JP2013209720A - Method for jointing metal body - Google Patents

Method for jointing metal body Download PDF

Info

Publication number
JP2013209720A
JP2013209720A JP2012081458A JP2012081458A JP2013209720A JP 2013209720 A JP2013209720 A JP 2013209720A JP 2012081458 A JP2012081458 A JP 2012081458A JP 2012081458 A JP2012081458 A JP 2012081458A JP 2013209720 A JP2013209720 A JP 2013209720A
Authority
JP
Japan
Prior art keywords
metal
fine particles
bonded
joined
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012081458A
Other languages
Japanese (ja)
Inventor
Naoyuki Kojima
直之 児島
Shunichiro Sato
俊一郎 佐藤
Kazuto Hikasa
和人 日笠
Hidemichi Fujiwara
英道 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2012081458A priority Critical patent/JP2013209720A/en
Publication of JP2013209720A publication Critical patent/JP2013209720A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering

Landscapes

  • Powder Metallurgy (AREA)
  • Die Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for jointing a metal body, which exerts excellent adhesion force.SOLUTION: A method for jointing a metal body includes: a step of providing a first material 1 to be jointed which is a metal body and has a treated layer 11 that has been subjected to a treatment which causes atomic vacancy and/or rearrangement; a step of feeding a metal particulate 3 between the treated layer 11 of the first material 1 to be jointed and a second material 2 to be jointed; and a step of jointing the first material 1 to be jointed and the second material 2 to be jointed to each other.

Description

本発明は、金属体の接合方法に関し、特に、金属体が半導体素子の電極、回路基板、セラミック基板等の基板の電極またはリードフレームなどである場合の金属体の接合方法に関する。   The present invention relates to a method for joining metal bodies, and more particularly to a method for joining metal bodies when the metal body is an electrode of a semiconductor element, an electrode of a substrate such as a circuit board or a ceramic substrate, or a lead frame.

電力の制御や供給等を行う半導体素子(いわゆるパワー半導体素子)と回路基板、セラミック基板等の基板またはリードフレームなどの配線体との接続では、一般に半田が使用されている。このような半田としては、半田の粉末にフラックスを加えて適当な粘度にしたクリーム半田が主に用いられている。しかしながら、フラックスを用いると、半導体素子表面を汚染する可能性があり、洗浄工程が必要という問題があった。また、近年、環境上の配慮から、鉛を含まない鉛フリー半田材料を用いることが要求されている。パワー半導体の発熱に対応可能な鉛フリー半田材料としてAu−Sn系半田があるが、高価であるため、実用的ではない。Au−Sn系半田より安価な半田材料としてSn−Ag−Cu系半田があるが、熱履歴による金属間化合物の成長が信頼性の低下につながるという問題があった。   Generally, solder is used to connect a semiconductor element (so-called power semiconductor element) for controlling or supplying power to a circuit board, a substrate such as a ceramic substrate, or a wiring body such as a lead frame. As such solder, cream solder in which flux is added to solder powder to have an appropriate viscosity is mainly used. However, when flux is used, there is a possibility that the surface of the semiconductor element may be contaminated, and there is a problem that a cleaning process is necessary. In recent years, it has been required to use a lead-free solder material that does not contain lead in consideration of the environment. There is Au-Sn solder as a lead-free solder material that can cope with heat generation of power semiconductors, but it is not practical because it is expensive. Sn-Ag-Cu solder is available as a cheaper solder material than Au-Sn solder, but there is a problem that growth of intermetallic compounds due to thermal history leads to a decrease in reliability.

半田を用いない接合部材として、熱硬化性樹脂に導電性を持つ微細な金属粒子を混ぜ合わせたものを膜状に成形した異方性導電フィルム(Anisotropic Conductive Film:ACF)がある。しかしながら、ACFは、高熱による熱硬化性樹脂の劣化が懸念されるため、発熱量の大きいパワー半導体の接続には適さない。   As a joining member that does not use solder, there is an anisotropic conductive film (ACF) in which a thermosetting resin is mixed with fine conductive metal particles and formed into a film shape. However, ACF is not suitable for connecting power semiconductors that generate a large amount of heat because there is a concern about deterioration of the thermosetting resin due to high heat.

そこで、半田を用いない他の接合部材として、Agの粒子を樹脂に分散させたAgペーストを用いることが提案されている。パワー半導体の接合部材としてAgペーストを適用する場合、高熱伝導性と高導電性が要求されるため、ペースト中のAgの含有量を高くする必要がある。ところが、Agの含有量が高くなると、弾性変形しやすい樹脂の比率が小さくなるため、硬化処理後の接合層の剛性が増して接合層の歪吸収能力が低くなる。この接合層に歪吸収能力を超える歪が加わると、半導体素子の電極あるいはダイパッドとAg粒子との接触界面や接続材料内で欠陥が生じ、剥離が生じる問題があった。   Therefore, it has been proposed to use an Ag paste in which Ag particles are dispersed in a resin as another joining member that does not use solder. When an Ag paste is applied as a power semiconductor bonding member, high thermal conductivity and high conductivity are required, and therefore it is necessary to increase the Ag content in the paste. However, as the Ag content increases, the ratio of the resin that is easily elastically deformed decreases, so that the rigidity of the bonding layer after the curing treatment increases and the strain absorption capacity of the bonding layer decreases. When a strain exceeding the strain absorption capability is applied to the bonding layer, there is a problem that a defect occurs in the contact interface between the electrode of the semiconductor element or the die pad and the Ag particle or in the connection material, and peeling occurs.

また、半導体素子の電極や基板の電極がNiの場合、接合部材としてAgペーストを用いると、接合強度(密着性)が低く、取扱い時の外力で界面が破断したり、必要な長期信頼性が得られないという問題があるため、半導体素子の電極や基板の電極に貴金属めっきを施す必要がある。ところが、このように貴金属めっきを施して接合した場合、部材間の熱膨張差による半導体チップへの熱応力が増大するため、耐久性が低下するという問題があった。   In addition, when the electrode of the semiconductor element or the electrode of the substrate is Ni, if the Ag paste is used as the bonding member, the bonding strength (adhesion) is low, the interface is broken by an external force during handling, and the required long-term reliability is obtained. Since there is a problem that it cannot be obtained, it is necessary to perform noble metal plating on the electrode of the semiconductor element or the electrode of the substrate. However, when precious metal plating is performed and bonded in this manner, there is a problem in that durability is reduced because thermal stress on the semiconductor chip due to a difference in thermal expansion between members increases.

また、近時、有機物で表面が被覆された平均粒径100nm以下の金属粒子を被接合材間に供給し、加熱により有機物を分解させて金属粒子同士を焼結させることで接合を行うことが知られている(例えば、特許文献1参照)。   Further, recently, metal particles having an average particle diameter of 100 nm or less whose surface is coated with an organic material are supplied between the materials to be bonded, and the organic particles are decomposed by heating to perform bonding by sintering the metal particles. It is known (see, for example, Patent Document 1).

さらには、被接合材の接合界面に酸素を含む酸化物層を形成し、この接合界面に、平均粒径が1nm以上50μm以下の金属化合物粒子と有機物からなる還元剤とを含む接合材を配置し、被接合材間を加熱、加圧することにより被接合材を接合することが提案されている(例えば、特許文献2)。この接合材は、金属化合物粒子単体を加熱分解するよりも低温で金属化合物粒子が還元され、その際に平均粒径が100nm以下の金属粒子が作製されるとされている。また、接合前にあらかじめ接合面に酸化物層を生成させた後に、その層に酸化処理を施して自然酸化膜厚以上の厚さの酸化層を生成させておくことで、接合時に接合材中の有機物の排出を効率的に行うことができ、これにより接合面のせん断強度を上げることが可能となるとされている。   Furthermore, an oxide layer containing oxygen is formed at the bonding interface of the materials to be bonded, and a bonding material including a metal compound particle having an average particle size of 1 nm to 50 μm and a reducing agent made of an organic substance is disposed at the bonding interface. Then, it has been proposed to join the materials to be joined by heating and pressurizing the materials to be joined (for example, Patent Document 2). In this bonding material, the metal compound particles are reduced at a lower temperature than when the metal compound particles are thermally decomposed, and metal particles having an average particle diameter of 100 nm or less are produced at that time. In addition, after forming an oxide layer on the bonding surface in advance before bonding, the layer is oxidized to generate an oxide layer with a thickness greater than the natural oxide film thickness. It is said that the organic matter can be discharged efficiently, thereby increasing the shear strength of the joint surface.

特開2004−107728号公報JP 2004-107728 A 特開2008−208442号公報JP 2008-208442 A

しかしながら、特許文献1および特許文献2に記載の接合方法では、金属微粒子による接合において、金属微粒子間の接合に比べて、金属微粒子と被接合材である金属体との接合は、拡散反応が進みにくく、密着力が弱いという問題があった。   However, in the bonding methods described in Patent Document 1 and Patent Document 2, in the bonding with metal fine particles, the diffusion reaction proceeds in the bonding between the metal fine particles and the metal body as the material to be bonded, as compared with the bonding between the metal fine particles. There was a problem that it was difficult and the adhesion was weak.

そこで、本発明の目的は、密着力に優れた、金属体の接続方法を提供することにある。   Then, the objective of this invention is providing the connection method of the metal body excellent in the adhesive force.

以上のような目的を達成するため、本発明による金属体の接合方法は、原子空孔および/または転位を生じさせる加工を施した加工層を有する金属からなる第1の被接合材を準備する工程と、前記第1の被接合材の前記加工層と第2の被接合材との間に金属微粒子を供給する工程と、前記金属微粒子を介して前記第1の被接合材と前記第2の被接合材とを接合する工程とを有することを特徴とする。   In order to achieve the above object, a metal body bonding method according to the present invention provides a first material to be bonded made of a metal having a processed layer subjected to processing that causes atomic vacancies and / or dislocations. A step of supplying metal fine particles between the processed layer of the first material to be joined and a second material to be joined, and the first material to be joined and the second through the metal fine particles. And a step of joining the material to be joined.

また、本発明に係る金属体の接合方法は、前記第2の被接合材も、原子空孔および/または転位を生じさせる加工を施した加工層を有する金属体であることが好ましい。   In the metal body bonding method according to the present invention, it is preferable that the second material to be bonded is also a metal body having a processed layer subjected to processing for generating atomic vacancies and / or dislocations.

また、本発明に係る金属体の接合方法は、前記加工層が被接合材の表面にのみ形成されていることが好ましい。   In the metal body bonding method according to the present invention, it is preferable that the processed layer is formed only on the surface of the material to be bonded.

また、本発明に係る金属体の接合方法は、前記加工層が被接合材の前記金属微粒子により接合される部分のみに形成されていることが好ましい。   In the metal body bonding method according to the present invention, it is preferable that the processed layer is formed only in a portion of the material to be bonded that is bonded by the metal fine particles.

また、本発明に係る金属体の接合方法は、金属微粒子の一次粒子の平均粒子径が、1nm〜500nmであることが好ましい。   In the metal body bonding method according to the present invention, the average particle diameter of primary particles of metal fine particles is preferably 1 nm to 500 nm.

また、本発明に係る金属体の接合方法は、金属微粒子が、銀、金、銅、アルミニウム、ニッケル、白金、錫、アンチモン及びパラジウムからなる金属元素群から選ばれる1種の微粒子、前記金属元素群から選ばれる2種以上を混合した微粒子、前記金属元素群から選ばれる2種以上の元素の合金からなる微粒子、前記金属元素群から選ばれる1種の微粒子又は前記金属元素群から選ばれる2種以上を混合した微粒子と前記金属元素群から選ばれる2種以上の元素の合金からなる微粒子とを混合した微粒子、これらの酸化物、又は、これらの水酸化物であることが好ましい。   In the metal body joining method according to the present invention, the metal fine particles are one kind of fine particles selected from the metal element group consisting of silver, gold, copper, aluminum, nickel, platinum, tin, antimony and palladium, and the metal element Selected from the group consisting of fine particles mixed with two or more selected from the group, fine particles composed of an alloy of two or more elements selected from the metal element group, one fine particle selected from the metal element group, or 2 selected from the metal element group It is preferable that the fine particles are a mixture of fine particles mixed with at least species and fine particles made of an alloy of two or more elements selected from the metal element group, oxides thereof, or hydroxides thereof.

また、本発明に係る金属体の接合方法は、金属微粒子が、有機溶媒でペースト化されていることが好ましい。   In the metal body bonding method according to the present invention, the metal fine particles are preferably pasted with an organic solvent.

また、本発明に係る金属体の接合方法は、前記原子空孔および/または転位を生じさせる加工が、機械的加工であることが好ましい。   In the metal body joining method according to the present invention, it is preferable that the processing for generating the atomic vacancies and / or dislocations is mechanical processing.

また、本発明に係る金属体の接合方法は、前記第1の被接合材が銅からなることが好ましい。   In the metal body bonding method according to the present invention, it is preferable that the first material to be bonded is made of copper.

また、本発明に係る金属体の接合方法は、前記第1の被接合材の前記加工層の再結晶温度以上で加熱することにより、前記第1の被接合材の前記加工層が再結晶されていることが好ましい。   In the metal body bonding method according to the present invention, the processed layer of the first material to be bonded is recrystallized by heating at a recrystallization temperature or higher of the processed layer of the first material to be bonded. It is preferable.

また、本発明に係る金属体の接合方法は、前記第1の被接合材が、基板、リードフレーム、または半導体素子の電極であり、第2の被接合材が、半導体素子の電極または半導体素子の裏面であることが好ましい。   In the metal body bonding method according to the present invention, the first material to be bonded is a substrate, a lead frame, or an electrode of a semiconductor element, and the second material to be bonded is an electrode of a semiconductor element or a semiconductor element. It is preferable that it is the back surface.

本発明の金属体の接合方法によれば、第1の被接合材と第2の被接合材と金属微粒子とからなる積層体を少なくとも加熱すると、金属微粒子表面で局所的に溶融現象が起こり、金属微粒子間および金属微粒子と第1の被接合材との間に結合部(ネック)が形成される。このとき、金属体である第1の被接合材は少なくとも表面に原子空孔および/または転位を生じさせる加工を施した加工層を有するため、金属微粒子間のネックと同様に金属微粒子と第1の被接合材との間においては、加工層の原子空孔が被接合材全体や金属微粒子への移動することを伴う拡散が促進し、金属微粒子とネックが成長していくため、より高い密着力が得られ、かつ、より低温での接合が可能になる。   According to the metal body bonding method of the present invention, when at least a laminate comprising the first material to be bonded, the second material to be bonded, and the metal fine particles is heated, a melting phenomenon occurs locally on the surface of the metal fine particles, A joint (neck) is formed between the metal fine particles and between the metal fine particles and the first material to be joined. At this time, since the first material to be joined, which is a metal body, has a processed layer that has been processed to generate atomic vacancies and / or dislocations on at least the surface, the metal fine particles and the first fine particles as well as the neck between the metal fine particles The adhesion between the workpiece and the material to be bonded is enhanced because the diffusion of the vacancies in the processed layer to the entire material to be bonded and the metal fine particles is promoted, and the metal fine particles and the neck grow. Strength is obtained and bonding at a lower temperature is possible.

本発明の実施形態に係る金属体の接合方法を模式的に説明するための説明図である。It is explanatory drawing for demonstrating typically the joining method of the metal body which concerns on embodiment of this invention. 本発明の実施形態に係る金属体の接合方法の作用を模式的に説明するための説明図である。It is explanatory drawing for demonstrating typically the effect | action of the joining method of the metal body which concerns on embodiment of this invention. 本発明の他の実施形態に係る金属体の接合方法を模式的に説明するための説明図である。It is explanatory drawing for demonstrating typically the joining method of the metal body which concerns on other embodiment of this invention. 本発明の実施形態に係る金属体の接合方法の作用を模式的に説明するための説明図である。It is explanatory drawing for demonstrating typically the effect | action of the joining method of the metal body which concerns on embodiment of this invention.

以下に本発明の実施の形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(第1の実施形態)
本実施形態に係る金属体の接合方法は、金属体であって原子空孔および/または転位を生じさせる加工を施した加工層11,12を表面に有する第1の被接合材1および第2の被接合材2を準備する工程と、図1に示すように、第1の被接合材1の加工層1と第2の被接合材2の加工層11,12との間に金属微粒子3を供給する工程と、第1の被接合材1と第2の被接合材2と金属微粒子3とからなる積層体を少なくとも加熱することにより、第1の被接合材1と第2の被接合材2とを接合する工程とを有する。
(First embodiment)
The metal body joining method according to the present embodiment is a metal body having first and second workpieces 1 and 2 having processed layers 11 and 12 on the surface, which are processed to generate atomic vacancies and / or dislocations. The metal fine particles 3 between the step of preparing the workpiece 2 and the processed layer 1 of the first workpiece 1 and the processed layers 11 and 12 of the second workpiece 2 as shown in FIG. The first material to be joined 1 and the second material to be joined by heating at least a laminate comprising the first material to be joined 1, the second material to be joined 2 and the metal fine particles 3. And joining the material 2.

第1の被接合材1は、導電性を有する金属体であれば特に限定はないが、例えば、回路基板又はセラミック基板等の基板100の電極であり、銅または銅合金、銀メッキや金メッキからなることが好ましい。また、基板100としては、銅板をセラミック(AlN)基板と接合させたDBC(Direct Bonding Copper)基板を用いることができる。なお、セラミックはアルミナ(Al)、窒化ケイ素(Si)など用いても良い。 The first material to be bonded 1 is not particularly limited as long as it is a conductive metal body. For example, it is an electrode of a substrate 100 such as a circuit board or a ceramic substrate, and is made of copper or copper alloy, silver plating or gold plating. It is preferable to become. As the substrate 100, a DBC (Direct Bonding Copper) substrate in which a copper plate is bonded to a ceramic (AlN) substrate can be used. Note that alumina (Al 2 O 3 ), silicon nitride (Si 3 N 4 ), or the like may be used as the ceramic.

本実施形態においては第2の被接合材2も、金属体である。第2の被接合材2は、例えば、半導体素子200の電極であり、Sn合金にTiまたはTi合金やNiまたはNi合金がメッキされて形成されていることが好ましい。   In the present embodiment, the second bonded material 2 is also a metal body. The second bonded material 2 is, for example, an electrode of the semiconductor element 200, and is preferably formed by plating an Sn alloy with Ti, Ti alloy, Ni, or Ni alloy.

なお、上記例では、半導体素子200の電極と基板100の電極とを接続することになるが、基板に替えてリードフレームのダイパッドと半導体素子の裏面とを接続してもよいし、半導体素子と他の半導体素子とを接続する、いわゆるchip on chip構造に適用してもよい。また、半導体素子の電極の接合は、バンプによる接合であってもよいし、微細接合としてピン接合であってもよい。   In the above example, the electrode of the semiconductor element 200 and the electrode of the substrate 100 are connected. However, instead of the substrate, the die pad of the lead frame and the back surface of the semiconductor element may be connected. You may apply to what is called a chip-on-chip structure which connects with another semiconductor element. The bonding of the electrodes of the semiconductor element may be bonding by bumps or pin bonding as fine bonding.

本実施の形態では、第1の被接合材1および第2の被接合材2の表面には、原子空孔および/または転位を生じさせる加工を施され、加工層11,12が形成されている。加工層11,12の形成は、第1の被接合材1および第2の被接合材2の表面に、原子空孔および/または転位を生じさせるものであれば特に限定はなく、例えば、ブラストやバフによる研磨等、機械的加工によることが好ましいが、粒子線照射により放射線損傷させても良い。例えば、材質がアルミナで形状が多角形の中心粒径14μmであるメディアを使用したウエットブラスト法により、圧力0.15MPaで処理速度5mm/secで処理することで5μmの加工層が得られる。なお、第2の被接合材2が、半導体素子の裏面であるような場合は、加工層1を有していなくてもよい。   In the present embodiment, the surfaces of the first material to be bonded 1 and the second material to be bonded 2 are subjected to processing for generating atomic vacancies and / or dislocations, and processed layers 11 and 12 are formed. Yes. The formation of the processed layers 11 and 12 is not particularly limited as long as atomic vacancies and / or dislocations are generated on the surfaces of the first material to be bonded 1 and the second material to be bonded 2. It is preferable to use mechanical processing such as polishing by buffing, but radiation damage may also be caused by particle beam irradiation. For example, a processed layer of 5 μm can be obtained by processing at a processing speed of 5 mm / sec under a pressure of 0.15 MPa by a wet blasting method using a medium made of alumina and having a polygonal center particle size of 14 μm. In addition, when the 2nd to-be-joined material 2 is a back surface of a semiconductor element, it does not need to have the process layer 1. FIG.

また、加工層11,12は、第1の被接合材1および第2の被接合材2の表面の金属微粒子3により接合される部分のみに形成してもよい。例えば、第1の被接合材1が基板100の電極である場合、基板100の電極には、ダイボンドされる部分だけでなく、ワイヤーボンドされる部分も存在し、ワイヤー材料として、拡散が早いアルミ材料等が用いられる場合があり、拡散が加速するとカーケンダールボイド等の欠陥が形成されやすくなるため、ワイヤーボンドされる部分は、加工層11を形成しないことが好ましい。   In addition, the processed layers 11 and 12 may be formed only on the portions to be bonded by the metal fine particles 3 on the surfaces of the first bonded material 1 and the second bonded material 2. For example, when the first material to be bonded 1 is an electrode of the substrate 100, the electrode of the substrate 100 includes not only a die-bonded portion but also a wire-bonded portion. In some cases, a material or the like may be used. When the diffusion is accelerated, defects such as a carkendar void are likely to be formed. Therefore, it is preferable that the processed layer 11 is not formed in the wire-bonded portion.

加工層11,12の厚さは、特に限定はされないが、0.5μm〜10μmであることが好ましい。また、加工の度合いは、接続温度可能な温度をより低温化するためには、加工前のマイクロビッカース硬さに対して、加工層11,12の硬さが15%以上高いこと好ましい。加工層11,12の厚さが薄い場合には、ナノインデンター等で測定した硬さ指標が同様に15%以上高い値を示すことが代替指標となる。   The thickness of the processed layers 11 and 12 is not particularly limited, but is preferably 0.5 μm to 10 μm. Further, the degree of processing is preferably such that the hardness of the processed layers 11 and 12 is 15% or more higher than the micro Vickers hardness before processing in order to lower the temperature at which the connection temperature can be achieved. When the thickness of the processed layers 11 and 12 is thin, the substitute index is that the hardness index measured with a nanoindenter or the like similarly shows a value higher by 15% or more.

金属微粒子3は、銀、金、銅、アルミニウム、ニッケル、白金、錫、アンチモン及びパラジウムからなる金属元素群から選ばれる1種の微粒子、前記金属元素群から選ばれる2種以上を混合した微粒子、前記金属元素群から選ばれる2種以上の元素の合金からなる微粒子、前記金属元素群から選ばれる1種の微粒子又は前記金属元素群から選ばれる2種以上を混合した微粒子と前記金属元素群から選ばれる2種以上の元素の合金からなる微粒子とを混合した微粒子、これらの酸化物、又は、これらの水酸化物であることが好ましい。   The metal fine particles 3 are one kind of fine particles selected from the metal element group consisting of silver, gold, copper, aluminum, nickel, platinum, tin, antimony and palladium, and fine particles obtained by mixing two or more kinds selected from the metal element group, From the metal element group, fine particles made of an alloy of two or more elements selected from the metal element group, one fine particle selected from the metal element group, or fine particles obtained by mixing two or more elements selected from the metal element group It is preferable to be a fine particle obtained by mixing fine particles made of an alloy of two or more kinds of elements selected, an oxide thereof, or a hydroxide thereof.

また、金属微粒子3の平均粒径(一次粒子の平均粒子径)は、1nm〜500nmであることが好ましく、より好ましくは5nm〜200nmである。ここで、一次粒子の平均粒子径とは、二次粒子を構成する個々の金属微粒子3である一次粒子の直径の平均の意味である。該一次粒子径は、電子顕微鏡を用いて測定することができる。また、平均粒子径とは、一次粒子の数平均粒子径を意味する。一次粒子の平均粒子径が、1nm〜500nmである金属微粒子3を所定割合、好ましくは全体の質量の30〜90%含んでいれば、他に粒子径が0.5〜50μmの金属微粒子を含んでいてもよい。   Moreover, it is preferable that the average particle diameter (average particle diameter of a primary particle) of the metal microparticle 3 is 1 nm-500 nm, More preferably, it is 5 nm-200 nm. Here, the average particle diameter of the primary particles means the average diameter of the primary particles that are the individual metal fine particles 3 constituting the secondary particles. The primary particle diameter can be measured using an electron microscope. The average particle size means the number average particle size of primary particles. If metal fine particles 3 having an average primary particle size of 1 nm to 500 nm are contained in a predetermined ratio, preferably 30 to 90% of the total mass, other metal fine particles having a particle size of 0.5 to 50 μm are included. You may go out.

金属微粒子3は、有機溶媒でペースト化されていることが好ましい。有機溶媒としては、公知のものを適宜使用することができるが、好ましいものとして、25℃において液状であるアルコール及び/もしくは多価アルコールが挙げられ、また、25℃において液状であるアルコール及び/もしくは多価アルコールと、25℃において固形状のアルコール及び/もしくは多価アルコールとを混合したものが挙げられる。   The metal fine particles 3 are preferably pasted with an organic solvent. As the organic solvent, known solvents can be used as appropriate, and preferred examples include alcohols and / or polyhydric alcohols that are liquid at 25 ° C., and alcohols and / or liquids that are liquid at 25 ° C. What mixed polyhydric alcohol and solid alcohol and / or polyhydric alcohol in 25 degreeC is mentioned.

その他、分散補助物質や溶剤を適宜配合することができる。分散補助物質としては、公知のものを適宜使用することができるが、金属微粒子3の分散性、焼結性の向上等を考慮すると、アミド基を有する化合物、アミン化合物等を用いることが好ましい。   In addition, a dispersion auxiliary substance and a solvent can be appropriately blended. As the dispersion auxiliary substance, known substances can be used as appropriate. However, in consideration of improvement in dispersibility and sintering property of the metal fine particles 3, it is preferable to use a compound having an amide group, an amine compound, or the like.

第1の被接合材1の加工層11上に金属微粒子3を供給し、その上に、第2の被接合材2を加工層12が金属微粒子3と接するように載置する。この状態で、金属微粒子3を焼結させる。金属微粒子3の焼結は、還元雰囲気または不活性雰囲気中で実施することが望ましい。不活性雰囲気とは、窒素などのガスを充填した雰囲気、または、真空雰囲気のことである。こうすることで、金属微粒子3表面の酸化層を取り除き、金属微粒子3の焼結性を向上させることが可能になる。また、金属微粒子3に配合する有機溶媒の性質によって、焼結は適宜加圧しながら行うとよい。焼結は、30〜90分間、加工層12の再結晶温度以上で加熱、0〜20MPaで加圧して行うことが好ましい。   The metal fine particles 3 are supplied onto the processed layer 11 of the first bonded material 1, and the second bonded material 2 is placed thereon so that the processed layer 12 is in contact with the metal fine particles 3. In this state, the metal fine particles 3 are sintered. The sintering of the metal fine particles 3 is desirably performed in a reducing atmosphere or an inert atmosphere. The inert atmosphere is an atmosphere filled with a gas such as nitrogen or a vacuum atmosphere. By doing so, it becomes possible to remove the oxide layer on the surface of the metal fine particles 3 and improve the sinterability of the metal fine particles 3. Further, depending on the nature of the organic solvent blended in the metal fine particles 3, the sintering may be performed while appropriately pressing. Sintering is preferably performed for 30 to 90 minutes by heating at a temperature higher than the recrystallization temperature of the processed layer 12 and pressurizing at 0 to 20 MPa.

加圧しながら熱処理して金属微粒子3の焼結を行うことが望ましい場合としては、熱処理により有機溶媒が揮発して、金属微粒子3の占有体積減少が大きい場合がある。熱処理により金属微粒子3の占有面積減少が著しい場合、加圧により、金属密度を高めることができる。また、金属微粒子3の焼結体に亀裂が形成することを防止することができる。さらに、加圧することで、第1の被接合材1と第2の被接合材2とをより強固に接合することが可能となる。   As a case where it is desirable to sinter the metal fine particles 3 by heat treatment while applying pressure, the organic solvent is volatilized by the heat treatment, and there is a case where the volume reduction of the metal fine particles 3 is large. When the occupation area of the metal fine particles 3 is significantly reduced by the heat treatment, the metal density can be increased by pressurization. Moreover, it is possible to prevent cracks from forming in the sintered body of the metal fine particles 3. Furthermore, it becomes possible to join the 1st to-be-joined material 1 and the 2nd to-be-joined material 2 more firmly by pressurizing.

一方、熱処理しても金属微粒子3の占有面積が殆ど変わらない場合は、加圧せずに熱処理して金属微粒子3の焼結を行うことができる。   On the other hand, if the area occupied by the metal fine particles 3 hardly changes even after heat treatment, the metal fine particles 3 can be sintered by heat treatment without applying pressure.

第1の被接合材1と第2の被接合材2と金属微粒子3とからなる積層体を少なくとも加熱することにより、金属微粒子3表面で局所的に溶融現象が起こり、図2に示すように、金属微粒子3間および金属微粒子3と第1の被接合材1(金属体)との間に結合部(ネック4)が形成され、金属微粒子3同士および第1の被接合材1の接合面と金属微粒子3とが融合された融合層5が形成される。このとき、第1の被接合材1は少なくとも表面に原子空孔および/または転位を生じさせる加工を施した加工層11を有するため、金属微粒子3と第1の被接合材1との間のネック4においては、加工層の原子空孔が被接合材全体や金属微粒子への移動することを伴う拡散が促進し、金属微粒子とネックが成長していくため、より高い密着力が得られ、かつ、より低温での接合が可能になる。これにより、第1の被接合材1の表面には、再結晶層が形成される。   By heating at least the laminate composed of the first material to be bonded 1, the second material to be bonded 2 and the metal fine particles 3, a melting phenomenon occurs locally on the surface of the metal fine particles 3, as shown in FIG. A joint (neck 4) is formed between the metal fine particles 3 and between the metal fine particles 3 and the first material to be bonded 1 (metal body), and the bonding surfaces of the metal fine particles 3 and the first material to be bonded 1 are joined together. A fusion layer 5 in which the metal fine particles 3 are fused is formed. At this time, since the first material to be bonded 1 has a processed layer 11 that has been processed to generate atomic vacancies and / or dislocations at least on the surface, the space between the metal fine particles 3 and the first material to be bonded 1 is In the neck 4, diffusion accompanied by movement of the atomic vacancies in the processed layer to the whole material to be joined and the metal fine particles is promoted, and the metal fine particles and the neck grow, so that higher adhesion can be obtained, In addition, bonding at a lower temperature becomes possible. Thereby, a recrystallized layer is formed on the surface of the first bonded material 1.

また、第1の被接合材1の表面に加工層11が設けられていることから、通常の表面に加工層11が設けられていない被接合材を用いた場合と比べて拡散反応の効率が向上するため、金属微粒子3の再結晶温度は、通常の表面に加工層11が設けられていない被接合材を用いた場合よりも低くなり、より低温での接合が可能になる。例えば、金属微粒子3が銅の場合、再結晶温度は、通常200℃以上であるが、表面に加工層11が設けられている第1の被接合材1と接合させる場合は、150℃以上となる。このように、低温での焼結が可能となる結果、接続界面の接合強度が上がる。   In addition, since the processed layer 11 is provided on the surface of the first bonded material 1, the efficiency of the diffusion reaction is higher than that in the case of using the bonded material that does not have the processed layer 11 on the normal surface. In order to improve, the recrystallization temperature of the metal fine particles 3 is lower than that in the case of using a material to be joined in which the processed layer 11 is not provided on the normal surface, and joining at a lower temperature is possible. For example, when the metal fine particles 3 are copper, the recrystallization temperature is usually 200 ° C. or higher. However, when the metal fine particles 3 are bonded to the first material 1 having the processed layer 11 on the surface, the recrystallization temperature is 150 ° C. Become. Thus, as a result of being able to sinter at a low temperature, the bonding strength of the connection interface is increased.

なお、上記では、第1の被接合材1と金属微粒子3との関係を説明したが、第2の被接合材2と金属微粒子3との関係も同様である。   In addition, although the relationship between the 1st to-be-joined material 1 and the metal microparticle 3 was demonstrated above, the relationship between the 2nd to-be-joined material 2 and the metal microparticle 3 is also the same.

(第2の実施形態)
次に、第2の実施形態について、図3を用いて説明する。上述の第1の実施形態が、第1の被接合材1の表面のみに加工層1が設けられていたのに対して、本実施の形態は、第1の被接合材1’全体に加工層11’が設けられて点で異なる他は、第1の実施形態において説明したのと同様の構成、接合方法を適用することができる。
(Second Embodiment)
Next, a second embodiment will be described with reference to FIG. In the first embodiment described above, the processed layer 1 is provided only on the surface of the first bonded material 1, whereas in the present embodiment, the entire first bonded material 1 ′ is processed. The same configuration and bonding method as described in the first embodiment can be applied except that the layer 11 ′ is provided and different in the point.

以下、第1の実施形態と異なる点について、説明する。図3に示すように、第1の被接合材1’には、厚み方向全域にわたって原子空孔および/または転位を生じさせる加工を施されており、第1の被接合材1’は加工層11’のみから形成されている。第1の被接合材1’の厚み方向全域にわたって原子空孔および/または転位を生じさせるには、例えば曲げ加工を施すとよい。   Hereinafter, differences from the first embodiment will be described. As shown in FIG. 3, the first material to be bonded 1 ′ has been subjected to processing for generating atomic vacancies and / or dislocations throughout the thickness direction, and the first material to be bonded 1 ′ is a processed layer. 11 'only. In order to generate atomic vacancies and / or dislocations across the entire thickness direction of the first bonded material 1 ′, for example, bending may be performed.

第1の被接合材1’は、例えばリードフレームのダイパッドであり、この場合、第2の被接合材2’は半導体素子の裏面である。   The first material to be bonded 1 ′ is, for example, a die pad of a lead frame. In this case, the second material to be bonded 2 ′ is the back surface of the semiconductor element.

図3に示すように、第1の被接合材1’上に金属微粒子3を供給し、その上に第2の被接合材2’を載置した状態で加熱すると、上記第1の実施形態と同様に、図4に示すように、金属微粒子3間および金属微粒子3と第1の被接合材1’(金属体)との間に結合部(ネック4)が形成される。このとき、第1の被接合材1は原子空孔および/または転位を生じさせる加工を施した加工層11’であるため、金属微粒子3と第1の被接合材1’との間のネック4においては、加工層の原子空孔が被接合材全体や金属微粒子への移動することを伴う拡散が促進し、金属微粒子とネックが成長していくため、より高い密着力が得られ、かつ、より低温での接合が可能になる。   As shown in FIG. 3, when the metal fine particles 3 are supplied onto the first material to be bonded 1 ′ and heated with the second material to be bonded 2 ′ placed thereon, the first embodiment described above is applied. In the same manner, as shown in FIG. 4, joint portions (neck 4) are formed between the metal fine particles 3 and between the metal fine particles 3 and the first bonded material 1 ′ (metal body). At this time, since the first material to be bonded 1 is a processed layer 11 ′ that has been processed to generate atomic vacancies and / or dislocations, the neck between the metal fine particles 3 and the first material to be bonded 1 ′. 4, diffusion accompanied by movement of the atomic vacancies in the processed layer to the whole material to be joined and the metal fine particles is promoted, and the metal fine particles and the neck grow, so that higher adhesion can be obtained, and , Bonding at a lower temperature becomes possible.

また、第1の被接合材1’が加工層11’で形成されていることから、通常の加工層11’が設けられていない被接合材を用いた場合と比べて拡散反応が早いため、金属微粒子3の再結晶温度は、通常の表面に加工層11’が設けられていない被接合材を用いた場合よりも低くなり、より低温での接合が可能になる。   In addition, since the first material to be bonded 1 ′ is formed of the processed layer 11 ′, the diffusion reaction is faster than the case of using the material to be bonded that is not provided with the normal processed layer 11 ′. The recrystallization temperature of the metal fine particles 3 is lower than that in the case of using a material to be joined in which the processed layer 11 ′ is not provided on the normal surface, and bonding at a lower temperature is possible.

上記第1の実施形態では、加工層11が第1の被接合材1の表面にのみ設けられているため、図2に示すように、第1の被接合材1においては、原子空孔が接合側(表面)だけでなく、第1の被接合材1の全体に拡散する。
これに対して、第2の実施形態では、加工層11’が第1の被接合材1’の厚み方向全域にわたって設けられているため、図3に示すように、第1の被接合材1’においては、原子空孔が接合側へ拡散する速度が相対的に上がり、接合側への原子空孔の移動が優先的に起こる。そのため第2の実施形態は、原子空孔の移動が金属微粒子への移動に限定されてしまう。
結果として拡散の促進は第1の実施形態の方が第2の実施形態よりも高い効率で発生し、金属微粒子3間または金属微粒子3と第1の被接合材1との間のネック成長や再結晶化が進行する。このため、厚み方向全域にわたって加工層11’が設けられている第1の被接合材1’を用いたよりも、表面にのみ加工層1が設けられている第1の被接合材1を用いた場合のほうが再結晶温度を低くすることができる。例えば、金属微粒子3が銅の場合、厚み方向全域にわたって加工層11’が設けられている第1の被接合材1’と接合させる際の再結晶温度は180℃以上となるのに対し、表面にのみ加工層11が設けられている第1の被接合材1と接合させる際の再結晶温度は150℃となった。
In the first embodiment, since the processed layer 11 is provided only on the surface of the first bonded material 1, as shown in FIG. 2, the first bonded material 1 has atomic vacancies. It diffuses not only on the joining side (surface) but also on the entire first material 1 to be joined.
In contrast, in the second embodiment, the processed layer 11 ′ is provided over the entire thickness direction of the first material to be bonded 1 ′. Therefore, as shown in FIG. In ', the rate at which atomic vacancies diffuse toward the bonding side is relatively increased, and the movement of atomic vacancies toward the bonding side occurs preferentially. Therefore, in the second embodiment, the movement of atomic vacancies is limited to the movement to metal fine particles.
As a result, the diffusion is more efficiently generated in the first embodiment than in the second embodiment, and neck growth between the metal fine particles 3 or between the metal fine particles 3 and the first bonded material 1 Recrystallization proceeds. For this reason, the 1st to-be-joined material 1 in which the process layer 1 was provided only on the surface was used rather than using 1st to-be-joined material 1 'in which the process layer 11' was provided over the thickness direction whole region. In this case, the recrystallization temperature can be lowered. For example, when the metal fine particles 3 are copper, the recrystallization temperature when bonded to the first material to be bonded 1 ′ provided with the processed layer 11 ′ over the entire thickness direction is 180 ° C. or higher, whereas The recrystallization temperature at the time of joining to the first material 1 to be joined provided with the processed layer 11 only was 150 ° C.

1,1’:第1の被接合材
11,11’:加工層
2,2’:第2の被接合材
22,22’:加工層
3:金属微粒子
4:ネック
5:融合層
6:原子空孔
100:基板
200:半導体素子
DESCRIPTION OF SYMBOLS 1, 1 ': 1st to-be-joined material 11, 11': Processed layer 2, 2 ': 2nd to-be-joined material 22, 22': Processed layer 3: Metal fine particle 4: Neck 5: Fusion layer 6: Atom Hole 100: Substrate 200: Semiconductor element

Claims (9)

原子空孔および/または転位を生じさせる加工を施した加工層を有する金属からなる第1の被接合材を準備する工程と、
前記第1の被接合材の前記加工層と第2の被接合材との間に金属微粒子を供給する工程と、
前記金属微粒子を介して前記第1の被接合材と前記第2の被接合材とを接合する工程とを有することを特徴とする金属体の接合方法。
Preparing a first material to be joined made of a metal having a processed layer that has been processed to generate atomic vacancies and / or dislocations;
Supplying metal fine particles between the processed layer of the first bonded material and the second bonded material;
A method for joining metal bodies, comprising: joining the first material to be joined and the second material to be joined via the metal fine particles.
前記第2の被接合材は、原子空孔および/または転位を生じさせる加工を施した加工層を有する金属体であることを特徴とする請求項1に記載の金属体の接合方法。   The metal body bonding method according to claim 1, wherein the second material to be bonded is a metal body having a processed layer that has been processed to generate atomic vacancies and / or dislocations. 前記加工層が被接合材の表面にのみ形成されていることを特徴とする請求項1または請求項2に記載の金属体の接合方法。   The metal body joining method according to claim 1, wherein the processed layer is formed only on a surface of a material to be joined. 前記加工層が被接合材の前記金属微粒子により接合される部分のみに形成されていることを特徴とする請求項1から請求項3のいずれか一項に記載の金属体の接合方法。   The method for joining metal bodies according to any one of claims 1 to 3, wherein the processed layer is formed only in a portion of the material to be joined that is joined by the metal fine particles. 前記金属微粒子は、一次粒子の平均粒子径が、1nm〜500nmであることを特徴とする請求項1から請求項4のいずれか一項に記載の金属体の接合方法。   The metal particle joining method according to any one of claims 1 to 4, wherein the metal fine particles have an average primary particle diameter of 1 nm to 500 nm. 前記金属微粒子は、銀、金、銅、アルミニウム、ニッケル、白金、錫、アンチモン及びパラジウムからなる金属元素群から選ばれる1種の微粒子、前記金属元素群から選ばれる2種以上を混合した微粒子、前記金属元素群から選ばれる2種以上の元素の合金からなる微粒子、前記金属元素群から選ばれる1種の微粒子又は前記金属元素群から選ばれる2種以上を混合した微粒子と前記金属元素群から選ばれる2種以上の元素の合金からなる微粒子とを混合した微粒子、これらの酸化物、又は、これらの水酸化物であることを特徴とする請求項1から請求項5のいずれか一項に記載の金属体の接合方法。   The metal fine particles are one kind of fine particles selected from a metal element group consisting of silver, gold, copper, aluminum, nickel, platinum, tin, antimony and palladium, and a fine particle obtained by mixing two or more kinds selected from the metal element group, From the metal element group, fine particles made of an alloy of two or more elements selected from the metal element group, one fine particle selected from the metal element group, or fine particles obtained by mixing two or more elements selected from the metal element group The fine particles mixed with fine particles made of an alloy of two or more kinds of elements selected, oxides thereof, or hydroxides thereof, according to any one of claims 1 to 5. The joining method of the metal body of description. 前記原子空孔および/または転位を生じさせる加工は、機械的加工であることを特徴とする請求項1から請求項6のいずれか一項に金属体の接合方法。   The metal body joining method according to any one of claims 1 to 6, wherein the processing for generating the atomic vacancies and / or dislocations is mechanical processing. 前記第1の被接合材が銅からなることを特徴とする請求項1から請求項7のいずれか一項に記載の金属体の接合方法。   The metal body joining method according to claim 1, wherein the first material to be joined is made of copper. 前記第1の被接合材の前記加工層の再結晶温度以上で加熱することにより、前記第1の被接合材の前記加工層が再結晶されていることを特徴とする請求項1から請求項8のいずれか一項に記載の金属体の接合方法。   The processing layer of the first bonded material is recrystallized by heating at a recrystallization temperature or higher of the processed layer of the first bonded material. The method for joining metal bodies according to any one of claims 8 to 10.
JP2012081458A 2012-03-30 2012-03-30 Method for jointing metal body Pending JP2013209720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012081458A JP2013209720A (en) 2012-03-30 2012-03-30 Method for jointing metal body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012081458A JP2013209720A (en) 2012-03-30 2012-03-30 Method for jointing metal body

Publications (1)

Publication Number Publication Date
JP2013209720A true JP2013209720A (en) 2013-10-10

Family

ID=49527812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012081458A Pending JP2013209720A (en) 2012-03-30 2012-03-30 Method for jointing metal body

Country Status (1)

Country Link
JP (1) JP2013209720A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015052791A1 (en) * 2013-10-09 2015-04-16 古河電気工業株式会社 Joining method for metal body and joining structure for metal body
WO2015068853A1 (en) * 2013-11-11 2015-05-14 新日鐵住金株式会社 Metal bonding structure, metal bonding method, and metal bonding material using metal nanoparticles
JP2015093296A (en) * 2013-11-11 2015-05-18 新日鐵住金株式会社 Metal joint structure and metal joining method with use of metal nanoparticle
JP2015093295A (en) * 2013-11-11 2015-05-18 新日鐵住金株式会社 Metal joint structure using metal nanoparticle, and metal joining method and metal joint material
JP2015198209A (en) * 2014-04-03 2015-11-09 新日鐵住金株式会社 Circuit board and method for manufacturing the same
KR20160125413A (en) * 2014-02-24 2016-10-31 헨켈 아게 운트 코. 카게아아 Sinterable metal particles and the use thereof in electronics applications
JP2017002364A (en) * 2015-06-11 2017-01-05 古河電気工業株式会社 Dispersion solution of surface-coated metal particulate, and methods of producing sintered electrical conductor and electrically conductive connection member, including steps of applying and sintering the dispersion solution
EP3057123A4 (en) * 2013-10-07 2017-09-13 Furukawa Electric Co., Ltd. Joining structure and electronic member-joining structural body
WO2020202971A1 (en) * 2019-03-29 2020-10-08 三井金属鉱業株式会社 Bonding material and bonded structure

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3057123A4 (en) * 2013-10-07 2017-09-13 Furukawa Electric Co., Ltd. Joining structure and electronic member-joining structural body
WO2015052791A1 (en) * 2013-10-09 2015-04-16 古河電気工業株式会社 Joining method for metal body and joining structure for metal body
US9960140B2 (en) 2013-11-11 2018-05-01 Nippon Steel & Sumitomo Metal Corporation Metal joining structure using metal nanoparticles and metal joining method and metal joining material
WO2015068853A1 (en) * 2013-11-11 2015-05-14 新日鐵住金株式会社 Metal bonding structure, metal bonding method, and metal bonding material using metal nanoparticles
JP2015093296A (en) * 2013-11-11 2015-05-18 新日鐵住金株式会社 Metal joint structure and metal joining method with use of metal nanoparticle
JP2015093295A (en) * 2013-11-11 2015-05-18 新日鐵住金株式会社 Metal joint structure using metal nanoparticle, and metal joining method and metal joint material
US20160240505A1 (en) * 2013-11-11 2016-08-18 Nippon Steel & Sumitomo Metal Corporation Metal joining structure using metal nanoparticles and metal joining method and metal joining material
KR20160125413A (en) * 2014-02-24 2016-10-31 헨켈 아게 운트 코. 카게아아 Sinterable metal particles and the use thereof in electronics applications
KR102362072B1 (en) 2014-02-24 2022-02-11 헨켈 아게 운트 코. 카게아아 Sinterable metal particles and the use thereof in electronics applications
JP2017512258A (en) * 2014-02-24 2017-05-18 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA Sinterable metal particles and their use in electronics applications
JP2015198209A (en) * 2014-04-03 2015-11-09 新日鐵住金株式会社 Circuit board and method for manufacturing the same
JP2017002364A (en) * 2015-06-11 2017-01-05 古河電気工業株式会社 Dispersion solution of surface-coated metal particulate, and methods of producing sintered electrical conductor and electrically conductive connection member, including steps of applying and sintering the dispersion solution
WO2020202971A1 (en) * 2019-03-29 2020-10-08 三井金属鉱業株式会社 Bonding material and bonded structure
JPWO2020202971A1 (en) * 2019-03-29 2020-10-08
JP7455114B2 (en) 2019-03-29 2024-03-25 三井金属鉱業株式会社 Bonding material and structure
US12070801B2 (en) 2019-03-29 2024-08-27 Mitsui Mining & Smelting Co., Ltd. Bonding material and bonded structure

Similar Documents

Publication Publication Date Title
JP2013209720A (en) Method for jointing metal body
JP4770533B2 (en) Semiconductor device manufacturing method and semiconductor device
JP5525335B2 (en) Sintered silver paste material and semiconductor chip bonding method
TWI538762B (en) Stud bump and package structure thereof and method of forming the same
CN106271177B (en) A kind of interconnection solder and its interconnection manufacturing process
JP2014097529A (en) Joining method by foam metal, manufacturing method of semiconductor device, and semiconductor device
JP6108987B2 (en) Connection structure
JP2007019360A (en) Mounting method of electric component
US8569109B2 (en) Method for attaching a metal surface to a carrier, a method for attaching a chip to a chip carrier, a chip-packaging module and a packaging module
WO2013021750A1 (en) Wiring substrate and method for manufacturing same and semiconductor device
WO2013146504A1 (en) Conductive paste for die bonding, and die bonding method using conductive paste for die bonding
JP5844299B2 (en) Bonding material, bonding structure
US20150123263A1 (en) Two-step method for joining a semiconductor to a substrate with connecting material based on silver
JP6258954B2 (en) Metal body joining method and metal body joining structure
JP5526336B2 (en) Solder layer, device bonding substrate using the same, and manufacturing method thereof
JP2012038790A (en) Electronic member and electronic component and manufacturing method thereof
JP2007184408A (en) Electrode bonding method
JP6897236B2 (en) Molded body for joining and its manufacturing method
JP2011041955A (en) Method for producing joined body, and joined body
JP5535375B2 (en) Connection sheet
JP7255994B2 (en) Sinter bonding method for semiconductor devices
JP5955183B2 (en) Die bond bonding structure of semiconductor element and die bond bonding method of semiconductor element
JP2006120973A (en) Circuit board and manufacturing method thereof
JP5296846B2 (en) Connection sheet
JP2012039008A (en) Semiconductor device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20131008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131008