物であると共に、これらNi微細粒子の断面積(Sn)とNi細粒子の断面積(Sm)の合計に対するNi微細粒子の断面積(Sn)の割合〔Sn/(Sn+Sm)〕が0.2〜0.3であり、また、前記Ni焼結層の厚さが10〜200μmであることを特徴とする回路基板である。   Further, the present invention is a circuit board having an insulating substrate, a metal plate bonded to one or both surfaces of the insulating substrate, and a bonding layer for bonding between the insulating substrate and the metal plate, the bonding layer Is formed of an active metal capable of forming a eutectic with Ni and formed on one or both sides of the insulating substrate and between the metal coating and the metal plate, and Ni particles are sintered. The Ni sintered layer is composed of Ni sintered layers bonded to each other. The Ni sintered layer has Ni particles whose average particle diameter is 15 to 150 nm measured by SEM observation and an average particle diameter of 0.1 mm measured by SEM observation. The ratio of the cross-sectional area (Sn) of the Ni fine particles to the sum of the cross-sectional area (Sn) of the Ni fine particles and the cross-sectional area (Sm) of the Ni fine particles. / (Sn + Sm)] is 0.2 to 0.3, and The thickness of the i sintered layer is a circuit board, which is a 10 to 200 [mu] m.

また、本発明は、前記上記の回路基板の製造方法であり、前記絶縁基板の片面又は両面にNiと共晶物形成可能な活性金属の金属被膜を形成し、得られた金属被膜及び/又は前記金属板の表面にNi粒子を含むNi接合剤を塗布し、次いで前記Ni接合剤の塗布層を挟んで前記絶縁基板と金属板とを重ね合わせ、還元性雰囲気下に250℃以上400℃以下の温度で加熱して塗布層を焼結させて厚さ10〜200μmのNi焼結層を形成し、前記絶縁基板の表面に形成された金属被膜と前記Ni焼結層とを接合層として絶縁基板と金属板との間を接合することを特徴とする回路基板の製造方法である。   Further, the present invention is the above-described method for producing a circuit board, wherein an active metal metal film capable of forming a eutectic with Ni is formed on one or both surfaces of the insulating substrate, and the obtained metal film and / or A Ni bonding agent containing Ni particles is applied to the surface of the metal plate, and then the insulating substrate and the metal plate are overlapped with the Ni bonding agent coating layer sandwiched between 250 ° C. and 400 ° C. in a reducing atmosphere. The coating layer is sintered by heating at a temperature of 10 to 200 μm in thickness to form a Ni sintered layer, and the metal coating formed on the surface of the insulating substrate and the Ni sintered layer are insulated as a bonding layer. A circuit board manufacturing method is characterized in that a substrate and a metal plate are joined together.

本発明において、回路基板を構成する絶縁基板としては、アルミナ、ジルコニア等の酸化物系や、窒化アルミニウム、窒化珪素等の窒化物系や、炭化珪素等の炭化物系等のセラミックス材料からなる基板を挙げることができる。特に、回路基板が車載用途等の用途で高い熱伝導性が求められる場合には、好ましくは窒化物系又は炭化物系のセラミックス材料である。   In the present invention, the insulating substrate constituting the circuit board is a substrate made of a ceramic material such as an oxide such as alumina or zirconia, a nitride such as aluminum nitride or silicon nitride, or a carbide such as silicon carbide. Can be mentioned. In particular, when the circuit board is required to have high thermal conductivity in applications such as in-vehicle applications, a nitride-based or carbide-based ceramic material is preferable.

また、本発明において、回路基板を構成する金属板については、導電性、熱伝導性等に優れていて回路基板に使用できるものであれば特に制限はなく、具体的には、CuやCu合金、AlやAl合金、W、及びMo等、好ましくはCuやCu合金からなる金属板を挙げることができ、また、必要により、これらの金属板の表面に無電解メッキ等の手段で所望の厚さのNi/Au(最表面:Au)やNi/Ag(最表面:Ag)等のメッキ層が設けられた金属板(メッキ層の厚さは、通常、Ni層:1〜10μm程度、Au層:0.01〜0.3μm程度、及びAg層:0.01〜0.3μm程度である。)を挙げることができる。この金属板の板厚についても、回路基板に使用できる程度であれば特に制限はなく、通常0.1mm以上、好ましくは0.2mm以上0.5mm以下であるのがよい。   In the present invention, the metal plate constituting the circuit board is not particularly limited as long as it is excellent in conductivity, thermal conductivity and the like and can be used for the circuit board. Specifically, Cu or Cu alloy is used. , Al, Al alloy, W, Mo, etc., preferably a metal plate made of Cu or Cu alloy. If necessary, the surface of these metal plates can be formed to a desired thickness by means such as electroless plating. A metal plate provided with a plating layer such as Ni / Au (outermost surface: Au) or Ni / Ag (outermost surface: Ag) (the thickness of the plating layer is usually Ni layer: about 1 to 10 μm, Au Layer: about 0.01 to 0.3 μm, and Ag layer: about 0.01 to 0.3 μm). The thickness of the metal plate is not particularly limited as long as it can be used for a circuit board, and is usually 0.1 mm or more, preferably 0.2 mm or more and 0.5 mm or less.

本発明において、前記絶縁基板と金属板との間を接合する接合層は金属被膜とNi焼結層とで構成される。
ここで、接合層を構成する金属被膜については、前記Ni焼結層を形成する際にこの金属被膜に接するNi接合剤の塗布層中のNiと共晶物を形成することができる活性金属で形成されたものである必要があり、このような活性金属としては、例えばTi、Zr、Hf及びNb等を挙げることができ、これらはその1種のみを単独で用いることができるほか、2種以上を混合物として用いることもできる。そして、この金属被膜は前記絶縁基板の表面に形成されるものであり、また、絶縁基板の表面に金属被膜を形成する方法としては、絶縁基板の表面に所望の厚さの金属皮膜を形成できればよく、従来公知の方法を採用することができ、具体的には例えば、蒸着法や、スパッタリング法や、圧延加工で形成された前記活性金属の金属箔を載置して被着させる方法等を採用することができる。
In the present invention, the bonding layer for bonding between the insulating substrate and the metal plate is composed of a metal film and a Ni sintered layer.
Here, the metal film constituting the bonding layer is an active metal capable of forming a eutectic with Ni in the Ni bonding agent coating layer in contact with the metal film when the Ni sintered layer is formed. Examples of such active metals include Ti, Zr, Hf, and Nb. These can be used alone or in combination with two kinds of active metals. The above can also be used as a mixture. The metal film is formed on the surface of the insulating substrate. Also, as a method of forming the metal film on the surface of the insulating substrate, a metal film having a desired thickness can be formed on the surface of the insulating substrate. Well, a conventionally known method can be adopted, specifically, for example, a vapor deposition method, a sputtering method, a method of placing and depositing the metal foil of the active metal formed by rolling, etc. Can be adopted.

また、前記絶縁基板の表面に形成する金属被膜の厚さについては、特に制限はないが、金属板と絶縁基板との間の十分な接合強度と、回路基板の十分な機械的強度を確保するという観点から、好ましくは0.05μm以上1μm以下、より好ましくは0.1μm以上0.9μm以下であるのがよく、0.05μmより薄いとチタン−ニッケル共晶物の絶対量が不足し、用途によっては前記絶縁基板と金属板との間の所望の接合強度を達成できない虞があり、反対に、1μmより厚くなるとチタン−ニッケル共晶物が過剰に生成され、用途によっては所望の機械的強度を有する回路基板が得られない虞がある。   Further, the thickness of the metal coating formed on the surface of the insulating substrate is not particularly limited, but sufficient bonding strength between the metal plate and the insulating substrate and sufficient mechanical strength of the circuit board are ensured. From this point of view, it is preferably 0.05 μm or more and 1 μm or less, more preferably 0.1 μm or more and 0.9 μm or less. If it is thinner than 0.05 μm, the absolute amount of the titanium-nickel eutectic is insufficient, Depending on the application, the desired bonding strength between the insulating substrate and the metal plate may not be achieved. On the other hand, when the thickness exceeds 1 μm, an excessive amount of titanium-nickel eutectic is formed. There is a possibility that a circuit board having the above cannot be obtained.

また、前記接合層を構成するNi焼結層は、前記絶縁基板の表面に形成された金属被膜の表面に、及び/又は、前記金属板の表面にNi粒子を含むNi接合剤を塗布し、次いで絶縁基板と金属板とを前記Ni接合剤の塗布層が絶縁基板表面の金属被膜と金属板との間に挟み込まれるように重ね合わせ、この挟み込まれた塗布層を焼結させて形成されるものであり、この焼結時に塗布層中のNi粒子が互いに接触した部分で焼結し、いわゆるネック部を形成して結合し、Ni焼結層を形成する。   Further, the Ni sintered layer constituting the bonding layer is coated with a Ni bonding agent containing Ni particles on the surface of the metal film formed on the surface of the insulating substrate and / or on the surface of the metal plate, Next, the insulating substrate and the metal plate are overlapped so that the Ni bonding agent coating layer is sandwiched between the metal coating on the surface of the insulating substrate and the metal plate, and the sandwiched coating layer is sintered. In this sintering, Ni particles in the coating layer are sintered at portions where they are in contact with each other, and a so-called neck portion is formed and bonded to form a Ni sintered layer.

ここで、Ni焼結層の厚さについては、絶縁基板と金属板との間の熱膨張率の差(熱膨張率差)が原因で発生する熱応力を小さくして所望の接合強度及び接合信頼性を得るために、通常10μm以上200μm以下、好ましくは10μm以上100μm以下である必要があり、このNi焼結層の厚さが10μmより薄いと、回路基板全体で発生する応力を小さくする効果のあるNiの割合が不足し、金属板と絶縁基板の線膨張係数差がダイレクトに発生して影響し合い、接合強度が低下し、また、接合信頼性が悪くなり、反対に、200μmより厚くなると、Ni接合剤の供給量及び接合工程の工程管理を考慮すると生産性が悪くなってコスト高になり、しかも、Ni焼結層内に空隙やワレといった欠陥が入り易くなる虞がある。   Here, with respect to the thickness of the Ni sintered layer, the thermal stress generated due to the difference in thermal expansion coefficient (thermal expansion coefficient difference) between the insulating substrate and the metal plate is reduced to reduce the desired bonding strength and bonding. In order to obtain reliability, it is usually required to be 10 μm or more and 200 μm or less, preferably 10 μm or more and 100 μm or less. If the thickness of this Ni sintered layer is less than 10 μm, the effect of reducing the stress generated in the entire circuit board is reduced. The ratio of Ni with a certain amount is insufficient, the difference in coefficient of linear expansion between the metal plate and the insulating substrate is directly generated and influenced, the bonding strength is lowered, and the bonding reliability is deteriorated. On the contrary, it is thicker than 200 μm. In this case, if the supply amount of the Ni bonding agent and the process control of the bonding process are taken into consideration, the productivity is deteriorated and the cost is increased, and defects such as voids and cracks may easily enter the Ni sintered layer.

そして、このNi焼結層については、走査型電子顕微鏡(SEM)で観察した際に、そのSEM画像を用いて観察され測定されるNi粒子が平均粒径15nm以上150nm以下、好ましくは80nm以上110nm以下のNi微細粒子であるのがよく、また、より好ましくはこのNi焼結層のNi微細粒子における粒度分布の標準偏差値が20nm以下、好ましくは18nm以下であるのがよい。ここで、このSEM観察で測定される平均粒径が15nm未満であると、凝集し易くなって取扱が難しくなり、また、表面積が増加して必要とする分散剤量も増え、分散剤が焼成後も有機物として残存して焼結を阻害し易くなり、接合強度と接合信頼性が低下する虞があり、反対に、150nmを超えると400℃以下での低温焼成が難しくなる。また、Ni焼結層のNi微細粒子における粒度分布の標準偏差値が20nm以下であることにより、標準偏差が大きいものと比べて、粒径の異なる2つの粒子を混ぜた場合に充填率を高くして接合強度を高くすることができるという利点がある。   And about this Ni sintered layer, when observed with a scanning electron microscope (SEM), the Ni particles observed and measured using the SEM image have an average particle size of 15 nm to 150 nm, preferably 80 nm to 110 nm. The following Ni fine particles are preferable, and the standard deviation value of the particle size distribution in the Ni fine particles of the Ni sintered layer is more preferably 20 nm or less, and preferably 18 nm or less. Here, when the average particle diameter measured by SEM observation is less than 15 nm, the particles easily aggregate and are difficult to handle, and the surface area increases and the amount of dispersant required increases. After that, it remains as an organic substance, and the sintering is liable to be hindered, and there is a concern that the bonding strength and the bonding reliability may be lowered. On the contrary, if it exceeds 150 nm, low-temperature baking at 400 ° C. or less becomes difficult. In addition, since the standard deviation value of the particle size distribution of Ni fine particles in the Ni sintered layer is 20 nm or less, the filling rate is increased when two particles having different particle diameters are mixed as compared with the case where the standard deviation is large. Thus, there is an advantage that the bonding strength can be increased.

また、このNi焼結層において、Ni粒子の充填密度をより高くしてNi粒子間の接触面積を高くすると共にNi粒子間の空隙を小さくし、より一層の接合強度と接合信頼性を得るために、Ni焼結層のNi粒子について、SEM観察で測定された平均粒径15〜150nm、好ましくは平均粒径80〜110nmのNi微細粒子とSEM観察で測定された平均粒径0.5〜10μm、好ましくは平均粒径3〜7μmのNi細粒子とが、これらNi微細粒子の断面積(Sn)とNi細粒子の断面積(Sm)の合計に対するNi微細粒子の断面積(Sn)の割合〔Sn/(Sn+Sm)〕の値が0.2〜0.3となるように存在させてもよく、また、より好ましくはこのNi焼結層のNi微細粒子における粒度分布の標準偏差値が20nm以下、好ましくは18nm以下であり、Ni焼結層のNi細粒子における粒度分布の標準偏差値が10μm以下、好ましくは5μm以下であるのがよい。なお、Ni微細粒子の断面積(Sn)とNi細粒子の断面積(Sm)は、先ず300nm以下の粒子を微細粒子とし、また、1μm以上の粒子を細粒子として分別し、これら微細粒子と細粒子とについて、それぞれ後述する「SEM観察で測定された平均粒径とその標準偏差値」の場合と同様にして算出する。   Further, in this Ni sintered layer, to increase the packing density of Ni particles to increase the contact area between Ni particles and to reduce the gap between Ni particles, and to obtain further bonding strength and bonding reliability. Further, with respect to Ni particles of the Ni sintered layer, Ni fine particles having an average particle diameter of 15 to 150 nm, preferably 80 to 110 nm, measured by SEM observation, and an average particle diameter of 0.5 to 0.5 measured by SEM observation. Ni fine particles having an average particle diameter of 3 to 7 μm are 10 μm, and the cross-sectional area (Sn) of the Ni fine particles with respect to the sum of the cross-sectional area (Sn) of these Ni fine particles and the cross-sectional area (Sm) of the Ni fine particles. The ratio [Sn / (Sn + Sm)] may be present so that the value is 0.2 to 0.3, and more preferably, the standard deviation value of the particle size distribution in the Ni fine particles of the Ni sintered layer is Ni sintered layer of 20 nm or less, preferably 18 nm or less The standard deviation value of the particle size distribution in the Ni fine particles is 10 μm or less, preferably 5 μm or less. The cross-sectional area of Ni fine particles (Sn) and the cross-sectional area of Ni fine particles (Sm) are first classified as fine particles of 300 nm or less and fine particles of 1 μm or more. The fine particles are calculated in the same manner as in the case of “average particle diameter measured by SEM observation and its standard deviation value” described later.

ここで、このSEM観察で測定されるNi微細粒子の平均粒径が15nm未満であると、凝集し易くなって取扱が難しくなり、また、表面積が増加して必要とする分散剤量も増え、分散剤が焼成後も有機物として残存して焼結を阻害し易くなり、接合強度と接合信頼性が低下する虞があり、反対に、150nmを超えると400℃以下での低温焼成が難しくなり、SEM観察で測定されるNi細粒子の平均粒径が0.5μm未満であると、Ni微細粒子とNi細粒子との粒径の比が1に近づいていき、充填率が下がって接合強度が低下し、空隙率が多くなって接合信頼性が低下する虞があり、反対に、10μmを超えるとNi接合剤の粘度が高くなり、Ni接合剤の塗布が困難になる虞が生じる。また、Ni焼結層のNi微細粒子における粒度分布の標準偏差値が20nm以下であることにより、標準偏差が大きいものと比べて、粒径の異なる2つの粒子を混ぜた場合に充填率が上げ易いという利点があり、また、Ni焼結層のNi細粒子における粒度分布の標準偏差値が10μm以下であることにより、20μm以下の粒子が大半となり、Ni接合剤を印刷により塗布できる程度の粘度を保持できる。更に、Ni微細粒子の割合〔Sn/(Sn+Sm)〕が0.2〜0.3の値の範囲から外れると、いずれの場合もNi粒子の充填率が下がり、Ni微細粒子とNi細粒子とを混合して用いることによる更に向上した接合強度及び/又は接合信頼性を達成し得なくなる。この場合のNi焼結層の厚さについては、通常50μm以上200μm以下、好ましくは80μm以上150μm以下である。   Here, if the average particle size of the Ni fine particles measured by this SEM observation is less than 15 nm, it is easy to aggregate and difficult to handle, and the surface area increases and the amount of dispersant required increases, The dispersant remains as an organic substance even after firing, which tends to inhibit sintering, and there is a risk that the joint strength and joint reliability may be reduced. Conversely, if it exceeds 150 nm, low-temperature firing at 400 ° C. or lower becomes difficult, When the average particle size of Ni fine particles measured by SEM observation is less than 0.5 μm, the ratio of the particle size of Ni fine particles to Ni fine particles approaches 1, and the filling rate decreases and the bonding strength decreases. If the thickness exceeds 10 μm, the viscosity of the Ni bonding agent becomes high, and it may be difficult to apply the Ni bonding agent. In addition, since the standard deviation value of the particle size distribution of Ni fine particles in the Ni sintered layer is 20 nm or less, the filling rate is increased when two particles having different particle diameters are mixed as compared with the case where the standard deviation is large. The standard deviation value of the particle size distribution of Ni fine particles in the Ni sintered layer is 10 μm or less, and most of the particles are 20 μm or less, and the viscosity is such that the Ni bonding agent can be applied by printing. Can be held. Further, if the ratio of Ni fine particles [Sn / (Sn + Sm)] is out of the range of 0.2 to 0.3, the filling rate of Ni particles decreases in any case, and Ni fine particles and Ni fine particles It becomes impossible to achieve further improved bonding strength and / or bonding reliability by using a mixture of these. In this case, the thickness of the Ni sintered layer is usually 50 μm to 200 μm, preferably 80 μm to 150 μm.

本発明において、回路基板を製造する方法については、前記絶縁基板の片面又は両面にNiと共晶物形成可能な活性金属からなる金属被膜を形成する工程と、この金属被膜及び/又は前記金属板の表面にNi粒子を含むNi接合剤を塗布する工程と、前記絶縁基板と金属板とを前記Ni接合剤の塗布層が挟み込まれるように重ね合わせ、その状態で塗布層を還元性雰囲気下に250℃以上400℃以下の温度で焼結させて厚さ10〜200μmのNi焼結層を形成する工程とを有するものである。   In the present invention, a method of manufacturing a circuit board includes a step of forming a metal film made of an active metal capable of forming a eutectic with Ni on one or both surfaces of the insulating substrate, and the metal film and / or the metal plate. The Ni bonding agent containing Ni particles is applied to the surface of the substrate, and the insulating substrate and the metal plate are overlapped so that the Ni bonding agent coating layer is sandwiched, and the coating layer is placed in a reducing atmosphere in that state. And sintering at a temperature of 250 ° C. or higher and 400 ° C. or lower to form a Ni sintered layer having a thickness of 10 to 200 μm.

本発明の回路基板の製造方法において、Ni焼結層を形成する工程では、Ni粒子を含む塗布層を還元性雰囲気下に焼結させるものであり、還元性雰囲気とは、Niの酸化膜を還元することができる雰囲気をいい、具体的には、例えば、所定の濃度で水素を有する水素含有不活性ガス雰囲気であるのがよく、安全性を考えると爆発限界以下の水素濃度にする必要があるので、水素濃度が1vol%以上4vol%以下、好ましくは2vol%以上3vol%以下である窒素ガス、アルゴンガス等を例示することができる。また、焼結温度については、250℃以上400℃以下、好ましくは300℃以上400℃以下であり、この焼結温度が400℃を超えると焼成後の冷却過程において発生する熱応力が大きくなり、接合強度が低下したり、反りや剥離が起り易くなる虞がある。なお、このNi焼結層を形成する工程において、絶縁基板の金属被膜と金属板との間に挟み込まれた塗布層を焼結させる際に、この塗布層を絶縁基板と金属板の積層方向に加圧することは必ずしも必要ではないが、必要により加圧してもよく、加圧することにより粒子間距離が縮まり、粒子と粒子の接触面積が増加して焼結性が向上し、また、Ni粒子の充填率も高くなって空隙が減少し、接合強度や接合信頼性がより向上する。   In the circuit board manufacturing method of the present invention, in the step of forming the Ni sintered layer, the coating layer containing Ni particles is sintered in a reducing atmosphere, and the reducing atmosphere is a Ni oxide film. An atmosphere that can be reduced, specifically, for example, a hydrogen-containing inert gas atmosphere having hydrogen at a predetermined concentration, and it is necessary to make the hydrogen concentration below the explosion limit for safety reasons. Therefore, nitrogen gas, argon gas, etc. whose hydrogen concentration is 1 vol% or more and 4 vol% or less, Preferably they are 2 vol% or more and 3 vol% or less can be illustrated. The sintering temperature is 250 ° C. or higher and 400 ° C. or lower, preferably 300 ° C. or higher and 400 ° C. or lower. When this sintering temperature exceeds 400 ° C., the thermal stress generated in the cooling process after firing increases. There is a possibility that the bonding strength is reduced, and warping and peeling are likely to occur. In the step of forming the Ni sintered layer, when the coating layer sandwiched between the metal film of the insulating substrate and the metal plate is sintered, the coating layer is placed in the stacking direction of the insulating substrate and the metal plate. It is not always necessary to pressurize, but pressurization may be performed if necessary. By pressurizing, the distance between the particles is reduced, the contact area between the particles is increased, and the sinterability is improved. The filling rate is also increased, voids are reduced, and bonding strength and bonding reliability are further improved.

本発明において、前記Ni接合剤に含まれるNi粒子については、Ni接合剤の塗布層の焼結時に250〜400℃の温度で焼結させることができること、及び、この焼結温度でNi粒子間が強固に結合することが必要であることから、SEM観察で測定された平均粒径15nm以上150nm以下、好ましくは平均粒径80nm以上110nm以下の分散剤で保護されたNi微細粒子の存在が不可欠であり、また、Ni粒子の充填密度をより高くしてNi粒子間の接触面積を高くすると共にNi粒子間の空隙を小さくし、より一層の接合強度と接合信頼性を得るために、SEM観察で測定された平均粒径0.5μm以上10μm以下の分散剤で保護されたNi細粒子をこれらNi微細粒子の断面積(Sn)とNi細粒子の断面積(Sm)の合計に対するNi微細粒子の断面積(Sn)の割合〔Sn/(Sn+Sm)〕の値が0.2〜0.3となるように存在させてもよい。このNi接合剤中の分散剤で保護されたNi微細粒子の平均粒径が15nm未満であると、凝集し易くなって取扱が難しくなり、また、表面積が増加して必要とする分散剤量も増え、分散剤が焼成後も有機物として残存して焼結を阻害し易くなり、接合強度と接合信頼性が低下する虞があり、反対に、150nmを超えると400℃以下での低温焼成が難しくなる。また、前記Ni接合剤中の分散剤で保護されたNi細粒子の平均粒径が0.5μm未満であると、Ni微細粒子とNi細粒子との粒径の比が1に近づいていき、充填率が下がって接合強度が低下し、空隙率が多くなって接合信頼性が低下する虞があり、反対に、10μmを超えると、Ni接合剤の粘度が高くなり、Ni接合剤の塗布が困難になる虞が生じ、更に、Ni微細粒子の割合〔Sn/(Sn+Sm)〕の値が0.2〜0.3の値の範囲から外れると、いずれの場合もNi粒子の充填率が下がり、Ni微細粒子とNi細粒子とを混合して用いることによる更に向上した接合強度及び/又は接合信頼性を達成し得なくなる。なお、Ni接合剤において、Ni微細粒子の断面積(Sn)とNi細粒子の断面積(Sm)の合計に対するNi微細粒子の断面積(Sn)の割合〔Sn/(Sn+Sm)〕の値が0.2〜0.3となるように存在させるには、前記断面積の割合〔Sn/(Sn+Sm)〕がNi接合剤中のこれらNi微細粒子とNi細粒子との体積割合に概ね一致するので、これらNi微細粒子とNi細粒子とを体積割合で0.2〜0.3となるように存在させればよい。   In the present invention, the Ni particles contained in the Ni bonding agent can be sintered at a temperature of 250 to 400 ° C. during the sintering of the Ni bonding agent coating layer, and between the Ni particles at this sintering temperature. Therefore, the presence of Ni fine particles protected with a dispersant having an average particle diameter of 15 nm or more and 150 nm or less, preferably an average particle diameter of 80 nm or more and 110 nm or less as measured by SEM is indispensable. In order to increase the packing density of Ni particles to increase the contact area between Ni particles and to reduce the gap between Ni particles, and to obtain further bonding strength and bonding reliability, SEM observation is performed. Ni fine particles protected with a dispersant having an average particle size of 0.5 μm or more and 10 μm or less measured in Step 1 are Ni fine particles relative to the sum of the cross-sectional area (Sn) of these Ni fine particles and the cross-sectional area (Sm) of Ni fine particles. Cross-sectional area ( The ratio [Sn / (Sn + Sm)] may be 0.2 to 0.3. When the average particle size of the Ni fine particles protected with the dispersant in the Ni bonding agent is less than 15 nm, the Ni particles easily aggregate and become difficult to handle, and the surface area increases and the amount of dispersant required Increased, the dispersant remains as an organic substance even after firing, which tends to hinder sintering, and there is a risk that joint strength and joint reliability will be reduced. Conversely, if it exceeds 150 nm, low-temperature firing at 400 ° C. or lower is difficult. Become. When the average particle size of the Ni fine particles protected with the dispersant in the Ni bonding agent is less than 0.5 μm, the ratio of the particle size of the Ni fine particles to the Ni fine particles approaches 1; If the filling rate is lowered, the bonding strength is lowered, the porosity is increased, and the bonding reliability may be reduced. On the contrary, if it exceeds 10 μm, the viscosity of the Ni bonding agent is increased and the application of the Ni bonding agent is performed. If the Ni fine particle ratio [Sn / (Sn + Sm)] is out of the range of 0.2 to 0.3, the Ni particle filling rate will decrease in any case. Further, it is impossible to achieve further improved bonding strength and / or bonding reliability by using a mixture of Ni fine particles and Ni fine particles. In the Ni bonding agent, the ratio of the cross-sectional area (Sn) of the Ni fine particles to the sum of the cross-sectional area (Sn) of the Ni fine particles and the cross-sectional area (Sm) of the Ni fine particles is [Sn / (Sn + Sm)]. In order to make it exist so that it may become 0.2-0.3, the ratio [Sn / (Sn + Sm)] of the said cross-sectional area substantially corresponds to the volume ratio of these Ni fine particles and Ni fine particles in Ni bonding agent. Therefore, these Ni fine particles and Ni fine particles may be present so that the volume ratio is 0.2 to 0.3.

ここで、前記Ni接合剤は、分散剤を用いてNi粒子を分散媒中に分散させて得られたNi粒子スラリーやNi粒子ペーストであり、好ましくは高Ni濃度に調製されたNi粒子ペーストである。分散剤は凝集を抑制する役割と、酸化を抑制する役割を担っている。
そして、Ni接合剤を調製するための分散剤としては、焼結温度によって分解若しくは消失する有機物であるのがよく、好ましくは、脂肪酸からなる分散剤、又は、脂肪酸に脂肪族アミンを更に含んだ分散剤を用いるようにするのがよい。このうち、脂肪酸については、飽和又は不飽和のいずれであってもよく、直鎖状又は分岐状のものであってもよく、例えば、プロピオン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸等の炭素数3〜8の飽和脂肪酸、ブテン酸(クロトン酸等)、ペンテン酸、ヘキセン酸、ヘプテン酸、オクテン酸、ソルビン酸(2,4-ヘキサジエン酸)、ドデカン酸、テトラデカン酸、ヘキサデカン酸、オクタデカン酸、オレイン酸等を挙げることができる。分散剤には、これらの脂肪酸が1種単独で含まれていても2種以上含まれていてもよい。一方、脂肪族アミンは、飽和又は不飽和のいずれでもよく、1級、2級、3級のいずれのアミンであってもよく、直鎖状又は分岐状のものであってもよい。このような脂肪族アミンとしては、例えば、プロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、ヘプチルアミン、オクチルアミン等アルキルアミン、アリルアミン等のアルケニルアミン、ドデシルアミン、テトラデシルアミン、ヘキサデシルアミン、オクタデシルアミン、オレイルアミン等を挙げることができる。分散剤には、これらの脂肪族アミンが1種単独で含まれていても2種以上含まれていてもよい。
Here, the Ni bonding agent is a Ni particle slurry or Ni particle paste obtained by dispersing Ni particles in a dispersion medium using a dispersant, preferably a Ni particle paste prepared to a high Ni concentration. is there. The dispersant has a role of suppressing aggregation and a role of suppressing oxidation.
The dispersant for preparing the Ni bonding agent is preferably an organic substance that decomposes or disappears depending on the sintering temperature. Preferably, the dispersant includes a fatty acid, or the fatty acid further includes an aliphatic amine. It is preferable to use a dispersant. Among these, the fatty acid may be either saturated or unsaturated, and may be linear or branched, such as propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, C3-C8 saturated fatty acids such as octanoic acid, butenoic acid (crotonic acid, etc.), pentenoic acid, hexenoic acid, heptenoic acid, octenoic acid, sorbic acid (2,4-hexadienoic acid), dodecanoic acid, tetradecanoic acid, Examples include hexadecanoic acid, octadecanoic acid, and oleic acid. The dispersant may contain one of these fatty acids alone or two or more of them. On the other hand, the aliphatic amine may be saturated or unsaturated, and may be any of primary, secondary, and tertiary amines, and may be linear or branched. Examples of such aliphatic amines include propylamine, butylamine, pentylamine, hexylamine, heptylamine, alkylamines such as octylamine, alkenylamines such as allylamine, dodecylamine, tetradecylamine, hexadecylamine, octadecylamine. And oleylamine. The dispersant may contain one of these aliphatic amines alone or two or more thereof.

また、このようなNi接合剤を調製するための分散媒としては、Ni接合剤の塗布層を焼結させてNi焼結層を形成する際に、少なくともNi粒子の焼結が阻害されないところまで揮発し、あるいは、消失すればよい。このような分散媒としては、例えば、ドデカノール、オクタノール、オレイルアルコール、エチレングリコール,トリエチレングリコール,テトラエチレングリコール、テルピネオール、メタノール,エタノール,プロパノール等のアルコール系溶剤や、ヘキサン、トルエン等の新油性溶剤等の有機溶剤を例示することができる。   In addition, as a dispersion medium for preparing such a Ni bonding agent, at least the sintering of Ni particles is not hindered when forming a Ni sintered layer by sintering a coating layer of Ni bonding agent. It only has to volatilize or disappear. Examples of such a dispersion medium include alcohol solvents such as dodecanol, octanol, oleyl alcohol, ethylene glycol, triethylene glycol, tetraethylene glycol, terpineol, methanol, ethanol, and propanol, and new oil solvents such as hexane and toluene. An organic solvent such as

そして、Ni接合剤においては、例えば、分散剤で保護されたNi微細粒子あるいはNi微細粒子及びNi細粒子を50〜95質量%、有機溶媒を5〜50質量%の割合で配合されるのがよい。なお、このNi接合剤中には、本発明の効果を損なわない範囲において、必要に応じて消泡剤、可塑剤、界面活性剤、増粘剤、バインダー等を、有機溶媒中に好ましくは10質量%以下、より好ましくは5質量%以下となる範囲で配合することができる。   In the Ni bonding agent, for example, Ni fine particles protected with a dispersant or Ni fine particles and Ni fine particles are blended in a proportion of 50 to 95% by mass and an organic solvent in a proportion of 5 to 50% by mass. Good. In the Ni bonding agent, an antifoaming agent, a plasticizer, a surfactant, a thickener, a binder, and the like are preferably added to the organic solvent as necessary within a range not impairing the effects of the present invention. It can mix | blend in the range used as mass% or less, More preferably 5 mass% or less.

本発明の方法により得られた本発明の回路基板においては、絶縁基板の表面に形成された金属皮膜と、この金属被膜と金属板との間に形成されたNi焼結層とが前記絶縁基板と金属板との間の接合層となり、また、この接合層においては、前記絶縁基板表面の金属被膜とNi焼結層とが、400℃以下の低い焼成温度においてもその接合部分で金属被膜の活性金属とNi焼結層のNiとの共晶物を形成しながら強固に結合して一体に接合し、また、Ni焼結層においては、Ni粒子がいわゆるネック部を形成して互いに強固に結合していると共に、絶縁基板と金属板との間の熱膨張率〔Niの線熱膨張係数(CTE:0〜100℃):13.3×10-6/K〕を有してこれら絶縁基板と金属板との間の大きな熱膨張率差に起因して発生する熱応力に伴う反りや剥離等の問題を解消することができ、これによって、本発明の回路基板は優れた接合強度と接合信頼性とを発揮するものである。 In the circuit board of the present invention obtained by the method of the present invention, a metal film formed on the surface of the insulating substrate and a Ni sintered layer formed between the metal film and the metal plate are the insulating substrate. In this bonding layer, the metal film on the surface of the insulating substrate and the Ni sintered layer are formed at the bonding portion even at a low firing temperature of 400 ° C. or less. While forming a eutectic of the active metal and Ni in the Ni sintered layer, they are firmly bonded and joined together, and in the Ni sintered layer, Ni particles form a so-called neck portion and are firmly attached to each other. In addition to being bonded, they have a coefficient of thermal expansion between the insulating substrate and the metal plate [Ni linear thermal expansion coefficient (CTE: 0 to 100 ° C.): 13.3 × 10 −6 / K]. Problems such as warpage and delamination due to thermal stress caused by large difference in thermal expansion coefficient between substrate and metal plate Thus, the circuit board of the present invention exhibits excellent bonding strength and bonding reliability.

〔Ni粒子の平均粒径とその標準偏差値について〕
なお、本発明において、「SEM観察で測定された平均粒径とその標準偏差値」は、以下の方法で測定用試料を調製し、また、走査型電子顕微鏡(FE-SEM)〔株式会社日立ハイテクノロジーズ、S-4800〕を使用し、以下の方法で撮影した測定用試料のSEM画像から求められたものである。
[About the average particle size of Ni particles and its standard deviation value]
In the present invention, “average particle diameter measured by SEM observation and its standard deviation value” are prepared by the following method, and a measurement sample is prepared, and a scanning electron microscope (FE-SEM) [Hitachi Co., Ltd.] It was obtained from the SEM image of the measurement sample photographed by the following method using High Technologies, S-4800].

(1) SEM画像の取得
また、回路基板を調製する際に用いたNi接合剤中のNi粒子の平均粒径とその標準偏差値を測定するための試料については、いわゆる「分散法」でSEM観察用サンプルを作製し、得られたSEM観察用サンプルをSEMにより10万倍で観察し、SEM画像を取得する。すなわち、Ni接合剤中に添加するNi粒子粉末の小さじ1杯程度を10mlのスクリュー管に入れ、約9mlのエタノールを添加し、超音波洗浄を5分間行った後に十分に静置し、次いでスクリュー管の底に発生した沈殿物を取らないように液の上澄み液だけを回収する。次にこの回収した上澄み液を別のスクリュー管に入れて合計9mlになるようにエタノールを追加し、上記と同様の超音波洗浄、静置、及び上澄み液の回収の操作を2回繰り返す。その後、回収された上澄み液をカーボン支持膜に滴下し乾燥させてSEM観察用サンプルを調製する。このようにして調製されたSEM観察用サンプルについて、Ni微細粒子の場合にはSEMにより10万倍で観察し、また、Ni細粒子の場合にはSEMにより1.5千倍で観察し、それぞれSEM画像を取得する。このようにして得られたNi微細粒子のSEM画像の一例(実施例1で用いられたNi微細粒子ペースト中のNi微細粒子)を図1(A)に示す。
(1) Acquisition of SEM image The sample for measuring the average particle size of Ni particles in the Ni bonding agent used for preparing the circuit board and its standard deviation value is obtained by SEM using the so-called “dispersion method”. An observation sample is prepared, and the obtained SEM observation sample is observed with a SEM at a magnification of 100,000 to acquire an SEM image. That is, about 1 teaspoon of Ni particle powder to be added to the Ni bonding agent is put into a 10 ml screw tube, about 9 ml of ethanol is added, and after ultrasonic cleaning for 5 minutes, it is left to stand sufficiently, and then screwed. Only the supernatant of the liquid is collected so as not to remove the precipitate generated at the bottom of the tube. Next, the collected supernatant is put in another screw tube, ethanol is added so that the total amount becomes 9 ml, and the operations of ultrasonic cleaning, standing, and collecting the supernatant are repeated twice as described above. Thereafter, the collected supernatant is dropped on a carbon support film and dried to prepare a sample for SEM observation. About the sample for SEM observation prepared in this way, in the case of Ni fine particle, it observes by 100,000 times by SEM, and in the case of Ni fine particle, it observes by 1.5000 times by SEM, SEM images are acquired. An example of the SEM image of the Ni fine particles thus obtained (Ni fine particles in the Ni fine particle paste used in Example 1) is shown in FIG.

回路基板のNi焼結層におけるNi粒子の平均粒径とその標準偏差値を測定するための試料については、先ず回路基板を硬化性エポキシ樹脂中に埋め込み、樹脂を硬化させた後に砥石切断機を用いてSEM試料台に納まる大きさに切り出し、次いで切断面を研磨してSEM観察用断面に仕上げて調製する。このようにして調製された測定用試料のSEM観察用断面をSEMにより10万倍で観察し、Ni微細粒子のSEM画像を取得する。このようにして得られたNi焼結層中のNi微細粒子のSEM画像の一例(実施例1の回路基板)を図1(B)に示す。   For the sample for measuring the average particle size of Ni particles in the Ni sintered layer of the circuit board and its standard deviation value, first embed the circuit board in a curable epoxy resin, cure the resin, and then use a grindstone cutting machine. It is cut out to a size that fits on the SEM sample stage, and then the cut surface is polished and finished into a cross section for SEM observation. The cross section for SEM observation of the measurement sample prepared in this way is observed with a SEM at a magnification of 100,000 times to obtain an SEM image of Ni fine particles. FIG. 1B shows an example of an SEM image of Ni fine particles in the Ni sintered layer thus obtained (circuit board of Example 1).

(2) Ni粒子の平均粒径とその標準偏差値の算出
次いで、得られたSEM画像を画像処理が可能なソフト〔Microsoft(登録商標) Office PowerPoint(登録商標)等〕に読み込ませ、最表面に並ぶ粒子を目視にて判断し、最表面の一次粒子のエッヂ部分をなぞり書きし、粒子を1つずつ塗り潰し、併せて基準となるスケールバーを直線で書き足した。
次に、上記の画像をtif形式に書き出し、画像解析ツールImageJ 1.47V(Wayne Rasband, National Institutes of Health, USA. ImageJ is in the public domain.)に読み込ませた。そして、スケールバー付きの読み込んだ画像をグレースケール化(8bit)した上で、画像中のスケールバーの長さを測定し、測定したスケールバーの長さから、読み込んだ画像の1ピクセル当りの長さを登録した。次に、スケールバー以外の部分を選択して粒子のみの画像にし、当該粒子画像を二値化するために閾値を決めた。その際、粒子が重なっている部分(焼結後のネック部)については、幾何学処理(Watershed処理)により互いに分離して二値化した。
(2) Calculation of the average particle size of Ni particles and the standard deviation value Next, the obtained SEM image is read into software that can perform image processing (such as Microsoft® Office PowerPoint®), and the outermost surface. The particles arranged in the column were visually judged, the edge portion of the primary particle on the outermost surface was traced, the particles were filled one by one, and the reference scale bar was added with a straight line.
Next, the above image was written out in tif format and read into an image analysis tool ImageJ 1.47V (Wayne Rasband, National Institutes of Health, USA. ImageJ is in the public domain.). Then, after converting the read image with the scale bar to gray scale (8bit), measure the length of the scale bar in the image, and from the measured length of the scale bar, the length per pixel of the read image Registered. Next, a portion other than the scale bar was selected to form an image of only particles, and a threshold value was determined in order to binarize the particle image. At that time, the portions where the particles overlap (the neck portion after sintering) were separated from each other by the geometric processing (Watershed processing) and binarized.

このようにして得られた二値化像は、既に各粒子が識別されたものであることから、フェレット(Feret)径〔粒子内の二点間で最も長い距離〕を読み取り、算術平均フェレット径を算出した。このときのフェレット径は、粒子が真球の場合は直径に相当する。
上記のようにして、視野角1270nm×950nmのSEM画像(10万倍)を任意に選び出し、SEM画像内の凡そ70〜100個のNi粒子について、算術平均フェレット径を算出して平均粒径とし、全てのフェレット径からエクセルにてSTDEV式を用いてその標準偏差値を算出した。
Since the binarized image obtained in this way has already identified each particle, the ferret diameter (the longest distance between two points in the particle) is read, and the arithmetic average ferret diameter Was calculated. The ferret diameter at this time corresponds to the diameter when the particle is a true sphere.
As described above, a SEM image (100,000 times) having a viewing angle of 1270 nm × 950 nm is arbitrarily selected, and the arithmetic average ferret diameter is calculated and average particle diameter is calculated for approximately 70 to 100 Ni particles in the SEM image. The standard deviation values were calculated from all ferret diameters using Excel using the STDEV equation.

なお、Ni接合剤に含まれるNi粒子は、その焼結温度が250〜400℃であるので、焼結された後のNi焼結層中においても、互いに接触した部分で焼結して、いわゆるネック部を形成して結合した状態で存在し、Ni接合剤中のNi粒子の粒径は焼結後のNi焼結層中においても測定可能な程度に実質的に維持される。
すなわち、一般に、粒子の焼結プロセスにおいては、(イ)粒子の鋭角接触、(ロ)ネック部の生成・成長、開気孔の生成、(ハ)ネック部・粒界の肥大化、開気孔の連続性(ネットワーク形成)、及び(ニ)気孔の切断・孤立、消滅の順で進行し、例えばAgナノ粒子やAuナノ粒子では、これらのプロセスが進行し易く、最終的には(ニ)のように連続孔がほとんど閉孔して隙間がなくなる(例えば、『焼結材料工学』石田恒雄著、森北出版株式会社の78頁参照)。これに対して、本発明においては、図2に示したように、(イ)Ni微細粒子の凝集による鋭角接触aから(ロ)ネック部bの成長・生成まで程度の焼結に留まり、気孔(連続孔c)が残った状態となり、焼結後のNi焼結層中においてもNi接合剤中のNi粒子の粒径が実質的に維持される。
Since the Ni particles contained in the Ni bonding agent have a sintering temperature of 250 to 400 ° C., the Ni particles after sintering are sintered at the portions in contact with each other, so-called so-called “Ni particles”. It exists in a state where the neck portion is formed and bonded, and the particle size of the Ni particles in the Ni bonding agent is substantially maintained to a measurable level even in the Ni sintered layer after sintering.
That is, in general, in the particle sintering process, (a) acute contact of particles, (b) generation / growth of neck part, generation of open pores, (c) enlargement of neck part / grain boundary, open pores The process proceeds in the order of continuity (network formation), and (d) pore cutting / isolation, annihilation. For example, in Ag nanoparticles and Au nanoparticles, these processes are likely to proceed. Thus, the continuous holes are almost closed and the gaps disappear (for example, see “Sintered Materials Engineering” by Tsuneo Ishida, page 78 of Morikita Publishing Co., Ltd.). On the other hand, in the present invention, as shown in FIG. 2, (a) the sharp contact from the agglomeration of Ni fine particles to (b) the growth / generation of the neck portion b is limited to sintering, (Continuous hole c) remains, and the particle size of Ni particles in the Ni bonding agent is substantially maintained even in the sintered Ni layer after sintering.

本発明によれば、絶縁基板とこの絶縁基板に接合されて配線回路等が形成される金属板との間の接合強度に優れ、また、低温から高温までの接合信頼性に優れており、デバイスの製造時や使用時における反りや剥離等の発生を低減し得る回路基板を提供することができる。また、本発明の方法によれば、このように接合強度及び接合信頼性に優れた回路基板を工業的に容易に製造することができる。   According to the present invention, the bonding strength between the insulating substrate and the metal plate bonded to the insulating substrate to form a wiring circuit and the like is excellent, and the bonding reliability from low temperature to high temperature is excellent. The circuit board which can reduce generation | occurrence | production of the curvature, peeling, etc. at the time of manufacture or use of can be provided. In addition, according to the method of the present invention, a circuit board having excellent bonding strength and bonding reliability can be easily manufactured industrially.

図1において、(A)は実施例1で用いられたNi微細粒子ペースト中のNi微細粒子を撮影したSEM画像の一例であり、また、(B)は、実施例1で得られた回路基板におけるNi焼結層中のNi微細粒子を撮影したSEM画像の一例である。1A is an example of an SEM image obtained by photographing Ni fine particles in the Ni fine particle paste used in Example 1, and FIG. 1B is a circuit board obtained in Example 1. FIG. It is an example of the SEM image which image | photographed the Ni fine particle in the Ni sintered layer in. 図2は、本発明におけるNi微細粒子の焼結状態を模式的に示す説明図である。FIG. 2 is an explanatory view schematically showing a sintered state of Ni fine particles in the present invention. 図3は、第1の実施形態に係る回路基板を模式的に説明する説明図である。FIG. 3 is an explanatory diagram schematically illustrating the circuit board according to the first embodiment. 図4は、第2の実施形態に係る回路基板を模式的に説明する説明図である。FIG. 4 is an explanatory diagram schematically illustrating a circuit board according to the second embodiment.

以下、添付図面に示す実施例及び比較例に基づいて、本発明の回路基板及びその製造方法を具体的に説明する。
ここで、「Ni焼結層中のNi粒子の平均粒径」は上述したNi粒子の平均粒径の求め方に従って測定した。なお、回路基板の調製に用いられたNi接合剤に含まれるNi粒子の粒径は、焼結温度400℃以下での焼結後のNi焼結層中においても、実質的に維持されるので、以下の実施例及び比較例においてはその記載を省略する。
また、「金属被膜の厚さ」及び「Ni焼結層の厚さ」については、回路基板のNi焼結層におけるNi粒子の平均粒径を測定するために調製された測定用試料を用い、この測定用試料のSEM観察用断面をSEMにより1万倍〜10万倍で観察し、スケールバーを用いて求めた。
更に、絶縁基板と金属板との間の「接合強度」については、ボンドテスター(DAGE社製万能型ボンドテスター:シリーズ4000)を用い,金属板のシェア強度をダイ・シェアモードで測定して求めた。
Hereinafter, a circuit board and a method for manufacturing the same according to the present invention will be described in detail based on examples and comparative examples shown in the accompanying drawings.
Here, “the average particle diameter of Ni particles in the Ni sintered layer” was measured according to the above-described method for determining the average particle diameter of Ni particles. The particle size of the Ni particles contained in the Ni bonding agent used for the circuit board preparation is substantially maintained even in the Ni sintered layer after sintering at a sintering temperature of 400 ° C. or less. The description is omitted in the following examples and comparative examples.
In addition, for “the thickness of the metal coating” and “the thickness of the Ni sintered layer”, a measurement sample prepared for measuring the average particle diameter of Ni particles in the Ni sintered layer of the circuit board is used. The cross section for SEM observation of this measurement sample was observed with a SEM at 10,000 to 100,000 times, and obtained using a scale bar.
Furthermore, the “bond strength” between the insulating substrate and the metal plate is determined by measuring the shear strength of the metal plate in a die / shear mode using a bond tester (DAGE Universal Bond Tester: Series 4000). It was.

〔第1の実施形態〕
図3に、本発明の第1の実施形態に係る回路基板Aが模式的に記載されている。この第1の実施形態の回路基板Aは、絶縁基板1と、金属板2と、金属被膜3aと、Ni焼結層3bと、金属板2とが順に接合された積層構造になっており、前記金属被膜3aは絶縁基板1の表面に活性金属を蒸着させて形成されており、また、前記Ni焼結層3bは金属被膜3aの表面にNi粒子を含むNi接合剤を塗布し、得られた塗布層の上に金属板2を重ね合わせ、前記Ni接合剤の塗布層を焼結させて形成されており、前記絶縁基板1と金属板2とが前記金属被膜3aとNi焼結層3bとを接合層として互いに接合されている。
[First Embodiment]
FIG. 3 schematically shows a circuit board A according to the first embodiment of the present invention. The circuit board A of the first embodiment has a laminated structure in which an insulating substrate 1, a metal plate 2, a metal coating 3a, a Ni sintered layer 3b, and a metal plate 2 are joined in order. The metal coating 3a is formed by depositing an active metal on the surface of the insulating substrate 1, and the Ni sintered layer 3b is obtained by applying a Ni bonding agent containing Ni particles on the surface of the metal coating 3a. A metal plate 2 is overlaid on the coated layer and the coated layer of the Ni bonding agent is sintered. The insulating substrate 1 and the metal plate 2 are formed of the metal coating 3a and the Ni sintered layer 3b. Are joined together as a joining layer.

〔実施例1〜12及び比較例1〜5〕
オレイン酸且つオレイルアミンで被覆された平均粒径115nmのNi微細粒子、平均粒径150nmのNi微細粒子、又は平均粒径3000nmのNi細粒子と、分散媒として沸点198℃の1-オクタノール、バインダーとしてアセタール樹脂をそれぞれ85質量%、10質量%、5質量%に相当する割合で混練して、Ni接合剤としてNi微細粒子ペーストを調製した。なお、Ni粒子の平均粒径は、上述した方法によりSEM観察で測定された値である。
[Examples 1 to 12 and Comparative Examples 1 to 5]
Ni fine particles having an average particle size of 115 nm, Ni fine particles having an average particle size of 150 nm, or Ni fine particles having an average particle size of 3000 nm coated with oleic acid and oleylamine, 1-octanol having a boiling point of 198 ° C. as a dispersion medium, and a binder An acetal resin was kneaded at a ratio corresponding to 85% by mass, 10% by mass, and 5% by mass, respectively, to prepare a Ni fine particle paste as a Ni bonding agent. In addition, the average particle diameter of Ni particle | grains is the value measured by SEM observation by the method mentioned above.

次に、上記の第1の実施形態に係る回路基板Aの調製に際しては、先ず、絶縁基板1として用いられた15mm×15mm×0.6mmの大きさの窒化珪素基板の片面に表1に示す活性金属の蒸着を行い、金属被膜3aとして表1に示す金属種及び厚さの金属蒸着膜を形成した。次に、この形成された金属被膜3aの上に上記のNi接合剤を印刷により塗布し、次いでこのNi接合剤の塗布層の上に縦10mm×横10mmの大きさを有すると共に表1に示す金属種及び厚さの金属板2を載置し、この金属板2の上面から常温下に5MPa、10秒間の条件で加圧して塗布層と金属板2との間を平均化した。その後、水素濃度3vol%の窒素ガス雰囲気下に、表1に示す温度で塗布層を焼結させて表1に示す厚さのNi焼結層3bを形成し、上記の金属被膜3a及びNi焼結層3bを接合層として絶縁基板1と金属板2との間を接合した。   Next, when preparing the circuit board A according to the first embodiment, first, a silicon nitride substrate having a size of 15 mm × 15 mm × 0.6 mm used as the insulating substrate 1 is shown in Table 1 on one side. Active metal was vapor-deposited to form a metal vapor-deposited film having the metal species and thickness shown in Table 1 as the metal coating 3a. Next, the above-mentioned Ni bonding agent is applied onto the formed metal coating 3a by printing, and then has a size of 10 mm in length × 10 mm in width on the coating layer of the Ni bonding agent and is shown in Table 1. A metal plate 2 having a metal type and a thickness was placed, and the space between the coating layer and the metal plate 2 was averaged by applying pressure from the upper surface of the metal plate 2 to room temperature at 5 MPa for 10 seconds. Thereafter, the Ni layer 3b having the thickness shown in Table 1 is formed by sintering the coating layer at a temperature shown in Table 1 in a nitrogen gas atmosphere with a hydrogen concentration of 3 vol%. The insulating substrate 1 and the metal plate 2 were bonded using the bonding layer 3b as a bonding layer.

以上のようにして調製された各実施例及び比較例の回路基板について、接合強度については、ボンドテスター(DAGE社製万能型ボンドテスター:シリーズ4000)を用い、金属板のシェア強度を測定して求めた。また、接合信頼性については、気相式冷熱衝撃試験装置(ESPEC社製TSA-72ES-W)を使用し、−40℃30分の冷却と250℃30分の加熱とを1サイクルとして100サイクルの冷熱サイクルを繰り返す冷熱サイクル試験を実施し、試験後の試験片を観察し、金属板が絶縁基板から剥離しているか否かと、回路基板を定盤上に載置した際にその端部若しくは中央部での反りや浮き上がりを目視で観察し、以下の基準で評価した。   About the circuit board of each Example and Comparative Example prepared as described above, the bond strength was measured using a bond tester (DAGE Universal Bond Tester: Series 4000) and the shear strength of the metal plate was measured. Asked. For bonding reliability, a vapor phase thermal shock test apparatus (ESPEC TSA-72ES-W) was used, and cooling at −40 ° C. for 30 minutes and heating at 250 ° C. for 30 minutes was taken as 100 cycles. The thermal cycle test is repeated, the test piece after the test is observed, whether or not the metal plate is peeled off from the insulating substrate, and when the circuit board is placed on the surface plate, The warpage and lifting at the center were visually observed and evaluated according to the following criteria.

接合信頼性◎:金属板が絶縁基板から剥離しておらず、冷熱サイクル試験前後において反りや浮き上がりが認められない。
接合信頼性○:金属板が絶縁基板から剥離していないが、冷熱サイクル試験後後に1mm以下の反りや浮き上りが認められる。
接合信頼性△:金属板が絶縁基板から剥離していないが、試験後の接合強度が1kgf/mm2以下である。
接合信頼性×:金属板が絶縁基板から剥離している。
結果を表1に示す。
Bonding reliability (double-circle): The metal plate does not peel from the insulating substrate, and no warping or lifting is observed before and after the thermal cycle test.
Bonding reliability ○: The metal plate is not peeled off from the insulating substrate, but warpage or lifting of 1 mm or less is observed after the thermal cycle test.
Bonding reliability Δ: The metal plate is not peeled from the insulating substrate, but the bonding strength after the test is 1 kgf / mm 2 or less.
Bonding reliability x: The metal plate is peeled from the insulating substrate.
The results are shown in Table 1.

表1に示す結果から明らかなように、第1の実施形態の回路基板Aにおいて、実施例1〜12の場合には、冷熱サイクル試験の前後において共に接合強度が1kgf/mm2以上であり、また、金属板が絶縁基板から剥離しておらず、また、絶縁基板の反りや浮きが1mm以内であって、接合強度及び接合信頼性が共に優れていた。
これに対して、比較例1〜5の場合には、冷熱サイクル試験前又は冷熱サイクル試験後の接合強度が1kgf/mm2より低いか、冷熱サイクル試験後において金属板が剥離し易い、接合強度が1kgf/mm2より低い等の評価になった。なお、接合温度が200℃である比較例3の場合には、Ni粒子として用いたNi微細粒子が焼結せず、Ni焼結層が形成されなかった。また、接合温度が450℃である比較例4の場合には、冷熱サイクル試験前の接合強度が低く、また、冷熱サイクル試験後に剥離が発生したが、これは、接合温度から室温まで冷却する際の温度差が大きく、絶縁基板と金属板との間の熱膨張差に起因する熱応力が大きく、接合層に欠陥が生じたものと推察される。
As apparent from the results shown in Table 1, in the case of Examples 1 to 12 in the circuit board A of the first embodiment, the bonding strength is 1 kgf / mm 2 or more before and after the thermal cycle test, Further, the metal plate was not peeled off from the insulating substrate, and the warping and floating of the insulating substrate were within 1 mm, and both the bonding strength and bonding reliability were excellent.
On the other hand, in the case of Comparative Examples 1 to 5, the bonding strength before the thermal cycle test or after the thermal cycle test is lower than 1 kgf / mm 2 , or the metal plate is easily peeled after the thermal cycle test. Was lower than 1 kgf / mm 2 . In the case of Comparative Example 3 where the joining temperature was 200 ° C., the Ni fine particles used as the Ni particles were not sintered, and the Ni sintered layer was not formed. Moreover, in the case of the comparative example 4 whose joining temperature is 450 degreeC, the joining strength before a thermal cycle test was low, and peeling generate | occur | produced after the thermal cycle test, but this is when cooling from junction temperature to room temperature. It is presumed that the temperature difference between the insulating substrate and the metal plate is large, the thermal stress due to the difference in thermal expansion between the insulating substrate and the metal plate is large, and the bonding layer is defective.

〔第2の実施形態:実施例13〜25及び比較例6〜11〕
図4に、本発明の第2の実施形態に係る回路基板Bが模式的に記載されている。この第2の実施形態の回路基板Bは、第1の実施形態の回路基板Aの場合とは異なり、接合層のNi焼結層3bを形成するためのNi接合剤として、表2に示すオレイン酸且つオレイルアミンで被覆された平均粒径115nmのNi微細粒子Sn、平均粒径150nmのNi微細粒子Sn、平均粒径1μmのNi細粒子Sm、及び平均粒径3μmのNi細粒子Smを用い、これらNi微細粒子Sn(Ni粒子)とNi細粒子Sm(Ni粒子)とを表2に示すNi微細粒子の割合〔Sn/(Sn+Sm)〕で添加されているものを用いた。なお、Ni粒子の平均粒径は、上述した方法によりSEM観察で測定された値である。
上記以外の点については第1の実施形態Aの場合と同様であり、また、接合強度の測定及び冷熱サイクル試験も同様にして行った。
結果を表2に示す。
[Second Embodiment: Examples 13 to 25 and Comparative Examples 6 to 11]
FIG. 4 schematically shows a circuit board B according to the second embodiment of the present invention. Unlike the circuit board A of the first embodiment, the circuit board B of the second embodiment is an olein shown in Table 2 as a Ni bonding agent for forming the Ni sintered layer 3b of the bonding layer. Ni fine particles Sn having an average particle diameter of 115 nm, Ni fine particles Sn having an average particle diameter of 150 nm, Ni fine particles Sm having an average particle diameter of 1 μm, and Ni fine particles Sm having an average particle diameter of 3 μm coated with acid and oleylamine are used. These Ni fine particles Sn (Ni particles) and Ni fine particles Sm (Ni particles) added at the Ni fine particle ratio [Sn / (Sn + Sm)] shown in Table 2 were used. In addition, the average particle diameter of Ni particle | grains is the value measured by SEM observation by the method mentioned above.
About points other than the above, it is the same as that of the case of 1st Embodiment A, and also performed the measurement of the joint strength, and the thermal cycle test similarly.
The results are shown in Table 2.

この表2に示す結果から明らかなように、第2の実施形態の回路基板Bにおいて、実施例12〜25の場合には、冷熱サイクル試験の前後において共に接合強度が1kgf/mm2以上であり、また、金属板が絶縁基板から剥離しておらず、また、実施例23及び24の場合を除いて絶縁基板の反りや浮きが1mm以内であって、接合強度及び接合信頼性が共に優れていた。
これに対して、比較例6〜11の場合には、冷熱サイクル試験前又は冷熱サイクル試験後の接合強度が1kgf/mm2より低いか、冷熱サイクル試験後において金属板が剥離し易い、接合強度が1kgf/mm2より低い等の評価になった。なお、接合温度が200℃である比較例8の場合には、Ni粒子として用いたNi微細粒子が焼結せず、Ni焼結層が形成されなかった。また、接合温度が450℃である比較例9の場合には、冷熱サイクル試験前の接合強度が低く、また、冷熱サイクル試験後に剥離が発生したが、これは、接合温度から室温まで冷却する際の温度差が大きく、絶縁基板と金属板との間の熱膨張差に起因する熱応力が大きく、接合層に欠陥が生じたものと推察される。更に、Ni微細粒子の割合〔Sn/(Sn+Sm)〕が0.1又は0.8の比較例10及び11の場合には、冷熱サイクル試験前の接合強度及び接合信頼性が共に低いが、これは、Ni細粒子Smを添加してかえってNi粒子の充填率が低くなったこととNi粒子間の接触面積が小さくなって接合強度が低下したことに起因するものと推察される。
As is apparent from the results shown in Table 2, in the case of Examples 12 to 25 in the circuit board B of the second embodiment, the bonding strength is 1 kgf / mm 2 or more before and after the thermal cycle test. In addition, the metal plate is not peeled off from the insulating substrate, and the warping and floating of the insulating substrate are within 1 mm except in Examples 23 and 24, and both the bonding strength and the bonding reliability are excellent. It was.
On the other hand, in the case of Comparative Examples 6 to 11, the bonding strength before the thermal cycle test or after the thermal cycle test is lower than 1 kgf / mm 2 , or the metal plate is easily peeled after the thermal cycle test. Was lower than 1 kgf / mm 2 . In the case of Comparative Example 8 where the bonding temperature was 200 ° C., the Ni fine particles used as the Ni particles were not sintered, and the Ni sintered layer was not formed. Moreover, in the case of the comparative example 9 whose joining temperature is 450 degreeC, the joining strength before a thermal cycle test was low, and peeling generate | occur | produced after the thermal cycle test, but this is when cooling from junction temperature to room temperature. It is presumed that the temperature difference between the insulating substrate and the metal plate is large, the thermal stress due to the difference in thermal expansion between the insulating substrate and the metal plate is large, and the bonding layer is defective. Further, in the case of Comparative Examples 10 and 11 where the ratio of Ni fine particles [Sn / (Sn + Sm)] is 0.1 or 0.8, both the bonding strength and the bonding reliability before the thermal cycle test are low. This is presumably due to the fact that the Ni fine particle Sm was added and the filling rate of the Ni particles was lowered, and the contact area between the Ni particles was reduced and the bonding strength was lowered.

a…粒子の鋭角接触、b…ネック部、c…気孔(連続孔)、A,B…回路基板、1…絶縁基板、2…金属板、3a…金属被膜、3b…Ni焼結層、Sn…Ni微細粒子、Sm…Ni細粒子。   a ... acute angle contact of particles, b ... neck part, c ... pores (continuous holes), A, B ... circuit board, 1 ... insulating board, 2 ... metal plate, 3a ... metal coating, 3b ... Ni sintered layer, Sn ... Ni fine particles, Sm ... Ni fine particles.

Claims (17)

絶縁基板と、前記絶縁基板の片面又は両面に接合される金属板と、これら絶縁基板と金属板との間を接合する接合層とを有する回路基板であり、
前記接合層は、Niと共晶物形成可能な活性金属からなると共に前記絶縁基板の片面又は両面に形成された金属被膜と、この金属被膜と前記金属板との間に形成され、Ni粒子が焼結し互いに結合したNi焼結層とからなり、
前記Ni焼結層は、そのNi粒子がSEM観察で測定された平均粒径15〜150nmのNi微細粒子であると共に、その厚さが10〜200μmであることを特徴とする回路基板。
A circuit board having an insulating substrate, a metal plate bonded to one or both surfaces of the insulating substrate, and a bonding layer for bonding between the insulating substrate and the metal plate;
The bonding layer is made of an active metal capable of forming a eutectic with Ni and a metal film formed on one or both surfaces of the insulating substrate, and is formed between the metal film and the metal plate, and Ni particles are formed. It consists of Ni sintered layers that are sintered and bonded together,
The Ni sintered layer is a fine Ni substrate having an average particle diameter of 15 to 150 nm measured by SEM observation, and a thickness of 10 to 200 μm.
前記Ni焼結層のNi微細粒子は、粒度分布の標準偏差値が20nm以下である請求項1に記載の回路基板。   The circuit board according to claim 1, wherein the Ni fine particles of the Ni sintered layer have a standard deviation value of a particle size distribution of 20 nm or less. 前記絶縁基板が窒化物系又は炭化物系のセラミックス材料からなる請求項1又は2に記載の回路基板。   The circuit board according to claim 1, wherein the insulating substrate is made of a nitride-based or carbide-based ceramic material. 前記金属被膜がTi被膜である請求項1〜3のいずれかに記載の回路基板。   The circuit board according to claim 1, wherein the metal film is a Ti film. 前記Ni焼結層の厚さが10〜100μmである請求項1〜4に記載の回路基板。   The circuit board according to claim 1, wherein the Ni sintered layer has a thickness of 10 to 100 μm. 絶縁基板と、前記絶縁基板の片面又は両面に接合される金属板と、これら絶縁基板と金属板との間を接合する接合層とを有する回路基板であり、
前記接合層が、Niと共晶物形成可能な活性金属からなると共に前記絶縁基板の片面又は両面に形成された金属被膜と、この金属被膜と前記金属板との間に形成され、Ni粒子が焼結し互いに結合したNi焼結層とからなり、
前記Ni焼結層は、そのNi粒子がSEM観察で測定された平均粒径15〜150nmのNi微細粒子とSEM観察で測定された平均粒径0.5〜10μmのNi細粒子との混合物であると共に、これらNi微細粒子の断面積(Sn)とNi細粒子の断面積(Sm)の合計に対するNi微細粒子の断面積(Sn)の割合〔Sn/(Sn+Sm)〕が0.2〜0.3であり、また、前記Ni焼結層の厚さが10〜200μmであることを特徴とする回路基板。
A circuit board having an insulating substrate, a metal plate bonded to one or both surfaces of the insulating substrate, and a bonding layer for bonding between the insulating substrate and the metal plate;
The bonding layer is made of an active metal capable of forming a eutectic with Ni and a metal film formed on one or both surfaces of the insulating substrate, and formed between the metal film and the metal plate, and Ni particles are formed. It consists of Ni sintered layers that are sintered and bonded together,
The Ni sintered layer is a mixture of Ni fine particles having an average particle diameter of 15 to 150 nm measured by SEM observation and Ni fine particles having an average particle diameter of 0.5 to 10 μm measured by SEM observation. In addition, the ratio [Sn / (Sn + Sm)] of the cross-sectional area (Sn) of Ni fine particles to the sum of the cross-sectional area (Sn) of Ni fine particles and the cross-sectional area (Sm) of Ni fine particles is 0.2-0. 3 and the Ni sintered layer has a thickness of 10 to 200 μm.
前記Ni焼結層のNi粒子は、Ni微細粒子の粒度分布の標準偏差値が20nm以下であり、また、Ni細粒子の粒度分布の標準偏差値が10μm以下である請求項6に記載の回路基板。   7. The circuit according to claim 6, wherein the Ni particles of the Ni sintered layer have a standard deviation value of the particle size distribution of Ni fine particles of 20 nm or less and a standard deviation value of the particle size distribution of Ni fine particles of 10 μm or less. substrate. 前記絶縁基板が窒化物系又は炭化物系のセラミックス材料からなる請求項6又は7に記載の回路基板。   The circuit board according to claim 6 or 7, wherein the insulating substrate is made of a nitride-based or carbide-based ceramic material. 前記金属被膜がTi被膜である請求項6〜8のいずれかに記載の回路基板。   The circuit board according to claim 6, wherein the metal film is a Ti film. 前記Ni焼結層の厚さが50〜200μmである請求項6〜9のいずれかに記載の回路基板。   The circuit board according to claim 6, wherein the Ni sintered layer has a thickness of 50 to 200 μm. 前記請求項1〜10のいずれかに記載された回路基板の製造方法であり、
前記絶縁基板の片面又は両面にNiと共晶物形成可能な活性金属の金属被膜を形成し、
得られた金属被膜及び/又は前記金属板の表面に分散剤で保護されたNi粒子を含むNi接合剤を塗布し、
次いで前記Ni接合剤の塗布層を挟んで前記絶縁基板と金属板とを重ね合わせ、還元性雰囲気下に250℃以上400℃以下の温度で加熱して塗布層を焼結させて厚さ10〜200μmのNi焼結層を形成し、
前記絶縁基板の表面に形成された金属被膜と前記Ni焼結層とを接合層として絶縁基板と金属板との間を接合することを特徴とする回路基板の製造方法。
A method for producing a circuit board according to any one of claims 1 to 10,
Forming a metal film of an active metal capable of forming a eutectic with Ni on one or both surfaces of the insulating substrate;
Applying a Ni bonding agent containing Ni particles protected with a dispersant to the surface of the obtained metal coating and / or the metal plate;
Next, the insulating substrate and the metal plate are overlapped with the Ni bonding agent coating layer interposed therebetween, and heated in a reducing atmosphere at a temperature of 250 ° C. or more and 400 ° C. or less to sinter the coating layer to have a thickness of 10 to 10. Forming a 200 μm Ni sintered layer;
A method of manufacturing a circuit board, comprising: bonding a metal film formed on a surface of the insulating substrate and the Ni sintered layer to each other between the insulating substrate and the metal plate as a bonding layer.
前記Ni接合剤中の分散剤で保護されたNi粒子がSEM観察で測定された平均粒径15〜150nmのNi微細粒子であり、また、前記Ni焼結層の厚さが50〜100μmである請求項11に記載の回路基板の製造方法。   The Ni particles protected with the dispersant in the Ni bonding agent are Ni fine particles having an average particle diameter of 15 to 150 nm measured by SEM observation, and the thickness of the Ni sintered layer is 50 to 100 μm. The method for manufacturing a circuit board according to claim 11. 前記Ni接合剤中の分散剤で保護されたNi微細粒子は、粒度分布の標準偏差値が20nm以下である請求項12に記載の回路基板の製造方法。   The method of manufacturing a circuit board according to claim 12, wherein the Ni fine particles protected with the dispersant in the Ni bonding agent have a standard deviation value of a particle size distribution of 20 nm or less. 前記Ni接合剤中の分散剤で保護されたNi粒子が、SEM観察で測定された平均粒径15〜150nmのNi微細粒子とSEM観察で測定された平均粒径0.5〜10μmのNi細粒子との混合物であると共に、これらNi微細粒子の断面積(Sn)とNi細粒子の断面積(Sm)の合計に対するNi微細粒子の断面積(Sn)の割合〔Sn/(Sn+Sm)〕の値が0.2〜0.3であり、また、前記Ni焼結層の厚さが50〜200μmである請求項11に記載の回路基板の製造方法。   The Ni particles protected with the dispersant in the Ni bonding agent include Ni fine particles having an average particle diameter of 15 to 150 nm measured by SEM observation and Ni fine particles having an average particle diameter of 0.5 to 10 μm measured by SEM observation. The ratio of the cross-sectional area (Sn) of the Ni fine particles to the sum of the cross-sectional area (Sn) of the Ni fine particles and the cross-sectional area (Sm) of the Ni fine particles as well as the mixture with the particles [Sn / (Sn + Sm)] The method for manufacturing a circuit board according to claim 11, wherein the value is 0.2 to 0.3, and the thickness of the Ni sintered layer is 50 to 200 μm. 前記Ni焼結層のNi粒子は、Ni微細粒子の粒度分布の標準偏差値が20nm以下であり、また、Ni細粒子の粒度分布の標準偏差値が10μm以下である請求項14に記載の回路基板の製造方法。   The circuit according to claim 14, wherein the Ni particles of the Ni sintered layer have a standard deviation value of the particle size distribution of Ni fine particles of 20 nm or less and a standard deviation value of the particle size distribution of Ni fine particles of 10 µm or less. A method for manufacturing a substrate. 前記絶縁基板が窒化物系又は炭化物系のセラミックス材料からなる請求項11〜15のいずれかに記載の回路基板の製造方法。   The method for manufacturing a circuit board according to claim 11, wherein the insulating substrate is made of a nitride-based or carbide-based ceramic material. 前記金属被膜がTi被膜である請求項11〜16のいずれかに記載の回路基板の製造方法。   The method for manufacturing a circuit board according to claim 11, wherein the metal film is a Ti film.
JP2014076666A 2014-04-03 2014-04-03 Circuit board manufacturing method Active JP6323128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014076666A JP6323128B2 (en) 2014-04-03 2014-04-03 Circuit board manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014076666A JP6323128B2 (en) 2014-04-03 2014-04-03 Circuit board manufacturing method

Publications (2)

Publication Number Publication Date
JP2015198209A true JP2015198209A (en) 2015-11-09
JP6323128B2 JP6323128B2 (en) 2018-05-16

Family

ID=54547728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014076666A Active JP6323128B2 (en) 2014-04-03 2014-04-03 Circuit board manufacturing method

Country Status (1)

Country Link
JP (1) JP6323128B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11810885B2 (en) * 2018-08-31 2023-11-07 Waseda University Semiconductor element bonding structure, method for producing semiconductor element bonding structure, and electrically conductive bonding agent

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256380A (en) * 1985-09-05 1987-03-12 株式会社東芝 Ceramic-metal joined member
JPH08277171A (en) * 1995-02-09 1996-10-22 Ngk Insulators Ltd Bonded material, corrosion-resistant bonding material and production of bonded material
JP2006120973A (en) * 2004-10-25 2006-05-11 Kyocera Corp Circuit board and manufacturing method thereof
JP2006228804A (en) * 2005-02-15 2006-08-31 Fuji Electric Holdings Co Ltd Ceramic substrate for semiconductor module and its manufacturing method
JP2012142547A (en) * 2010-12-16 2012-07-26 Nippon Soken Inc Joining structure of thermal diffusion member, cooling structure of heating element, and method for joining thermal diffusion member
WO2012124625A1 (en) * 2011-03-17 2012-09-20 新日鐵化学株式会社 Composite nickel nanoparticles and method for producing same
WO2012173187A1 (en) * 2011-06-16 2012-12-20 新日鉄住金化学株式会社 Electronic component bonding material, composition for bonding, bonding method, and electronic component
JP2013209720A (en) * 2012-03-30 2013-10-10 Furukawa Electric Co Ltd:The Method for jointing metal body

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256380A (en) * 1985-09-05 1987-03-12 株式会社東芝 Ceramic-metal joined member
JPH08277171A (en) * 1995-02-09 1996-10-22 Ngk Insulators Ltd Bonded material, corrosion-resistant bonding material and production of bonded material
US6106960A (en) * 1995-02-09 2000-08-22 Ngk Insulators, Ltd. Joined articles, corrosion-resistant joining materials and process for producing joined articles
JP2006120973A (en) * 2004-10-25 2006-05-11 Kyocera Corp Circuit board and manufacturing method thereof
JP2006228804A (en) * 2005-02-15 2006-08-31 Fuji Electric Holdings Co Ltd Ceramic substrate for semiconductor module and its manufacturing method
JP2012142547A (en) * 2010-12-16 2012-07-26 Nippon Soken Inc Joining structure of thermal diffusion member, cooling structure of heating element, and method for joining thermal diffusion member
WO2012124625A1 (en) * 2011-03-17 2012-09-20 新日鐵化学株式会社 Composite nickel nanoparticles and method for producing same
WO2012173187A1 (en) * 2011-06-16 2012-12-20 新日鉄住金化学株式会社 Electronic component bonding material, composition for bonding, bonding method, and electronic component
JP2013209720A (en) * 2012-03-30 2013-10-10 Furukawa Electric Co Ltd:The Method for jointing metal body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11810885B2 (en) * 2018-08-31 2023-11-07 Waseda University Semiconductor element bonding structure, method for producing semiconductor element bonding structure, and electrically conductive bonding agent

Also Published As

Publication number Publication date
JP6323128B2 (en) 2018-05-16

Similar Documents

Publication Publication Date Title
JP6462715B2 (en) Conductive bonded body of electronic component, semiconductor device using the same, and manufacturing method of conductive bonded body
TWI636842B (en) Bonding material and bonding method using same
WO2015068853A1 (en) Metal bonding structure, metal bonding method, and metal bonding material using metal nanoparticles
KR102243472B1 (en) Sintering paste composition for bonding power semiconductor
JP6384894B2 (en) Metal bonding structure, metal bonding method and metal bonding material using metal nanoparticles
WO2019088285A1 (en) Heat sink-equipped power module substrate and manufacturing method for heat sink-equipped power module substrate
JP6460578B2 (en) Bonding material, bonding method using the same, bonding material paste, and semiconductor device
JP6142584B2 (en) Metal composite, circuit board, semiconductor device, and method for manufacturing metal composite
JP6010926B2 (en) Bonding material, power module, and method of manufacturing power module
JP7155654B2 (en) Method for manufacturing conjugate
JP6323128B2 (en) Circuit board manufacturing method
JP6176854B2 (en) Composite material with active metal brazing material layer
JP6070092B2 (en) Power module and method for manufacturing power module
WO2017150096A1 (en) Semiconductor device
JP2017172029A (en) JOINT MATERIAL AND JOINT STRUCTURE USING Ni NANOPARTICLES
JP5877276B2 (en) Bonding structure and electronic member bonding structure
JP6606514B2 (en) Conductive bonding material and conductive bonding structure using metal particles and conductive material particles
JP6170045B2 (en) Bonding substrate and manufacturing method thereof, semiconductor module using bonding substrate, and manufacturing method thereof
JP2023086688A (en) Copper/ceramic jointed body and insulated circuit board
JP6354147B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2006120973A (en) Circuit board and manufacturing method thereof
JP2015149349A (en) Metal member with ground layer, insulating circuit board, semiconductor device, insulating circuit board with heat sink, and method of manufacturing metal member with ground layer
WO2023008562A1 (en) Copper/ceramic bonded body and insulated circuit board
WO2023008565A1 (en) Copper/ceramic bonded body and insulated circuit board
JP7198479B2 (en) Semiconductor device bonding structure, method for producing semiconductor device bonding structure, and conductive bonding agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170323

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180326

R151 Written notification of patent or utility model registration

Ref document number: 6323128

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350