JP7487011B2 - Bonding material, manufacturing method for bonding material, and bonding method - Google Patents

Bonding material, manufacturing method for bonding material, and bonding method Download PDF

Info

Publication number
JP7487011B2
JP7487011B2 JP2020092126A JP2020092126A JP7487011B2 JP 7487011 B2 JP7487011 B2 JP 7487011B2 JP 2020092126 A JP2020092126 A JP 2020092126A JP 2020092126 A JP2020092126 A JP 2020092126A JP 7487011 B2 JP7487011 B2 JP 7487011B2
Authority
JP
Japan
Prior art keywords
bonding material
metal
particle powder
bonding
material according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020092126A
Other languages
Japanese (ja)
Other versions
JP2021188071A (en
Inventor
卓 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2020092126A priority Critical patent/JP7487011B2/en
Publication of JP2021188071A publication Critical patent/JP2021188071A/en
Application granted granted Critical
Publication of JP7487011B2 publication Critical patent/JP7487011B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は接合材、接合材の製造方法及び接合方法に関する。 The present invention relates to a bonding material, a manufacturing method for a bonding material, and a bonding method.

近年、Power LEDや高周波デバイス、インバーター等のパワーデバイスの分野などにおいて、デバイスの小型化及び高出力化に伴い、デバイスの発熱の問題が大きくなってきており、このサーマルマネジメントの議論が活発になってきている。また、他の半導体デバイスにおいても、従来のシリコン系素子から化合物半導体素子への変更の検討も進み、ジャンクション温度が高くなる傾向にある。 In recent years, in the field of power devices such as power LEDs, high-frequency devices, and inverters, the problem of heat generation from devices has become more serious as devices become smaller and have higher output, and thermal management has become an active topic of discussion. In other semiconductor devices, too, there is a trend toward higher junction temperatures as studies are underway to switch from conventional silicon-based elements to compound semiconductor elements.

これらの技術的背景のもとに、各種半導体デバイスと基板等を接合する材料に求められてくるのは、放熱性及び接合信頼性である。昨今、焼結銀などの金属微粒子粉末を用いた接合材はこの放熱性と接合信頼性とを実現し得る材料として注目されている。またこのような接合材は低温で焼結して金属接合層を形成するので、基板として耐熱性の低いものを使用し得るという点でも注目されている。 In light of these technical backgrounds, materials used to bond various semiconductor devices to substrates, etc., are required to have heat dissipation properties and bonding reliability. Recently, bonding materials using fine metal powders such as sintered silver have been attracting attention as materials that can achieve this heat dissipation properties and bonding reliability. In addition, because such bonding materials are sintered at low temperatures to form a metal bonding layer, they have also attracted attention because they allow the use of substrates with low heat resistance.

前記の通り、接合材から形成される金属接合層について、接合強度や接合信頼性が求められている。金属接合層におけるボイドを減らすことは、これらを高めるのに有効である。 As mentioned above, the metal bonding layer formed from the bonding material is required to have high bonding strength and reliability. Reducing voids in the metal bonding layer is effective in improving these.

また、接合方法として、基板上に接合材を塗布し、形成された塗膜上に半導体素子等を載置し、これを強い力(例えば10MPaといった圧力)で押圧しながら焼成して接合材中の金属微粒子を焼結させ、金属接合層を形成する加圧式の接合方法がある(例えば特許文献1及び2参照)。これによれば、ボイドの少ない金属接合層を形成することができる。 As a bonding method, there is a pressure bonding method in which a bonding material is applied to a substrate, a semiconductor element or the like is placed on the formed coating, and this is fired while being pressed with a strong force (for example, a pressure of 10 MPa) to sinter the metal particles in the bonding material and form a metal bonding layer (see, for example, Patent Documents 1 and 2). This makes it possible to form a metal bonding layer with few voids.

しかし、このような強い力を半導体素子等及びその下の基板等にかけると、これらがダメージを受け、接合して製造された製品について信頼性の点で懸念がある。そこで、加圧するにしても弱い力で加圧する、又は加圧しないで接合を実施するための、接合材や接合方法についての検討がなされている(例えば特許文献3~6)。 However, applying such a strong force to the semiconductor element and the substrate underneath it can damage them, raising concerns about the reliability of the product manufactured by bonding. Therefore, research is being conducted on bonding materials and methods that use weak pressure, or that bond without pressure at all (for example, Patent Documents 3 to 6).

特開2011-046770号公報JP 2011-046770 A 特開2019-149529号公報JP 2019-149529 A 特開2017-214609号公報JP 2017-214609 A 特開2020-035721号公報JP 2020-035721 A 特開2016-054098号公報JP 2016-054098 A 特開2011-175871号公報JP 2011-175871 A

前記の加圧によるダメージの懸念から、本発明者も無加圧方式の接合方法を検討した。接合(焼成)時のボイドの形成箇所として、金属接合層と基板等の隙間が考えられる。加圧式接合なら(焼結して金属接合層を形成中の)塗膜が基板等に押し付けられ、これらの隙間はつぶされて無くなり、ボイドの抑制された金属接合層が形成される。しかし無加圧方式の接合では、このようなことが期待できず、実際ボイドが発生してしまった。 Due to concerns about damage caused by the above-mentioned pressure, the inventors also investigated a pressureless bonding method. The gaps between the metal bonding layer and the substrate, etc. are thought to be the areas where voids form during bonding (firing). With pressure-type bonding, the coating film (which is sintering to form the metal bonding layer) is pressed against the substrate, etc., and these gaps are crushed and eliminated, forming a metal bonding layer with reduced voids. However, with pressureless bonding, this cannot be expected, and voids did indeed form.

そこで本発明は、無加圧方式の接合にてボイドの非常に少ない金属接合層を形成することのできる接合材を提供することを課題とする。 The present invention aims to provide a bonding material that can form a metal bonding layer with very few voids using a pressure-free bonding method.

本発明者は上記課題を解決するために鋭意検討したところ、接合材の粘度測定において広く採用されている領域のせん断速度で測定した粘度が同じ接合材同士でも、非常に低いせん断速度で粘度測定した場合の粘度は異なることがあること、そのような低せん断速度で測定した粘度が小さい接合材が、無加圧方式の接合に使用したとき、(金属接合層と基板等との間における)ボイドの非常に少ない金属接合層を形成することができることを見出し、本発明を完成するに至った。 The inventors conducted extensive research to solve the above problems and discovered that even bonding materials with the same viscosity measured at shear rates in the range widely used in viscosity measurements of bonding materials can have different viscosities when measured at very low shear rates, and that bonding materials with low viscosities measured at such low shear rates can form metal bonding layers with very few voids (between the metal bonding layer and the substrate, etc.) when used in pressureless bonding. This led to the completion of the present invention.

即ち本発明は、以下のとおりである。
[1]金属粒子粉末及び溶剤を含む接合材であって、25℃で0.157s-1にて測定した粘度が1000Pa・s以下である、接合材。
That is, the present invention is as follows.
[1] A bonding material comprising a metal particle powder and a solvent, the bonding material having a viscosity of 1000 Pa·s or less measured at 25° C. and 0.157 s −1 .

[2]前記金属粒子粉末の一部が、平均一次粒子径が150nm以下の金属微粒子粉末である、[1]に記載の接合材。 [2] The bonding material described in [1], in which a portion of the metal particle powder is a metal fine particle powder having an average primary particle diameter of 150 nm or less.

[3]前記接合材中の金属微粒子粉末の含有量が、2~45質量%である、[2]に記載の接合材。 [3] The joining material according to [2], in which the content of metal fine particle powder in the joining material is 2 to 45 mass %.

[4]前記粘度が800Pa・s以下である、[1]~[3]のいずれかに記載の接合材。 [4] A bonding material according to any one of [1] to [3], in which the viscosity is 800 Pa·s or less.

[5]前記粘度が500Pa・s以下である、[1]~[4]のいずれかに記載の接合材。 [5] A bonding material according to any one of [1] to [4], in which the viscosity is 500 Pa·s or less.

[6]前記金属粒子粉末の一部が、充填率が65.0%以上であり、レーザー回折型粒度分布測定装置により測定した体積基準の累積50%粒子径(D50)が0.8~3.2μmである金属大粒子粉末である、[1]~[5]のいずれかに記載の接合材。 [6] A joining material according to any one of [1] to [5], in which a portion of the metal particle powder is a large metal particle powder having a filling rate of 65.0% or more and a volume-based cumulative 50% particle diameter (D50) of 0.8 to 3.2 μm as measured by a laser diffraction particle size distribution measuring device.

[7]前記接合材中の金属大粒子粉末の含有量が、40~88質量%である、[6]に記載の接合材。 [7] The joining material according to [6], in which the content of the large metal particle powder in the joining material is 40 to 88 mass %.

[8]前記金属大粒子粉末の充填率が66.5%以上である、[6]又は[7]に記載の接合材。 [8] The bonding material according to [6] or [7], in which the filling rate of the large metal particle powder is 66.5% or more.

[9]前記金属が、金、銀及び銅からなる群より選ばれる少なくとも一種である、[1]~[8]のいずれかに記載の接合材。 [9] A bonding material according to any one of [1] to [8], wherein the metal is at least one selected from the group consisting of gold, silver, and copper.

[10]前記金属が銀である、[1]~[9]のいずれかに記載の接合材。 [10] The bonding material according to any one of [1] to [9], wherein the metal is silver.

[11]無加圧方式の接合に使用される、[1]~[10]のいずれかに記載の接合材。 [11] A joining material according to any one of [1] to [10], used for pressureless joining.

[12]前記接合材中の金属粒子粉末の含有量が、90~96質量%である、[1]~[11]のいずれかに記載の接合材。 [12] The joining material according to any one of [1] to [11], wherein the content of the metal particle powder in the joining material is 90 to 96 mass %.

[13]平均一次粒子径が150nm以下の金属微粒子粉末と、充填率が65.0%以上であり、レーザー回折型粒度分布測定装置により測定した体積基準の累積50%粒子径(D50)が0.8~3.2μmである金属大粒子粉末と、溶剤とを混合する、接合材の製造方法。 [13] A method for manufacturing a bonding material, which comprises mixing a fine metal powder having an average primary particle diameter of 150 nm or less, a large metal particle powder having a packing rate of 65.0% or more and a cumulative 50% particle diameter (D50) of 0.8 to 3.2 μm on a volume basis as measured by a laser diffraction particle size distribution analyzer, and a solvent.

[14]前記金属微粒子粉末及び金属大粒子粉末の使用量が、前記接合材中の金属微粒子粉末及び金属大粒子粉末の含有量が、それぞれ2~45質量%及び40~88質量%となる量である、[13]に記載の接合材の製造方法。 [14] The method for manufacturing a joining material described in [13], in which the amounts of the fine metal particle powder and the large metal particle powder used are such that the contents of the fine metal particle powder and the large metal particle powder in the joining material are 2 to 45 mass % and 40 to 88 mass %, respectively.

[15]前記金属微粒子粉末及び金属大粒子粉末の使用量の合計が、前記接合材中の金属微粒子粉末及び金属大粒子粉末の含有量の合計が90~96質量%となる量である、[13]又は[14]に記載の接合材の製造方法。 [15] The method for manufacturing a joining material according to [13] or [14], in which the total amount of the fine metal particle powder and the large metal particle powder used is such that the total content of the fine metal particle powder and the large metal particle powder in the joining material is 90 to 96 mass %.

[16]前記金属大粒子粉末の充填率が66.5%以上である、[13]~[15]のいずれかに記載の接合材の製造方法。 [16] A method for manufacturing a joining material according to any one of [13] to [15], in which the filling rate of the large metal particle powder is 66.5% or more.

[17]前記金属が、金、銀及び銅からなる群より選ばれる少なくとも一種である、[13]~[16]のいずれかに記載の接合材の製造方法。 [17] The method for manufacturing a joining material according to any one of [13] to [16], wherein the metal is at least one selected from the group consisting of gold, silver, and copper.

[18]2つの被接合部材を接合する接合方法であって、一方の前記被接合部材上に[1]~[12]のいずれかに記載の接合材又は[13]~[17]のいずれかに記載の接合材の製造方法で製造された接合材を塗布して塗膜を形成する工程と、該塗膜上に他方の前記被接合部材を載置する工程と、該他方の被接合部材が載置された塗膜を160~350℃で焼成して、前記塗膜から金属接合層を形成する工程とを有する、接合方法。 [18] A method for joining two workpieces, comprising the steps of applying a joining material according to any one of [1] to [12] or a joining material manufactured by the manufacturing method for a joining material according to any one of [13] to [17] to one of the workpieces to form a coating film, placing the other workpiece on the coating film, and baking the coating film on which the other workpiece is placed at 160 to 350°C to form a metal joining layer from the coating film.

[19]前記塗膜を焼成して金属接合層を形成する際に、前記2つの被接合部材及び塗膜に圧力を加えない、[18]に記載の接合方法。 [19] The joining method described in [18], in which no pressure is applied to the two joined members and the coating film when the coating film is fired to form a metal joining layer.

[20]前記一方の被接合部材が基板であり、前記他方の被接合部材が半導体素子である、[18]又は[19]に記載の接合方法。 [20] The joining method according to [18] or [19], wherein the one member to be joined is a substrate and the other member to be joined is a semiconductor element.

本発明によれば、無加圧方式の接合にてボイドの非常に少ない金属接合層を形成することのできる接合材が提供される。 The present invention provides a bonding material that can form a metal bonding layer with very few voids using a pressure-free bonding method.

以下、本発明の実施の形態について、詳細に説明する。
[接合材]
本発明の接合材の実施の形態は、金属粒子粉末及び溶剤を含んでおり、非常に低いせん断速度で測定した粘度(後述する0.157s-1、25℃の条件で測定した粘度、以下「低せん断粘度」とも言う)が低いことを特徴としている。
Hereinafter, an embodiment of the present invention will be described in detail.
[Joint material]
The embodiment of the bonding material of the present invention contains a metal particle powder and a solvent, and is characterized by a low viscosity measured at a very low shear rate (viscosity measured under conditions of 0.157 s -1 and 25°C, as described below; hereinafter, also referred to as "low shear viscosity").

<低せん断粘度>
本発明の接合材の実施の形態の、せん断速度0.157s-1、温度25℃にて測定した粘度は、1000Pa・s以下である。このように非常に低いせん断速度は、基板等の被接合物に接合材が塗布され形成された塗膜にかかる重力におよそ対応するものと考えられる。このようなせん断力(それに対応するせん断速度)での粘度がある程度低ければ、塗膜が自重により被接合物上に濡れ広がると考えられる。これにより被接合物(基板等)と塗膜の間に隙間(ギャップ)ができず、金属接合層が形成されるときに、前記ギャップ由来のボイドが形成されないものと考えられる。
<Low shear viscosity>
The viscosity of the bonding material according to the embodiment of the present invention measured at a shear rate of 0.157 s -1 and a temperature of 25°C is 1000 Pa·s or less. Such a very low shear rate is considered to roughly correspond to the gravity applied to the coating film formed by applying the bonding material to the bonded object such as a substrate. If the viscosity at such a shear force (corresponding shear rate) is relatively low, it is considered that the coating film will wet and spread on the bonded object due to its own weight. As a result, no gap is formed between the bonded object (substrate, etc.) and the coating film, and it is considered that voids due to the gap are not formed when the metal bonding layer is formed.

ボイド低減の観点から、低せん断粘度は好ましくは800Pa・s以下、より好ましくは500Pa・s以下、特に好ましくは450Pa・s以下である。また低せん断粘度は好ましくは10Pa・s以上である。なお低せん断粘度は、E型の回転式粘度計を用いて測定するものとする。低せん断粘度は上述の通り、接合材を基板等に塗布後、自己流動して基板等の表面形状に追従する際の流動し易さを指標化したものであるため、粘度計により、せん断速度が低い領域で、安定して粘度を測定することができる必要がある。低せん断粘度の評価では、せん断速度0.157s-1で粘度計のコーンを回転させたときの、回転開始から60秒後の時点のせん断応力から低せん断粘度を算出する。なお測定データの信頼性担保の観点から、せん断速度が、回転開始から30秒後~60秒後の30秒の間、設定値である0.157s-1の±1%以内のせん断速度に収まっていることを測定条件とする。 From the viewpoint of reducing voids, the low shear viscosity is preferably 800 Pa·s or less, more preferably 500 Pa·s or less, and particularly preferably 450 Pa·s or less. The low shear viscosity is preferably 10 Pa·s or more. The low shear viscosity is measured using an E-type rotational viscometer. As described above, the low shear viscosity is an index of the ease of flow when the bonding material is applied to a substrate or the like and self-flows to follow the surface shape of the substrate or the like, so it is necessary to be able to stably measure the viscosity using a viscometer in a low shear rate range. In the evaluation of the low shear viscosity, the low shear viscosity is calculated from the shear stress at 60 seconds after the start of rotation when the cone of the viscometer is rotated at a shear rate of 0.157 s -1 . From the viewpoint of ensuring the reliability of the measurement data, the measurement condition is that the shear rate is within ±1% of the set value of 0.157 s -1 for 30 seconds from 30 seconds after the start of rotation to 60 seconds after 30 seconds after the start of rotation.

<金属粒子粉末>
本発明の接合材の実施の形態は金属粒子粉末を含んでおり、基本的にはこれが焼成により焼結することで、金属接合層となる。
<Metal Particle Powder>
The embodiment of the bonding material of the present invention contains a metal particle powder, which is basically sintered by firing to form a metal bonding layer.

接合材中の金属粒子粉末の含有量は、好ましくは70~98質量%、より好ましくは80~97質量%、更に好ましくは90~96質量%である。接合材中の金属粒子粉末の含有量が多いと、接合材中のそれ以外の有機成分(溶剤等であり、焼成時に揮発していくか残存して、いずれの場合も有機成分が存在した部分がボイドになり得る)の含有量が少なく、このことはボイド低減の観点で有利である。 The content of metal particle powder in the bonding material is preferably 70 to 98% by mass, more preferably 80 to 97% by mass, and even more preferably 90 to 96% by mass. If the content of metal particle powder in the bonding material is high, the content of other organic components in the bonding material (such as solvents, which either evaporate during firing or remain, and in either case the parts where the organic components were present can become voids) is low, which is advantageous in terms of reducing voids.

金属粒子粉末の構成金属は、導電性や熱伝導性の観点から、好ましくは金、銀、銅またはこれらの2種以上の合金である。更にコストや耐酸化性の観点から、特に好ましいのは銀である。後述する金属大粒子粉末及び金属微粒子粉末の場合も同様である。 The constituent metals of the metal particle powder are preferably gold, silver, copper or an alloy of two or more of these metals from the viewpoints of electrical conductivity and thermal conductivity. Furthermore, from the viewpoints of cost and oxidation resistance, silver is particularly preferred. The same applies to the large metal particle powder and fine metal particle powder described below.

金属粒子粉末の形状は特に制限されない。略球状、フレーク状、不定形などいずれの形状でもよいが、略球状の金属粒子粉末が、接合材中での粒子の充填性の観点から好ましい。後述する金属大粒子粉末及び金属微粒子粉末の場合も同様である。 The shape of the metal particle powder is not particularly limited. It may be roughly spherical, flake-like, or irregular, but roughly spherical metal particle powder is preferred from the viewpoint of particle packing in the bonding material. The same applies to the large metal particle powder and fine metal particle powder described below.

(金属大粒子粉末)
以上説明した金属粒子粉末の一部は、レーザー回折型粒度分布測定装置により測定した体積基準の累積50%粒子径(D50)が0.8~3.2μmであり、充填率が65.0%以上である金属大粒子粉末であることが好ましい。
(Large metal particle powder)
A portion of the metal particle powder described above is preferably a large metal particle powder having a volume-based cumulative 50% particle diameter (D50) of 0.8 to 3.2 μm as measured by a laser diffraction particle size distribution measurement device and a packing rate of 65.0% or more.

金属大粒子粉末の累積50%粒子径(D50)が0.8μm以上であると、接合材の粘度(低せん断粘度ではなく、接合材の印刷時のせん断力に対応するようなせん断速度で測定した場合の粘度)が下がって印刷に適したものとなり、また累積50%粒子径(D50)が3.2μm以下であれば、金属大粒子粉末に若干の焼結性を持たせて接合強度に優れた金属接合層の形成が可能である。以上の観点から、金属大粒子粉末の累積50%粒子径(D50)は、好ましくは1.0~2.2μmである。 If the cumulative 50% particle diameter (D50) of the large metal particle powder is 0.8 μm or more, the viscosity of the bonding material (not the low shear viscosity, but the viscosity measured at a shear rate corresponding to the shear force of the bonding material when printed) will decrease, making it suitable for printing, and if the cumulative 50% particle diameter (D50) is 3.2 μm or less, the large metal particle powder will have some sinterability, making it possible to form a metal bonding layer with excellent bonding strength. From these perspectives, the cumulative 50% particle diameter (D50) of the large metal particle powder is preferably 1.0 to 2.2 μm.

金属大粒子粉末の充填率に関して、本発明の接合材の実施の形態の低せん断粘度は、金属粒子粉末、溶剤やその他の成分の種類や量などの適切な選択により、上述した本発明で規定する範囲に調節することができるが、前記金属大粒子粉末として、充填率の高い(65.0%以上)ものを用いると、接合材の低せん断粘度を好適に前記の範囲に調節することができる。 Regarding the filling rate of the large metal particle powder, the low shear viscosity of the embodiment of the bonding material of the present invention can be adjusted to the range specified in the present invention described above by appropriate selection of the type and amount of the metal particle powder, solvent, and other components. However, if a large metal particle powder with a high filling rate (65.0% or more) is used, the low shear viscosity of the bonding material can be suitably adjusted to the above range.

充填率とは、金属大粒子粉末のタップ密度の、その金属のバルク密度(真密度)に対する割合(タップ密度÷バルク密度×100(%))である。金属大粒子粉末として充填率が65.0%以上のものを接合材に添加すると、その低せん断粘度を1000Pa・s以下、好ましくは800Pa・s以下とすることができる。充填率が66.5%以上の金属大粒子粉末を接合材に添加すると、その低せん断粘度を500Pa・s以下や450Pa・s以下といった数値とすることができ、金属接合層のボイド低減の観点から特に好ましい。なお、金属大粒子粉末の充填率は好ましくは85.8%以下である。 The filling rate is the ratio of the tap density of the large metal particle powder to the bulk density (true density) of the metal (tap density ÷ bulk density × 100 (%)). When a large metal particle powder with a filling rate of 65.0% or more is added to the joining material, the low shear viscosity can be set to 1000 Pa·s or less, preferably 800 Pa·s or less. When a large metal particle powder with a filling rate of 66.5% or more is added to the joining material, the low shear viscosity can be set to a value of 500 Pa·s or less or 450 Pa·s or less, which is particularly preferable from the viewpoint of reducing voids in the metal joining layer. The filling rate of the large metal particle powder is preferably 85.8% or less.

粉末の充填率は粉末の流動性(粒子表面の滑らかさなどにより影響を受ける)の指標となるものであり、無加圧接合に使用する接合材においてこれが高い粉末を使用することで、接合材の低せん断粘度を低減することができると考えられる。 The powder filling rate is an indicator of powder fluidity (affected by factors such as the smoothness of the particle surface), and it is believed that by using powders with a high filling rate in joining materials used in pressureless joining, the low shear viscosity of the joining material can be reduced.

金属大粒子粉末程度のサイズの公知の金属粉末の多くは充填率が64.0%以下であるが、充填率が65.0%を超えるものも存在している。本発明では、上記低せん断粘度を実現するための一例として、充填率が65.0%以上と高い金属大粒子粉末を選択的に使用するものである。なお、充填率を求めるためのタップ密度の測定方法の詳細は、実施例の項で説明する。 Many known metal powders with sizes similar to those of large metal particle powders have a packing ratio of 64.0% or less, but some have packing ratios of over 65.0%. In the present invention, as an example of how to achieve the above-mentioned low shear viscosity, a large metal particle powder with a packing ratio of 65.0% or more is selectively used. Details of the method for measuring tap density to determine the packing ratio are explained in the Examples section.

金属大粒子粉末の接合材中の含有量は、接合材の低い低せん断粘度を実現する観点から、好ましくは40~88質量%であり、より好ましくは50~85質量%であり、更に好ましくは60~82質量%である。 The content of the large metal particle powder in the bonding material is preferably 40 to 88 mass %, more preferably 50 to 85 mass %, and even more preferably 60 to 82 mass %, from the viewpoint of realizing a low low-shear viscosity of the bonding material.

接合材中での分散性を高めることで充填性を高める観点から、金属大粒子粉末は有機化合物で被覆されていてもよい。この有機化合物としては金属大粒子粉末の粒子表面を被覆可能な公知のものを特に制限なく使用可能である。前記有機化合物の例としては、ヒドロキシル基、カルボキシル基、アミノ基、チオール基及びジスルフィド基からなる群より選ばれる少なくとも1種の官能基を有する炭素数12~24の有機化合物が挙げられる。この有機化合物は分岐を有してもよく、飽和であっても不飽和であってもよい。 From the viewpoint of increasing the dispersibility in the bonding material and thereby increasing the filling property, the large metal particle powder may be coated with an organic compound. Any known organic compound capable of coating the particle surface of the large metal particle powder may be used as this organic compound without any particular limitation. Examples of the organic compound include organic compounds having 12 to 24 carbon atoms and at least one functional group selected from the group consisting of hydroxyl groups, carboxyl groups, amino groups, thiol groups, and disulfide groups. This organic compound may be branched and may be saturated or unsaturated.

(金属微粒子粉末)
本発明の接合材の実施の形態は、金属粒子粉末の一部として平均一次粒子径が150nm以下の金属微粒子粉末を含むことが好ましい。このように微小サイズの金属微粒子粉末は焼結性に優れ、これを含む接合材からは、接合強度に優れた金属接合層が形成される。
(Fine metal powder)
In an embodiment of the bonding material of the present invention, it is preferable that the metal particle powder contains a metal fine particle powder having an average primary particle size of 150 nm or less as part of the metal particle powder. Such a fine-sized metal fine particle powder has excellent sinterability, and a metal bonding layer having excellent bonding strength is formed from the bonding material containing the metal fine particle powder.

金属微粒子粉末の平均一次粒子径は、低温での焼成による焼結性の観点から、好ましくは130nm以下であり、より好ましくは100nm以下である。また、金属微粒子粉末の平均一次粒子径は好ましくは1nm以上である。 From the viewpoint of sinterability by low-temperature firing, the average primary particle diameter of the metal microparticle powder is preferably 130 nm or less, and more preferably 100 nm or less. In addition, the average primary particle diameter of the metal microparticle powder is preferably 1 nm or more.

なお本明細書において、平均一次粒子径とは、粒子の透過型電子顕微鏡写真(TEM像)又は走査型電子顕微鏡写真(SEM像)から求められる一次粒子径の平均値(個数基準の平均一次粒子径)をいう。更に具体的には、例えば、透過型電子顕微鏡(TEM)(日本電子株式会社製のJEM-1011)又は走査型電子顕微鏡(SEM)(日立ハイテクノロジーズ株式会社製のS-4700)により粒子を所定の倍率で観察した画像(SEM像又はTEM像)上の100個以上、好ましくは250個の任意の粒子の一次粒子径(粒子と面積が同じ円(面積相当円)の直径)から平均一次粒子径を算出することができる。面積相当円の直径の算出は、例えば、画像解析ソフト(旭化成エンジニアリング株式会社製のA像くん(登録商標))により行うことができる。 In this specification, the average primary particle size refers to the average value of the primary particle size (average primary particle size based on number) obtained from a transmission electron microscope photograph (TEM image) or a scanning electron microscope photograph (SEM image) of the particles. More specifically, for example, the average primary particle size can be calculated from the primary particle size (diameter of a circle (area equivalent circle) having the same area as the particle) of 100 or more, preferably 250, arbitrary particles in an image (SEM image or TEM image) obtained by observing the particles at a predetermined magnification using a transmission electron microscope (TEM) (JEM-1011 manufactured by JEOL Ltd.) or a scanning electron microscope (SEM) (S-4700 manufactured by Hitachi High-Technologies Corporation). The calculation of the diameter of the area equivalent circle can be performed, for example, using image analysis software (A-zo-kun (registered trademark) manufactured by Asahi Kasei Engineering Co., Ltd.).

接合材中の金属微粒子粉末の含有量は、接合強度に優れた金属接合層を形成するとともに、接合材の低せん断粘度が高くなることを防止する観点から、好ましくは2~45質量%、より好ましくは5~35質量%であり、更に好ましくは8~30質量%である。 The content of the metal fine particle powder in the bonding material is preferably 2 to 45 mass %, more preferably 5 to 35 mass %, and even more preferably 8 to 30 mass %, from the viewpoint of forming a metal bonding layer with excellent bonding strength and preventing the low shear viscosity of the bonding material from becoming high.

なお金属微粒子粉末は粒子径が小さいため凝集し易い傾向にある。これを防止するため、金属微粒子粉末は有機化合物で被覆されていることが好ましい。この有機化合物としては金属微粒子粉末の粒子表面を被覆可能な公知のものを特に制限なく使用可能である。前記有機化合物の例としては、ヒドロキシル基、カルボキシル基、アミノ基、チオール基及びジスルフィド基からなる群より選ばれる少なくとも1種の官能基を有する炭素数1~18の有機化合物が挙げられる。この有機化合物は分岐を有してもよく、飽和であっても不飽和であってもよい。 Metal microparticle powders have a tendency to easily aggregate due to their small particle size. To prevent this, it is preferable that the metal microparticle powder is coated with an organic compound. Any known organic compound capable of coating the particle surface of metal microparticle powder can be used without any particular restrictions. Examples of the organic compound include organic compounds having 1 to 18 carbon atoms and at least one functional group selected from the group consisting of hydroxyl groups, carboxyl groups, amino groups, thiol groups, and disulfide groups. The organic compound may be branched and may be saturated or unsaturated.

160~350℃程度での焼成により十分に金属微粒子粉末から分離して金属微粒子粉末の粒子同士の焼結を阻害しないように、前記有機化合物としては炭素数12以下のものが好ましく、炭素数2~8の飽和脂肪酸もしくは不飽和脂肪酸や飽和アミンもしくは不飽和アミンがより好ましい。 The organic compound is preferably one having 12 or less carbon atoms, and more preferably a saturated or unsaturated fatty acid or a saturated or unsaturated amine having 2 to 8 carbon atoms, so that it can be sufficiently separated from the metal fine particle powder by firing at about 160 to 350°C and does not inhibit sintering between the particles of the metal fine particle powder.

金属微粒子粉末の構成金属は、接合材から形成される金属接合層の構成金属を単一種類として、接合層全体にわたって熱膨張係数を実質的に一定として接合信頼性を高め得ることから、金属大粒子粉末の構成金属と同一であることが好ましい。 The constituent metal of the fine metal powder is preferably the same as the constituent metal of the large metal particle powder, since the constituent metal of the metal bonding layer formed from the bonding material is a single type of metal, and the thermal expansion coefficient is substantially constant throughout the entire bonding layer, thereby improving bonding reliability.

以上説明した通り、本発明の接合材の実施の形態においては、金属粒子粉末の一部として金属大粒子粉末を含み、金属粒子粉末の一部として金属微粒子粉末を含むことが好ましい。金属粒子粉末全体(100質量%)に占める金属大粒子粉末及び金属微粒子粉末の合計は、好ましくは80質量%以上であり、より好ましくは90質量%以上であり、更に好ましくは95質量%以上であり、特に好ましくは100質量%である。 As described above, in an embodiment of the bonding material of the present invention, it is preferable that a large metal particle powder is included as part of the metal particle powder, and a fine metal powder is included as part of the metal particle powder. The total of the large metal particle powder and the fine metal powder in the entire metal particle powder (100% by mass) is preferably 80% by mass or more, more preferably 90% by mass or more, even more preferably 95% by mass or more, and particularly preferably 100% by mass.

<溶剤>
本発明の接合材の実施の形態は、溶剤を含む。この溶剤としては、金属粒子粉末を分散させることができ、接合材中の成分との反応性を実質的に有しないものを広く使用可能である。
<Solvent>
The bonding material according to the embodiment of the present invention includes a solvent. As the solvent, any solvent that can disperse the metal particle powder and has substantially no reactivity with the components in the bonding material can be used.

接合材中の溶剤の含有量は、1.5~18質量%であるのが好ましく、2.5~16質量%であるのがより好ましく、3~9.5質量%であるのが更に好ましい。この溶剤として、極性溶剤や非極性溶剤を使用することができるが、接合材中の他の成分との相溶性や環境負荷の観点から、極性溶剤を使用するのが好ましい。 The content of the solvent in the bonding material is preferably 1.5 to 18 mass%, more preferably 2.5 to 16 mass%, and even more preferably 3 to 9.5 mass%. This solvent can be a polar or non-polar solvent, but it is preferable to use a polar solvent from the viewpoint of compatibility with other components in the bonding material and environmental load.

極性溶剤の例としては、水;
ターピネオール、テキサノール、フェノキシプロパノール、1-オクタノール、1-デカノール、1-ドデカノール、1-テトラデカノール、テルソルブMTPH(日本テルペン化学株式会社製)、ジヒドロターピニルオキシエタノール(日本テルペン化学株式会社製)、テルソルブTOE-100(日本テルペン化学株式会社製)、テルソルブDTO-210(日本テルペン化学株式会社製)等のモノアルコール;
3-メチル-1,3-ブタンジオール、2-エチル-1,3-ヘキサンジオール(オクタンジオール)、ヘキシルジグリコール、2-エチルヘキシルグリコール、ジブチルジグリコール、グリセリン、ジヒドロキシターピネオール、3-メチルブタン-1,2,3-トリオール(イソプレントリオールA(IPTL-A)、日本テルペン化学株式会社製)、2-メチルブタン-1,2,4-トリオール(イソプレントリオールB(IPTL-B)、日本テルペン化学株式会社製)等のポリオール;
ブチルカルビトール、ジエチレングリコールモノブチルエーテル、ターピニルメチルエーテル(日本テルペン化学株式会社製)、ジヒドロターピニルメチルエーテル(日本テルペン化学株式会社製)等のエーテル化合物;
ブチルカルビトールアセテート、ジエチレングリコールモノブチルエーテルアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート等のグリコールエーテルアセテート;
1-メチルピロリジノン、ピリジン等の含窒素環状化合物;
γ―ブチロラクトン、メトキシブチルアセテート、メトキシプロピルアセテート、乳酸エチル、3-ヒドロキシ-3-メチルブチルアセテート、ジヒドロターピニルアセテート、テルソルブIPG-2Ac(日本テルペン化学株式会社製)、テルソルブTHA-90(日本テルペン化学株式会社製)、テルソルブTHA-70(日本テルペン化学株式会社製)等のエステル化合物;
などを使用することができる。これらは1種単独で使用しても、2種以上を組み合わせて使用してもよい。
Examples of polar solvents include water;
Monoalcohols such as terpineol, texanol, phenoxypropanol, 1-octanol, 1-decanol, 1-dodecanol, 1-tetradecanol, Tersolve MTPH (manufactured by Nippon Terpene Chemical Co., Ltd.), dihydroterpinyloxyethanol (manufactured by Nippon Terpene Chemical Co., Ltd.), Tersolve TOE-100 (manufactured by Nippon Terpene Chemical Co., Ltd.), and Tersolve DTO-210 (manufactured by Nippon Terpene Chemical Co., Ltd.);
Polyols such as 3-methyl-1,3-butanediol, 2-ethyl-1,3-hexanediol (octanediol), hexyl diglycol, 2-ethylhexyl glycol, dibutyl diglycol, glycerin, dihydroxyterpineol, 3-methylbutane-1,2,3-triol (isoprene triol A (IPTL-A), manufactured by Nippon Terpene Chemical Co., Ltd.), and 2-methylbutane-1,2,4-triol (isoprene triol B (IPTL-B), manufactured by Nippon Terpene Chemical Co., Ltd.);
Ether compounds such as butyl carbitol, diethylene glycol monobutyl ether, terpinyl methyl ether (manufactured by Nippon Terpene Chemical Co., Ltd.), and dihydroterpinyl methyl ether (manufactured by Nippon Terpene Chemical Co., Ltd.);
Glycol ether acetates such as butyl carbitol acetate, diethylene glycol monobutyl ether acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, and diethylene glycol monoethyl ether acetate;
Nitrogen-containing cyclic compounds such as 1-methylpyrrolidinone and pyridine;
Ester compounds such as γ-butyrolactone, methoxybutyl acetate, methoxypropyl acetate, ethyl lactate, 3-hydroxy-3-methylbutyl acetate, dihydroterpinyl acetate, Tersolve IPG-2Ac (manufactured by Nippon Terpene Chemical Co., Ltd.), Tersolve THA-90 (manufactured by Nippon Terpene Chemical Co., Ltd.), and Tersolve THA-70 (manufactured by Nippon Terpene Chemical Co., Ltd.);
These may be used alone or in combination of two or more.

<その他の成分(添加剤)>
本発明の接合材の実施の形態は、その他の成分として公知の添加剤を含んでいてもよい。添加剤として具体的には、酸系分散剤やリン酸エステル系分散剤などの分散剤、ガラスフリットなどの焼結促進剤、酸化防止剤、粘度調整剤、pH調整剤、緩衝剤、消泡剤、レベリング剤、揮発抑制剤が挙げられる。添加剤の接合材における含有量は、2質量%以下(複数種類の添加剤を含む場合は合計含有量が2質量%以下)であることが好ましい(接合材が添加剤を含む場合、その含有量は好ましくは0.005質量%以上(複数種類の添加剤を含む場合は各々の含有量が0.005質量%以上)とされる)。
<Other ingredients (additives)>
The embodiment of the bonding material of the present invention may contain known additives as other components. Specific examples of additives include dispersants such as acid dispersants and phosphate dispersants, sintering accelerators such as glass frit, antioxidants, viscosity adjusters, pH adjusters, buffers, defoamers, leveling agents, and volatilization inhibitors. The content of the additives in the bonding material is preferably 2% by mass or less (when multiple types of additives are included, the total content is 2% by mass or less) (when the bonding material includes additives, the content is preferably 0.005% by mass or more (when multiple types of additives are included, the content of each additive is 0.005% by mass or more)).

なお、接合材には樹脂を配合して金属粒子粉末同士のバインダーとして機能させるタイプのものがあるが、このような樹脂は、接合材から形成される金属接合層中に残存し、放熱性や導電性に悪影響を与えるおそれがある。また樹脂は金属とは熱膨張係数が大きく異なるので、金属接合層が冷熱サイクルを受けたときに前記の相違に起因して応力が発生して、接合信頼性に悪影響する。 Some bonding materials contain resin to act as a binder between metal particle powders, but this type of resin remains in the metal bonding layer formed from the bonding material and may adversely affect heat dissipation and conductivity. In addition, resin has a significantly different thermal expansion coefficient from metal, so when the metal bonding layer is subjected to a thermal cycle, stress is generated due to this difference, adversely affecting the reliability of the bond.

以上から、本発明の接合材の実施の形態には樹脂を実質的に配合しないことが好ましい。具体的には、接合材中の樹脂の含有量は0.3質量%以下であることが好ましく、0.1質量%以下であることがより好ましく、0.05質量%以下であることが特に好ましい。 In view of the above, it is preferable that the embodiment of the bonding material of the present invention does not substantially contain resin. Specifically, the resin content in the bonding material is preferably 0.3 mass% or less, more preferably 0.1 mass% or less, and particularly preferably 0.05 mass% or less.

[接合材の製造方法]
本発明の接合材の実施の形態は、以上説明した、金属粒子粉末(上述の通り好ましくは金属大粒子粉末及び金属微粒子粉末を含む)及び溶剤、更に他の任意成分(添加剤等)を公知の方法で混練することで、製造することができる。なお、各成分の使用量については、接合材中の各成分の含有量が、各成分の仕込み量から計算してそれらの好ましい含有量として上記で説明したものとなる量であることが好ましい。特に、金属微粒子粉末及び金属大粒子粉末の使用量の合計が、接合材中の金属微粒子粉末及び金属大粒子粉末の含有量の合計が90~96質量%となる量であることがボイド低減の観点から好ましい。
[Method of manufacturing the bonding material]
The embodiment of the bonding material of the present invention can be manufactured by kneading the metal particle powder (preferably including large metal particle powder and fine metal particle powder as described above), solvent, and other optional components (additives, etc.) described above by a known method. It is preferable that the amount of each component used is such that the content of each component in the bonding material is calculated from the charged amount of each component and is the amount described above as the preferred content of each component. In particular, from the viewpoint of reducing voids, it is preferable that the total amount of the fine metal particle powder and the large metal particle powder used is such that the total content of the fine metal particle powder and the large metal particle powder in the bonding material is 90 to 96 mass %.

混練の方法は特に制限されるものではなく、例えば、各成分を個別に用意し、任意の順で、超音波分散機、ディスパー、三本ロールミル、ボールミル、ビーズミル、二軸ニーダー、プラネタリーミキサー、又は公転自転式攪拌機などで混練することによって、接合材を製造することができる。 The kneading method is not particularly limited. For example, the bonding material can be produced by preparing each component separately and kneading them in any order using an ultrasonic disperser, a disperser, a triple roll mill, a ball mill, a bead mill, a two-shaft kneader, a planetary mixer, or a revolving agitator.

[接合方法]
本発明の接合方法の実施の形態は、本発明の接合材の実施の形態、又は本発明の接合材の製造方法の実施の形態により製造された接合材を用いて2つの被接合部材を接合する方法である。本発明の接合方法の実施の形態は、塗膜形成工程と、載置工程と、金属接合層形成工程とを有し、その他予備乾燥工程等を実施してもよい。以下、これら各工程について説明する。
[Joining method]
The embodiment of the bonding method of the present invention is a method for bonding two members to be bonded using a bonding material manufactured by the embodiment of the bonding material of the present invention or the embodiment of the manufacturing method of the bonding material of the present invention. The embodiment of the bonding method of the present invention has a coating film forming step, a placing step, and a metal bonding layer forming step, and may also include a preliminary drying step. Each of these steps will be described below.

<塗膜形成工程>
本工程では、一方の被接合部材上に本発明の接合材の実施の形態又は本発明の接合材の製造方法の実施の形態により製造された接合材を、(印刷(例えばメタルマスク印刷、スクリーン印刷、ピン転写)などにより)塗布して塗膜を形成する。本発明の接合材の実施の形態は低せん断粘度が低いので、塗膜が前記一方の被接合部材に濡れ広がり、これらの間にギャップが形成されにくいと考えられる。
<Coating film formation process>
In this process, a bonding material manufactured by an embodiment of the bonding material of the present invention or an embodiment of the manufacturing method of a bonding material of the present invention is applied (by printing (e.g., metal mask printing, screen printing, pin transfer, etc.)) onto one of the members to be joined to form a coating film. Since the embodiment of the bonding material of the present invention has a low low shear viscosity, it is believed that the coating film wets and spreads over the one of the members to be joined, making it difficult for a gap to form between them.

前記一方の被接合部材の例としては、基板が挙げられる。基板としては、銅基板などの金属基板、銅と何らかの金属(例えばW(タングステン)やMo(モリブデン))との合金基板、銅板でSiN(窒化珪素)やAlN(窒化アルミニウム)などを挟んだセラミック基板、更にPET(ポリエチレンテレフタレート)基板などのプラスチック基板、FR4などのPCB基板などが挙げられる。さらにこれらを積層した積層基板も、本発明の接合方法において使用可能である。 An example of one of the members to be joined is a substrate. Examples of substrates include metal substrates such as copper substrates, alloy substrates of copper and some other metal (e.g., W (tungsten) or Mo (molybdenum)), ceramic substrates in which SiN (silicon nitride) or AlN (aluminum nitride) is sandwiched between copper plates, plastic substrates such as PET (polyethylene terephthalate) substrates, and PCB substrates such as FR4. Furthermore, laminate substrates in which these are stacked together can also be used in the joining method of the present invention.

なお、前記一方の被接合部材の接合材が塗布される個所は、金属でメッキされていてもよい。塗膜中の金属粒子粉末との接合相性の観点からは、金属メッキは金属粒子粉末の構成金属と同じ金属のメッキであることが好ましい。 The portion of the one of the members to be joined where the joining material is applied may be plated with a metal. From the viewpoint of compatibility with the metal particle powder in the coating, it is preferable that the metal plating is the same as the constituent metal of the metal particle powder.

<載置工程>
続いて、前記の一方の被接合部材上に形成された塗膜の上に、他方の被接合部材を載置する。この他方の被接合部材の例としては、SiチップやSiC、GaNチップなどの半導体素子、一方の被接合部材の例として挙げたのと同様の基板が挙げられる。前記塗膜からはボイドの低減された金属接合層が形成されることから、本発明の接合方法の実施の形態は、基板と半導体素子の接合に使用されることが好ましい。すなわち、前記他方の被接合部材としては半導体素子が好ましい。
<Placement process>
Next, the other member to be joined is placed on the coating film formed on the one member to be joined. Examples of the other member to be joined include semiconductor elements such as Si chips, SiC, and GaN chips, and substrates similar to those given as examples of the one member to be joined. Since a metal bonding layer with reduced voids is formed from the coating film, the embodiment of the bonding method of the present invention is preferably used to bond a substrate and a semiconductor element. That is, the other member to be joined is preferably a semiconductor element.

また、本発明の接合材の実施の形態(から形成された塗膜)は低せん断粘度が低いため、前記他方の被接合部材を塗膜上に載置したときに、塗膜が他方の被接合部材の塗膜と接する箇所(底面)の表面形状に追従して変形し、塗膜と他方の被接合部材の間にはギャップが形成されにくいと考えられる。 In addition, since the embodiment of the bonding material of the present invention (the coating film formed from it) has a low low shear viscosity, when the other member to be bonded is placed on the coating film, the coating film deforms to conform to the surface shape of the part (bottom surface) where it comes into contact with the coating film of the other member to be bonded, and it is believed that a gap is unlikely to form between the coating film and the other member to be bonded.

他方の被接合部材の塗膜と接触する個所(底面)は、金属でメッキされていてもよい。塗膜中の金属粒子粉末との接合相性の観点からは、前記他方の被接合部材の金属メッキは、金属粒子粉末の構成金属と同じ金属のメッキであることが好ましい。また塗膜上に他方の被接合部材を載置する際には、2つの被接合部材の間に、塗膜が2つの被接合部材により圧縮される方向の圧力(例えば0.03~0.2MPa程度の圧力)をかけてもかけなくてもよい。 The part (bottom surface) of the other member to be joined that comes into contact with the coating may be plated with metal. From the viewpoint of compatibility with the metal particle powder in the coating, it is preferable that the metal plating of the other member to be joined is plated with the same metal as the constituent metal of the metal particle powder. When placing the other member to be joined on the coating, pressure (for example, a pressure of about 0.03 to 0.2 MPa) may or may not be applied between the two members to be joined in a direction that compresses the coating between the two members to be joined.

<予備乾燥工程>
他方の被接合部材が載置された塗膜を焼成して金属粒子粉末を焼結させる際に、形成される金属接合層中のボイドを低減するため、塗膜上に他方の被接合部材を載置した後に(載置工程の後に)、塗膜を予備乾燥する予備乾燥工程を実施してもよい。予備乾燥は塗膜から溶剤を除去することを目的としており、溶剤が揮発し、かつ金属粒子粉末が焼結を実質的に起こさないような条件で乾燥する。このため、予備乾燥は塗膜を60~150℃で加熱することによって実施することが好ましい。この加熱による乾燥は大気圧下で行ってもよいし、減圧ないし真空下で行ってもよい。また、次に説明する金属接合層形成工程において、焼成温度までの昇温速度が7℃/分以下程度であれば、焼成温度までの昇温をもって予備乾燥工程を実施することができる。
<Pre-drying process>
In order to reduce voids in the formed metal bonding layer when the coating film on which the other member to be bonded is placed is fired to sinter the metal particle powder, a pre-drying step may be performed after placing the other member to be bonded on the coating film (after the placing step). The purpose of the pre-drying is to remove the solvent from the coating film, and the coating film is dried under conditions in which the solvent volatilizes and the metal particle powder does not substantially sinter. For this reason, the pre-drying is preferably performed by heating the coating film at 60 to 150°C. This drying by heating may be performed under atmospheric pressure, or under reduced pressure or vacuum. In addition, in the metal bonding layer forming step described below, if the rate of temperature rise to the firing temperature is about 7°C/min or less, the pre-drying step can be performed by raising the temperature to the firing temperature.

<金属接合層形成工程>
載置工程を実施して、必要に応じて予備乾燥工程を実施した後、2つの被接合部材にサンドイッチされた塗膜を160~350℃で焼成し、金属粒子粉末(特に微細な金属微粒子粉末)を焼結させることで、金属接合層を形成し、2つの被接合部材を接合する。
<Metal bonding layer forming process>
After carrying out the placing step and, if necessary, a preliminary drying step, the coating film sandwiched between the two members to be joined is fired at 160 to 350°C to sinter the metal particle powder (particularly fine metal microparticle powder), thereby forming a metal joining layer and joining the two members to be joined.

金属接合層形成工程では、前記160~350℃の焼成温度まで昇温し、焼成温度で例えば1分~2時間保持して、接合材の塗膜から金属接合層を形成する。前記昇温の速度は特に限定されるものではないが、例えば1.5℃/分~12℃/分とすることができ、2℃/分~6℃/分とすることが好ましい。 In the metal bonding layer forming process, the temperature is raised to the baking temperature of 160 to 350°C, and the baking temperature is maintained for, for example, 1 minute to 2 hours, to form a metal bonding layer from the coating of the bonding material. The rate of temperature rise is not particularly limited, but can be, for example, 1.5°C/min to 12°C/min, and is preferably 2°C/min to 6°C/min.

焼成温度は、形成される金属接合層の接合強度やコストの観点から、175~280℃であることが好ましい。 The firing temperature is preferably 175 to 280°C from the viewpoint of the bonding strength of the resulting metal bonding layer and costs.

焼成温度で保持する時間は、形成される金属接合層の接合強度や熱コストの観点から、10~90分であることが好ましい。なお、例えば焼成温度が280℃以上といった上記に示した焼成温度範囲のうち高めの温度であると、焼成温度に昇温するまでに金属接合層が形成される場合もある。このような場合には、焼成温度での保持時間は0分としてもよい。 The time for holding at the firing temperature is preferably 10 to 90 minutes from the viewpoint of the bonding strength of the metal bonding layer formed and heat costs. Note that if the firing temperature is higher within the firing temperature range shown above, for example, 280°C or higher, the metal bonding layer may be formed before the temperature is raised to the firing temperature. In such cases, the holding time at the firing temperature may be 0 minutes.

また、上述の通り、本発明の接合材の実施の形態(から形成された塗膜)は低せん断粘度が低いため、塗膜と一方の被接合部材の間のギャップ形成は抑制されているものと考えられる。そのためこの金属接合層形成工程においては、被接合部材間に(焼結して金属接合層を形成中の塗膜が、2つの被接合部材により圧縮される方向の)圧力を加えずとも、(金属接合層を形成中の)塗膜と一方の被接合部材の界面部分を起点としたボイドが極めて形成されにくい。 As mentioned above, the low shear viscosity of the embodiment of the bonding material of the present invention (the coating film formed from it) is low, so it is believed that the formation of gaps between the coating film and one of the bonded members is suppressed. Therefore, in this metal bonding layer formation process, even if pressure is not applied between the bonded members (in the direction in which the coating film that is sintering to form the metal bonding layer is compressed by the two bonded members), voids are extremely unlikely to form originating from the interface between the coating film (that is forming the metal bonding layer) and one of the bonded members.

被接合部材間、すなわち二つの被接合部材及び塗膜に圧力を加えると、[背景技術]で説明した通りこれらにダメージを与える恐れがあるが、本発明の接合材の実施の形態を使用すれば、前記のような加圧をせずともボイドの発生を抑制して接合が実施できる。また、加圧を行う場合に、接合の生産性の観点から同時に多数の接合を実施することを考えると、多数の被接合部材-塗膜-被接合部材のサンドイッチ構造物に対して同一の方向で同一の加圧を同時に行うこととなるが、それは容易ではなく、同時に多数の加圧接合を実施した場合には、得られる製品の品質の均一性に懸念がある。前記の加圧を行わない接合であれば、このような懸念は無い。以上から、本発明においては、加圧せずに金属接合層形成工程を実施して金属接合層を形成する、無加圧方式の接合を原則とする。 When pressure is applied between the members to be joined, i.e., the two members to be joined and the coating, there is a risk of damaging them as explained in the [Background Art] section. However, by using the embodiment of the bonding material of the present invention, it is possible to perform bonding without the above-mentioned pressurization while suppressing the occurrence of voids. In addition, when applying pressure, from the viewpoint of bonding productivity, if multiple bonding operations are performed simultaneously, the same pressure is applied simultaneously in the same direction to multiple sandwich structures of bonded members-coating-bonded members, which is not easy, and if multiple pressure bonding operations are performed simultaneously, there is a concern about the uniformity of the quality of the resulting product. With bonding that does not use the above-mentioned pressure, there is no such concern. For the above reasons, in the present invention, the principle is to perform bonding using a non-pressurized method in which a metal bonding layer is formed by performing a metal bonding layer formation process without applying pressure.

また金属接合層形成工程は大気雰囲気中で実施しても窒素雰囲気などの不活性雰囲気中で実施してもよいが、酸化防止の観点から不活性雰囲気中で実施することが好ましい。更にコストの観点から、本工程を窒素雰囲気中で実施することがより好ましい。 The metal bonding layer formation process may be carried out in an air atmosphere or in an inert atmosphere such as a nitrogen atmosphere, but it is preferable to carry out the process in an inert atmosphere from the viewpoint of preventing oxidation. Furthermore, from the viewpoint of cost, it is more preferable to carry out this process in a nitrogen atmosphere.

以下、実施例を参照しながら、本発明についてより具体的に説明するが、本発明はこれらにより何ら限定されるものではない。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.

[銀微粒子粉末及び銀大粒子粉末1~4]
以下で説明する実施例及び比較例において使用した銀微粒子粉末及び銀大粒子粉末1~4の諸物性は、以下の表1の通りである。
[Fine silver particle powder and large silver particle powder 1 to 4]
The physical properties of the fine silver particle powders and large silver particle powders 1 to 4 used in the examples and comparative examples described below are as shown in Table 1 below.

Figure 0007487011000001
Figure 0007487011000001

諸物性の測定方法は以下の通りである。 The methods for measuring various physical properties are as follows:

<平均一次粒子径>
透過型電子顕微鏡(TEM)(日本電子株式会社製のJEM-1011)により粒子を倍率50000倍で観察した画像上の250個の任意の粒子の一次粒子径(粒子と面積が同じ円(面積相当円)の直径)から平均一次粒子径を算出した。面積相当円の直径の算出は、画像解析ソフト(旭化成エンジニアリング株式会社製のA像くん(登録商標))により行った。このとき、あわせて粒子形状も観察した。なお銀大粒子粉末1~4の形状については、電界放出形走査電子顕微鏡(JSM-7200M、日本電子株式会社製)で倍率20000倍にて観察した。
<Average primary particle size>
The average primary particle diameter was calculated from the primary particle diameter (diameter of a circle having the same area as the particle (area equivalent circle)) of 250 random particles on an image obtained by observing the particles at a magnification of 50,000 times using a transmission electron microscope (TEM) (JEM-1011 manufactured by JEOL Ltd.). The calculation of the diameter of the area equivalent circle was performed using image analysis software (Azo-kun (registered trademark) manufactured by Asahi Kasei Engineering Co., Ltd.). At this time, the particle shape was also observed. The shapes of large silver particle powders 1 to 4 were observed at a magnification of 20,000 times using a field emission scanning electron microscope (JSM-7200M, manufactured by JEOL Ltd.).

<粒度分布>
粒度分布は、レーザー回折型粒度分布測定装置(SYMPATEC社製のへロス粒度分布測定装置(HELOS&RODOS(気流式の分散モジュール)))を使用して、分散圧5barで、焦点距離20mmのレンズを使用して試料粉末の体積基準の粒度分布を求めることで、累積10%粒子径(D10)、累積50%粒子径(D50)及び累積90%粒子径(D90)を求めた。
<Particle size distribution>
The particle size distribution was measured using a laser diffraction particle size distribution measuring device (SYMPATEC's HELOS particle size distribution measuring device (HELOS & RODOS (airflow type dispersion module))) at a dispersion pressure of 5 bar and a lens with a focal length of 20 mm to determine the volumetric particle size distribution of the sample powder, thereby determining the cumulative 10% particle diameter (D10), cumulative 50% particle diameter (D50), and cumulative 90% particle diameter (D90).

<タップ密度>
タップ密度は、特開2007-263860号公報に記載された方法と同様に、試料粉末を内径6mm×高さ11.9mmの有底円筒形のダイに容積の80%まで充填して粉末層を形成し、この粉末層の上面に0.160N/mの圧力を均一に加え、この圧力で粉末がこれ以上密に充填されなくなるまで前記粉末層を圧縮した後、粉末層の高さを測定し、この粉末層の高さの測定値と、充填された試料粉末の重量とから、粉末の密度を求め、これを粉末のタップ密度とした。
<Tap density>
The tap density was measured in the same manner as described in JP 2007-263860 A, by filling a bottomed cylindrical die having an inner diameter of 6 mm and a height of 11.9 mm to 80% of the volume with the sample powder to form a powder layer, applying a pressure of 0.160 N/ m2 uniformly to the upper surface of this powder layer, compressing the powder layer with this pressure until the powder could no longer be packed densely, and then measuring the height of the powder layer. The density of the powder was calculated from the measured height of the powder layer and the weight of the filled sample powder, and this was taken as the tap density of the powder.

<充填率(%)>
求められたタップ密度の、銀のバルク密度(10.49g/cm)に対する百分率を計算することで求めた。
<Filling rate (%)>
The tap density was calculated as a percentage relative to the bulk density of silver (10.49 g/cm 3 ).

<比表面積>
比表面積は、BET比表面積測定器(株式会社マウンテック製のMacsorb)を使用して、測定器内に105℃で20分間窒素ガスを流して試料粉末の粒子表面に付着した物質を除去した後、窒素とヘリウムの混合ガス(N2:30体積%、He:70体積%)を流しながら、BET1点法により測定した。
<Specific surface area>
The specific surface area was measured by a BET specific surface area measuring device (Macsorb, manufactured by Mountec Co., Ltd.) by flowing nitrogen gas into the measuring device at 105° C. for 20 minutes to remove any substances adhering to the particle surfaces of the sample powder, and then by the BET single-point method while flowing a mixed gas of nitrogen and helium (N2: 30 vol.%, He: 70 vol.%).

[比較例(接合材の調製)]
銀微粒子粉末を17.2質量%と、銀大粒子粉末1を75.8質量%と、分散剤としてLubrizol社製SOLPLUSD-540を0.2質量%と、溶剤として、富士フィルム和光純薬株式会社製デカノールを2.35質量%、日本テルペン化学株式会社製テルソルブIPTL-Aを0.6質量%、日本テルペン化学株式会社製TOE-100を2.35質量%とを混錬して、銀ペーストを調製した。
[Comparative Example (Preparation of Bonding Material)]
A silver paste was prepared by kneading 17.2 mass% of fine silver powder, 75.8 mass% of large silver particle powder 1, 0.2 mass% of SOLPLUSD-540 manufactured by Lubrizol as a dispersant, 2.35 mass% of Decanol manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., 0.6 mass% of Tersolve IPTL-A manufactured by Nippon Terpene Chemical Co., Ltd., and 2.35 mass% of TOE-100 manufactured by Nippon Terpene Chemical Co., Ltd. as a solvent.

この銀ペーストは印刷に適した粘度に調整するため、デカノールとTOE-100をそれぞれ0.75wt%添加して希釈して、比較例の接合材を得た。得られた接合材中の銀濃度を強熱減量法により求めたところ、93.0質量%であった。 To adjust the viscosity of this silver paste to be suitable for printing, 0.75 wt% each of decanol and TOE-100 were added to dilute it, and a bonding material for the comparative example was obtained. The silver concentration in the resulting bonding material was determined by the ignition loss method to be 93.0 mass%.

[実施例1~4(接合材の調製)]
<実施例1>
銀微粒子粉末を16.3質量%と、銀大粒子粉末2を76.8質量%と、分散剤としてLubrizol社製SOLPLUSD-540を0.2質量%と、溶剤として、富士フィルム和光純薬株式会社製デカノールを2.35質量%、日本テルペン化学株式会社製テルソルブIPTL-Aを0.6質量%、日本テルペン化学株式会社製TOE-100を2.35質量%とを混錬して、銀ペーストを調製した。
[Examples 1 to 4 (Preparation of bonding materials)]
Example 1
A silver paste was prepared by kneading 16.3 mass% of fine silver powder, 76.8 mass% of large silver particle powder 2, 0.2 mass% of SOLPLUSD-540 manufactured by Lubrizol as a dispersant, 2.35 mass% of Decanol manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., 0.6 mass% of Tersolve IPTL-A manufactured by Nippon Terpene Chemical Co., Ltd., and 2.35 mass% of TOE-100 manufactured by Nippon Terpene Chemical Co., Ltd. as solvents.

この銀ペーストは印刷に適した粘度に調整するため、デカノールとTOE-100をそれぞれ0.70wt%添加して希釈して、実施例1の接合材を得た。得られた接合材中の銀濃度を強熱減量法により求めたところ、93.1質量%であった。 To adjust the viscosity of this silver paste to be suitable for printing, 0.70 wt% each of decanol and TOE-100 were added to dilute it, and the bonding material of Example 1 was obtained. The silver concentration in the resulting bonding material was determined by the ignition loss method and was found to be 93.1 mass%.

<実施例2>
銀微粒子粉末を17.6質量%と、銀大粒子粉末2を75.5質量%と、分散剤としてLubrizol社製SOLPLUSD-540を0.2質量%と、溶剤として、富士フィルム和光純薬株式会社製デカノールを2.35質量%、日本テルペン化学株式会社製テルソルブIPTL-Aを0.6質量%、日本テルペン化学株式会社製TOE-100を2.35質量%とを混錬して、銀ペーストを調製した。
Example 2
A silver paste was prepared by kneading 17.6 mass% of fine silver powder, 75.5 mass% of large silver particle powder 2, 0.2 mass% of SOLPLUSD-540 manufactured by Lubrizol as a dispersant, 2.35 mass% of Decanol manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., 0.6 mass% of Tersolve IPTL-A manufactured by Nippon Terpene Chemical Co., Ltd., and 2.35 mass% of TOE-100 manufactured by Nippon Terpene Chemical Co., Ltd. as a solvent.

この銀ペーストは印刷に適した粘度に調整するため、デカノールとTOE-100をそれぞれ0.70wt%添加して希釈して、実施例2の接合材を得た。得られた接合材中の銀濃度を強熱減量法により求めたところ、93.1質量%であった。 To adjust the viscosity of this silver paste to be suitable for printing, 0.70 wt% each of decanol and TOE-100 were added to dilute it, and the bonding material of Example 2 was obtained. The silver concentration in the resulting bonding material was determined by the ignition loss method and was found to be 93.1 mass%.

<実施例3>
銀微粒子粉末を16.7質量%と、銀大粒子粉末3を76.4質量%と、分散剤としてLubrizol社製SOLPLUSD-540を0.2質量%と、溶剤として、富士フィルム和光純薬株式会社製デカノールを2.35質量%、日本テルペン化学株式会社製テルソルブIPTL-Aを0.6質量%、日本テルペン化学株式会社製TOE-100を2.35質量%とを混錬して、銀ペーストを調製した。
Example 3
A silver paste was prepared by kneading 16.7% by mass of fine silver powder, 76.4% by mass of large silver particle powder 3, 0.2% by mass of SOLPLUSD-540 manufactured by Lubrizol as a dispersant, 2.35% by mass of Decanol manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., 0.6% by mass of Tersolve IPTL-A manufactured by Nippon Terpene Chemical Co., Ltd., and 2.35% by mass of TOE-100 manufactured by Nippon Terpene Chemical Co., Ltd. as a solvent.

この銀ペーストは印刷に適した粘度に調整するため、デカノールとTOE-100をそれぞれ0.70wt%添加して希釈して、実施例3の接合材を得た。得られた接合材中の銀濃度を強熱減量法により求めたところ、93.1質量%であった。 To adjust the viscosity of this silver paste to be suitable for printing, 0.70 wt% each of decanol and TOE-100 were added to dilute it, and the bonding material of Example 3 was obtained. The silver concentration in the resulting bonding material was determined by the ignition loss method and was found to be 93.1 mass%.

<実施例4>
銀微粒子粉末を17.2質量%と、銀大粒子粉末4を75.8質量%と、分散剤としてLubrizol社製SOLPLUSD-540を0.2質量%と、溶剤として、日本テルペン化学株式会社製テルソルブIPTL-Aを0.6質量%、富士フィルム和光純薬株式会社製デカノールを2.35質量%、日本テルペン化学株式会社製TOE-100を2.35質量%とを混錬して、銀ペーストを調製した。
Example 4
A silver paste was prepared by kneading 17.2 mass% of fine silver powder, 75.8 mass% of large silver particle powder 4, 0.2 mass% of SOLPLUSD-540 manufactured by Lubrizol as a dispersant, 0.6 mass% of Tersolve IPTL-A manufactured by Nippon Terpene Chemical Co., Ltd., 2.35 mass% of Decanol manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., and 2.35 mass% of TOE-100 manufactured by Nippon Terpene Chemical Co., Ltd. as a solvent.

この銀ペーストは印刷に適した粘度に調整するため、デカノールとTOE-100をそれぞれ0.70wt%添加して希釈して、実施例4の接合材を得た。得られた接合材中の銀濃度を強熱減量法により求めたところ、93.0質量%であった。 To adjust the viscosity of this silver paste to be suitable for printing, 0.70 wt% each of decanol and TOE-100 were added to dilute it, and the bonding material of Example 4 was obtained. The silver concentration in the resulting bonding material was determined by the ignition loss method and was found to be 93.0 mass%.

以上、調製した比較例1及び実施例1~4の接合材の成分組成を下記表2に表示した。 The component compositions of the bonding materials prepared above for Comparative Example 1 and Examples 1 to 4 are shown in Table 2 below.

Figure 0007487011000002
Figure 0007487011000002

[粘度測定]
<低せん断粘度>
比較例及び実施例1~4の接合材について、E型の回転式粘度計であるレオメーター(回転式動的粘弾性測定装置)(Thermo社製のHAAKE RheoStress 600、コーン径35mm、コーン角度2°のコーンを使用)を用い、25℃、せん断速度0.157s-1の条件で粘度(低せん断粘度)の評価を行った。粘度測定は、以下のようにしておこなった。ステージとコーンの隙間に接合材を注入し、コーンを0.157s-1で回転させたときの、回転開始から60秒後の時点のせん断応力から低せん断粘度を算出した。なおその際のせん断速度が、回転開始から30秒後~60秒後の30秒の間、設定値である0.157s-1の±1%以内のせん断速度に収まっていることを確認したうえで、低せん断粘度を求めた。
[Viscosity measurement]
<Low shear viscosity>
For the bonding materials of the comparative example and Examples 1 to 4, a rheometer (rotational dynamic viscoelasticity measuring device) (a cone with a cone diameter of 35 mm and a cone angle of 2°, manufactured by Thermo Corporation) was used to evaluate the viscosity (low shear viscosity) at 25°C and a shear rate of 0.157 s -1 . The viscosity measurement was performed as follows. The bonding material was injected into the gap between the stage and the cone, and the cone was rotated at 0.157 s-1 . The low shear viscosity was calculated from the shear stress at 60 seconds after the start of rotation when the bonding material was injected into the gap between the stage and the cone and the cone was rotated at 0.157 s -1. The low shear viscosity was calculated after confirming that the shear rate at that time was within ±1% of the set value of 0.157 s-1 for 30 seconds from 30 seconds after the start of rotation to 60 seconds after the start of rotation.

<1rpm及び5rpmでの粘度>
更に比較例及び実施例1~4の接合材について、上記と同様のレオメーターを用いて、25℃にて、回転数1rpm(3.1s-1)、及び5rpm(15.7s-1)での粘度及びチキソ比(1rpmでの粘度/5rpmでの粘度)を求めた。
<Viscosity at 1 rpm and 5 rpm>
Furthermore, for the bonding materials of the comparative example and Examples 1 to 4, the viscosity and thixotropy ratio (viscosity at 1 rpm/viscosity at 5 rpm) were determined at 25° C. and rotation speeds of 1 rpm (3.1 s −1 ) and 5 rpm (15.7 s −1 ) using the same rheometer as above.

以上の粘度測定の結果を下記表3にまとめる。 The results of the above viscosity measurements are summarized in Table 3 below.

Figure 0007487011000003
Figure 0007487011000003

表3に示すように、比較例および実施例1~4の接合材は、1rpm粘度や5rpm粘度並びにチキソ比ではあまり変わらないものの、低せん断粘度が大きく異なることが確認された。 As shown in Table 3, the bonding materials of the comparative example and Examples 1 to 4 did not differ significantly in 1 rpm viscosity, 5 rpm viscosity, or thixotropy ratio, but the low shear viscosity was significantly different.

<接合試験(ボイド評価)>
エタノールで脱脂した後に10質量%硫酸で処理した30mm×36.6mm×2.32mm(Cu/SiN/Cu=1.0mm/0.32mm/1.0mm)の大きさのDBC基板(SiN(窒化珪素)を銅板で挟んだセラミック基板)と、接合面(底面全面)にAgめっきを施した8mm×8mm×0.1mmの大きさの半導体素子を用意した。
<Bonding test (void evaluation)>
A DBC substrate (a ceramic substrate consisting of SiN (silicon nitride) sandwiched between copper plates) measuring 30 mm × 36.6 mm × 2.32 mm (Cu/SiN/Cu = 1.0 mm/0.32 mm/1.0 mm) that had been degreased with ethanol and then treated with 10% by mass sulfuric acid, and a semiconductor element measuring 8 mm × 8 mm × 0.1 mm with Ag plating applied to the bonding surface (entire bottom surface) were prepared.

次に、前記DBC基板上にメタルマスク印刷で上記比較例及び実施例1~4の接合材をそれぞれ塗布した。DBC基板上に塗布された接合材上に、上記の半導体素子のAgめっきした部分が接合材に接するように配置した。接合材と半導体素子の間に、素子の上面全体を押すことで5Nの荷重(約0.08MPaの圧力)をかけた後、熱風循環式焼成炉により窒素雰囲気(酸素濃度500ppm以下)中において25℃から昇温速度3℃/minで250℃まで昇温させ、250℃で60分間保持する焼成を行って、銀接合層を形成し、この銀接合層によって半導体素子をDBC基板に接合した。 Next, the bonding materials of the comparative example and examples 1 to 4 were applied to the DBC substrate by metal mask printing. The semiconductor element was placed on the bonding material applied to the DBC substrate so that the Ag-plated portion of the semiconductor element was in contact with the bonding material. A load of 5 N (a pressure of about 0.08 MPa) was applied between the bonding material and the semiconductor element by pressing the entire upper surface of the element between the bonding material and the semiconductor element, and the temperature was then raised from 25°C to 250°C at a heating rate of 3°C/min in a nitrogen atmosphere (oxygen concentration 500 ppm or less) in a hot air circulation baking furnace, and the temperature was held at 250°C for 60 minutes to form a silver bonding layer, and the semiconductor element was bonded to the DBC substrate by this silver bonding layer.

得られたDBC基板-銀接合層-半導体素子の接合体について、超音波探傷検査装置(C-SAM:SONOSCAN社製のD9500)により半導体素子の上面から接合部(上から半導体素子-銀接合層-DBC基板の積層部位)を観察した。得られた画像(C-SAM像)から、DBC基板の銀接合層との界面のボイドの有無を観察した。また、同装置に付属の解析ソフトを用い、ボイド箇所の全観察部位に占める割合(百分率)を算出し、これをボイド率と規定した。なおボイド箇所とはC-SAM像において白く見えるところであり、全観察部位とは半導体素子の接合面に対応する、8mm×8mmの正方形の領域である。 The resulting DBC substrate-silver bonding layer-semiconductor element bonded body was observed from the top of the semiconductor element at the bonded portion (the semiconductor element-silver bonding layer-DBC substrate stacked portion from above) using an ultrasonic flaw detector (C-SAM: D9500 manufactured by SONOSCAN). The resulting image (C-SAM image) was observed for the presence or absence of voids at the interface with the silver bonding layer of the DBC substrate. In addition, the analysis software attached to the device was used to calculate the proportion (percentage) of voids in the total observed area, which was defined as the void rate. The void area is the area that appears white in the C-SAM image, and the total observed area is a square area of 8 mm x 8 mm that corresponds to the bonding surface of the semiconductor element.

ボイド率の評価結果を下記表4に示す。なお、接合材の低せん断粘度並びに接合材中の銀大粒子粉末のタップ密度及び充填率も表4にあわせて示す。 The evaluation results of the void ratio are shown in Table 4 below. The low shear viscosity of the bonding material and the tap density and filling rate of the large silver particle powder in the bonding material are also shown in Table 4.

Figure 0007487011000004
Figure 0007487011000004

表4に示すように、低せん断粘度が大きな接合材を用いた比較例では、ボイド率が1.24%であったのに対して、実施例1~4では、低せん断粘度が1000Pa・s以下である接合材を用いることで、比較例よりもボイド率を0.77%以下と低く抑え、ボイドを低減できることが確認された。また、低せん断粘度を小さくするほどボイド率を低減できる傾向が確認された。このように、接合材の低せん断粘度を小さくすることにより、ボイドを低減することができる。 As shown in Table 4, in the comparative example using a bonding material with a high low shear viscosity, the void ratio was 1.24%, whereas in Examples 1 to 4, by using a bonding material with a low shear viscosity of 1000 Pa·s or less, the void ratio was kept lower than in the comparative example at 0.77% or less, confirming that it was possible to reduce voids. It was also confirmed that there is a tendency for the void ratio to be reduced as the low shear viscosity is reduced. In this way, voids can be reduced by reducing the low shear viscosity of the bonding material.

Claims (23)

金属粒子粉末及び溶剤を含む接合材であって、25℃で0.157s-1にて測定した粘度が500Pa・s以下である、接合材。 A bonding material comprising a metal particle powder and a solvent, the bonding material having a viscosity of 500 Pa·s or less measured at 25° C. and 0.157 s −1 . 前記金属粒子粉末の一部が、平均一次粒子径が150nm以下の金属微粒子粉末である、請求項1に記載の接合材。 The bonding material according to claim 1, wherein a portion of the metal particle powder is a metal fine particle powder having an average primary particle diameter of 150 nm or less. 前記接合材中の金属微粒子粉末の含有量が、2~45質量%である、請求項2に記載の接合材。 The joining material according to claim 2, wherein the content of the metal microparticle powder in the joining material is 2 to 45 mass %. 前記金属粒子粉末の一部が、充填率が65.0%以上であり、レーザー回折型粒度分布測定装置により測定した体積基準の累積50%粒子径(D50)が0.8~3.2μmである金属大粒子粉末である、請求項1~3のいずれかに記載の接合材。 The joining material according to any one of claims 1 to 3, wherein a portion of the metal particle powder is a large metal particle powder having a filling rate of 65.0% or more and a cumulative 50% particle diameter (D50) on a volume basis measured by a laser diffraction type particle size distribution measuring device of 0.8 to 3.2 μm. 前記接合材中の金属大粒子粉末の含有量が、40~88質量%である、請求項に記載の接合材。 The bonding material according to claim 4 , wherein the content of the large particle metal powder in the bonding material is 40 to 88 mass %. 前記金属大粒子粉末の充填率が66.5%以上である、請求項4又は5に記載の接合材。 The bonding material according to claim 4 or 5 , wherein the filling rate of the large metal particle powder is 66.5% or more. 金属粒子粉末及び溶剤を含む接合材であって、25℃で0.157sA bonding material containing a metal particle powder and a solvent, and having a bonding strength of 0.157 s at 25°C. -1-1 にて測定した粘度が1000Pa・s以下であり、前記金属粒子粉末の一部が、充填率が66.5%以上であり、レーザー回折型粒度分布測定装置により測定した体積基準の累積50%粒子径(D50)が0.8~3.2μmである金属大粒子粉末である、接合材。a part of the metal particle powder is a large metal particle powder having a filling rate of 66.5% or more and a volume-based cumulative 50% particle diameter (D50) of 0.8 to 3.2 μm as measured by a laser diffraction particle size distribution measurement device. 前記金属粒子粉末の一部が、平均一次粒子径が150nm以下の金属微粒子粉末である、請求項7に記載の接合材。The bonding material according to claim 7 , wherein a part of the metal particle powder is a fine metal powder having an average primary particle size of 150 nm or less. 前記接合材中の金属微粒子粉末の含有量が、2~45質量%である、請求項8に記載の接合材。The bonding material according to claim 8, wherein the content of the metal fine particle powder in the bonding material is 2 to 45 mass %. 前記粘度が800Pa・s以下である、請求項7~9のいずれかに記載の接合材。The bonding material according to any one of claims 7 to 9, wherein the viscosity is 800 Pa·s or less. 前記粘度が500Pa・s以下である、請求項7~10のいずれかに記載の接合材。The bonding material according to any one of claims 7 to 10, wherein the viscosity is 500 Pa·s or less. 前記接合材中の金属大粒子粉末の含有量が、40~88質量%である、請求項7~11のいずれかに記載の接合材。The bonding material according to any one of claims 7 to 11, wherein the content of the large particle metal powder in the bonding material is 40 to 88 mass %. 前記金属が、金、銀及び銅からなる群より選ばれる少なくとも一種である、請求項1~12のいずれかに記載の接合材。 The bonding material according to any one of claims 1 to 12 , wherein the metal is at least one selected from the group consisting of gold, silver, and copper. 前記金属が銀である、請求項1~13のいずれかに記載の接合材。 The bonding material according to any one of claims 1 to 13 , wherein the metal is silver. 無加圧方式の接合に使用される、請求項1~14のいずれかに記載の接合材。 The bonding material according to any one of claims 1 to 14 , which is used for pressureless bonding. 前記接合材中の金属粒子粉末の含有量が、90~96質量%である、請求項1~15のいずれかに記載の接合材。 The bonding material according to any one of claims 1 to 15 , wherein the content of the metal particle powder in the bonding material is 90 to 96 mass %. 平均一次粒子径が150nm以下の金属微粒子粉末と、充填率が66.5%以上であり、レーザー回折型粒度分布測定装置により測定した体積基準の累積50%粒子径(D50)が0.8~3.2μmである金属大粒子粉末と、溶剤とを混合する、接合材の製造方法。 A manufacturing method for a bonding material includes mixing a fine metal particle powder having an average primary particle diameter of 150 nm or less, a large metal particle powder having a filling rate of 66.5 % or more and a volume-based cumulative 50% particle diameter (D50) of 0.8 to 3.2 μm as measured by a laser diffraction type particle size distribution measuring device, and a solvent. 前記金属微粒子粉末及び金属大粒子粉末の使用量が、前記接合材中の金属微粒子粉末及び金属大粒子粉末の含有量が、それぞれ2~45質量%及び40~88質量%となる量である、請求項17に記載の接合材の製造方法。 The method for producing a bonding material according to claim 17, wherein the amounts of the fine metal particle powder and the large metal particle powder used are such that the contents of the fine metal particle powder and the large metal particle powder in the bonding material are 2 to 45 mass% and 40 to 88 mass%, respectively. 前記金属微粒子粉末及び金属大粒子粉末の使用量の合計が、前記接合材中の金属微粒子粉末及び金属大粒子粉末の含有量の合計が90~96質量%となる量である、請求項17又は18に記載の接合材の製造方法。 The method for manufacturing a bonding material according to claim 17 or 18 , wherein a total amount of the fine metal particle powder and the large metal particle powder used is such that a total content of the fine metal particle powder and the large metal particle powder in the bonding material is 90 to 96 mass%. 前記金属が、金、銀及び銅からなる群より選ばれる少なくとも一種である、請求項17~19のいずれかに記載の接合材の製造方法。 The method for manufacturing a bonding material according to any one of claims 17 to 19 , wherein the metal is at least one selected from the group consisting of gold, silver, and copper. 2つの被接合部材を接合する接合方法であって、一方の前記被接合部材上に請求項1~16のいずれかに記載の接合材又は請求項17~20のいずれかに記載の接合材の製造方法で製造された接合材を塗布して塗膜を形成する工程と、該塗膜上に他方の前記被接合部材を載置する工程と、該他方の被接合部材が載置された塗膜を160~350℃で焼成して、前記塗膜から金属接合層を形成する工程とを有する、接合方法。 A method for joining two members to be joined, comprising the steps of: applying a bonding material according to any one of claims 1 to 16 or a bonding material manufactured by the method for manufacturing a bonding material according to any one of claims 17 to 20 onto one of the members to be joined to form a coating film; placing the other member to be joined on the coating film; and baking the coating film on which the other member to be joined is placed at 160 to 350°C to form a metal bonding layer from the coating film. 前記塗膜を焼成して金属接合層を形成する際に、前記2つの被接合部材及び塗膜に圧力を加えない、請求項21に記載の接合方法。 The bonding method according to claim 21 , wherein no pressure is applied to the two bonded members and the coating film when the coating film is fired to form the metal bonding layer. 前記一方の被接合部材が基板であり、前記他方の被接合部材が半導体素子である、請求項21又は22に記載の接合方法。 23. The bonding method according to claim 21 or 22 , wherein the one member to be bonded is a substrate, and the other member to be bonded is a semiconductor element.
JP2020092126A 2020-05-27 2020-05-27 Bonding material, manufacturing method for bonding material, and bonding method Active JP7487011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020092126A JP7487011B2 (en) 2020-05-27 2020-05-27 Bonding material, manufacturing method for bonding material, and bonding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020092126A JP7487011B2 (en) 2020-05-27 2020-05-27 Bonding material, manufacturing method for bonding material, and bonding method

Publications (2)

Publication Number Publication Date
JP2021188071A JP2021188071A (en) 2021-12-13
JP7487011B2 true JP7487011B2 (en) 2024-05-20

Family

ID=78848264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020092126A Active JP7487011B2 (en) 2020-05-27 2020-05-27 Bonding material, manufacturing method for bonding material, and bonding method

Country Status (1)

Country Link
JP (1) JP7487011B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011155615A1 (en) 2010-06-11 2011-12-15 Dowaエレクトロニクス株式会社 Low-temperature-sinterable bonding material, and bonding method using the bonding material
JP2012052198A (en) 2010-09-02 2012-03-15 Nippon Handa Kk Paste-like silver particle composition, method for manufacturing metallic member joined body, and metallic member joined body
JP2019183268A (en) 2018-04-11 2019-10-24 Dowaエレクトロニクス株式会社 Silver powder and manufacturing method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011155615A1 (en) 2010-06-11 2011-12-15 Dowaエレクトロニクス株式会社 Low-temperature-sinterable bonding material, and bonding method using the bonding material
JP2012052198A (en) 2010-09-02 2012-03-15 Nippon Handa Kk Paste-like silver particle composition, method for manufacturing metallic member joined body, and metallic member joined body
JP2019183268A (en) 2018-04-11 2019-10-24 Dowaエレクトロニクス株式会社 Silver powder and manufacturing method therefor

Also Published As

Publication number Publication date
JP2021188071A (en) 2021-12-13

Similar Documents

Publication Publication Date Title
TWI636842B (en) Bonding material and bonding method using same
JP6884285B2 (en) Bonding composition, bonding structure of conductor and method for manufacturing the same
TW201830411A (en) Bonding material and bonding method using same
JP2016525495A (en) Sintered paste with silver oxide coated on precious and non-precious metal surfaces that are difficult to sinter
JP6313761B2 (en) Silver sinterable composition containing flux or reducing agent for metal bonding
JP7200527B2 (en) METAL PASTE FOR JOINING AND METHOD FOR MANUFACTURING JOINT
TW201942372A (en) Copper paste, bonding method, and method for producing bonded body
JP7155654B2 (en) Method for manufacturing conjugate
JP7210842B2 (en) Method for manufacturing joined body, copper paste for forming sintered copper pillars, and joining member with pillars
JP7164775B2 (en) Conductive paste for bonding
US10821558B2 (en) Bonding material and bonding method using same
JP7487011B2 (en) Bonding material, manufacturing method for bonding material, and bonding method
JP5923698B2 (en) Manufacturing method of semiconductor device using noble metal paste
TWI759279B (en) Copper paste for pressureless bonding, bonding body, method for producing the same, and semiconductor device
CN110582362A (en) Bonding material and bonded body using the same
WO2021039874A1 (en) Low temperature sinterable bonding paste and bonded structure
US20240033860A1 (en) Sintering paste and use thereof for connecting components
JP7113135B2 (en) Metal paste and its use for joining components
WO2018101471A1 (en) Electroconductive bonding material and method for manufacturing semiconductor device
EP3189914A1 (en) Bonding material and bonding method using same
WO2021060126A1 (en) Joining material, method for manufacturing joining material, joining method, and semiconductor device
WO2019171908A1 (en) Metal particle aggregates, method for producing same, paste-like metal particle aggregate composition, and method for producing composite body using said paste-like metal particle aggregate composition
JP2020164894A (en) Joint material, manufacturing method of joint material, joining method, and semiconductor device
WO2024034662A1 (en) Copper paste
WO2022196653A1 (en) Copper paste for forming sintered copper pillars and method for producing bonded body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240508

R150 Certificate of patent or registration of utility model

Ref document number: 7487011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150