JP7155654B2 - Method for manufacturing conjugate - Google Patents

Method for manufacturing conjugate Download PDF

Info

Publication number
JP7155654B2
JP7155654B2 JP2018118844A JP2018118844A JP7155654B2 JP 7155654 B2 JP7155654 B2 JP 7155654B2 JP 2018118844 A JP2018118844 A JP 2018118844A JP 2018118844 A JP2018118844 A JP 2018118844A JP 7155654 B2 JP7155654 B2 JP 7155654B2
Authority
JP
Japan
Prior art keywords
layer
bonding
less
calcined
metal particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018118844A
Other languages
Japanese (ja)
Other versions
JP2019220641A (en
Inventor
達也 沼
雅之 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2018118844A priority Critical patent/JP7155654B2/en
Publication of JP2019220641A publication Critical patent/JP2019220641A/en
Application granted granted Critical
Publication of JP7155654B2 publication Critical patent/JP7155654B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Die Bonding (AREA)

Description

本発明は、電子部品の組立てや実装等において、2つの部材を金属粒子を含むペースト状の接合材を用いて接合した接合体の製造方法に関する。 TECHNICAL FIELD The present invention relates to a method for manufacturing a bonded body in which two members are bonded using a paste-like bonding material containing metal particles in assembling, mounting, or the like of electronic components.

電子部品の組立てや実装等において、2つ以上の部材を接合する際に、銀(Ag)、金(Au)等の高熱伝導性を有する金属粒子を揮発性溶媒に分散させてペースト状とした接合材を用いることが知られている。このようなペースト状の接合材を用いて2つの部材を接合する際には、一方の部材の接合面に接合材を塗布し、その接合材の塗布面に他方の部材を接触させた状態で加熱処理を行う。この加熱処理により、揮発性溶媒が揮発し、金属粒子どうしが焼結されることで導電性の焼成体からなる接合層が生成され、2つの部材が接合される。このような金属粒子の焼成体によって接合層を形成した場合には、比較的低温条件で接合層を形成できるとともに、接合層自体の融点は高くなるため、高温環境下においても接合強度が大きく低下しないという利点がある。 Metal particles with high thermal conductivity such as silver (Ag) and gold (Au) are dispersed in a volatile solvent to form a paste when joining two or more members in the assembly or mounting of electronic components. It is known to use a bonding material. When two members are joined using such a paste-like jointing material, the jointing material is applied to the joint surface of one member, and the other member is brought into contact with the jointing material-coated surface. Heat treatment. By this heat treatment, the volatile solvent volatilizes and the metal particles are sintered to form a bonding layer made of a conductive sintered body, thereby bonding the two members. When the bonding layer is formed from such a sintered body of metal particles, the bonding layer can be formed under relatively low temperature conditions, and the melting point of the bonding layer itself is high, so the bonding strength is greatly reduced even in a high temperature environment. It has the advantage of not

ところで、このようなペースト状の接合材を用いた2つの部材の接合時、すなわち加熱処理時には、接合材に含まれる揮発性溶媒が気化するために多量のガスが発生し、接合層中にガスが留まることで、ボイドが生じやすい。そして、接合層中に多量のボイドが発生した場合には、ボイドにより接合強度の低下等を引き起こしやすくなる。そこで、接合層中のボイドを低減することが求められている。 By the way, when two members are joined using such a paste-like joining material, that is, during heat treatment, a large amount of gas is generated due to the evaporation of the volatile solvent contained in the joining material. Voids tend to occur due to the retention of In addition, when a large amount of voids are generated in the bonding layer, the voids tend to cause a decrease in bonding strength or the like. Therefore, it is required to reduce voids in the bonding layer.

接合層中のボイドを低減する対策として、例えば特許文献1には、基材と半導体素子とを流動性を有する接続層を介して接続する工程において、半導体素子と基材との接続面に沿った方向に加速度を基材、接続層および半導体素子に対して加えながら接続を行うことにより、接続の過程でガスを接続層の外部に放散することが記載されている。 As a measure for reducing voids in the bonding layer, for example, Patent Document 1 discloses that in a step of connecting a base material and a semiconductor element via a connection layer having fluidity, along a connection surface between the semiconductor element and the base material, It is described that the gas is diffused to the outside of the connection layer in the process of connection by performing the connection while applying acceleration to the substrate, the connection layer and the semiconductor element in each direction.

また、特許文献2には、Cu粒子とSn粒子を含む接合剤を用いて半導体チップと基板とを接合する方法が記載されている。この方法では、半導体チップの接合面に塗布した接合剤をSnの融点よりも低い温度で加熱してペースト溶媒成分を揮発させ、接合剤を固化して仮焼成した後、Snの融点より高い温度で加熱して接合剤のCuとSnを遷移的液相焼結させて、半導体チップを基板に接合する。そして、引用文献2には、接合剤の仮焼成の際に、ペースト溶媒の沸点よりも低い温度で加熱することにより、接合剤(接合部)に発生するボイドを抑制することが記載されている。 Further, Patent Document 2 describes a method of bonding a semiconductor chip and a substrate using a bonding agent containing Cu particles and Sn particles. In this method, the bonding agent applied to the bonding surface of the semiconductor chip is heated at a temperature lower than the melting point of Sn to volatilize the paste solvent component. to sinter the bonding agent Cu and Sn in a transitional liquid phase to bond the semiconductor chip to the substrate. In addition, Cited Document 2 describes that voids generated in the bonding agent (joint portion) are suppressed by heating at a temperature lower than the boiling point of the paste solvent during temporary firing of the bonding agent. .

一方、特許文献3にはボイドについての記載はないが、この特許文献3にも、接合材としてのペーストを加熱して仮焼結した後、さらに加熱して2つの部品を接合するパッケージ方法が記載されている。具体的には、特許文献3には、ガラス基板と低融点ガラスペーストを仮焼成させてガラス基板上に焼結ガラスを仮溶着した後、焼結ガラスにリードフレームを重ねて加熱することで焼結ガラスを溶融させてガラス基板上にリードフレームを溶着する。これとは別に、カバーガラスと低融点ペーストを仮焼成させてカバーガラス上に焼結ガラスを仮溶着した後、既にリードフレームを溶着したガラス基板とカバーガラスを突き合せた状態でカバーガラス上の焼結ガラスを溶融させて、カバーガラスとリードフレーム及びガラス基板とを溶着することが記載されている。 On the other hand, Patent Document 3 does not describe voids, but Patent Document 3 also describes a package method in which a paste as a bonding material is heated and pre-sintered, and then further heated to bond two parts. Have been described. Specifically, in Patent Document 3, a glass substrate and a low-melting-point glass paste are preliminarily sintered, and sintered glass is preliminarily welded onto the glass substrate, and then a lead frame is superimposed on the sintered glass and then heated. The lead frame is welded onto the glass substrate by melting the glass. Separately, after the cover glass and the low-melting paste are temporarily baked and the sintered glass is temporarily welded on the cover glass, the glass substrate to which the lead frame has already been welded and the cover glass are butted against each other. It is described that the sintered glass is melted to weld the cover glass to the lead frame and the glass substrate.

特開2009‐164203号公報JP-A-2009-164203 特開2014‐199852号公報JP 2014-199852 A 特公平3‐76025号公報Japanese Patent Publication No. 3-76025

しかし、特許文献1のように、基材と半導体素子との2つの部材の間に接続層(接合材)を介在させた状態では、接合面に沿った方向に加速度を加えても、接続層の大部分が基材と半導体素子とで塞がれていることから、接続層中に生じるガスを外部に放散させることは難しく、ボイドを十分に低減することも難しい。また、特許文献1には、加速度を加える手段として、回転台座上での回転動作による遠心力を利用する方法が記載されているが、このように回転台座を用いる方法では、工程が複雑化する。 However, in a state in which a connection layer (bonding material) is interposed between two members, the base material and the semiconductor element, as in Patent Document 1, even if acceleration is applied in the direction along the bonding surface, the connection layer Since most of the gap is blocked by the base material and the semiconductor element, it is difficult to dissipate the gas generated in the connection layer to the outside, and it is also difficult to sufficiently reduce voids. Further, Patent Document 1 describes a method of using centrifugal force generated by a rotating motion on a rotating base as means for applying acceleration. .

一方、特許文献2及び特許文献3に記載されるように、基板と半導体チップとの接合前に接合剤(接合材)中のペースト溶媒成分を完全に揮発させて仮焼結した場合には、その後の半導体チップと基板との接合時において半導体チップと基板との間で接合剤の濡れ性が阻害され、高い接合強度を得ることが難しくなる。また、特許文献2及び特許文献3に記載のように、接合剤が仮焼結された一方の部品(半導体チップ)に他方の部品(基板)を重ねた場合、焼結時に生じるガスが他方の部品と接合剤との接触界面から抜けにくく、他方の部品と接合剤との接触界面にボイドが残りやすくなる。このため、他方の部品と接合剤との高い接合強度が得られにくい。 On the other hand, as described in Patent Documents 2 and 3, when the paste solvent component in the bonding agent (bonding material) is completely volatilized and pre-sintered before bonding the substrate and the semiconductor chip, When the semiconductor chip and the substrate are subsequently bonded, the wettability of the bonding agent between the semiconductor chip and the substrate is hindered, making it difficult to obtain high bonding strength. Further, as described in Patent Documents 2 and 3, when one component (semiconductor chip) in which a bonding agent is temporarily sintered is superimposed on the other component (substrate), the gas generated during sintering It is difficult to remove from the contact interface between the component and the bonding agent, and voids tend to remain at the contact interface between the other component and the bonding agent. Therefore, it is difficult to obtain a high bonding strength between the other part and the bonding agent.

本発明は、このような事情に鑑みてなされたもので、接合層中に発生するボイドを抑制でき、2つの部材の接合強度の向上を図ることができる接合体の製造方法を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for manufacturing a joined body, which can suppress the occurrence of voids in the joining layer and improve the joining strength between two members. aim.

本発明の接合体の製造方法は、銀、金および銅からなる群より選ばれる少なくとも1つの金属を含む金属粒子と揮発性溶媒とを含むペースト状の接合材を用いて第1部材と第2部材とを接合する接合体の製造方法であり、前記第1部材の接合面に前記接合材を塗布し、前記接合材が塗布された前記第1部材を加熱して該接合材中の前記揮発性溶媒の一部を揮発させて前記第1部材の接合面上に第1仮焼成層を形成する第1仮焼成工程と、前記第2部材の接合面に前記接合材を塗布し、前記接合材が塗布された前記第2部材を加熱して該接合材中の前記揮発性溶媒の一部を揮発させて前記第2部材の接合面上に第2仮焼成層を形成する第2仮焼成工程と、前記第1仮焼成層と前記第2仮焼成層とを重ねた状態で前記第1部材と前記第2部材との積層体を加熱し、前記第1仮焼成層及び前記第2仮焼成層中に残存する前記揮発性溶媒を揮発させるとともに、前記金属粒子どうしを焼結させた接合層を生成し、該接合層を介して前記第1部材と前記第2部材とが接合された接合体を形成する接合工程と、を備える。 The method for manufacturing a bonded body of the present invention uses a paste-like bonding material containing metal particles containing at least one metal selected from the group consisting of silver, gold and copper and a volatile solvent to bond the first member and the second member together. A method for manufacturing a bonded body for bonding members, wherein the bonding material is applied to the bonding surface of the first member, and the first member coated with the bonding material is heated to cause the volatilization in the bonding material. a first calcination step of forming a first calcination layer on the bonding surface of the first member by volatilizing part of the solvent, applying the bonding material to the bonding surface of the second member, and bonding a second calcination for forming a second calcination layer on the bonding surface of the second member by heating the second member coated with the material to volatilize a part of the volatile solvent in the bonding material; and heating the laminate of the first member and the second member in a state where the first calcined layer and the second calcined layer are superimposed, and the first calcined layer and the second calcined layer The volatile solvent remaining in the fired layer is volatilized, the metal particles are sintered to form a bonding layer, and the first member and the second member are bonded via the bonding layer. and a joining step of forming a joined body.

第1部材の接合面に第1仮焼成層を形成し、第2部材の接合面に第2仮焼成層を形成して、第1部材と第2部材とのそれぞれに仮焼成層を形成することで、第1部材と第2部材との接合に必要な接合材の塗布量を二分して各接合面に塗布する接合材の塗布量を少なくでき、塗布厚を薄くできる。このため、第1仮焼成工程及び第2仮焼成工程において、第1部材と第2部材の各接合面に塗布された接合材から揮発性溶媒を揮発させる際に、接合材中に発生するガスを円滑に外部に放出でき、第1仮焼成層と第2仮焼成層とにボイドが形成されることを抑制できる。また、第1部材と第2部材とに塗布されるそれぞれの接合材の塗布厚が薄いので、いずれか一方の部材に接合材を塗布した場合と比較して仮焼成時間を短くできる。
なお、第1仮焼成工程と第2仮焼成工程とは接合工程の前に行うが、各仮焼成工程の実施順序は特に限定されるものではない。つまり、第1仮焼成工程は、第2仮焼成工程よりも先に行うこともできるし、第1仮焼成工程と第2仮焼成工程とを同時に行うこともできるし、第2仮焼成工程を第1仮焼成工程よりも先に行うこともできる。
A first calcined layer is formed on the joint surface of the first member, a second calcined layer is formed on the joint surface of the second member, and a calcined layer is formed on each of the first member and the second member. Thus, the application amount of the bonding material necessary for bonding the first member and the second member can be divided into two, and the application amount of the bonding material applied to each bonding surface can be reduced, and the coating thickness can be reduced. For this reason, in the first temporary baking step and the second temporary baking step, when the volatile solvent is volatilized from the bonding material applied to each bonding surface of the first member and the second member, the gas generated in the bonding material can be smoothly released to the outside, and the formation of voids in the first calcined layer and the second calcined layer can be suppressed. Moreover, since the coating thickness of each of the bonding materials applied to the first member and the second member is small, the pre-firing time can be shortened compared to the case where the bonding material is applied to either one of the members.
Although the first calcination process and the second calcination process are performed before the joining process, the order of performing each calcination process is not particularly limited. That is, the first calcining step can be performed prior to the second calcining step, the first calcining step and the second calcining step can be performed simultaneously, or the second calcining step can be performed at the same time. It can also be performed prior to the first calcination step.

また、第1仮焼成工程と第2仮焼成工程においては、接合材中の揮発性溶媒の一部を揮発させており、揮発性溶媒を完全に揮発させることなく第1仮焼成層と第2仮焼成層を形成している。このため、接合工程において、第1仮焼成層と第2仮焼成層とを重ねた際に、残存する揮発性溶媒によって両焼成層を密着させて重ねることができる。また、第1仮焼成工程において、接合材が第1部材の接合面に濡れて、第1仮焼成層と第1部材との密着性が高く維持されている。同様に、第2仮焼成工程において、接合材が第2部材の接合面に濡れて、第2焼成層と第2部材との密着性が高く維持されている。したがって、接合工程において第1仮焼成層と第2仮焼成層とを重ねた状態で第1部材と第2部材との積層体を加熱することで、第1仮焼成層と第2仮焼成層とが強固に接合された接合層を形成できるとともに、接合層を介して第1部材と第2部材とを強固に接合できる。 In addition, in the first temporary baking process and the second temporary baking process, a part of the volatile solvent in the bonding material is volatilized, and the first temporary baking layer and the second temporary baking layer are formed without completely volatilizing the volatile solvent. A calcined layer is formed. Therefore, in the bonding step, when the first calcined layer and the second calcined layer are superimposed, the remaining volatile solvent allows the two calcined layers to be brought into close contact with each other. In addition, in the first calcination step, the bonding material wets the bonding surface of the first member, and high adhesion is maintained between the first calcination layer and the first member. Similarly, in the second calcination step, the bonding material wets the bonding surface of the second member, and the adhesion between the second fired layer and the second member is maintained at a high level. Therefore, by heating the laminate of the first member and the second member in a state where the first calcined layer and the second calcined layer are superimposed in the bonding step, the first calcined layer and the second calcined layer The first member and the second member can be strongly bonded via the bonding layer.

また、前述したように、第1仮焼成層及び第2仮焼成層中の揮発性溶媒の大部分は既に第1仮焼成工程及び第2仮焼成工程において揮発させた状態である。このため、接合工程では、わずかに残る揮発性溶媒を揮発させて、金属粒子を焼結させればよい。したがって、焼結時間を比較的短くできる。また、第1仮焼成層及び第2仮焼成層中に含まれる揮発性溶媒の量は接合材と比べて少ないので、接合工程において揮発性溶媒を揮発させる際に生じるガスはわずかである。さらに、第1仮焼成層及び第2仮焼成層には、各仮焼成工程において揮発性溶媒の一部を揮発させたことで金属粒子の間に空隙が形成されているので、接合工程においてガスが発生したとしても第1仮焼成層及び第2仮焼成層の空隙から円滑に外部に放出される。したがって、接合層中に形成されるボイドを低減でき、第1部材と第2部材との接合強度の向上を図ることができる。 Moreover, as described above, most of the volatile solvent in the first calcined layer and the second calcined layer has already volatilized in the first calcined step and the second calcined step. Therefore, in the bonding step, the metal particles may be sintered by evaporating the slightly remaining volatile solvent. Therefore, the sintering time can be relatively shortened. Also, since the amount of the volatile solvent contained in the first calcined layer and the second calcined layer is smaller than that in the bonding material, only a small amount of gas is generated when volatilizing the volatile solvent in the bonding process. Furthermore, in the first calcined layer and the second calcined layer, since a part of the volatile solvent is volatilized in each calcining step to form voids between the metal particles, gas Even if it occurs, it is smoothly released to the outside from the gaps between the first calcined layer and the second calcined layer. Therefore, voids formed in the bonding layer can be reduced, and the bonding strength between the first member and the second member can be improved.

本発明の接合体の製造方法の好ましい実施形態において、前記金属粒子が、粒径が100nm以上500nm未満の範囲にある第1金属粒子を60体積%以上95体積%以下の範囲、粒径が50nm以上100nm未満の範囲にある第2金属粒子を5体積%以上40体積%以下の範囲、粒径が50nm未満の第3金属粒子を5体積%以下の割合で含む凝集体であって、前記凝集体は、レーザ回折散乱法により測定される体積基準の粒度分布曲線において、D10が0.05μm以上0.25μm以下の範囲にあって、D50が0.4μm以上0.6μm以下の範囲にあり、さらにD90が1.5μm以上2.5μm以下の範囲とされていることが好ましい。 In a preferred embodiment of the method for producing a joined body of the present invention, the first metal particles have a particle size of 100 nm or more and less than 500 nm, and the first metal particles have a particle size of 50 nm. An aggregate containing second metal particles with a particle size of 5% or more and 40% or less by volume and a third metal particle with a particle size of less than 50 nm in a proportion of 5% or less by volume, The aggregate has a D10 in the range of 0.05 μm or more and 0.25 μm or less and a D50 in the range of 0.4 μm or more and 0.6 μm or less in a volume-based particle size distribution curve measured by a laser diffraction scattering method, Furthermore, it is preferable that D90 is in the range of 1.5 μm or more and 2.5 μm or less.

上記の異なる粒径の金属粒子を組み合わせた接合材を焼結させることで、金属粒子どうしの隙間(空隙)が少なく緻密な接合層を形成できる。したがって、より高い接合強度を有する接合層が得られる。 By sintering the bonding material in which the metal particles having different particle diameters are combined, it is possible to form a dense bonding layer with few gaps (voids) between the metal particles. Therefore, a bonding layer having higher bonding strength can be obtained.

本発明の接合体の製造方法の好ましい実施形態において、前記第1仮焼成層及び前記第2仮焼成層は、タッキング力が500mm・N以上1200mm・N以下で、前記金属粒子を除く非固形分の含有量が5質量%以上15質量%以下とされるとよい。 In a preferred embodiment of the method for producing a bonded body of the present invention, the first calcined layer and the second calcined layer have a tacking force of 500 mm N or more and 1200 mm N or less, and the non-solid content excluding the metal particles is preferably 5% by mass or more and 15% by mass or less.

第1仮焼成工程及び第2仮焼成工程において、接合材中の揮発性溶媒等の金属粒子を除く非固形分の含有量を5質量%以上15質量%以下まで減少させ、タッキング力を500mm・N以上1200mm・N以下に保持した第1仮焼成層及び第2仮焼成層を形成しておくことで、接合層中のボイドの発生を抑制でき、第1部材と第2部材との接合強度を確実に高めることができる。第1仮焼成層及び第2仮焼成層のタッキング力が500mm・N未満の場合、接合工程時において第1仮焼成層と第2仮焼成層との密着性が低下し、接合層を形成しにくくなるおそれがある。また、第1仮焼成層及び第2仮焼成層のタッキング力が1200mm・Nを超えている場合、揮発性溶媒の揮発量が少ないため、接合層中にボイドが発生するおそれがある。 In the first calcination step and the second calcination step, the content of non-solids excluding metal particles such as volatile solvents in the bonding material is reduced to 5% by mass or more and 15% by mass or less, and the tacking force is reduced to 500 mm · By forming the first calcined layer and the second calcined layer held at N or more and 1200 mm N or less, the generation of voids in the bonding layer can be suppressed, and the bonding strength between the first member and the second member. can be definitely increased. If the tacking force of the first calcined layer and the second calcined layer is less than 500 mm N, the adhesion between the first calcined layer and the second calcined layer decreases during the bonding process, and the bonding layer is not formed. It may become difficult. Further, when the tacking force of the first pre-fired layer and the second pre-fired layer exceeds 1200 mm·N, the amount of volatilization of the volatile solvent is small, so voids may occur in the bonding layer.

本発明の接合体の製造方法の好ましい実施形態において、前記第1仮焼成工程及び前記第2仮焼成工程は、昇温速度が5℃/分以下、加熱温度が70℃以上100℃以下、該加熱温度の加熱時間が5分以上20分以下で行い、前記接合工程は、昇温速度が10℃/分以下、加熱温度が150℃以上、該加熱温度の加熱時間が60分以上で行うとよい。 In a preferred embodiment of the method for manufacturing a joined body of the present invention, the first calcining step and the second calcining step have a temperature increase rate of 5° C./min or less, a heating temperature of 70° C. or more and 100° C. or less, and When the heating time is 5 minutes or more and 20 minutes or less, and the bonding step is performed at a heating rate of 10° C./minute or less, a heating temperature of 150° C. or more, and a heating time of 60 minutes or more. good.

上記のとおり、本発明の方法を用いることで、第1仮焼成層と第2仮焼成層を確実に形成でき、また、接合層中に発生するボイドを抑制し、第1部材と第2部材とを確実に接合することができる。 As described above, by using the method of the present invention, the first calcined layer and the second calcined layer can be reliably formed, and voids generated in the bonding layer are suppressed, and the first member and the second member can be reliably joined.

本発明によれば、接合層中に発生するボイドを抑制でき、第1部材と第2部材との接合強度の向上を図ることができる。 ADVANTAGE OF THE INVENTION According to this invention, the void which generate|occur|produces in a joining layer can be suppressed, and the improvement of the joint strength of the 1st member and the 2nd member can be aimed at.

本発明の第1実施形態の接合体の製造方法のフロー図である。1 is a flowchart of a method for manufacturing a joined body according to the first embodiment of the present invention; FIG. 本発明の第1実施形態の接合体の製造方法の各工程を説明する模式図である。It is a schematic diagram explaining each process of the manufacturing method of the joined body of 1st Embodiment of this invention.

以下、本発明の実施形態を、図面を参照しながら説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings.

[接合材の構成]
まず、本実施形態の接合材の製造方法に用いる接合材について説明する。
接合材は、銀(Ag)、金(Au)および銅(Cu)からなる群より選ばれる少なくとも1つの金属を含む金属粒子と、有機物と、揮発性溶媒とを含み、ペースト状に形成される。接合材は、例えば、金属粒子と揮発性溶媒とを質量比で70:30の割合で含有する。また、接合材は、例えば、金属粒子と、有機物と、揮発性溶媒とを混合した混合物を、三本ロールミル等の混錬装置を用いて混錬することにより製造できる。
[Composition of joining material]
First, the bonding material used in the manufacturing method of the bonding material of the present embodiment will be described.
The bonding material contains metal particles containing at least one metal selected from the group consisting of silver (Ag), gold (Au) and copper (Cu), an organic substance, and a volatile solvent, and is formed into a paste. . The bonding material contains, for example, metal particles and a volatile solvent at a mass ratio of 70:30. Also, the bonding material can be produced, for example, by kneading a mixture of metal particles, an organic substance, and a volatile solvent using a kneading apparatus such as a three-roll mill.

接合材に含まれる金属粒子は、例えば、銀、金および銅からなる群より選ばれる少なくとも1つの金属を70質量%以上の量にて含有する。金属粒子における銀、金又は銅の含有量は、好ましくは90質量%以上である。金属粒子は、純度が高い方が溶融し易くなるので、比較的低い温度で焼結させることが可能となる。 The metal particles contained in the bonding material contain, for example, at least one metal selected from the group consisting of silver, gold and copper in an amount of 70% by mass or more. The content of silver, gold or copper in the metal particles is preferably 90% by mass or more. Metal particles of higher purity are easier to melt, so that they can be sintered at a relatively low temperature.

また、金属粒子は、特に限定されるものではないが、粒径が100nm以上500nm未満の範囲にある第1金属粒子を60体積%以上95体積%以下の範囲、粒径が50nm以上100nm未満の範囲にある第2金属粒子を5体積%以上40体積%以下の範囲、粒径が50nm未満の第3金属粒子を5体積%以下の割合で含む金属粒子を用いることが好ましい。また、第1金属粒子の含有量は70体積%以上90%体積%以下の範囲、第2金属粒子の含有量は10体積%以上30体積%以下の範囲、第3金属粒子の含有量は1体積%以下の範囲にあることが好ましい。
また、この金属粒子は、第1金属粒子、第2金属粒子及び第3金属粒子の凝集体であり、レーザ回折散乱法により測定される体積基準の粒度分布曲線において、D10が0.05μm以上0.25μm以下の範囲にあって、D50が0.4μm以上0.6μm以下の範囲にあり、さらにD90が1.5μm以上2.5μm以下の範囲とされていることが好ましい。金属粒子が、上記のような比較的広い粒度分布を有する凝集体であることで、金属粒子どうしの隙間が小さい緻密な金属粒子の凝集体を形成でき、ボイドの少ない接合層を形成することができる。
In addition, the metal particles are not particularly limited, but the first metal particles having a particle size of 100 nm or more and less than 500 nm are included in the range of 60 volume % or more and 95 volume % or less, and the particle diameter is 50 nm or more and less than 100 nm. It is preferable to use metal particles containing second metal particles in the range of 5 volume % or more and 40 volume % or less and third metal particles having a particle size of less than 50 nm in a proportion of 5 volume % or less. In addition, the content of the first metal particles is in the range of 70% by volume or more and 90% by volume or less, the content of the second metal particles is in the range of 10% by volume or more and 30% by volume or less, and the content of the third metal particles is 1 It is preferably in the range of vol% or less.
In addition, the metal particles are aggregates of the first metal particles, the second metal particles and the third metal particles, and in the volume-based particle size distribution curve measured by the laser diffraction scattering method, D10 is 0.05 μm or more and 0 0.25 μm or less, D50 is preferably in the range of 0.4 μm or more and 0.6 μm or less, and D90 is preferably in the range of 1.5 μm or more and 2.5 μm or less. Since the metal particles are agglomerates having a relatively wide particle size distribution as described above, it is possible to form dense agglomerates of metal particles with small gaps between the metal particles, and to form a bonding layer with few voids. can.

第1金属粒子、第2金属粒子及び第3金属粒子の粒径は、例えば、SEM(走査型電子顕微鏡)を用いて測定され、金属粒子の投影面積から円相当径(金属粒子の投影面積と同じ面積を持つ円の直径)を算出した粒径を体積基準の粒径に換算することにより得られる。レーザ回折散乱法では、凝集体をイオン交換水に投入し、25kHzの超音波を5分間照射して、イオン交換水に凝集体を分散させ、レーザ回折散乱式粒度分布測定装置(堀場製作所製:LA-960)にて測定することができる。
The particle diameters of the first metal particles, the second metal particles, and the third metal particles are measured, for example, using a SEM (scanning electron microscope), and are calculated from the projected area of the metal particles to the equivalent circle diameter (the projected area of the metal particles and It is obtained by converting the particle size obtained by calculating the diameter of a circle having the same area) into a volume-based particle size. In the laser diffraction scattering method, aggregates are put into ion-exchanged water, irradiated with 25 kHz ultrasonic waves for 5 minutes to disperse the aggregates in ion-exchanged water, and measured with a laser diffraction scattering particle size distribution analyzer (manufactured by Horiba Ltd.: LA-960) can be measured.

また、接合材に含まれる揮発性溶媒としては、例えば、アルコール系溶媒、グリコール系溶媒、アセテート系溶媒、炭化水素系溶媒、及びアミン系溶媒が挙げられる。アミン系溶剤の場合、炭素数が12以下の揮発性溶媒を用いることが好ましい。この場合、低温で揮発し易く、接合材を焼成する際の加熱時間を短くできる。 Volatile solvents contained in the bonding material include, for example, alcohol-based solvents, glycol-based solvents, acetate-based solvents, hydrocarbon-based solvents, and amine-based solvents. In the case of an amine-based solvent, it is preferable to use a volatile solvent having 12 or less carbon atoms. In this case, it is easy to volatilize at a low temperature, and the heating time when baking the bonding material can be shortened.

アルコール系溶媒の具体例としては、α‐テルピネオール、イソプロピルアルコール、ペンタデシルアルコール、ドデシルアルコール等が挙げられる。
グリコール系溶媒の具体例としては、エチレングリコール、ジエチレングリコール、ポリエチレングリコール等が挙げられる。
アセテート系溶媒の具体例としては、酢酸ブチルトールカルビテート等が挙げられる。
炭化水素系溶媒の具体例としては、デカン、ドデカン、テトラデカン等が挙げられる。
アミン系溶媒の具体例としては、ヘキシルアミン、オクチルアミン、ドデシルアミン等が挙げられる。
Specific examples of alcohol solvents include α-terpineol, isopropyl alcohol, pentadecyl alcohol, dodecyl alcohol and the like.
Specific examples of glycol-based solvents include ethylene glycol, diethylene glycol, and polyethylene glycol.
Specific examples of the acetate solvent include butyltoll carbitate acetate and the like.
Specific examples of hydrocarbon solvents include decane, dodecane, tetradecane, and the like.
Specific examples of amine solvents include hexylamine, octylamine, dodecylamine and the like.

なお、接合材には、さらに酸化防止剤、粘度調整剤、樹脂等の添加剤を含んでいてもよい。これらの添加剤の含有量は、接合材の全体量に対して1質量%以上5質量%以下の範囲であることが好ましい。 The bonding material may further contain additives such as antioxidants, viscosity modifiers and resins. The content of these additives is preferably in the range of 1% by mass or more and 5% by mass or less with respect to the total amount of the bonding material.

また、接合材には、分散剤を添加してもよい。分散剤としては、ヘキシルアミン、オクチルアミン、ドデシルアミン等のアミン系分散剤を用いることが出来る。なお、溶媒として、アミン系溶媒を用いた場合には、アミン系溶媒が分散剤を兼ねるので、分散剤の添加は不要となる。 Further, a dispersing agent may be added to the bonding material. As the dispersant, amine-based dispersants such as hexylamine, octylamine and dodecylamine can be used. When an amine-based solvent is used as the solvent, the amine-based solvent also serves as a dispersant, so the addition of a dispersant is not necessary.

[接合体の製造方法]
次に、前述した接合材を用いた接合体の製造方法について説明する。図2(d)に、本発明の第1実施形態の接合体の製造方法により製造される接合体101の断面図を示す。図2(d)に示すように、接合体101は、基板10(本発明における第1部材)と素子20(本発明における第2部材)とが、金属粒子を焼結して形成された接合層31を介して接合されてなる。
[Method for producing joined body]
Next, a method for manufacturing a bonded body using the bonding material described above will be described. FIG. 2(d) shows a cross-sectional view of the bonded body 101 manufactured by the bonded body manufacturing method according to the first embodiment of the present invention. As shown in FIG. 2D, the joined body 101 is a joint formed by sintering metal particles between a substrate 10 (first member in the present invention) and an element 20 (second member in the present invention). It is joined via the layer 31 .

接合材を用いて接合する基板10及び素子20としては特に限定されないが、例えば、基板10としては、絶縁基板、回路基板が挙げられる。また、素子20としては、例えば、シリコン(Si)、シリコンカーバイド(SiC)、半導体チップ及びLED素子等の電子部品が挙げられる。図示は省略するが、これらの基板10の接合面と素子20の接合面には、例えば、銀(Ag)、金(Au)、銅(Cu)等からなる群より選ばれた1種又は2種以上の金属からなる金属層が積層されている。なお、これらの接合面に金属層を積層する方法は特に限定されるものではないが、例えば、真空蒸着法、スパッタリング法、めっき法、印刷法等が挙げられる。 The substrate 10 and the element 20 to be bonded using a bonding material are not particularly limited, but examples of the substrate 10 include an insulating substrate and a circuit substrate. Examples of the element 20 include electronic components such as silicon (Si), silicon carbide (SiC), semiconductor chips, and LED elements. Although illustration is omitted, the bonding surface of the substrate 10 and the bonding surface of the element 20 are coated with, for example, one or two selected from the group consisting of silver (Ag), gold (Au), copper (Cu), and the like. Metal layers composed of more than one kind of metal are laminated. Although the method for laminating the metal layer on these joint surfaces is not particularly limited, examples thereof include a vacuum vapor deposition method, a sputtering method, a plating method, a printing method, and the like.

<第1実施形態>
第1実施形態の接合体の製造方法は、図1に示すように、基板10の接合面上に第1仮焼成層を形成する第1仮焼成工程及び素子20の接合面上に第2仮焼成層を形成する第2仮焼成工程と、第1仮焼成層が形成された基板10と第2仮焼成層が形成された素子20とを接合して接合体101を形成する接合工程と、を備える。なお、第1仮焼成工程、第2仮焼成工程及び接合工程は、いずれも大気中に行われる。
図1のフロー図に示すように、第1仮焼成工程と第2仮焼成工程とは、接合工程の前に行うが、各工程の実施順序は特に限定されるものではない。つまり、第1仮焼成工程は第2仮焼成工程よりも先に行うこともできるし、第1仮焼成工程と第2仮焼成工程とを同時に行うこともできる。また、第2仮焼成工程を第1仮焼成工程よりも先に行うこともできる。
<First Embodiment>
As shown in FIG. 1, the manufacturing method of the joined body of the first embodiment comprises a first temporary baking step of forming a first temporary baking layer on the joint surface of the substrate 10 and a second temporary baking step of forming a first temporary baking layer on the joint surface of the element 20. A second calcination step of forming a calcined layer, a bonding step of forming a bonded body 101 by bonding the substrate 10 on which the first calcined layer is formed and the element 20 on which the second calcined layer is formed, Prepare. Note that the first calcination process, the second calcination process, and the bonding process are all performed in the atmosphere.
As shown in the flow chart of FIG. 1, the first calcination step and the second calcination step are performed before the bonding step, but the order of performing each step is not particularly limited. That is, the first calcination process can be performed before the second calcination process, or the first calcination process and the second calcination process can be performed simultaneously. Also, the second temporary baking process can be performed prior to the first temporary baking process.

[第1仮焼成工程及び第2仮焼成工程]
まず、図2(a)に示すように、基板10の接合面に接合材40を塗布する。接合材40は、例えば素子20が重ねられる位置に塗布される。また、同様に、素子20の接合面に接合材40を塗布する。これらの基板10及び素子20への接合材40の塗布は、例えば、スピンコート法、メタルマスク法、スクリーン印刷法やディスペンサ等による吐出供給により施される。
[First calcination step and second calcination step]
First, as shown in FIG. 2A, a bonding material 40 is applied to the bonding surface of the substrate 10 . The bonding material 40 is applied, for example, to a position where the elements 20 are overlapped. Further, similarly, the bonding material 40 is applied to the bonding surface of the element 20 . The bonding material 40 is applied to the substrate 10 and the elements 20 by, for example, a spin coating method, a metal mask method, a screen printing method, or a discharge supply using a dispenser or the like.

そして、接合材40がそれぞれ塗布された基板10と素子20とを加熱して、各接合材40中の揮発性溶媒の一部を揮発させる。これにより、図2(b)に示すように、基板10の接合面上に第1仮焼成層41を形成し、素子20の接合面上に第2仮焼成層42を形成する。 Then, the substrate 10 and the element 20 each coated with the bonding material 40 are heated to partially volatilize the volatile solvent in each bonding material 40 . Thereby, as shown in FIG. 2B, a first calcined layer 41 is formed on the bonding surface of the substrate 10 and a second calcined layer 42 is formed on the bonding surface of the element 20 .

第1仮焼成工程及び第2仮焼成工程の加熱処理の条件は、特に限定されるものではないが、例えば、昇温速度が5℃/分以下、加熱温度が70℃以上100℃以下、その加熱温度における加熱時間が5分以上20分以下の範囲で行うことが好ましい。上記の範囲の加熱条件で加熱処理を行うことで、第1仮焼成工程、第2仮焼成工程を比較的低い加熱温度、短い加熱時間として、低エネルギー化と製造工程の簡略化とのバランスが取れた条件で行うことができる。 The conditions of the heat treatment in the first calcining step and the second calcining step are not particularly limited, but for example, the temperature rise rate is 5 ° C./min or less, the heating temperature is 70 ° C. or more and 100 ° C. or less, The heating time at the heating temperature is preferably in the range of 5 minutes or more and 20 minutes or less. By performing the heat treatment under the heating conditions in the above range, the first calcination step and the second calcination step are relatively low in heating temperature and short in heating time, and the balance between low energy consumption and simplification of the manufacturing process is achieved. It can be done under the given conditions.

そして、この加熱処理において形成する第1仮焼成層41及び第2仮焼成層42は、接合材40中の揮発性溶媒等の金属粒子を除く非固形分の含有量を5質量%以上15質量%以下まで減少させ、タッキング力(接着力)を500mm・N以上1200mm・N以下に保持することが好ましい。このように第1仮焼成層41と第2仮焼成層42とを形成しておくことで、後に行われる接合工程において、第1仮焼成層41及び第2仮焼成層42から揮発するガスの発生量を極力少なくできるので、接合層31中のボイドの発生を抑制できる。また、両仮焼成層41,42どうしを重ねた際の密着性を高く維持できるので、基板10と素子20との接合強度を確実に高めることができる。
なお、第1仮焼成層41及び第2仮焼成層42のタッキング力が500mm・N未満の場合、接合工程時において第1仮焼成層41と第2仮焼成層42との密着性が低下し、接合層31を形成しにくくなるおそれがある。また、第1仮焼成層41及び第2仮焼成層42のタッキング力が1200mm・Nを超えている場合、揮発性溶媒の揮発量が少ないため、接合層31中にボイドが発生するおそれがある。
The first calcined layer 41 and the second calcined layer 42 formed in this heat treatment have a non-solid content excluding metal particles such as a volatile solvent in the bonding material 40 of 5% by mass or more and 15% by mass. % or less, and maintain the tacking force (adhesive force) at 500 mm·N or more and 1200 mm·N or less. By forming the first calcined layer 41 and the second calcined layer 42 in this way, the gas volatilized from the first calcined layer 41 and the second calcined layer 42 can be eliminated in the subsequent bonding step. Since the amount of voids generated can be minimized, the generation of voids in the bonding layer 31 can be suppressed. In addition, since the adhesion between the calcined layers 41 and 42 can be kept high, the bonding strength between the substrate 10 and the element 20 can be reliably increased.
Note that if the tacking force of the first calcined layer 41 and the second calcined layer 42 is less than 500 mmN, the adhesion between the first calcined layer 41 and the second calcined layer 42 decreases during the bonding process. , it may become difficult to form the bonding layer 31 . In addition, when the tacking force of the first pre-fired layer 41 and the second pre-fired layer 42 exceeds 1200 mmN, the amount of volatilization of the volatile solvent is small, so voids may occur in the bonding layer 31. .

前述したように、第1仮焼成工程及び第2仮焼成工程では、基板10の接合面に第1仮焼成層41を形成し、素子20の接合面に第2仮焼成層42を形成して、基板10と素子20とのそれぞれに仮焼成層41,42を形成するので、基板10と素子20との接合に必要な接合材40の塗布量を二分して各接合面に塗布する接合材40の塗布量を少なくし、それぞれの塗布厚を薄く形成する。このように、基板10と素子20の各接合面に塗布された接合材40はそれぞれ塗布厚が薄く形成されており、各接合材40から揮発性溶媒を揮発させる際の加熱時間(仮焼成時間)を短くできる。また、各接合材40の塗布厚が薄く形成されており、さらに接合材40は各接合面と面しているのみで他に遮るものがないので、接合材40中に発生するガスを円滑に外部に放出できる。したがって、第1仮焼成層41と第2仮焼成層42とにボイドが形成されることを抑制できる。なお、第1仮焼成層41と第2仮焼成層42は、厚さが20μm以上また、100μm以下とすることが好ましい。これらの厚さが20μm未満の場合、後述する接合工程後に得られる接合層31の厚さが薄くなり、基板10(本発明における第1部材)と素子20(本発明における第2部材)との線膨張係数差による熱応力を緩和しにくくなり、基板10(本発明における第1部材)や素子20(本発明における第2部材)に割れが生じるおそれがある。
また、各仮焼成層41,42の厚さが100μmを超えた場合、接合材中の溶剤が抜けにくくなり、焼結が不十分となるおそれがある。
As described above, in the first calcination step and the second calcination step, the first calcination layer 41 is formed on the bonding surface of the substrate 10, and the second calcination layer 42 is formed on the bonding surface of the element 20. , Since the calcined layers 41 and 42 are formed on the substrate 10 and the element 20, respectively, the amount of the bonding material 40 required for bonding the substrate 10 and the element 20 is divided into two, and the bonding material is applied to each bonding surface. The coating amount of 40 is reduced, and each coating thickness is formed thin. In this manner, the bonding material 40 applied to each bonding surface of the substrate 10 and the element 20 is formed to have a thin coating thickness, and the heating time (temporary baking time) for volatilizing the volatile solvent from each bonding material 40 ) can be shortened. In addition, the application thickness of each bonding material 40 is formed to be thin, and since the bonding material 40 only faces each bonding surface and is not obstructed by anything else, the gas generated in the bonding material 40 can be smoothly discharged. Can be released outside. Therefore, formation of voids in the first calcined layer 41 and the second calcined layer 42 can be suppressed. The thickness of the first calcined layer 41 and the second calcined layer 42 is preferably 20 μm or more and 100 μm or less. When these thicknesses are less than 20 μm, the thickness of the bonding layer 31 obtained after the bonding process described below is thin, and the substrate 10 (the first member in the present invention) and the element 20 (the second member in the present invention) are bonded together. It becomes difficult to relax the thermal stress due to the difference in coefficient of linear expansion, and there is a risk that the substrate 10 (the first member in the present invention) or the element 20 (the second member in the present invention) will crack.
Moreover, when the thickness of each of the calcined layers 41 and 42 exceeds 100 μm, it becomes difficult for the solvent in the bonding material to escape, which may result in insufficient sintering.

また、前述したように、第1仮焼成層41と第2仮焼成層42とは比較的薄く形成されているが、第1仮焼成工程において、接合材40が基板10の接合面に濡れて、第1仮焼成層41と基板10との密着性が高く維持される。同様に、第2仮焼成工程において、接合材40が素子20の接合面に濡れて、第2仮焼成層42と素子20との密着性が高く維持される。したがって、加熱処理後は、基板10の取り扱いに際して第1仮焼成層41が基板10から脱落することがなく、基板10と第1仮焼成層41とは一体として取り扱うことができる。また同様に、素子20の取り扱いに際して第2仮焼成層42が素子20から脱落することがなく、素子20と第2仮焼成層42とは一体として取り扱うことができる。 Further, as described above, the first calcined layer 41 and the second calcined layer 42 are formed relatively thin, but in the first calcined step, the bonding material 40 wets the bonding surface of the substrate 10. , the adhesion between the first calcined layer 41 and the substrate 10 is maintained at a high level. Similarly, in the second calcination step, the bonding material 40 wets the bonding surface of the element 20, and the adhesion between the second calcination layer 42 and the element 20 is maintained at a high level. Therefore, after the heat treatment, the first calcined layer 41 does not come off the substrate 10 when the substrate 10 is handled, and the substrate 10 and the first calcined layer 41 can be handled as one. Similarly, when the element 20 is handled, the second calcined layer 42 does not drop off from the element 20, and the element 20 and the second calcined layer 42 can be handled as one unit.

なお、第1仮焼成層41は、揮発性溶媒が揮発する等して金属粒子を除く非固形分の含有量が減少することにより、金属粒子どうしの間隔が狭まり、接合面に塗布した接合材40よりも厚みが薄く形成される。また同様に、第2仮焼成層42も、非固形分の含有量が減少することにより、金属粒子どうしの間隔が狭まり、接合面に塗布した接合材40よりも厚みが薄く形成される。そして、これらの第1仮焼成層41及び第2仮焼成層42は、加熱処理前に揮発性溶媒等があった箇所に空隙が多数形成されることによりポーラス構造に形成される。 In the first pre-baked layer 41, the content of non-solids other than metal particles decreases due to volatilization of the volatile solvent, etc., so that the intervals between the metal particles are narrowed and the bonding material applied to the bonding surface is reduced. It is formed thinner than 40. Similarly, the second calcined layer 42 also has a smaller thickness than the bonding material 40 applied to the bonding surface due to narrowing of the intervals between the metal particles due to the decrease in the non-solid content. Then, the first calcined layer 41 and the second calcined layer 42 are formed into a porous structure by forming a large number of voids where there was a volatile solvent or the like before the heat treatment.

[接合工程]
図2(c)に示すように、第1仮焼成層41と第2仮焼成層42とを重ねて基板10と素子20とを配置する。前述したように、第1仮焼成工程と第2仮焼成工程においては、接合材40中の揮発性溶媒の一部を揮発させており、揮発性溶媒を完全に揮発させることなく第1仮焼成層41と第2仮焼成層42を形成している。このため、接合工程において、第1仮焼成層41と第2仮焼成層42とを重ねた際に、残存する揮発性溶媒によって両仮焼成層41,42を密着させて重ねることができる。
[Joining process]
As shown in FIG. 2C, the first calcined layer 41 and the second calcined layer 42 are overlapped to arrange the substrate 10 and the element 20 . As described above, in the first temporary baking process and the second temporary baking process, part of the volatile solvent in the bonding material 40 is volatilized, and the first temporary baking is performed without completely volatilizing the volatile solvent. A layer 41 and a second calcined layer 42 are formed. Therefore, in the joining step, when the first calcined layer 41 and the second calcined layer 42 are stacked, the remaining volatile solvent allows the calcined layers 41 and 42 to be brought into close contact with each other.

次に、第1仮焼成層41と第2仮焼成層42とを重ねた状態で基板10と素子20との積層体110を加熱し、第1仮焼成層41及び第2仮焼成層42中の揮発性溶媒を揮発させるとともに、金属粒子どうしを焼結させた接合層31を生成する。これにより、接合層31を介して基板10と素子20とを接合し、接合体101を製造する。なお、接合層31の厚さは30μm以上150μm以下とするとよい。
接合層31の厚さが30μm未満の場合、基板10(本発明における第1部材)と素子20(本発明における第2部材)との線膨張係数差による熱応力を緩和しにくくなり、基板10(本発明における第1部材)や素子20(本発明における第2部材)に割れが生じるおそれがある。
接合層31の厚さが150μmを超えた場合、熱抵抗が高くなるおそれがある。
Next, while the first calcined layer 41 and the second calcined layer 42 are stacked, the laminate 110 of the substrate 10 and the element 20 is heated, and the first calcined layer 41 and the second calcined layer 42 are heated. The volatile solvent is volatilized, and the bonding layer 31 is generated by sintering the metal particles. Thereby, the substrate 10 and the element 20 are bonded via the bonding layer 31 to manufacture the bonded body 101 . Note that the thickness of the bonding layer 31 is preferably 30 μm or more and 150 μm or less.
When the thickness of the bonding layer 31 is less than 30 μm, it becomes difficult to relax the thermal stress due to the difference in linear expansion coefficient between the substrate 10 (first member in the present invention) and the element 20 (second member in the present invention). (the first member in the present invention) or the element 20 (the second member in the present invention) may crack.
If the thickness of the bonding layer 31 exceeds 150 μm, the thermal resistance may increase.

なお、加熱処理の際に、図2(c)に二点鎖線で示したように、一対の加圧板51,52等を用いて、基板10と素子20との積層体110をその積層方向に加圧してもよい。加圧することにより、金属粒子どうしの間隔を詰めて接合層31を緻密に形成でき、基板10と素子20との接合強度を高めることができる。この際の加圧力は、10MPa以下が好ましい。なお、加圧することなく加熱して接合体101を製造することも可能である。 During the heat treatment, a pair of pressure plates 51, 52 and the like are used to move the laminate 110 of the substrate 10 and the element 20 in the lamination direction, as indicated by the two-dot chain line in FIG. 2(c). You can pressurize. By applying pressure, the gaps between the metal particles can be narrowed to form the bonding layer 31 densely, and the bonding strength between the substrate 10 and the element 20 can be increased. The applied pressure at this time is preferably 10 MPa or less. Note that it is also possible to manufacture the joined body 101 by heating without applying pressure.

接合工程の加熱処理の条件は、特に限定されるものではないが、例えば、昇温速度が10℃/分以下、加熱温度が150℃以上、その加熱温度における加熱時間が60分以上で行うことが好ましい。上記の加熱条件で加熱処理を行うことで、接合層31に生じるボイドを抑制し、基板10と素子20とを確実に接合することができる。 The conditions of the heat treatment in the bonding step are not particularly limited, but for example, the heating rate is 10° C./min or less, the heating temperature is 150° C. or more, and the heating time at the heating temperature is 60 minutes or more. is preferred. By performing the heat treatment under the above heating conditions, voids generated in the bonding layer 31 can be suppressed, and the substrate 10 and the element 20 can be reliably bonded.

前述したように、第1仮焼成工程及び第2仮焼成工程において、第1仮焼成層41と基板10との密着性が高く維持されており、第2仮焼成層42と素子20との密着性も高く維持されている。したがって、接合工程において第1仮焼成層41と第2仮焼成層42とを重ねた状態で基板10と素子20との積層体110を加熱することで、第1仮焼成層41と第2仮焼成層42とが強固に接合された接合層31を形成できるとともに、接合層31を介して基板10と素子20とを強固に接合できる。 As described above, in the first calcination process and the second calcination process, the adhesion between the first calcination layer 41 and the substrate 10 is maintained high, and the adhesion between the second calcination layer 42 and the element 20 is maintained. High quality is maintained. Therefore, by heating the laminate 110 of the substrate 10 and the element 20 in a state where the first pre-fired layer 41 and the second pre-fired layer 42 are superimposed in the bonding step, the first pre-fired layer 41 and the second pre-fired layer 42 are heated. The bonding layer 31 firmly bonded to the fired layer 42 can be formed, and the substrate 10 and the element 20 can be strongly bonded via the bonding layer 31 .

また、第1仮焼成層41及び第2仮焼成層42中の揮発性溶媒の大部分は既に第1仮焼成工程及び第2仮焼成工程において揮発させた状態である。このため、接合工程では、わずかに残る揮発性溶媒を揮発させて、金属粒子を焼結させればよい。 Moreover, most of the volatile solvent in the first calcined layer 41 and the second calcined layer 42 has already volatilized in the first calcined step and the second calcined step. Therefore, in the bonding step, the metal particles may be sintered by evaporating the slightly remaining volatile solvent.

また、第1仮焼成層41及び第2仮焼成層42中に含まれる揮発性溶媒の量は接合材40と比べて少ないので、接合工程において揮発性溶媒を揮発させる際に生じるガスはわずかである。さらに、第1仮焼成層41及び第2仮焼成層42には、各仮焼成工程において揮発性溶媒の一部を揮発させたことで金属粒子の間に空隙が形成されているので、接合工程においてガスが発生したとしても、そのガスは、第1仮焼成層41及び第2仮焼成層42の空隙から円滑に外部に放出される。したがって、接合層31中に形成されるボイドを低減でき、基板10と素子20との接合強度の向上を図ることができる。 In addition, since the amount of the volatile solvent contained in the first calcined layer 41 and the second calcined layer 42 is smaller than that in the bonding material 40, only a small amount of gas is generated when volatilizing the volatile solvent in the bonding process. be. Furthermore, in the first calcined layer 41 and the second calcined layer 42, a part of the volatile solvent is volatilized in each calcining step, so that voids are formed between the metal particles. Even if gas is generated in the above, the gas is smoothly released to the outside from the gaps between the first calcined layer 41 and the second calcined layer 42 . Therefore, voids formed in the bonding layer 31 can be reduced, and bonding strength between the substrate 10 and the element 20 can be improved.

なお、本発明は、上記実施形態の構成に限定されるものではなく、細部構成においては、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
基板と素子との接合の場合以外にも本発明を適用することができる。例えば、金属板どうし(銅板と銅板のような同種金属板どうし、銅板とアルミニウム板のような異種金属板どうしのいずれも可)の接合、セラミックス基板に回路層を接合したパワーモジュール用基板とヒートシンクとの接合、半導体パッケージとリードフレームとの接合などにも本発明を適用することができる。
The present invention is not limited to the configurations of the above-described embodiments, and various modifications can be made to the detailed configurations without departing from the gist of the present invention.
The present invention can be applied to cases other than bonding between a substrate and an element. For example, joining metal plates (both metal plates of the same kind such as copper plate and copper plate, or different metal plates such as copper plate and aluminum plate), power module substrates and heat sinks in which circuit layers are bonded to ceramic substrates The present invention can also be applied to bonding between a semiconductor package and a lead frame.

以下、本発明の効果を実施例を用いて詳細に説明するが、本発明は下記の実施例に限定されるものではない。 The effects of the present invention will be described in detail below using examples, but the present invention is not limited to the following examples.

表1~4に示すように、第1部材と第2部材とを接合材を用いて大気中で接合した接合体の本発明例1~17と比較例1,2とを作製した。
第1部材として接合面に金メッキを施した20mm角のCu板(厚さ:1mm)を用意し、第2部材として接合面に金メッキを施した2.5mm角のSiウエハ(厚さ:200μm)を用意した。
接合材は、金属粒子として表1記載の銀粒子(Ag)を用い、表2記載の通りとし、分散剤としてオクチルアミンを用いた。
As shown in Tables 1 to 4, present invention examples 1 to 17 and comparative examples 1 and 2 of joined bodies in which the first member and the second member were joined in the atmosphere using a joining material were produced.
A 20 mm square Cu plate (thickness: 1 mm) with a gold-plated joint surface was prepared as the first member, and a 2.5 mm square Si wafer (thickness: 200 μm) with a gold-plated joint surface was prepared as the second member. prepared.
As the bonding material, silver particles (Ag) shown in Table 1 were used as metal particles, as shown in Table 2, and octylamine was used as a dispersant.

(本発明例1~17)
第1部材の接合面と第2部材の接合面とに、接合材をメタルマスク法により塗布した。そして、これらを表3に示す第1加熱条件で加熱して、第1部材の接合面上に第1仮焼成層を形成し、第2部材の接合面上に第2仮焼成層を形成した(第1仮焼成工程及び第2仮焼成工程)。第1仮焼成層と第2仮焼成層とは、それぞれ接合材を同じ塗布厚(30μm)にして形成した。そして、第1仮焼成層と第2仮焼成層のタッキング力と非固形分の含有量を、後述する方法により測定した。
次いで、第1仮焼成層と第2仮焼成層とを重ねて配置した積層体を、表3に示す第2加熱条件で加熱して接合層を形成し、第1部材と第2部材とを接合層を介して接合した接合体を作製した(接合工程)。そして、得られた接合体について、接合層中のボイド面積率と、第1部材と第2部材との接合強度と、を下記の方法により測定した。評価結果を表4に示す。
(Invention Examples 1 to 17)
A bonding material was applied to the bonding surface of the first member and the bonding surface of the second member by a metal mask method. Then, these were heated under the first heating conditions shown in Table 3 to form a first calcined layer on the bonding surface of the first member, and a second calcined layer was formed on the bonding surface of the second member. (First calcination step and second calcination step). The first calcined layer and the second calcined layer were each formed by applying the bonding material with the same coating thickness (30 μm). Then, the tacking force and non-solid content of the first calcined layer and the second calcined layer were measured by the method described later.
Next, the laminate in which the first calcined layer and the second calcined layer are superimposed is heated under the second heating conditions shown in Table 3 to form a bonding layer, and the first member and the second member are joined. A bonded body bonded via the bonding layer was produced (bonding step). Then, the void area ratio in the bonding layer and the bonding strength between the first member and the second member of the obtained bonded body were measured by the following methods. Table 4 shows the evaluation results.

(比較例1)
第1部材の接合面と第2部材の接合面とに、接合材をメタルマスク法により塗布した。各接合面に塗布した接合材は、本発明例1~17と同じ塗布厚(30μm)とした。比較例1では、第1仮焼成工程及び第2仮焼成工程を行わずに、接合工程のみ行った。したがって、比較例1では、接合材のタッキング力と非固形分の含有量を測定し、表4に示した。
また、第1部材に塗布した接合材と第2部材に塗布した接合材とを重ねて配置した積層体を、表2に示す第2加熱条件で加熱して接合層を形成し、第1部材と第2部材とを接合層を介して接合した接合体を作製した。そして、得られた接合体について、接合層中のボイド面積率と、第1部材と第2部材との接合強度と、実施例1~17と同様に測定した。
(Comparative example 1)
A bonding material was applied to the bonding surface of the first member and the bonding surface of the second member by a metal mask method. The bonding material applied to each bonding surface had the same coating thickness (30 μm) as in Examples 1 to 17 of the present invention. In Comparative Example 1, only the joining step was performed without performing the first calcining step and the second calcining step. Therefore, in Comparative Example 1, the tacking force and non-solid content of the bonding material were measured and shown in Table 4.
Further, a laminate in which the bonding material applied to the first member and the bonding material applied to the second member are superimposed is heated under the second heating conditions shown in Table 2 to form a bonding layer, and the bonding layer is formed. and the second member through the bonding layer to produce a bonded body. Then, the void area ratio in the bonding layer and the bonding strength between the first member and the second member of the obtained bonded body were measured in the same manner as in Examples 1 to 17.

(比較例2)
第1部材の接合面に、接合材をメタルマスク法により塗布した。第1部材の接合面に塗布した接合材は、実施例1~17及び比較例1の塗布厚の2倍の厚み(60μm)とした。この第1部材を表3に示す第1加熱条件で加熱して、第1部材の接合面上に第1仮焼成層を形成した(第1仮焼成工程)。そして、第1仮焼成層のタッキング力と非固形分の含有量を測定した。
また、第1仮焼成層を第2部材の接合面に重ねて配置した積層体を、表3に示す第2加熱条件で加熱して接合層を形成し、第1部材と第2部材とを接合層を介して接合した接合体を作製した。そして、得られた接合体について、接合層中のボイド面積率と、第1部材と第2部材との接合強度と、実施例1~17及び比較例1と同様に測定した。
(Comparative example 2)
A bonding material was applied to the bonding surface of the first member by a metal mask method. The bonding material applied to the bonding surface of the first member had a thickness (60 μm) twice the coating thickness of Examples 1 to 17 and Comparative Example 1. This first member was heated under the first heating conditions shown in Table 3 to form a first calcined layer on the bonding surface of the first member (first calcining step). Then, the tacking force and non-solid content of the first calcined layer were measured.
In addition, the laminate in which the first calcined layer is superimposed on the bonding surface of the second member is heated under the second heating conditions shown in Table 3 to form a bonding layer, and the first member and the second member are bonded. A joined body was produced by joining through the joining layer. Then, the void area ratio in the bonding layer and the bonding strength between the first member and the second member of the obtained bonded body were measured in the same manner as in Examples 1 to 17 and Comparative Example 1.

(タッキング力の測定方法)
タッキング力(mm・N)は、タッキング力測定装置(株式会社マルコム製のタッキネステスター:TK‐1)を用いて測定した。タッキング力は、温度25℃、湿度50%、第1仮焼成層及び第2仮焼成層の厚さ25~28μm、装置プローブの降下速度2mm/秒、加重時間5秒、引上速度5mm/秒とした測定条件において、第1仮焼成層と第2仮焼成層とに装置プローブを接触させて、再度プローブ(SUS製)が離れた時の接着力とした。
(Measurement method of tacking force)
The tacking force (mm·N) was measured using a tacking force measuring device (tackiness tester manufactured by Malcom Co., Ltd.: TK-1). The tacking force is as follows: temperature 25° C., humidity 50%, thickness of the first calcined layer and second calcined layer 25 to 28 μm, device probe descending speed 2 mm/sec, weighting time 5 sec, lifting speed 5 mm/sec. Under these measurement conditions, the device probe was brought into contact with the first calcined layer and the second calcined layer, and the adhesive force when the probe (made of SUS) was separated again was taken as the adhesive force.

(非固形分の含有量の測定方法)
第1仮焼成層又は第2仮焼成層の非固形分の含有量は、次のようにして測定した。第1仮焼成層又は第2仮焼成層を、有機溶媒(THF:テトラヒドロフラン)を用いて溶解した後、PTFE(四フッ化エチレン樹脂)フィルターにて溶解物を加圧ろ過し、銀粒子を得る。そして、予め測定しておいた第1仮焼成層又は第2仮焼成層の量から採取した銀粒子の粉末量を引くことにより、非固形分の含有量を得た。
(Method for measuring non-solid content)
The non-solid content of the first calcined layer or the second calcined layer was measured as follows. After dissolving the first calcined layer or the second calcined layer using an organic solvent (THF: tetrahydrofuran), the dissolved material is pressure-filtered through a PTFE (polytetrafluoroethylene resin) filter to obtain silver particles. . Then, the non-solid content was obtained by subtracting the powder amount of the sampled silver particles from the amount of the first calcined layer or the second calcined layer measured in advance.

(接合層中のボイド面積率の測定方法)
接合体をX線透過装置(ノードソン・アドバンスト・テクノロジー株式会社製のX線検査装置:XD7600NT)にセットし、X線を接合体の上から照射し、ボイドを観察した。そして、接合層中のボイド面積率は、以下の式から算出した。ここで、接合層の面積は、接合層により接合すべき面積、すなわち第2部材の接合面の面積とした。また、X線透過装置において第1部材と第2部材とが剥離した部分は白色部で表されることから、この白色部の面積をボイド面積とした。
ボイド面積率(%)=(ボイド面積/接合層の面積)×100
(Method for measuring void area ratio in bonding layer)
The bonded body was set in an X-ray transmission device (X-ray inspection device: XD7600NT manufactured by Nordson Advanced Technologies, Inc.), X-rays were irradiated from above the bonded body, and voids were observed. Then, the void area ratio in the bonding layer was calculated from the following formula. Here, the area of the bonding layer was the area to be bonded by the bonding layer, that is, the area of the bonding surface of the second member. In addition, since the portion where the first member and the second member are separated in the X-ray transmission apparatus is represented by the white portion, the area of this white portion was defined as the void area.
Void area ratio (%) = (void area/bonding layer area) x 100

(第1部材と第2部材との接合強度の測定方法)
接合強度はせん断強度評価試験機(ノードソン・アドバンスト・テクノロジー株式会社製のボンドテスター:Dage Series 4000)を用いて測定した。接合強度の測定は、接合体の第1部材を水平に固定し、接合層の表面から50μm上方の位置にてシェアツールを用いて、第2部材を横から水平方向に押して、第2部材が破断されたときの強度を測定した。シェアツールの移動速度は0.1mm/秒とした。一条件につき5回試験を行い、それらの平均値を測定値とした。
(Method for measuring bonding strength between first member and second member)
The bonding strength was measured using a shear strength evaluation tester (bond tester: Dage Series 4000 manufactured by Nordson Advanced Technologies, Inc.). The bonding strength was measured by fixing the first member of the bonded body horizontally, using a share tool at a position 50 μm above the surface of the bonding layer, and pressing the second member horizontally from the side. The strength when broken was measured. The moving speed of the share tool was set to 0.1 mm/sec. The test was performed 5 times per condition, and the average value thereof was used as the measured value.

Figure 0007155654000001
Figure 0007155654000001

Figure 0007155654000002
Figure 0007155654000002

Figure 0007155654000003
Figure 0007155654000003

Figure 0007155654000004
Figure 0007155654000004

第1部材と第2部材とのそれぞれに仮焼成層を形成した本発明例1~17では、比較例1,2と比較して、ボイド面積率が低くなり、第1部材と第2部材との接合強度が高くなった。特に、銀粒子の粒度分布を、第1金属粒子が60体積%以上95体積%以下、第2金属粒子が5体積%以上40体積%以下、第3金属粒子が5体積%以下の割合で含む凝集体とし、レーザー回折散乱法により測定される体積基準の粒度分布曲線におけるD10が0.05μm以上0.25μm以下、D50が0.4μm以上0.6μm以下、D90が1.5μm以上2.5μm以下とし、第1仮焼成層と第2仮焼成層のタッキング力を500mm・N以上1200mm・N以下で、非固形分の含有量を5質量%以上15質量%以下として形成した本発明例9~16では、ボイド面積率がより低くなり、接合強度がより高くなった。 In Examples 1 to 17 of the present invention in which a pre-fired layer was formed on each of the first member and the second member, compared to Comparative Examples 1 and 2, the void area ratio was lower, and the first member and the second member increased bonding strength. In particular, the particle size distribution of the silver particles is such that the first metal particles are 60% by volume or more and 95% by volume or less, the second metal particles are 5% by volume or more and 40% by volume or less, and the third metal particles are 5% by volume or less. As an aggregate, D10 is 0.05 μm or more and 0.25 μm or less, D50 is 0.4 μm or more and 0.6 μm or less, D90 is 1.5 μm or more and 2.5 μm in a volume-based particle size distribution curve measured by a laser diffraction scattering method. Inventive Example 9 in which the tacking force of the first calcined layer and the second calcined layer is 500 mm N or more and 1200 mm N or less, and the non-solid content is 5% by mass or more and 15% by mass or less. At ~16, the void area ratio was lower and the bond strength was higher.

10 基板(第1部材)
20 素子(第2部材)
31,32 接合層
40 接合材
41 第1仮焼成層(仮焼成層)
42 第2仮焼成層(仮焼成層)
51,52 加圧板
101 接合体
110 積層体
10 substrate (first member)
20 element (second member)
31, 32 bonding layer 40 bonding material 41 first calcined layer (temporarily calcined layer)
42 Second calcined layer (temporarily calcined layer)
51, 52 pressure plate 101 joined body 110 laminated body

Claims (4)

銀、金および銅からなる群より選ばれる少なくとも1つの金属を含む金属粒子と揮発性溶媒とを含むペースト状の接合材を用いて第1部材と第2部材とを接合する接合体の製造方法であり、
前記第1部材の接合面に前記接合材を塗布し、前記接合材が塗布された前記第1部材を加熱して該接合材中の前記揮発性溶媒の一部を揮発させて前記第1部材の接合面上に第1仮焼成層を形成する第1仮焼成工程と、
前記第2部材の接合面に前記接合材を塗布し、前記接合材が塗布された前記第2部材を加熱して該接合材中の前記揮発性溶媒の一部を揮発させて前記第2部材の接合面上に第2仮焼成層を形成する第2仮焼成工程と、
前記第1仮焼成層と前記第2仮焼成層とを重ねた状態で前記第1部材と前記第2部材との積層体を加熱し、前記第1仮焼成層及び前記第2仮焼成層中に残存する前記揮発性溶媒を揮発させるとともに、前記金属粒子どうしを焼結させた接合層を生成し、該接合層を介して前記第1部材と前記第2部材とが接合された接合体を形成する接合工程と、
を備えることを特徴とする接合体の製造方法。
A method for manufacturing a joined body in which a first member and a second member are joined using a pasty joining material containing metal particles containing at least one metal selected from the group consisting of silver, gold and copper and a volatile solvent and
The bonding material is applied to the bonding surface of the first member, and the first member coated with the bonding material is heated to volatilize a part of the volatile solvent in the bonding material to form the first member. A first calcination step of forming a first calcination layer on the joint surface of the
The bonding material is applied to the bonding surface of the second member, and the second member coated with the bonding material is heated to volatilize a part of the volatile solvent in the bonding material to form the second member. A second calcination step of forming a second calcination layer on the joint surface of the
While the first calcined layer and the second calcined layer are stacked, the laminate of the first member and the second member is heated, and the first calcined layer and the second calcined layer volatilizing the volatile solvent remaining in the joint body, forming a joint layer by sintering the metal particles, and joining the first member and the second member through the joint layer a joining step of forming;
A method of manufacturing a joined body, comprising:
前記金属粒子が、粒径が100nm以上500nm未満の範囲にある第1金属粒子を60体積%以上95体積%以下の範囲、粒径が50nm以上100nm未満の範囲にある第2金属粒子を5体積%以上40体積%以下の範囲、粒径が50nm未満の第3金属粒子を5体積%以下の割合で含む凝集体であって、
前記凝集体は、レーザ回折散乱法により測定される体積基準の粒度分布曲線において、D10が0.05μm以上0.25μm以下の範囲にあって、D50が0.4μm以上0.6μm以下の範囲にあり、さらにD90が1.5μm以上2.5μm以下の範囲とされていることを特徴とする請求項1記載の接合体の製造方法。
60% by volume or more and 95% by volume or less of the first metal particles having a particle size of 100 nm or more and less than 500 nm, and 5 volumes of the second metal particles having a particle size of 50 nm or more and less than 100 nm. % or more and 40 vol% or less, and an aggregate containing 5 vol% or less of third metal particles having a particle size of less than 50 nm,
The aggregate has a D10 in the range of 0.05 μm or more and 0.25 μm or less and a D50 in the range of 0.4 μm or more and 0.6 μm or less in a volume-based particle size distribution curve measured by a laser diffraction scattering method. 2. A method for producing a joined body according to claim 1, wherein D90 is in the range of 1.5 .mu.m to 2.5 .mu.m.
前記第1仮焼成層及び前記第2仮焼成層は、タッキング力が500mm・N以上1200mm・N以下で、前記金属粒子を除く非固形分の含有量が5質量%以上15質量%以下とされることを特徴とする請求項1又は2に記載の接合体の製造方法。 The first calcined layer and the second calcined layer have a tacking force of 500 mm N or more and 1200 mm N or less, and a non-solid content excluding the metal particles of 5% by mass or more and 15% by mass or less. 3. The method for manufacturing a joined body according to claim 1 or 2, characterized in that: 前記第1仮焼成工程及び前記第2仮焼成工程は、昇温速度が5℃/分以下、加熱温度が70℃以上100℃以下、該加熱温度の加熱時間が5分以上20分以下で行い、
前記接合工程は、昇温速度が10℃/分以下、加熱温度が150℃以上、該加熱温度の加熱時間が60分以上で行うことを特徴とする請求項1から3のいずれか一項に記載の接合体の製造方法。
The first calcination step and the second calcination step are performed at a temperature increase rate of 5 ° C./min or less, a heating temperature of 70 ° C. or more and 100 ° C. or less, and a heating time of 5 minutes or more and 20 minutes or less at the heating temperature. ,
4. The method according to any one of claims 1 to 3, wherein the bonding step is performed at a temperature elevation rate of 10°C/min or less, a heating temperature of 150°C or more, and a heating time of 60 minutes or more at the heating temperature. A method of manufacturing the described conjugate.
JP2018118844A 2018-06-22 2018-06-22 Method for manufacturing conjugate Active JP7155654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018118844A JP7155654B2 (en) 2018-06-22 2018-06-22 Method for manufacturing conjugate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018118844A JP7155654B2 (en) 2018-06-22 2018-06-22 Method for manufacturing conjugate

Publications (2)

Publication Number Publication Date
JP2019220641A JP2019220641A (en) 2019-12-26
JP7155654B2 true JP7155654B2 (en) 2022-10-19

Family

ID=69097001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018118844A Active JP7155654B2 (en) 2018-06-22 2018-06-22 Method for manufacturing conjugate

Country Status (1)

Country Link
JP (1) JP7155654B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7029182B2 (en) * 2019-05-22 2022-03-03 協立化学産業株式会社 Manufacturing method of bonded body
KR20230104597A (en) * 2020-11-12 2023-07-10 파나소닉 아이피 매니지먼트 가부시키가이샤 Method for manufacturing a composite and method for manufacturing a semiconductor device
JP2022133735A (en) 2021-03-02 2022-09-14 三菱マテリアル株式会社 Preform-layered joining sheet, method of making joined body, and to-be-joined preform-layered member

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011080147A (en) 2009-09-11 2011-04-21 Dowa Electronics Materials Co Ltd Joining material and joining method using the same
JP2011094223A (en) 2008-11-26 2011-05-12 Mitsuboshi Belting Ltd Joining agent for inorganic stock, and joined body of inorganic stock
WO2012070262A1 (en) 2010-11-22 2012-05-31 Dowaエレクトロニクス株式会社 Binding material, binding body, and binding method
WO2013005312A1 (en) 2011-07-06 2013-01-10 有限会社ソフィアプロダクト Oxide bonding material and joint using same
JP2018059192A (en) 2016-09-30 2018-04-12 Dowaエレクトロニクス株式会社 Joining material and joining method using same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02143915A (en) * 1988-11-25 1990-06-01 Nikon Corp Substrate for magnetic disk and production thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011094223A (en) 2008-11-26 2011-05-12 Mitsuboshi Belting Ltd Joining agent for inorganic stock, and joined body of inorganic stock
JP2011080147A (en) 2009-09-11 2011-04-21 Dowa Electronics Materials Co Ltd Joining material and joining method using the same
WO2012070262A1 (en) 2010-11-22 2012-05-31 Dowaエレクトロニクス株式会社 Binding material, binding body, and binding method
WO2013005312A1 (en) 2011-07-06 2013-01-10 有限会社ソフィアプロダクト Oxide bonding material and joint using same
JP2018059192A (en) 2016-09-30 2018-04-12 Dowaエレクトロニクス株式会社 Joining material and joining method using same

Also Published As

Publication number Publication date
JP2019220641A (en) 2019-12-26

Similar Documents

Publication Publication Date Title
TWI636842B (en) Bonding material and bonding method using same
JP5830302B2 (en) Heat bonding material, heat bonding sheet, and heat bonding molded body
JP6337909B2 (en) Manufacturing method of electronic component module
KR101725181B1 (en) Bonding material and bonded object produced using same
JP7155654B2 (en) Method for manufacturing conjugate
KR101971416B1 (en) Metal sintering assembly and die joining method
KR20140127250A (en) Solder joint structure, power module, heat-sink-attached substrate for power module, method for producing said substrate, and paste for forming solder underlayer
TWI523828B (en) A bonding material and a joining structure
JP6989242B2 (en) Connection structure
EP3016135A1 (en) Connection structure and semiconductor device
TW201539680A (en) Power module substrate, and method of producing the same; and power module
WO2017150096A1 (en) Semiconductor device
JP6613929B2 (en) Metal member with Ag underlayer, insulated circuit substrate with Ag underlayer, semiconductor device, insulating circuit substrate with heat sink, and method for producing metal member with Ag underlayer
JP5863323B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP7317397B2 (en) COPPER OXIDE PASTE AND METHOD FOR MANUFACTURING ELECTRONIC COMPONENT
EP3203514B1 (en) Substrate for power module with silver underlayer and power module
WO2022210477A1 (en) Joint structure
WO2016052392A1 (en) SUBSTRATE FOR POWER MODULE WITH Ag UNDERLAYER AND POWER MODULE
JP6269116B2 (en) Metal member with underlayer, insulated circuit board, semiconductor device, insulated circuit board with heat sink, and method for producing metal member with underlayer
WO2018190226A1 (en) Sealing structure and sealing method of through hole, and transfer substrate for sealing through hole
WO2021157125A1 (en) Electroconductive joining material, joining member equipped with said electroconductive joining material, and joining method
WO2020095411A1 (en) Junction structure, semiconductor device, and production method therefor
JP7487011B2 (en) Bonding material, manufacturing method for bonding material, and bonding method
JP2020040074A (en) Bonding powder and bonding paste, and method for bonding member to be bonded by using the paste
WO2018088292A1 (en) Semiconductor device and method of manufacturing semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220919

R150 Certificate of patent or registration of utility model

Ref document number: 7155654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150